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Figure 1: Does human perceptual alignment improve vision representations? Vision models have been
shown to learn useful image representations through large-scale pretraining (e.g., CLIP, DINO). We find that
additionally aligning these models to human perceptual judgments yields representations that improve upon the
original backbones across many downstream tasks, including counting, segmentation, depth estimation, instance
retrieval, and retrieval-augmented generation, while degrading performance in natural classification tasks. Our
blog post and code are available at percep-align.github.io.

Abstract
Humans judge perceptual similarity according to diverse visual attributes, in-
cluding scene layout, subject location, and camera pose. Existing vision models
understand a wide range of semantic abstractions but improperly weigh these at-
tributes and thus make inferences misaligned with human perception. While vision
representations have previously benefited from alignment in contexts like image
generation, the utility of perceptually aligned representations in general-purpose
settings remains unclear. Here, we investigate how aligning vision representations
to human perceptual judgments impacts their usability across diverse vision tasks.
We finetune state-of-the-art models on human similarity judgments for image
triplets and evaluate them across standard benchmarks. We find that perceptual
alignment yields representations that improve upon the original backbones across
many tasks, including counting, segmentation, depth estimation, instance retrieval,
and retrieval-augmented generation, while deteriorating performance on natural
classification. Performance is widely preserved on other tasks, including special-
ized out-of-distribution domains such as in medical imaging and 3D environment
frames. Our results suggest that injecting an inductive bias about human perceptual
knowledge into vision models can contribute to better representations.
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1 Introduction
Our sense of similarity is crucial to how we perceive and act in the world. Consider the range of
factors that might influence your judgment of visual similarity: layout, color, perspective, semantics,
and more. These characteristics shape our local inferences about object relationships, enabling us to
build a comprehensive understanding of the visual world.

Given the importance of similarity judgments in our visual perception, it follows that aligning vision
models to these judgments could help them develop more human-like visual capabilities. In the
language domain, we have seen the power of aligning LLMs to human feedback [RLHF; 9], resulting
in safer and more useful models [3]. Similar trends are emerging in vision, where there is growing
interest in alignment with human perceptual judgments to improve vision representations [e.g.,
61, 17, 42, 18, 43]. Human feedback has also been used to improve the aesthetic quality of diffusion-
generated images [58, 16, 30], increase retrieval capabilities [18], and improve downstream task
performance of image/text models [42]. While acknowledging this wide space of human preference
data used for alignment in vision and language, we focus our study on image similarity judgments,
which give us a more stable and shared measure of human visual perception [18, 41, 54, 43].

Although there is consensus that alignment to perceptual judgements can enable specific goals (e.g.,
similarity [18, 61, 41, 42]), their utility in creating general-purpose representations is less clear. Does
human alignment improve model performance by leveraging human-provided labels as an inductive
bias, or compromise the model’s original representational power by diverting it towards a separate
task? Recent work suggests that the conclusions are nuanced: naively incorporating human percep-
tual knowledge into model finetuning can distort representations, requiring strong regularization to
maintain downstream performance while increasing the representations’ interpretability and align-
ment [42]. Furthermore, objective function and training data appear to matter more than architecture
or model size for aligning to perceptual judgments [41]. The nature of human preference labels
also plays a crucial role, as different types of labels produce distinct learning signals. For instance,
fine-tuning vision backbones with mid-level perceptual similarity judgments yields representations
well-suited for image retrieval tasks [18], while low-level similarity labels are more effective for
image reconstruction losses [61].

It is clear from this body of work that careful perceptual alignment helps with specific tasks, however
the effect of these adjustments on the models’ representation spaces is less well understood. That
is, are models aligned to perceptual judgments only better at specific tasks – such as predicting
image similarity – or do they, like humans, actually have better general-purpose representations?
Here, we evaluate the usefulness of human-aligned representations not just in predicting perceptual
judgments but also on standard vision benchmarks requiring diverse notions of visual understanding.
We finetune several state-of-the-art models – including CLIP, DINO, DINOv2, and SynCLR – on
NIGHTS, a dataset of human similarity judgments over synthetic image triplets [18], and evaluate the
finetuned models on standard tasks. Our experiments suggest that these human-aligned representations
demonstrate strong gains compared to the original model backbones, even on tasks requiring skills
beyond those needed during training or perceptual alignment. We also identify limitations of human
perceptual alignment, and find that finetuning can sacrifice performance on some natural data tasks in
which models had strong prior performance. In summary, our contributions are the following:

• We investigate the effects of aligning pretrained vision models to human perceptual judg-
ments on various downstream visual recognition tasks.

• We find that propagating global image-level human similarity annotations to ViT patch tokens
benefits downstream dense prediction tasks such as depth prediction and segmentation.

• We show that human-aligned representations are also beneficial in retrieval-based tasks
requiring global image understanding, including retrieval-augmented generation for recent
vision-language models, counting-based retrieval, and instance-based retrieval.

• We ablate the effect of various human-annotated visual similarity datasets, and find that
mid-level image similarity, as opposed to low-level pixel-level variations or high-level
semantic associations, offers the largest improvements in generalization capabilities.

2 Related Works
Vision backbones as learned feature extractors. Using the intermediate activations of deep net-
works has been a long-standing strategy, originally used as a way of harnessing data-driven priors
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from models trained on fewer large datasets and repurposing them for downstream tasks where such
expensive supervision is less readily available [12, 50]. For instance, ImageNet pretrained models
have proven useful for tasks such as texture synthesis [19], style-transfer [20], and super-resolution
[27]. But given the challenges of collecting large-scale labelled datasets using human annotators,
other approaches such as self-supervised learning [6, 7, 59, 4, 44] and contrastive learning on im-
age/alt text pairs [46, 8, 26] have since superseded supervised learning as the standard approach for
training vision models. Such models have been shown to yield rich multipurpose representations
that can generalize to a variety of tasks involving visual perception, scene understanding, and image
generation [51, 38, 52, 31, 39, 57].

View selection for self-supervised learning. The self-supervised, contrastive-learning objective
aims to maximize the feature similarity between similar views of the data and minimize the similarity
between different (negative) views. While originally the negative views are selected randomly from a
pool of images [6, 22], this often results in requiring large batch sizes to learn useful representations.
The process of selecting these positive and negative learning examples remains an active research area.
Recent approaches have suggested that alternative strategies including hard-negative mining [47],
nearest neighbors for positive pairs [14], and supervised labels when available [28] can provide useful
learning signals. Other avenues include training the contrastive framework on synthetic data from
generative models [25, 55], which provides an infinite data source of image variations rather than the
traditional data augmentations typically used to generate alternative views.

Learning with human alignment. Learning directly from human feedback can provide models with
more targeted supervision using fewer examples [9], and, thus, has been beneficial for fine-tuning
large models towards specific human preferences [53, 62]. Ding et al. [11] show that image similarity
metrics, trained on human feedback, can be subsequently used for evaluating the diversity of a
text-to-image model. Several datasets aim to annotate human visual preferences in image similarity,
including low-level [61] and high-level [23] image variations. In particular, Zhang et al. [61] and
Fu et al. [18] use these datasets to learn a more human-aligned perceptual metric that improves the
image retrieval abilities of vision models, while Muttenthaler et al. [42] used THINGS for learning
a linear transform on top of vision representations to increase downstream task performance and
improve alignment with human similarity judgments. These annotated human preference datasets
serve as useful signals for contrastive objectives, providing direct supervision for positive and negative
pairings that are aligned with human decisions; here, we investigate how fine-tuning self-supervised
models using these human annotations impacts model performance on various downstream tasks.

