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ABSTRACT

Vision-language large models have achieved remarkable success in various multi-
modal tasks, yet applying them to video understanding remains challenging due
to the inherent complexity and computational demands of video data. While
training-based video-LLMs deliver high performance, they often require substan-
tial resources for training and inference. Conversely, training-free approaches of-
fer a more efficient alternative by adapting pre-trained image-LLMs models for
video tasks without additional training, but they face inference efficiency bottle-
necks due to the large number of visual tokens generated from video frames. In
this work, we present a novel prompt-guided visual perception framework (abbre-
viated as Free Video-LLM) for efficient inference of training-free video LLMs.
The proposed framework decouples spatial-temporal dimension and performs
temporal frame sampling and spatial RoI cropping respectively based on task-
specific prompts. Our method effectively reduces the number of visual tokens
while maintaining high performance across multiple video question-answering
benchmarks. Extensive experiments demonstrate that our approach achieves com-
petitive results with significantly fewer tokens, offering an optimal trade-off be-
tween accuracy and computational efficiency compared to state-of-the-art video
LLMs.

1 INTRODUCTION

Recently, vision-language models (VLMs) have rapidly revolutionized multi-modal understanding
and generation, enabling models to comprehend and produce responses from both visual and textual
inputs (visual inputs include images, videos, etc). Due to the vast amount of image-text data and
foundational models like CLIP and large language models (LLMs) such as GPT Brown (2020) and
LLaMA Touvron et al. (2023), image-LLMs Zhang et al. (2024a); Liu et al. (2023); Achiam et al.
(2023); Chen et al. (2024) have already made significant progress. InstructBLIP Dai et al. (2023)
extends the capabilities on new visual tasks by incorporating instruction-aware features. LLaVA Liu
et al. (2023) generate multimodal language-image instruction-following data using GPT-4 Achiam
et al. (2023), demonstrating impressive multimodel chat abilities. The evolution of VLMs has also
given rise to video-based LLMs that are specifically tailored for video understanding. These meth-
ods, as discussed by Tang et al. Tang et al. (2023), can be categorized into two primary approaches
based on their training strategies: training-based video LLMs and training-free video LLMs.

In the training-based video LLMs, AV-LLM Shu et al. (2023) and Vid2Seq Yang et al. (2023) trained
all the parameters in the LLM, which can be resource-intensive. Other main stream methods in this
fine-tuning category either externally(e.g., Q-former) or internally fine-tune the bridge between the
video encoder and the LLM, or adopt a phased fine-tuning approach for connective adapters and
insertive adapters. Video-LLMs, such as Video-ChatGPT Maaz et al. (2024), Chat-UniVi Jin et al.
(2024), and MovieChat Song et al. (2024a), primarily focus on general question-answering (QA)
or captioning tasks. They utilize video encoders to produce video embeddings, which they then
decode into text outputs based on given prompts or instructions. Video-LLaMA Zhang et al. (2023)
integrates a video Q-former to learn video-language correspondence and an audio Q-Former to learn
audio embeddings for the LLM. Additionally, Chat-UniVi Jin et al. (2024) employs a set of dynamic
visual tokens to uniformly represent both images and videos.
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Despite the remarkable success of training-based video LLMs, training-free video understanding
models have emerged as an attractive alternative due to the high cost of training large-scale video
models. Training-free methods leverage pre-trained image-based models and minimally adapt them
for video tasks without additional training on video data. Models such as IG-VLM Kim et al.
(2024) and FreeVA Wu (2024) have demonstrated the potential of transforming video frames into a
format compatible with high-performance VLMs. These approaches utilize parameter-free temporal
aggregation techniques and composite image grids, enabling robust zero-shot performance on video
question-answering tasks. These methods offer promising results without requiring time-consuming
and resource-intensive video-specific training.