3 Learning from perceptual judgments
We propose to use the method described below as a "second pretraining stage", which aligns the
feature representations from large vision models with human perceptual judgments before applying
them to downstream tasks. We note that prior work on this dataset aimed to develop a model for
measuring image similarity based on human judgments. Here, we investigate if pretraining on this
dataset leads to a better general-purpose representation, as measured by performance on different
downstream tasks.

3.1 Human Similarity Annotations

We use the NIGHTS dataset to produce human-aligned variations of several large vision models [18].
The NIGHTS dataset consists of 20k synthetically generated image triplets, annotated with two
alternative forced-choice human similarity judgments. These triplets are collected so that each
has 6-10 unanimous human ratings, thus eliminating ambiguous cases where humans are likely to
disagree.

NIGHTS consists of image triplets varying in mid-level information. Images in a triplet roughly
share the same semantic content; however, they vary in pose, layout, shape, color, and the number
of objects (see Fig. 15 in the Appendix for examples). Thus, the perceptual judgments indicate the
shared visual appearance properties, as opposed to requiring higher-level semantic knowledge about
the image content.

3.2 Image-level objective

Given a pre-trained backbone fθ, we fine-tune its parameters θ on a dataset of triplets D =
{(x, x̃0, x̃1), y}, where x denotes a reference image, and x̃0 and x̃1 denote two variation images.
The judgement y ∈ {0, 1} indicates which of x̃0 and x̃1 is more similar to x. We measure distance
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(dissimilarity) between two images (x, x̃0) using the cosine distance between their respective image
features (fθ(x), fθ(x̃0)), which is defined as:

d(x, x̃0) = 1− fθ(x) · fθ(x̃0)

|fθ(x)||fθ(x̃0)|
. (1)

We use an alignment loss to encourage the model to match human preferences:

Lalignment(θ) = max(0,m−∆d · ȳ), (2)

where ∆d = d(x, x̃0)− d(x, x̃1), ȳ maps y ∈ {0, 1} → {−1, 1}, and m is the margin, which we set
to 0.05 following [18]. Note that this loss is equivalent to the triplet loss [5], and thus minimizes
the cosine distance between the representations of the more similar pair and maximizes the distance
between the representations of the other pair.

3.3 Patch-level objective

CLS

patch embeds

avgpool

Figure 2: Diagram of our feature extraction method when training with a patch-level objective. Left: We
extract the CLS and patch embeddings from DINO and DINOv2, perform a spatial average-pool on the patch
embeddings, and concatenate [CLS, patch] vectors. Right: We train these concatenated features with a hinge
loss, identical to the image-level objective.

The NIGHTS dataset contains global annotations of similarity at the image level, but the holistic
label is the result of several local attributes, such as perspective, layout, foreground appearance etc.
In addition to the global CLS token from the Vision Transformer model backbones, each model also
contains a set of spatial patch embeddings. Propagating this global human annotation to individual
patch tokens allows for spatial representations that are aligned with human similarity preferences.
Thus, we formulate a patch alignment objective to optimize these local patch features jointly with the
global image label.

The local objective only differs from the global objective in how the features are extracted. Instead of
computing L (CLSA,CLSB), we compute

L (cat[CLSA,pool(PATCHA)], cat[CLSB,pool(PATCHB)]) .

CLS is of dimension (1, d) and PATCH is (s, s, d) where s is the number of patches along each
spatial dimension. We spatially average the patch tokens to get dimension (1, d). We then concatenate
the CLS and pooled patch tokens to get dimension (1, 2d). We fine-tune the same alignment loss
(see Eq. 2) on concatenated CLS and averaged-pooled patch tokens, and train heads for semantic
segmentation and depth estimation on the resulting patch embeddings. Note that only experiments
reported in Sec. 4.1 use this objective, as they require local features. For all other evaluations, we
exclusively use CLS tokens (see Eq. 2) if not mentioned otherwise.

3.4 Implementation details

Vision Model Backbones. We fine-tune several state-of-the-art Vision Transformer [VIT; 13]
backbones including DINO [4], DINOv2 [44], CLIP [46], OpenCLIP [8], and SynCLR [55]. For
DINO, DINOv2, MAE, and SynCLR, we use the CLS token of the final layer. We extract the CLS
token before layer norm for MAE and after it for the other backbones. For CLIP and OpenCLIP, we
use the representations of the image encoder. We also experiment with concatenated features from
DINO, CLIP, and OpenCLIP, used to train the DreamSim Ensemble in [18] (referred to as "ensemble"
in our results). For each model, we use its base size, ViT-B.

We implicitly ablate the usage of synthetic triplets in NIGHTS by including SynCLR in our exper-
iments; as that backbone was contrastively trained on generated images, additional performance
changes can be attributed to human perceptual alignment.
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Finetuning with human preference labels. We finetune each backbone using Low-Rank Adaptation
(LoRA), which was found to achieve better alignment performance and efficiency than full fine-tuning
in [18]. For more training and technical details see Sections C.1 and C.6 in the Appendix.

4 Experiments
In this section, we evaluate perceptually-aligned backbones against base models on common vision
tasks. We study global representations through instance retrieval, object-counting, and retrieval-
augmented generation experiments. Additionally, we find that local patch-level representations can
be improved by tuning on image-level perceptual judgments, and show performance increases on
semantic segmentation and depth estimation.

4.1 Dense Prediction

Semantic segmentation. Following the procedure detailed in Section 3.3 and Fig. 2, we LoRA-
tune new backbones with perceptually-aligned CLS and patch tokens. To evaluate segmentation
performance, we freeze these backbones and train a single linear layer transforming patch tokens
to a segmentation map. We evaluate DINO and DINOv2 on standard segmentation benchmarks in
Table 1 and show that human-aligned models boost performance in 16 out of 20 cases. Across all
datasets and metrics, human-aligned DINO (denoted as DINO-HA) outperforms the base model and
often achieves the highest mIoU and Pixel Accuracy (P.A.) overall. DINOv2-HA also outperforms its
nonaligned counterpart on COCO and DAVIS2017.

We flag datasets already seen in the DINOv2 retrieval pretraining [44], such as Pascal VOC, ADE20k,
and Cityscapes. If a dataset is already in-distribution for a backbone, fine-tuning on different data
may be more likely to change the feature space such that that dataset is more out-of-distribution.
Thus this is a potential confounding factor.

Pascal VOC∗ ADE20k∗ Cityscapes∗ COCO DAVIS2017
mIoU P.A. mIoU P.A. mIoU P.A. mIoU P.A. mIoU P.A.

DINO 0.729 0.800 0.342 0.548 0.562 0.749 0.810 0.901 0.809 0.886
DINO-HA 0.745† 0.840† 0.391 0.602 0.573† 0.769† 0.816† 0.914† 0.818† 0.913†

DINOv2 0.686 0.803 0.441† 0.645 0.535 0.737 0.759 0.877 0.794 0.906
DINOv2-HA 0.635 0.771 0.418 0.700† 0.528 0.739 0.761 0.891 0.810 0.908

Table 1: Base and human-aligned model performance on semantic segmentation. Aligned models largely
outperform baselines, with DINO-HA achieving the highest performance across models for 4 out of 5 datasets.
Note that Pascal VOC, ADE20k, and Cityscapes were included in DINOv2’s retrieval pretraining. † indicates
best score in the column.

Depth estimation. We follow the evaluation protocol of [44, 37] and train a single linear layer
on frozen patch tokens to output a depth map with values mapped into 256 uniformly-distributed
bins. This head is trained with a scale-invariant log loss introduced in [15] and a scale-invariant
gradient-matching term as described in [36]. In Table 2, we report performance on monocular depth
estimation and show that human-aligned models outperform base models in 27 out of 36 cases.
Consistent with segmentation performance, human-aligned DINO outperforms the base model on all
metrics across all datasets, and is often the highest-performing model overall (denoted by †). We also
evaluate out-of-distribution generalization by training a depth head on NYUv2 and evaluating on the
4D Light Field dataset; combined with the performance boost even on datasets that DINOv2 was
trained on (NYUv2 and SUN-RGBD), these results demonstrate that human-aligned models have
strong generalization capabilities prior to any training for downstream tasks.

4.2 Retrieval-augmented generation

First introduced for text generation with non-parametric memory [34], retrieval-augmented generation
(RAG) has become a popular method for selecting relevant few-shot examples when prompting large
vision-language models (VLMs) [1, 2, 32, 33]. RAG evaluations go beyond conventional retrieval
benchmarks on top-k recall, offering a more informative indicator of downstream large-model
performance and utility in the multimodal domain. We evaluate OpenFlamingo [2]’s few-shot
classification accuracy by using a vision backbone to retrieve a query image’s 3 nearest neighbors
and prepending the query image with those examples along with their class labels. Following
OpenFlamingo’s image classification evaluation framework [2], we extract the model’s logits per
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NYUv2∗

RMSE (↓) AbsRel (↓) log10 (↓) δ > 1.25 (↑) δ > 1.252 (↑) δ > 1.253 (↑)

DINO 1.034 3.517 0.173 0.415 0.746 0.895
DINO-HA 1.032 3.759 0.169† 0.445† 0.761 0.900
DINOv2 1.003† 3.188 0.178 0.445† 0.785† 0.907†

DINOv2-HA 1.062 3.167† 0.185 0.419 0.749 0.891

NYUv2 → 4D LF
RMSE (↓) AbsRel (↓) log10 (↓) δ > 1.25 (↑) δ > 1.252 (↑) δ > 1.253 (↑)

DINO 3.817 0.543 0.380 0.160 0.335 0.454
DINO-HA 3.757 0.538 0.362 0.187 0.346 0.463
DINOv2 3.460† 0.497 0.337† 0.194 0.337 0.464†

DINOv2-HA 3.720 0.487† 0.356 0.203† 0.356† 0.455

SUN-RGBD∗

RMSE (↓) AbsRel (↓) log10 (↓) δ > 1.25 (↑) δ > 1.252 (↑) δ > 1.253 (↑)

DINO 4.900 2.350 0.533 0.205 0.385 0.524
DINO-HA 4.788† 2.300† 0.526† 0.230 0.418† 0.531†

DINOv2 5.200 3.023 0.615 0.173 0.309 0.444
DINOv2-HA 5.082 2.904 0.599 0.237† 0.409 0.487

Table 2: Human-aligned DINO and DINOv2 performance on monocular depth estimation benchmarks.
Note that NYUv2 and SUN-RGBD were included in DINOv2’s retrieval pretraining set, yet human-aligned
DINOv2 still outperforms the base model on SUN-RGBD. Along with the results on an unseen test data domain
(train on NYUv2 → test on 4D Light Field), these results demonstrate strong generalization performance of
models aligned to human perceptual judgments. † indicates best score in the column.
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Figure 3: Left: Diagram of evaluation setup for retrieval-augmented generation. We retrieve the top-3
nearest image-prompt examples for each datasets and prompt OpenFlamingo with them before inputting the
query image. Right: Classification accuracy on VTAB [35] from wide-varying domains. Error bars indicate
95% confidence interval over 5 random seeds.

object class and determine the model’s decision by selecting the class with the largest log probability.
See the Appendix for full details on the RAG experimental setup.

As illustrated in Fig. 3, classification accuracy on a wide variety of data domains improves with
prompts retrieved by human-aligned models, compared to the original model backbones. Even in
out-of-distribution domains such as medical imagery and 2D renders of game scenes, human-aligned
models retrieve in-context examples that boost OpenFlamingo classification accuracy. These results
suggest that human-aligned models can select more informative examples for in-context learning,
thereby boosting the few-shot generalization abilities of a downstream multimodal VLM.
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4.3 Counting

A well-documented limitation of large vision backbones is their performance on compositional
tasks: in particular, on object counting [45]. We investigate how aligning to perceptual judgments
affects performance on counting tasks via the FSC147, CARPK, and Clevr-Count (adapted from the
original Clevr dataset by [60]) benchmarks by computer k-Nearest Neighbors accuracy on frozen
vision representations. We report results in Table 3 and retrieval visualizations for few (n = 3)
and many (n = 8, 10) objects in Fig. 4 and find that, across 6 different models, the human-aligned
versions outperform their counterparts in 35 out of 36 cases. See the Appendix for full details on
the counting experimental setup. Given that the perceptual similarity dataset we use for finetuning

Query: 3

Base CLIP

Human-Aligned CLIP
3 3 5

10 5 10
Base DINO

Human-Aligned DINO

4 5 9

Query: 10

10 8 10

Base Ensemble

Human-Aligned Ensemble

Query: 8

9 3 10

5 10 10

Figure 4: Visualizations of nearest-neighbor examples retrieved by CLIP, DINO, and Ensemble models as
well as their human-aligned versions. Overall, we see retrieved images with more accurate object counts in
CLIP-HA, DINO-HA, and Ensemble-HA across multiple nearest neighbors.

contains image-level similarity judgments, the consistent improvements that we observe on counting
tasks, which requires local object awareness, is somewhat surprising. We hypothesize that the
sensitivity of our human-aligned models to object counts may be a byproduct of NIGHTS examples
themselves, many of which include image triplets with varying numbers of objects (see Fig. 15 in the
Appendix). In terms of human perception, we note that humans consider object count when evaluating
image similarity as soon as they develop counting profiency [40]. Thus, it is possible that given
the prevalence of triplets with object-count variations in NIGHTS, the human annotations naturally
capture this counting aware effect in the global image-level labels and propagate this information to
the human-aligned models.

Figure 5: Performance improve-
ments on Clevr-Count visualized
by backbone for RMSE (top) and
MAE (bottom), averaged across all
datasets. Lower is better.

FSC147 CARPK Clever-Count
MAE RMSE MAE RMSE MAE RMSE

DINO 44.1 118.7 51.4 56.8 1.25 1.70
DINO-HA 41.3† 119.3 48.7 54.5† 1.08 1.50
DINOv2 57.5 128.3 52.4 59.5 1.18 1.60
DINOv2-HA 44.9 113.6† 52.1 58.2 0.84 1.20
CLIP 59.1 158.4 52.5 60.3 1.09 1.52
CLIP-HA 53.2 156.0 52.3 58.8 0.81 1.15†

OpenCLIP 54.4 153.5 54.1 60.3 0.97 1.36
OpenCLIP-HA 50.2 139.1 49.9 55.8 0.80† 1.15†

SynCLR 50.6 139.6 54.3 60.3 1.05 1.45
SynCLR-HA 46.4 128.1 51.3 58.2 0.98 1.37
Ensemble 48.4 132.4 49.6 60.3 1.10 1.51
Ensemble-HA 45.4 130.3 48.4† 55.2 0.83 1.19

Table 3: Error comparisons for base and human-aligned models on
standard counting benchmarks. Though FSC147 and CARPK have
examples with extreme object counts (tens and hundreds) unseen in the
NIGHTS data, human-aligned models still achieve higher performance
in each pair. † indicates best score in the column, lower is better.