However, existing training-free video LLMs, struggle with efficiency issues due to the large number
of visual tokens generated by video frames. Video data consists of multiple frames, significantly
increasing the number of visual tokens that need to be processed by the model. As the input sequence
length increases, the computational cost also scales, especially in transformer architectures where
self-attention and feed-forward networks dominate resource usage. This results in slow inference
speeds and high memory consumption, limiting the practical application of video LLMs in real-time
or resource-constrained environments. Reducing token count without compromising performance is
a key challenge in scaling video LLMs efficiently.

To address these challenges, we propose a prompt-guided visual perception framework (abbreviated
as Free Video-LLM) that significantly improves the efficiency of training-free video LLMs. Our
method introduces prompt-guided temporal and spatial sampling, which reduces the number of vi-
sual tokens based on the specific requirements of the input prompt. By discarding redundant frames
and focusing only on the regions and time segments relevant to the prompt, our model achieves supe-
rior performance across multiple video QA benchmarks with a significantly reduced computational
burden. Table 1 compares several prominent open-source models, our proposed method uniquely
possesses training-free capabilities, inference efficiency, and effective video understanding, demon-
strating a comprehensive advantage in the field. The proposed Free Video-LLM approach not only
enhances the model’s efficiency but also maintains competitive accuracy compared to existing state-
of-the-art video LLMs, offering a balanced solution for scalable video understanding tasks.

Table 1: Comparison of the existing representative open-sourced vision-language models.

Method Training-free Inference-efficient Video understanding

Image-LLM (e.g., LLaVA) ✓ ✗ ✗

Training-based Video LLM (e.g., Video-LLaVA) ✗ ✗ ✓

Training-free Video LLM (e.g., IG-VLM) ✓ ✗ ✓

Ours ✓ ✓ ✓

2 RELATED WORKS

In this section, we briefly revisit the related works including image-LLMs, video-LLMs (especially
training-free video LLMs).

2.1 IMAGE-LLMS

The rapid advancement of image-language models (image-LLMs) can be attributed to two key fac-
tors: the foundational work of CLIP Radford et al. (2021), which introduced a shared representation
space for vision and language, demonstrating strong zero-shot capabilities and robust performance
across various computer vision benchmarks; and the emergence of powerful Large Language Models
(LLMs) like GPT Brown (2020) and LLaMA Touvron et al. (2023), which can be further enhanced
through instruction tuning Peng et al. (2023). Flamingo Alayrac et al. (2022) excels in few-shot
learning by seamlessly integrating pre-trained vision and language models and high-quality inter-
leaved multimodal data. BLIP-2 Li et al. (2023a) utilizes a lightweight Querying Transformer to
connect modalities.

Further progress on image-LLMs has been achieved through multimodal instruction tuning.
LLaVA Liu et al. (2023) uses GPT-4 Achiam et al. (2023) to generate robust multi-modal instruc-
tion data, pre-training on image-text pairs and fine-tuning for end-to-end multimodal understanding.
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InstructBLIP Dai et al. (2023) extends the capabilities of BLIP-2 with instruction-aware features,
while mPLUG-Owl Ye et al. (2023) employs a two-stage modular approach to enhance task perfor-
mance across different modalities. MiniGPT-4 Zhu et al. (2023) aligns a frozen visual encoder with
a frozen LLM (Vicunna Peng et al. (2023)) using one projection layer and showcasing enhanced
capabilities such as detailed image descriptions and creative storytelling. MiniGPT-5 Zheng et al.
(2023) extends MiniGPT-4 to output text interleaved with images.