4.4 Instance retrieval
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DeepFashion2
Top-1 Top-3 Top-5

DINO 8.02 12.15 14.44
DINO-HA 11.69 17.55 20.84
DINOv2 5.95 8.47 9.98
DINOv2-HA 9.03 13.57 16.30
CLIP 4.59 6.89 8.23
CLIP-HA 8.62 13.02 15.60
OpenCLIP 14.88 22.74 27.36
OpenCLIP-HA 16.85 24.58 28.64
SynCLR 4.88 7.34 9.02
SynCLR-HA 8.35 12.31 14.86
Ensemble 13.54 20.01 23.54
Ensemble-HA 23.39† 32.47† 37.20†

Table 4: Top-1, -3, and -5 recall scores
for instance retrieval on DeepFashion
2. † indicates best score in the column,
higher is better.

In this section, we evaluate how aligning models to perceptual
judgments affects their performance on the instance retrieval
task. This task aims to retrieve images from a gallery contain-
ing a shared subject or object with the query image. At test
time, retrieval is performed by computing the cosine similarity
between the extracted features of the query and gallery images.
Succeeding at this task requires that a representation be ro-
bust to recognizing instance identities under different lighting,
backgrounds, poses, and other such shifts.

We evaluate all base models and their human-aligned counter-
parts on the Consumer-to-Shop benchmark of the DeepFash-
ion2 dataset [21]. The benchmark consists of 10990 consumer
"in the wild images" as the query set, and 21438 gallery images
with matching clothing items to consumer images. Following
the evaluation protocol from [21], we report Top-1, 3, and 5
accuracy in Table 4. Human aligned models outperform base
models by a significant margin across all metrics and backbones (visualized in Fig. 6. In Fig. 7 we
provide qualitative retrieval results. These results agree with prior work showing that training on
NIGHTS improves performance in retrieving similar images to queries [18].

Figure 6: Performance improvements on the
DeepFashion2 instance retrieval, task visual-
ized by backbone and averaged across all k
for top-k recall. Higher is better.

Query

Base Model

Human-Aligned

Query

Base Model

Human-Aligned

Query

Base Model

Human-Aligned

Query

Base Model

Human-Aligned

Figure 7: Examples of top-3 retrievals for a given query image
on DeepFashion2. Overall, the human-aligned models return
matching clothing items more frequently.

4.5 What type of human similarity annotation is most beneficial?

As evidenced by the current widespread use of large vision models [4, 44, 46], trained on massive
datasets, model performance largely correlates with data scale. This raises the question: are our
performance gains purely due to training the base models on additional data, or as a result of the
perceptual qualities embedded in NIGHTS? To investigate this, we ablate the training dataset - rather
than tune on 13,900 NIGHTS triplets, we train on three other image triplet datasets of the same size:

1. BAPPS [61]: Originally the training set for the LPIPS perceptual similarity metric [61],
BAPPS consists of image patch triplets with various low-level distortions applied (e.g. color
jitter, gaussian blur, JPEG compression artifacts).

2. THINGS [24]: This dataset contains image triplets with each image encoding a different
concept (e.g. a triplet of images categorized as {airplane, elephant, football}), labeled by
humans tasked to determine which concept is the odd-one-out.

3. ImageNet [48]: To ablate whether perceptual judgments at any level are needed, we construct
an image triplet dataset by randomly selecting two images from one category and one image
from another, labeling the first image pair as more similar to each other.
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For all three datasets, we apply the same training settings as with the original LoRA-tuning on
NIGHTS. See Fig. 8 for dataset ablations on object counting and instance retrieval.

Tuning on NIGHTS indeed provides the largest improvements across these tasks, with THINGS
worsening performance overall and BAPPS/ImageNet having minimal effect. These trends may
appear because BAPPS’ photometric distortions are too low-level to impart any perceptual signal onto
the backbones, THINGS encodes a higher-level conceptual similarity irrelevant to these mid-level
vision tasks, and pre-trained vision models already perform quite well at discriminating ImageNet
categories. Indeed, previous work [18] has found that similarity judgments by perceptual metrics
trained on BAPPS correlate better to low-level metrics such as color than to semantic attributes.

In Section A.2 of the Appendix we find that the performance boost from NIGHTS over other datasets
is also consistent across semantic segmentation and depth estimation. Conversely, tuning on NIGHTS
fails to improve over other datasets on classification datasets; we further discuss this finding in
Sections 5 and A.1.

Figure 8: Evaluations comparing dataset utility on counting tasks (lower RMSE is better) and DeepFashion2
instance retrieval (higher recall is better). Across each task, tuning on NIGHTS yields the largest improvements
while THINGS worsens performance and BAPPS/ImageNet makes minimal changes.

5 Discussion
Recently, the vision research community has converged on the idea that using human perception
to improve machine perception can bolster the transfer of vision representations to downstream
tasks [61, 17, 41, 18, 42, 43]. However, it remained unclear which tasks benefit most from alignment
with human perceptual judgments; different tasks may demand representations that encode different
levels of granularity and semantics. Here, we fine-tune modern backbones, pretrained on different
tasks, on human perceptual judgments [18] and subsequently investigate which downstream tasks
benefit. We develop a better understanding of how perceptual alignment affects performance on
important tasks – e.g., segmentation, depth estimation, RAG – which may in turn inform future
model training and data curation decisions across different applications. By evaluating competency at
downstream tasks, we quantify what these representations capture and make decodable, enabling a
better understanding of the human-aligned feature space. While we probe representations in terms of
competency, understanding them in terms of their mechanism is a rich direction for future work.

We find widespread benefits from perceptual alignment across both image- and patch-level tasks. At
the global level, performance consistently improves for retrieval-augmented generation, counting-
based and instance-based retrieval. Moreover, propagating the supervision from image-level similarity
judgments to ViT patch tokens improves performance on dense prediction tasks (semantic segmenta-
tion and depth prediction). Since model performance is closely linked to data scale, we also ablate
the choice of perceptual dataset. While fine-tuning on NIGHTS — a dataset of mid-level perceptual
judgments — leads to improvements across various tasks, fine-tuning on triplets from ImageNet [10],
BAPPS [61], and THINGS [23] preserves or deteriorates transfer performance.

Why does fine-tuning on NIGHTS in particular lead to improvements? We hypothesize that the
variations found in BAPPS and THINGS are solely high- or low-level, whereas the mid-level
distortions in NIGHTS cover salient features that humans use when making inferences about what
they see; these characteristics include style, pose, color, and count (see Fig.15), and largely correlate
with the characteristics a model must successfully extract for many computer vision tasks. Previous
work [18] found that models fine-tuned on NIGHTS seem to attend to both low-level and semantic
attributes. Aligning a feature space to these concepts may be useful for visual tasks requiring both
visual and semantic knowledge, such as retrieval, counting, segmentation, etc. This hypothesis may
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also explain why tuning on NIGHTS hurts performance on fine-grained tasks, in which perceptually
similar images may belong to different categories.

Limitations. Perceptual alignment does not appear to improve performance for standard image
classification tasks such as natural image datasets in the VTAB benchmark [60] (see Tables 5a-b
in the Appendix). This is surprising in light of recent findings that demonstrate downstream task
improvements in image classification tasks for human-aligned representations [42]. Although it
is hard to pinpoint the exact cause, we hypothesize two reasons: First, perceptual judgments at
different levels of abstraction may be helpful for different downstream tasks. While the mid-level
perceptual judgments in NIGHTS boost performance for retrieval-based and dense prediction tasks,
they may not impart a useful inductive bias for standard image classification tasks; high-level semantic
associations could simply be better suited for these kinds of tasks. Alternatively, the visual features
that humans use to judge similarity may not be appropriately captured in classification accuracy
metrics. Some VTAB datasets have numerical ground truth in which the distance from the correct
answer is meaningful; thus, it may be ill-suited for classification, and better suited to continuous
evaluations, which we report in sections of the paper.

Additionally, a key insight from our dataset ablations is that not all human preferences improve
performance. Finetuning on perceptual datasets with solely high-level (THINGS) or low-level
(BAPPS) variations hurts performance for many downstream tasks (Section 4.5 and A.2). Similarly,
Muttenthaler et al. [43] recently discovered that finetuning vision models on THINGS can hurt
downstream task transfer. Due to our evaluation of the synthetically-pretrained SynCLR [55], we
attribute the drop in performance to perceptual alignment. Furthermore, by ablating the number of
fine-tuning steps in Section A.2, we show that overfitting to perceptual judgments may also harm
downstream performance.

Societal impacts. Beyond our findings, there are other possibilities for harm outside the scope of the
type of perceptual annotations we have studied: Human preferences may reflect unwanted biases.
A long-standing problem in both language and vision is that biases (e.g. gender, racial) reflected
in Internet language/images are inherited by large models, and reflected in their embeddings. One
can imagine similar phenomena to happen in visual preferences [29]. Humans may disagree on a
preference label, or even disagree with themselves if asked at different points in time. This may
lead to noisy data if not filtered carefully, thus harming representations [54, 43]. Without sufficient
demographic diversity in the annotator group, emerging biases may be reflected in the model. For
example, some RLHF-trained language models have been shown to develop a bias towards the
opinions of high-income, liberal individuals over their non-RLHF counterparts [49].

Acknowledgements
We thank Tali Dekel and Richard Zhang for helpful discussions. This work was supported by the
Sagol Weizmann-MIT Bridge Program and by a Packard Fellowship and a Sloan Research Fellowship
to P.I. and an NSF GRFP Fellowship to S.S.

10



References
[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,

Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Ruther-
ford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob
Menick, Sebastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Miko-
laj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan.
Flamingo: a visual language model for few-shot learning, 2022.

[2] Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani
Marathe, Yonatan Bitton, Samir Gadre, Shiori Sagawa, Jenia Jitsev, Simon Kornblith, Pang Wei
Koh, Gabriel Ilharco, Mitchell Wortsman, and Ludwig Schmidt. Openflamingo: An open-source
framework for training large autoregressive vision-language models, 2023.

[3] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

[4] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9650–9660, October
2021.

[5] Gal Chechik, Varun Sharma, Uri Shalit, and Samy Bengio. Large scale online learning of image
similarity through ranking. Journal of Machine Learning Research, 11(3), 2010.

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple frame-
work for contrastive learning of visual representations. In Hal Daumé III and Aarti Singh
(eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 1597–1607. PMLR, 13–18 Jul 2020.

[7] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton.
Big self-supervised models are strong semi-supervised learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 22243–22255. Curran Associates, Inc., 2020.

[8] Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws
for contrastive language-image learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2818–2829, 2023.

[9] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

[11] Li Ding, Jenny Zhang, Jeff Clune, Lee Spector, and Joel Lehman. Quality diversity through
human feedback. arXiv preprint arXiv:2310.12103, 2023.

[12] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In
International conference on machine learning, pp. 647–655. PMLR, 2014.

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

11



[14] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and Andrew Zisserman.
With a little help from my friends: Nearest-neighbor contrastive learning of visual represen-
tations. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
9588–9597, 2021.

[15] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single image
using a multi-scale deep network, 2014.

[16] Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
fine-tuning text-to-image diffusion models, 2023.

[17] Thomas FEL, Ivan F Rodriguez Rodriguez, Drew Linsley, and Thomas Serre. Harmonizing the
object recognition strategies of deep neural networks with humans. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing
Systems, volume 35, pp. 9432–9446. Curran Associates, Inc., 2022.

[18] Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and
Phillip Isola. Dreamsim: Learning new dimensions of human visual similarity using synthetic
data. In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances
in Neural Information Processing Systems, volume 36, pp. 50742–50768. Curran Associates,
Inc., 2023.

[19] Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture synthesis using convolutional
neural networks. Advances in neural information processing systems, 28, 2015.

[20] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of artistic style.
arXiv preprint arXiv:1508.06576, 2015.

[21] Yuying Ge, Ruimao Zhang, Lingyun Wu, Xiaogang Wang, Xiaoou Tang, and Ping Luo.
Deepfashion2: A versatile benchmark for detection, pose estimation, segmentation and re-
identification of clothing images. 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5332–5340, 2019.

[22] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum Contrast for
Unsupervised Visual Representation Learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[23] Martin N. Hebart, Charles Y. Zheng, Francisco Pereira, and Chris I. Baker. Revealing the multi-
dimensional mental representations of natural objects underlying human similarity judgements.
Nature Human Behaviour, 4(11):1173–1185, October 2020. doi: 10.1038/s41562-020-00951-3.

[24] Martin N Hebart, Oliver Contier, Lina Teichmann, Adam H Rockter, Charles Y Zheng, Alexis
Kidder, Anna Corriveau, Maryam Vaziri-Pashkam, and Chris I Baker. Things-data, a multimodal
collection of large-scale datasets for investigating object representations in human brain and
behavior. eLife, 12:e82580, feb 2023. ISSN 2050-084X. doi: 10.7554/eLife.82580.

[25] Ali Jahanian, Xavier Puig, Yonglong Tian, and Phillip Isola. Generative models as a data source
for multiview representation learning. arXiv preprint arXiv:2106.05258, 2021.

[26] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In Marina Meila and Tong Zhang (eds.), Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 4904–4916. PMLR, 18–24 Jul 2021.

[27] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer
and super-resolution. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part II 14, pp. 694–711. Springer, 2016.

[28] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in neural
information processing systems, 33:18661–18673, 2020.

12



[29] Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer
Levy. Pick-a-pic: An open dataset of user preferences for text-to-image generation. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 36652–36663. Curran Associates,
Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
73aacd8b3b05b4b503d58310b523553c-Paper-Conference.pdf.

[30] Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy.
Pick-a-pic: An open dataset of user preferences for text-to-image generation, 2023.

[31] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. Decomposing nerf for editing via
feature field distillation. Advances in Neural Information Processing Systems, 35:23311–23330,
2022.

[32] Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton
Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu
Cord, and Victor Sanh. Obelics: An open web-scale filtered dataset of interleaved image-text
documents, 2023.