2.2 VIDEO LLMS

Building on the foundation of LLM and image-LLMs, video-language models (video-LLMs) ia also
rapidly developed. FrozenBiLM Yang et al. (2022) leverages frozen bidirectional language models
for zero-shot video question answering, achieving leading performance on zero-shot VideoQA with-
out the need for manual annotations. VideoChat Li et al. (2023b) and Video-LLaMA Zhang et al.
(2023) both utilize dual streams to handle audio and visual signals. Specifically, Video-LLaMA in-
tegrates Q-Former for these two streams, whereas VideoChat incorporates a video embedder along-
side a perception tools for captions, and introduce a video-centric multimodal instruction fine-tuning
dataset. Video-ChatGPT Maaz et al. (2024) utilizes a pretrained visual encoder to extract both spa-
tial and temporal features from videos by averaging frame-level features. These features are then
projected into the input space of large language models (LLMs). Additionally, it also contributes a
high-quality dataset of 100,000 video-instruction question-answer pairs. Chat-UniVi Jin et al. (2024)
use a set of dynamic visual tokens to uniformly represent images and videos tokens. PLLaVA Xu
et al. (2024a) introduce a post-training weight fusion methods to alleviate forgetting phenomenon
during multi-modality fine-tuning.

2.3 TRAINING-FREE VIDEO LLMS

In contrast to these tuning methodologies for Video LLMs, there is a growing interest in exploring
training-free video LLMs, specifically how existing image model architectures can be minimally
adapted to accommodate video inputs. IG-VLM Kim et al. (2024), as a pioneer in this exploration,
transforms videos into single composite image grids, enabling the direct application of a high-
performance VLM without the need for video-data training. FreeVA Wu (2024) also investigates
the potential of leveraging offline image-LLMs as training-free video assistants by simply adding
a parameter-free temporal aggregation, achieving strong performance in zero-shot video question-
answering tasks Chen & Dolan (2011); Caba Heilbron et al. (2015); Xu et al. (2016), even sur-
passing video instruct-tuning models. Meanwhile, SLOWFAST-LLAVA Xu et al. (2024b) utilizes
a dual-stream approach to efficiently capture spatial and temporal video features, demonstrating
competitive performance on various video benchmarks without requiring additional training.

3 APPROACH

3.1 PRELIMINARIES

The image-LLM has a remarkable progress in the past two years due to the large amount of image-
text pairs data and image instruction data. The representative open-sourced image-LLMs like
LLaVA Liu et al. (2023) and InternVL Chen et al. (2024) obtain high performance on various image
conversation, description and reasoning tasks. The image-LLMs take one image I as input, and the
visual encoder gV (including the projector) extracts the image features and converts into language
embedding tokens:

HI = g(I), (1)
where HV ∈ RN×D, N is the number of visual tokens per frame, and D is the token embedding
dimension. Then the image tokens HI and the text tokens HT are fed into the LLM f for generating
responses:

Y = f([HI , HT ]). (2)

3.2 COMPUTATIONAL BURDEN OF VIDEO LLM

The training-free video LLM can leverage the well-trained image-LLMs for video without training
on any data. Given a video, a number of frames are usually uniformly extracted and forms a sequence
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Figure 1: Illustration of the proposed Free Video-LLM with prompt-guided visual perception.

of images {I1, I2, · · · , IT } where T is the number of frames. These images are fed into the visual
encoder to obtain visual tokens:

XV = gV ({I1, I2, · · · , IT }), (3)

XV ∈ RT×N×D. Then the training-free video LLMs directly use LLMs to receive visual tokens
XV and text prompt to generate responses for video understanding:

Y = f([HV , HT ]). (4)

This simple pipeline is intuitive yet effective Wu (2024); Kim et al. (2024).

However, the video usually consists of many frames, that is, the number of visual tokens will be
significantly large, proportional to the product of the frame number and the image size L ∝ TN . The
input sequence length directly influences the computational cost and inference efficiency of LLM.
In transformer architecture, the computational cost is mostly occupied by the self-attention and
feed-forward network. The self-attention module performs token-to-token relation computation and
requires a O(L2) computational cost. The feed-froward network makes nonlinear transformation of
each token with the computation budget proportional to the sequence length. Compared to image-
LLMs, the computational complexity of video-LLMs will increase by an order of magnitude, which
will significantly reduce the inference speed and efficiency of video-LLMs, affecting the actual
usage experience.

3.3 PROMPT-GUIDED VISUAL PERCEPTION

We introduce the prompt-guided visual perception for efficient video LLMs, by temporally and
spatially sampling visual information respectively, as demonstrated in Figure 1.

Prompt-guided Temporal Sampling The video is usually captured in a high frame rate, resulting
in large redundancy in the neighbor frames. In order to reduce the number of frames and maintain
the discriminative information, we propose to temporally sample the prompt-related frames. The
previous video-LLMs take all the visual tokens generated by the visual encoder as inputs for LLMs.
However, this approach does not consider the text context for different questions or tasks, which
may introduce useless tokens during inference. For instance, given a video depicting two women
shopping in a supermarket, one might ask how many apples they bought, while another person
could ask whether they bought eggs. Different questions necessitate the model to focus on different
periods of the video. On the other hand, different regions of the video are also required for different
questions. For example, one may inquire about the number of persons, while another may ask
about the color of the left woman’s T-shirt. Here, we introduce prompt-guided spatial and temporal
sampling to reduce the number of visual tokens for different input prompts.

In the temporal dimension, we use prompt features to guide the selection of temporal frames most
relevant to the prompt. In particular, We utilize the text encoder gT that is matched with the visual
encoder (such as the two in CLIP) to extract prompt features:

FP = gT (P ), (5)

4
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where one prompt sequence P will be represented as a vector FP ∈ RD. The visual tokens of video
frames after the visual encoder contains the information inside each frame, and the tokens are in the
same subspace of the prompt features. The visual features after global average pooling FV ∈ RT×D

are used to represent each frame. We calculate the relation score (i.e., cosine similarity) between the
frame features and the prompt feature:

si =
FV i

∥FV i∥2
· FP

∥FP ∥2
, (6)

where i = 1, 2, · · · , T is the frame temporal index. We sample the frames based on the similarities
so as to maintain the most related frames to the prompt and discard the useless ones.

Prompt-guided Spatial Sampling As mentioned above, different questions require the model to
focus on a specific part of the spatial regions for answering. We propose to utilize the prompt
information to guide the selection of regions of interest (RoI) in the video. For the visual tokens of
a frame, we reshape them back to the spatial size as XSi ∈ RH×W×D where H ×W is the feature
map size. For a feature vector in spatial position (h,w), its relation score with the prompt feature is
calculated:

sh,w =
XSi,h,w

∥XSi,h,w∥2
· FP

∥FP ∥2
, (7)

where 1 ≤ h ≤ H and 1 ≤ w ≤ W . Suppose we need to box out a RoI with an area that is α× the
original area where 0 < α < 1. The top-K tokens with the largest similarity scores are selected, and
their positions are {(h1, w1), (h2, w2), · · · , (hK , wK)} where K = αHW . The center coordinates
of the RoI can be obtained by the mean of these positions:

hc =
1

K

K∑
k=1

hk, (8)

wc =
1

K

K∑
k=1

wk. (9)

The height and width of the RoI is calculated by
H ′ =

√
αH, (10)

W ′ =
√
αW. (11)

With the center coordinates and box size, we can easily crop the RoI from the frame feature maps,
and reshape them as a sequence of tokens as the video representation for the specific prompt. The
obtained compact visual tokens are concatenated with the text prompt embeddings as the inputs of
LLMs. In this way, the training-free video LLMs can process a video with fewer tokens and enjoy
more efficient inference.

4 EXPERIMENTS

4.1 BENCHMARKS AND IMPLEMENTATION DETAILS

Benchmarks As our method is training-free, we directly evaluate the proposed methods on open-
ended video understanding and question-answering benchmarks, including MSVD-QA Chen &
Dolan (2011), MSRVTT-QA Xu et al. (2016), ActivityNet-QA Caba Heilbron et al. (2015) and
TGIF-QA Jang et al. (2017). The GPT APIs are utilized to assess the model accuracy and response
quality. Following the previous works Wu (2024); Xu et al. (2024a;b), GPT-3.5-Turbo-0125 version
is used for fair comparison.