[33] Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building
vision-language models?, 2024.

[34] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and
Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021.

[35] Aoxue Li, Tiange Luo, Zhiwu Lu, Tao Xiang, and Liwei Wang. Large-scale few-shot learning:
Knowledge transfer with class hierarchy. In Proceedings of the ieee/cvf conference on computer
vision and pattern recognition, pp. 7212–7220, 2019.

[36] Zhengqi Li and Noah Snavely. Megadepth: Learning single-view depth prediction from internet
photos. In Computer Vision and Pattern Recognition (CVPR), 2018.

[37] Zhenyu Li, Xuyang Wang, Xianming Liu, and Junjun Jiang. Binsformer: Revisiting adaptive
bins for monocular depth estimation, 2022.

[38] Yiqing Liang, Eliot Laidlaw, Alexander Meyerowitz, Srinath Sridhar, and James Tompkin.
Semantic attention flow fields for monocular dynamic scene decomposition. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 21797–21806, 2023.

[39] Grace Luo, Lisa Dunlap, Dong Huk Park, Aleksander Holynski, and Trevor Darrell. Diffusion
hyperfeatures: Searching through time and space for semantic correspondence. Advances in
Neural Information Processing Systems, 36, 2024.

[40] Kelly S. Mix. Similarity and numerical equivalence: Appearances count. Cognitive Develop-
ment, 14(2):269–297, 1999. ISSN 0885-2014. doi: https://doi.org/10.1016/S0885-2014(99)
00005-2.

[41] Lukas Muttenthaler, Jonas Dippel, Lorenz Linhardt, Robert A Vandermeulen, and Simon Korn-
blith. Human alignment of neural network representations. In 11th International Conference
on Learning Representations, ICLR 2023, Kigali, Rwanda, Mai 01-05, 2023. OpenReview.net,
2023.

[42] Lukas Muttenthaler, Lorenz Linhardt, Jonas Dippel, Robert A Vandermeulen, Katherine Her-
mann, Andrew Lampinen, and Simon Kornblith. Improving neural network representations
using human similarity judgments. In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp.
50978–51007. Curran Associates, Inc., 2023.

[43] Lukas Muttenthaler, Klaus Greff, Frieda Born, Bernhard Spitzer, Simon Kornblith, Michael C
Mozer, Klaus-Robert Müller, Thomas Unterthiner, and Andrew K Lampinen. Aligning machine
and human visual representations across abstraction levels. arXiv preprint arXiv:2409.06509,
2024.

13

https://proceedings.neurips.cc/paper_files/paper/2023/file/73aacd8b3b05b4b503d58310b523553c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/73aacd8b3b05b4b503d58310b523553c-Paper-Conference.pdf


[44] Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil
Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell
Howes, Po-Yao Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat,
Mido Assran, Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal,
Patrick Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features
without supervision, 2023.

[45] Roni Paiss, Ariel Ephrat, Omer Tov, Shiran Zada, Inbar Mosseri, Michal Irani, and Tali Dekel.
Teaching clip to count to ten. 2023 IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 3147–3157, 2023.

[46] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 8748–8763. PMLR,
18–24 Jul 2021.

[47] Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning
with hard negative samples. arXiv preprint arXiv:2010.04592, 2020.

[48] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Fei-Fei
Li. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis., 115(3):211–252,
2015. doi: 10.1007/s11263-015-0816-y.

[49] Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo Lee, Percy Liang, and Tatsunori
Hashimoto. Whose opinions do language models reflect? In Andreas Krause, Emma Brun-
skill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Pro-
ceedings of the 40th International Conference on Machine Learning, volume 202 of Pro-
ceedings of Machine Learning Research, pp. 29971–30004. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/santurkar23a.html.

[50] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features
off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pp. 806–813, 2014.

[51] Prafull Sharma, Julien Philip, Michaël Gharbi, Bill Freeman, Fredo Durand, and Valentin
Deschaintre. Materialistic: Selecting similar materials in images. ACM Transactions on
Graphics (TOG), 42(4):1–14, 2023.

[52] William Shen, Ge Yang, Alan Yu, Jansen Wong, Leslie Pack Kaelbling, and Phillip Isola.
Distilled feature fields enable few-shot language-guided manipulation. arXiv preprint
arXiv:2308.07931, 2023.

[53] Kihyuk Sohn, Nataniel Ruiz, Kimin Lee, Daniel Castro Chin, Irina Blok, Huiwen Chang, Jarred
Barber, Lu Jiang, Glenn Entis, Yuanzhen Li, et al. Styledrop: Text-to-image generation in any
style. arXiv preprint arXiv:2306.00983, 2023.

[54] Ilia Sucholutsky, Lukas Muttenthaler, Adrian Weller, Andi Peng, Andreea Bobu, Been Kim,
Bradley C Love, Erin Grant, Jascha Achterberg, Joshua B Tenenbaum, et al. Getting aligned on
representational alignment. arXiv preprint arXiv:2310.13018, 2023.

[55] Yonglong Tian, Lijie Fan, Kaifeng Chen, Dina Katabi, Dilip Krishnan, and Phillip Isola.
Learning vision from models rivals learning vision from data. ArXiv, abs/2312.17742, 2023.

[56] Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
shut? exploring the visual shortcomings of multimodal llms. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9568–9578, June 2024.

[57] Narek Tumanyan, Assaf Singer, Shai Bagon, and Tali Dekel. Dino-tracker: Taming dino for
self-supervised point tracking in a single video. arXiv preprint arXiv:2403.14548, 2024.

14

https://proceedings.mlr.press/v202/santurkar23a.html


[58] Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and Hongsheng Li. Human preference score:
Better aligning text-to-image models with human preference. In IEEE/CVF International
Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023, pp. 2096–2105.
IEEE, 2023. doi: 10.1109/ICCV51070.2023.00200.

[59] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In Marina Meila and Tong Zhang (eds.), Proceed-
ings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pp. 12310–12320. PMLR, 18–24 Jul 2021.

[60] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, André Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, Lucas
Beyer, Olivier Bachem, Michael Tschannen, Marcin Michalski, Olivier Bousquet, Sylvain Gelly,
and Neil Houlsby. A large-scale study of representation learning with the visual task adaptation
benchmark. arXiv: Computer Vision and Pattern Recognition, 2019.

[61] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[62] Shu Zhang, Xinyi Yang, Yihao Feng, Can Qin, Chia-Chih Chen, Ning Yu, Zeyuan Chen, Huan
Wang, Silvio Savarese, Stefano Ermon, et al. Hive: Harnessing human feedback for instructional
visual editing. arXiv preprint arXiv:2303.09618, 2023.

15



Appendix
In the Appendix, Section A contains additional experiments and ablations, Section B contains
qualitative results and examples from different perceptual datasets, and Section C contains method-
ological/implementation details.

A Experiments
A.1 Classification with the VTAB Benchmark

We evaluate on the Visual Task Adaptation Benchmark (VTAB) [60], a comprehensive set of nineteen
classification datasets that is commonly used to study the transferability of representations. VTAB
covers a broad set of domains beyond classic natural image datasets, including medical images, scene
understanding, and fine-grained classification. Several of the datasets are drawn from domains that
are not included in the NIGHTS dataset.