Base Models The image MLLM we utilized as base models is LLaVA-v1.6 Liu et al. (2023; 2024).
The two versions with different model sizes are used, e.g., 7B and 34B. Both the visual encoder and
text encoder are from OpenAI’s CLIP-L-14. The pretrained weights of LLaVA-v1.61 and CLIP-L2

can be downloaded on HuggingFace. We fix all the pretrained weights of the base models and only
slightly modify the hyperparameters.

1
https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2

2
https://huggingface.co/openai/clip-vit-large-patch14-336
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Implementation Details The input video is resized to 336×336 for matching the CLIP-L visual
encoder. Each frame will be transformed into 24×24 tokens. The proposed method will squeeze the
frame number and crop an RoI for efficient video understanding. The scaling factor of RoPE (rotary
position embedding) in LLaVA-v1.6 is set as 2 to enable processing context with 8192 tokens. All
the models are implemented using PyTorch.

4.2 MAIN RESULTS

In Table 2, we evaluate several models with a focus on efficiency, as reflected by the number of visual
tokens (second column), which directly impacts the computational cost and memory requirements.
Our method demonstrates notable efficiency, using only 1026 and 2600 visual tokens across two
configurations, which is significantly fewer than competing models such as IG-VLM (3456 tokens)
and SF-LLaVA (3680 tokens). Despite this reduced token count, our model consistently achieves
competitive or superior performance across various QA benchmarks. For instance, in the MSVD-
QA task, our method scores 76.8/4.0 with 1026 tokens, outperforming FreeVA (73.8/4.1 with 2304
tokens). Overall, the average accuracy and score of our method are comparable to other models with
fewer inference tokens.

Table 2: Main results of the proposed method and comparison with other training-free video LLMs.
All models are 7B-level and with CLIP-L visual encoder. The two numbers in each cell are ‘Ac-
curacy/Score’ respectively. The bold numbers indicate that our method requires significantly fewer
tokens during inference.

Model #visual Size MSVD MSRVTT ANet TGIF Avg
tokens -QA -QA -QA -QA

LLaVA-NeXT-Image Zhang et al. (2024b) 2304 7B - - 53.8/3.2 - -
FreeVA Wu (2024) 2304 7B 73.8/4.1 60.0/3.5 51.2/3.5 - -
Free Video-LLM (ours) 513 7B 74.9/3.9 60.8/3.4 51.2/3.4 73.8/3.9 65.2/3.7
Free Video-LLM (ours) 1026 7B 76.8/4.0 62.9/3.5 53.9/3.4 75.6/4.0 67.3/3.7

IG-VLM Kim et al. (2024) 3456 7B 78.8/4.1 63.7/3.5 54.3/3.4 73.0/4.0 67.5/3.8
SF-LLaVA Xu et al. (2024b) 3680 7B 78.1/4.0 64.1/3.4 55.3/3.4 78.4/4.1 69.0/3.7
Free Video-LLM (ours) 2648 7B 78.2/4.0 65.6/3.6 54.8/3.4 77.8/4.1 69.1/3.8

This efficiency does not come at the expense of performance; rather, it highlights the ability of our
approach to achieve optimal trade-offs between token usage and task accuracy. On the TGIF-QA
benchmark, our model with 2600 tokens achieves a competitive score of 78.5/4.1, slightly surpass-
ing IG-VLM (73.0/4.0 with 3456 tokens) and SF-LLaVA (77.3/4.0). Table 3 shows the results on
larger LLM, i.e., 34B. The similar efficiency gain to that of 7B models can be seen. Overall, our
model provides a balanced approach to both computational efficiency and task performance, offering
substantial improvements in resource allocation without sacrificing accuracy.

Table 3: Main results of the proposed method and comparison with other training-free video LLMs.
All models are 34B-level and with CLIP-L visual encoder. The bold numbers indicate that our
method requires significantly fewer tokens during inference.

Model #visual Size MSVD MSRVTT ANet TGIF Avg
tokens -QA -QA -QA -QA

IG-VLM Kim et al. (2024) 3456 34B 79.6/4.1 62.4/3.5 58.4/3.5 79.1/4.2 69.9/3.8
SF-LLaVA Xu et al. (2024b) 3680 34B 79.3/4.1 67.0/3.6 58.8/3.5 80.2/4.2 71.3/3.9
Free Video-LLM (ours) 2648 34B 79.2/4.1 67.2/3.7 59.0/3.5 79.8/4.2 71.3/3.9

4.3 COMPARISON WITH SOTA METHODS

In Table 4, we present a comparison between our model and state-of-the-art (SOTA) methods, with
a particular emphasis on the trade-off between accuracy and efficiency, as reflected by the number
of visual tokens and performance on four video question-answering (QA) benchmarks. Our method

6
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utilizes 2600 visual tokens, which is more efficient than IG-VLM (3456 tokens) and SF-LLaVA
(3680 tokens), while achieving highly competitive results across all evaluated tasks.

On the MSVD-QA benchmark, our model scores 78.2/4.0, being comparable with SF-LLaVA
(78.1/4.0), but with much fewer tokens, demonstrating a substantial gain in efficiency. A similar
trend is observed on the MSRVTT-QA benchmark, where our model achieves 65.6/3.6, outperform-
ing SF-LLaVA’s 64.1/3.4 while using fewer visual tokens. Additionally, our model shows strong
performance on the ANet-QA and TGIF-QA benchmarks, with faster inference and lower computa-
tional cost. This balance of high accuracy and reduced computational load highlights the strength of
our approach in delivering comparable or superior performance with significantly fewer resources.

In comparison to other training-free models, such as FreeVA (2304 tokens) and IG-VLM (3456
tokens), our method offers a superior balance, outperforming FreeVA on all tasks and matching
IG-VLM’s performance with fewer tokens. These results demonstrate that our approach achieves
an optimal trade-off between efficiency and performance, making it an excellent choice for scalable
video understanding tasks.

Table 4: Comparison with SOTA video LLMs on the four benchmarks. The bold numbers indicate
that our method requires significantly fewer tokens during inference.

Model #visual Size Visual MSVD MSRVTT ANet TGIF
tokens Encoder -QA -QA -QA -QA

Trained models

Video-LLaMA Zhang et al. (2023) - 7B CLIP-G 51.6/2.5 29.6/1.8 12.4/1.1 -
Video-LLaVA Lin et al. (2023) - 7B ViT-L 70.7/3.9 59.2/3.5 45.3/3.3 70.0/4.0
Vista-LLaMA Ma et al. (2023) - 7B CLIP-G 65.3/3.6 60.5/3.3 48.3/3.3 -
VideoChat Li et al. (2023b) - 7B CLIP-G 56.3/2.8 45.0/2.5 26.5/2.2 34.4/2.3
VideoChat2 Li et al. (2024) - 7B UMT-L 70.0/3.9 54.1/3.3 49.1/3.3 -
MovieChat Song et al. (2024a) - 7B CLIP-G 75.2/3.8 52.7/2.6 45.7/3.4 -
Video-ChatGPT Maaz et al. (2024) - 7B CLIP-L 64.9/3.3 49.3/2.8 35.2/2.7 51.4/3.0
Video-LLaMA2 Cheng et al. (2024) - 7B CLIP-L 70.9/3.8 - 50.2/3.3 -
PLLaVA Xu et al. (2024a) - 7B CLIP-L 76.6/4.1 62.0/3.5 56.3/3.5 77.5/4.1

Training-free models

FreeVA Wu (2024) 2304 7B CLIP-L 73.8/4.1 60.0/3.5 51.2/3.5 -
IG-VLM Kim et al. (2024) 3456 7B CLIP-L 78.8/4.1 63.7/3.5 54.3/3.4 73.0/4.0
SF-LLaVA Xu et al. (2024b) 3680 7B CLIP-L 78.1/4.0 64.1/3.4 55.3/3.4 78.4/4.1
Free Video-LLM (ours) 2648 7B CLIP-L 78.2/4.0 65.6/3.6 54.8/3.4 77.8/4.1