In Tables 5a-b, we show classification results on all VTAB datasets for each backbone, and its human-
aligned version (denoted with -HA). The VTAB datasets are divided into three categories: Natural,
Specialized, and Structured. Natural datasets include standard vision benchmarks; specialized
datasets include benchmarks captured through specialized imaging equipment, such as satellites and
microscopes; structured datasets include benchmarks that focus on structure and layout, with both
naturally-captured and simulated images.

We find that human-aligned models largely lead to worse performance on standard natural tasks. Re-
sults on specialized tasks are mixed; for most datasets, human alignment helps or hurts by a marginal
amount. Results on structured datasets (Table 6) are also mixed, however on particular datasets such
as sNORB, dSprites-Orientation, and dSprites-Location, alignment improves performance across
backbones. We remark, however, that these structured datasets may have limited evaluation utility.
The Clevr-Count task, for instance, has a numerical ground truth (i.e. the number of objects in an
image) in which the distance from the correct answer is meaningful; thus it may be ill-suited to
classification, and better suited to continuous evaluations such as RMSE or MAE, which we report in
Section 4.3.
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Table 5: Performance on VTAB natural subset (left) and specialized subset (right).

A.2 Additional dataset ablations

In Section 4.5 we show that tuning on NIGHTS leads to larger performance improvements on
object counting and instance retrieval than training on other triplet datasets. Here, we show that this
finding is consistent across dense prediction tasks as well. We evaluate models trained on NIGHTS,
BAPPS, THINGS, and ImageNet – as described in section 4.5 – on semantic segmentation and depth
estimation. As shown in Fig. 9- 10, training on NIGHTS outperforms training on all other datasets.
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DINO 82.2 58.1 53.6 63.8 57.1 72.6 61.8 56.5
DINO-HA 79.2 57.2 51.1 81.5 66.6 66.2 65.8 55.3

DINOv2 87.1 54.6 57.7 59.7 68.2 62.3 55.3 52.8
DINOv2-HA 83.6 59.0 53.7 79.2 74.1 69.1 64.7 55.9
CLIP 70.6 55.0 50.2 67.6 55.6 65.3 37.5 47.0
CLIP-HA 72.9 57.8 51.4 80.2 60.3 64.6 42.6 47.2
OpenCLIP 78.5 53.8 52.0 63.3 55.0 67.9 38.0 50.4
OpenCLIP-HA 76.7 57.6 51.5 84.9 64.1 63.3 46.7 50.1

SynCLR 90.9† 63.8† 57.3 68.1 55.2 76.9† 52.1 60.5
SynCLR-HA 81.7 61.5 52.9 86.1 64.3 63.6 66.6 58.5

Ensemble 89.2 63.5 58.4† 72.5 67.3 76.5 76.9 65.5†

Ensemble-HA 85.5 63.8† 57.1 91.8† 76.4† 70.0 81.0† 62.2

Table 6: Performance on VTAB structured subset.

We additionally run this ablation on a subset of VTAB (see Fig. 11a). On these classification datasets,
base models perform best; the exception is sNORB (pose prediction) for which NIGHTS is best.
Amongst perceptual datasets, NIGHTS is sometimes outperformed by BAPPS/ImageNet. This
result is consistent with our findings in Section A.1, that tuning on NIGHTS often fails to improve
classification performance.

Finally, we ablate the strength of alignment – i.e. the training loss when fine-tuning on different
perceptual datasets. In Fig. 11b we show the downstream performance on DeepFashion2 when
fine-tuning for increasing numbers of steps on different datasets. Tuning on NIGHTS outperforms
other datasets over the full training trajectory. Moreover, while performance rises significantly with a
small amount of alignment to NIGHTS, it trends down after >1000 steps. This indicates that a small
amount of alignment is helpful, however overfitting may harm performance.

Figure 9: Dataset ablations on semantic segmentation. Following the same procedure as in section 4.5 and
the segmentation training in section 4.1 of the main paper, we ablate low/mid/high-level similarity. We find that
tuning on mid-level similarity with NIGHTS provides the most improvement, with many other cases degrading
the base DINO backbone.

Figure 10: Dataset ablations on depth estimation. Following the ablation and depth training setups described
in the main paper, we evaluate low/mid/high-level similarity. We find that tuning on mid-level similarity with
NIGHTS results in the lowest error (RMSE), and that the other cases often result in worse performance than
base DINO.
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Figure 11: (left) Dataset ablations on a subset of VTAB. Following the same procedure as in section 4.5 and
the segmentation training in section 4.1 of the main paper, we ablate low/mid/high-level similarity. We find
that all perceptual datasets degrade the DINO backbone, with the exception of sNORB, for which NIGHTS is
best. We also note that training on BAPPS or ImageNet often better preserves base model performance than
NIGHTS. (right) Training-step ablations on DeepFashion2. We ablate low/mid/high-level similarity and test
models finetuned for different numbers of steps on instance retrieval. We find that a small amount of finetuning
on NIGHTS is best, after which performances declines (though remains above the base model). Note that the
legend applies to both the left and right figure.

A.3 Additional RAG results

We replicate our RAG experiment on OpenFlamingo in Section 4.2 on IDEFICS2, a recently released
8B multimodal model achieving state-of-the-art results across several benchmarks [56]. As shown
in Fig. 12, across the same four classification datasets, performance consistently improved when
using NIGHTS-tuned models in the RAG pipeline. These results validate our RAG results on
OpenFlamingo, suggesting that performance gains from perceptual alignment are not specific to a
particular VLM.

DINO CLIP
Open

E
CLIP

nsemble
DINOv2

SynCLR
0.0

0.1

0.2

0.3

Ac
cu

ra
cy

Diabetic Retinopathy

DINO CLIP
Open

EE
CLIP

nsnsem

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

DMLab

0.00

0.05

0.10

0.15

0.20

Ac
cu

ra
cy

dSprites: x position

0.00

0.05

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

Street View House Numbers
Base model
Human-aligned
Random

ble
DINOv2

SynCLR
DINO CLIP

Open
EE

CLIP
nsnsemble

DINOv2
SynCLR

DINO CLIP
Open

EE
CLIP

nsnsemble
DINOv2

SynCLR

Figure 12: Retrieval-augmented generation results on image classification for four different VTAB datasets.
We evaluate the IDEFICS2 model, an 8B-parameter multimodal model released more recently than Open-
Flamingo and capable of in-context learning. We follow the same experimental setup in retrieving examples as
detailed in 4.2.

A.4 Perceptual alignment for CNNs

Our main experiments assess the effects of perceptual alignment for an array of ViT models, as these
are state-of-the-art pretrained vision representations. Of further interest, however, is whether the
same effects are observed for pre-trained CNNs as well.

We assess the effects of perceptual alignment with NIGHTS on two popular CNNs: ResNet50 and
ConvNeXt-B, using the same loss described in Section 3.2. We evaluate on counting and instance
retrieval tasks; our results are shown in Tables 7a-b. Similarly to ViTs, human-aligned CNNs
outperform their pretrained counterparts across both tasks. Note that we report results for both
ConvNeXt and ResNet, however acknowledge that the accuracies for ResNet are likely too small to
draw conclusions from.