4.4 ABLATION STUDIES

Inference Speed We compare the inference speed of three representative training-free video
LLMs in Table 5. Two important metrics for measuring the inference speed of large models are
pre-filling latency and output speed. Pre-filling latency represents the time taken by the model to
generate the first output token after receiving the input. A lower pre-filling latency means the model
can begin producing results faster. Output speed refers to the rate at which the model generates
subsequent tokens after the first one is produced. A higher TPS indicates that the model can output
tokens more quickly once the generation process has started. The inference speed is evaluated on
an NVIDIA V100 GPU with standard transformers framework. Our Free Video-LLM outperforms
the others with fewer visual tokens (2,648), the fastest pre-filling latency (0.578 seconds), and the
highest output speed (20.4 TPS). In comparison, IG-VLM and SF-LLaVA have higher visual token
counts, slower pre-filling latency, and lower output speeds.

Prompt-guided Temporal Sampling We evaluate the effectiveness of the proposed prompt-
guided temporal sampling on MSVD task. The base image-LLM is LLaVA-v1.6-7B. The methods
evaluated include uniform temporal sampling baseline, prompt-guided temporal sampling, and a
combination of uniform and prompt-guided temporal sampling. Uniform temporal sampling with 3
frames and 864 visual tokens achieves an accuracy of 71.7 on MSVD. This method provides a base-
line for comparison. Prompt-guided temporal sampling also uses 3 frames and 864 visual tokens

7
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Table 5: The inference speed of the compared training-free video LLMs. Pre-filling latency means
time to the first output token. TPS denotes tokens per second.

Method #visual tokens Avg Accuracy Pre-filling latency Output speed

IG-VLM Kim et al. (2024) 3456 73.0/4.0 0.894 s 18.2 TPS
SF-LLaVA Xu et al. (2024b) 3680 77.3/4.0 0.961 s 17.9 TPS
Free Video-LLM (ours) 2648 77.8/4.1 0.578 s 20.4 TPS

but yields a higher score of 75.0. This indicates that incorporating prompt information to guide the
temporal sampling process can lead to improved performance. Finally, the combination of uniform
and prompt-guided temporal sampling, with 6 frames and 1728 visual tokens, achieves a score of
77.2. This suggests that a hybrid approach may further enhance results.

Table 6: The effectiveness of prompt-guided temporal sampling.

Method #frames #visual tokens MSVD-QA

Uniform temporal sampling 3 864 71.7
Prompt-guided temporal sampling 3 864 75.0
Uniform + Prompt-guided temporal sampling 6 1728 77.2

Prompt-guided Spatial RoI Cropping We conduct experiments to evaluate the proposed prompt-
guided spatial sampling for RoI cropping. The experiments involve uniform temporal sampling and
prompt-guided temporal sampling, with and without the addition of RoI. Uniform temporal sampling
and prompt-guided temporal sampling serves as baselines without RoI cropping, with 3 frames and
864 visual tokens resulting in MSVD accuracies of 71.7 and 75.0 respectively. When adding RoI
to prompt-guided temporal sampling, with an RoI ratio of 0.6 and 3 frames, the number of visual
tokens is reduced to 513 and the MSVD accuracy is 74.9. Replacing the proposed RoI method
with adaptive average pooling will decrease the accuracy to 73.8 with the same number of visual
tokens. These experiments demonstrate combining prompt-guided sampling with RoI can enhance
performance, showing the effectiveness of prompt-guided spatial RoI cropping.

Table 7: The effectiveness of prompt-guided spatial RoI cropping.