Due to a lack of open-source LoRA implementations for CNNs, we instead train MLPs on top of the
respective final layers. Previous work [18] indicated that training MLPs with NIGHTS can still affect
representations, but may be less effective than full fine-tuning. Nonetheless, we still see downstream
improvements with this method.
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Clevr-Count
Model RMSE MAE

ConvNeXt 2.045 1.522
ConvNeXt-HA 1.631 1.193
ResNet 3.140 2.551
ResNet-HA 1.729 1.282

DeepFashion2
Model Top-1 Top-3 Top-5

ConvNeXt 2.12 3.56 4.59
ConvNeXt-HA 2.81 4.8 5.98
ResNet 0.018 0.12 0.14
ResNet-HA 0.018 0.074 0.17

Table 7: Human-aligned vs. pretrained CNNs, evaluated on counting and instance-retrieval. In most cases,
human-aligned CNNs perform better.

B Qualitative examples
B.1 Additional visualizations

See Figures 13 and 14 for additional examples of instance retrieval on DeepFashion2 and object
counting on Clevr-count.
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Figure 13: Additional visualizations for top-3 retrieved examples for a given query image in DeepFashion2.
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Figure 14: Additional Clevr-count examples comparing base and human-model nearest-neighbor image retrievals.

B.2 Dataset examples

See Figure 15 for examples of the triplet datasets we train on in this paper. In each triplet, the
reference image (middle) and outlined image are labeled as the similar pair. Perceptually-aligned
models in this paper are tuned on NIGHTS triplets (top row), whose image variations encompass a
variety of mid-level perceptual attributes including object count, identity, layout, subject pose, and
color. In contrast, the datasets studied in our ablation encompass differing image attributes: BAPPS
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NIGHTS triplets

BAPPS triplets THINGS triplets ImageNet triplets

Figure 15: Examples of triplets from the NIGHTS, BAPPS, THINGS, and ImageNet datasets, with the bordered
images labeled as more similar to the reference (middle image in each triplet).

focuses on image patches with low-level distortions such as CNN artifacts and color jitter, THINGS
encodes similarity in concept space, and our constructed ImageNet triplets outline class boundaries.

C Implementation Details
C.1 Training human-aligned models

The human-aligned models studied in this paper were fine-tuned with LoRA parameters: r = 16,
α = 0.5, p = 0.0. All contrastive training (for image- and patch-level objectives) are trained with an
Adam optimizer (lr = 0.0003), batch size of 16, and a hinge loss margin of m = 0.05 as detailed in
[18]. We train all models for 8 epochs and evaluate on the checkpoint with the lowest validation loss.
Train/val/test splits on NIGHTS, BAPPS, and THINGS were used as-provided in the dataset.

C.1.1 Dense prediction heads

Each semantic segmentation head is a single linear layer mapping frozen DINO/DINOv2 patch tokens
to a segmentation map. We train with the Adam optimizer (α = 0.0003) for 10 epochs with a batch
size of 16 and 4 workers. The semantic segmentation head is optimized with a Jaccard Index loss
(equivalently, mean Intersection-over-Union) defined as J(A,B) = |A∩B|

|A∪B| .

Dense prediction heads are defined as a single linear layer mapping frozen DINO/DINOv2 patch
tokens to a spatial map, whose values are then categorized into 256 bins. We train with the Adam
optimizer (α = 0.0003) for 10 epochs with a batch size of 128 and 12 workers. The scale-invariant
log loss for prediction A and target B is defined as:

L(A,B) =
1

N

∑
i

d2i + 0.15 · 1

N2
(
∑
i

di)
2

where di = log(A+ ϵ)− log(B + ϵ), ϵ = 0.001 to avoid gradient issues, and N is the number of
valid pixels.

All training and evaluation for dense prediction tasks is done on a single NVIDIA Titan RTX GPU.

C.2 Retrieval-augmented generation

We follow the evaluation protocol in the codebase provided by [2], constructing a prompt containing
three image/text examples, a query image, and a candidate class. We then average the model’s
output logits, and repeat for each candidate class in a dataset to form a softmaxed array of log
probabilities. OpenFlamingo’s classification prediction is determined as the class with the highest
corresponding log probability, while classifications from IDEFICS2 are taken purely from a multiple-
choice text response. Error bars were calculated as 95% confidence intervals over five trials with
1,000 randomly-sampled queries each. All evaluation for RAG tasks is done on a single NVIDIA
Titan RTX GPU.
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C.2.1 Object counting

Our k-Nearest Neighbor evaluations reported in the Counting section are run over k ∈ {1, 3, 5, 10}
for the training set, and the argmax k with highest classification accuracy is used to report the final
performance on the test set. We use the train and test sets as provided for the FSC147 and CARPK
datasets, and construct a random 80:20 data split for the Clevr-Count dataset. All evaluation for this
section is done on a single NVIDIA Titan RTX GPU.

C.3 Instance retrieval

We evaluate backbones on instance retrieval by extracting features (CLIP/OpenCLIP: embedding,
DINO/DINOv2/SynCLR: CLS token) from the gallery and query sets. For every query image, we
compute the cosine similarity with every image in the gallery. We then calculate top-k accuracy as
the number of queries for which a correct gallery pair image was in the top k retrievals.

C.4 Dataset ablations

We train models for the dataset ablation section with identical hyperparameters as the human-aligned
models (details in Section C.1 and on the same amount of data as the NIGHTS training set (13,900
triplets). We randomly select these triplets without replacement from the BAPPS and THINGS
training sets, and construct the ImageNet triplets by randomly sampling two images from one class
and a third image from a different class.

C.5 VTAB classification

To evaluate models on VTAB, we follow standard procedure and train a linear classifier on top of the
frozen representations using multinomial logistic regression, with the sci-kit learn implementation
[42]. For each classifier we perform a hyperparameter search over the regularization strength using
10-fold cross validation over the training set, and report performance on the validation set. We search
over the values c = {1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6} where c is the inverse regularization strength.

C.6 Additional compute details

See subsections above for experiment-specific compute details. This full research project required
additional compute for experiments and results that are not included in this paper; these computations
were also done on single NVIDIA Titan RTX, GeForce 2080, GeForce 3090, and V100 GPUs.

C.7 Licenses for existing assets

The datasets and models we use are released under the following licenses:

Dataset License
NIGHTS MIT

VTAB Apache 2.0
BAPPS BSD 2-Clause

THINGS CC0 1.0 Universal
ImageNet CC BY-NC
FSC147 Apache 2.0
CARPK CC0 1.0 Universal

Pascal VOC CC BY 2.0
ADE20k BSD 3-Clause

Cityscapes CC BY-NC
COCO CC BY 4.0

DAVIS2017 CC BY 4.0
NYUv2 MIT

4D Light Field CC BY-NC-SA 4.0
SUN-RGBD MIT
DeepFashion CC BY-NC

Model License
DINO Apache 2.0
CLIP MIT

OpenCLIP MIT
DreamSim MIT
SynCLR Apache 2.0
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction are written with the paper results and scope fully
in mind.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We describe limitations in the "Discussions" and Supplementary Material
sections of our paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Our paper contains no theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all experimental settings and hyperparameters in the Supplementary
Material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide a zip of the code that produced our experimental results, as well as
our project github at: https://github.com/ssundaram21/dreamsim.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide these details in the Supplementary Material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide 95% confidence interval bars across five seeds for our experimental
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details on compute resources in the Supplementary Material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics, and have determined
that the research conducted conforms to the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We detail the broader impacts of our work in the Discussions section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks, as we do not have new pretrained models or
datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original papers whose datasets and models we use, and provide
license information in the Supplementary Material.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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