Method RoI ratio #frames #visual tokens MSVD-QA

Uniform temporal sampling - 3 864 71.7
Prompt-guided temporal sampling - 3 864 75.0
Prompt-guided temporal sampling + AvgPool 0.6 3 513 73.8
Prompt-guided temporal sampling + RoI 0.6 3 513 74.9

Table 8: The effect of RoI ratio. The setting is
prompt-guided temporal sampling + RoI.

RoI ratio #frames #visual tokens MSVD-QA

0.4 3 360 74.1
0.5 3 408 74.2
0.6 3 513 74.9
0.7 3 600 74.8
1.0 3 864 75.0

Table 8 presents the results of our experiments
on the effect of RoI ratio during prompt-guided
spatial cropping on MSVD-QA performance.
The findings reveal a general trend of increas-
ing accuracy with higher RoI ratios. Specifi-
cally, an RoI ratio of 0.4 yields 360 visual to-
kens and an MSVD-QA score of 74.1, while
increasing the RoI ratio to 0.5 results in a mod-
est improvement to 74.2 with 408 tokens. As
the RoI ratio increases beyond 0.6, performance
stabilizes, with the scores hovering around 74.8 to 74.9, despite an increase in the number of visual
tokens. This suggests that while a larger RoI allows for more comprehensive spatial information,
there may be diminishing returns in accuracy beyond a certain threshold (i.e., 0.6). Overall, these
results indicate that optimizing the RoI ratio is crucial for enhancing model performance in video
question-answering tasks, highlighting the effectiveness of our prompt-guided approach in balanc-
ing token utilization and accuracy.
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4.5 VIDEO QA EXAMPLES

We also show the video QA examples to analyze the advantages and disadvantages of the method
more intuitively. Figure 2 summarizes example object detection results from the MSVD-QA bench-
mark, comparing the outputs of SF-LLaVA and our proposed method. For the first video, both
models correctly identify that someone is folding a square green paper, with SF-LLaVA scoring
slightly higher (5 vs. 4). In the second video, both models describe multiple men diving into a
swimming pool, with neither able to accurately determine the number of divers, resulting in the
same lower score of 2. Overall, while both models perform similarly on these tasks, our method is
more efficient with much fewer tokens.

Video SF-LLaVA results Our results

R: a person is seen folding a piece
of square green paper. The hands
of the person are visible in the key
frames, with the fingers and thumb
in the process of folding the paper.

The paper is green and
square-shaped, and the person

appears to be carefully folding it.
The context of the video is not
provided, but it seems to be a

simple demonstration or
instructional video on how to fold

a piece of paper.

R: there are two people
interacting with a piece of
square green paper. One

person is holding the
paper and appears to be

folding it. The exact
action of folding the paper
is not clear from the image

provided.

Q: who folded a piece of
square green paper? GT:

someone
✓, score: 5 ✓, score: 4

R: there are multiple men diving
into a swimming pool. The exact
number of men diving cannot be

determined without more
information.

R: there are multiple
instances of men diving
into a swimming pool.

The exact number of men
diving cannot be

determined without more
specific information about

the video.

Q: how many men dive into a
swimming pool? GT: five ✗, score: 2 ✗, score: 2

Figure 2: Example video question answering results on MSVD-QA benchmark.

5 CONCLUSION

In conclusion, this paper introduces a novel framework for efficient inference of training-free video
LLMs, named Free Video-LLM. The proposed method addresses the computational challenges as-
sociated with video understanding by introducing a prompt-guided visual perception approach that
significantly reduces the number of visual tokens processed by the model. Through temporal and
spatial token sampling techniques tailored to the input prompt, Free Video-LLM achieves a remark-
able reduction in computational burden without compromising accuracy. Extensive experiments
demonstrate that our method not only matches but often exceeds the performance of current state-
of-the-art video LLMs, while using a fraction of the visual tokens. This represents a substantial step
forward in the practical application of video LLMs, offering a competitive balance between accuracy
and computational efficiency. The prompt-guided framework paves the way for more scalable and
efficient video understanding systems, potentially transforming real-time and resource-constrained
environments.
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