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Abstract

Computational optimal transport (OT) has received massive interests in the machine
learning community, and great advances have been gained in the direction of
entropic-regularized OT. The Sinkhorn algorithm, as well as its many improved
versions, has become the de facto solution to large-scale OT problems. However,
most of the existing methods behave like first-order methods, which typically
require a large number of iterations to converge. More recently, Newton-type
methods using sparsified Hessian matrices have demonstrated promising results
on OT computation, but there still remain a lot of unresolved open questions.
In this article, we make major new progresses towards this direction: first, we
propose a novel Hessian sparsification scheme that promises a strict control of the
approximation error; second, based on this sparsification scheme, we develop a
safe Newton-type method that is guaranteed to avoid singularity in computing the
search directions; third, the developed algorithm has a clear implementation for
practical use, avoiding most hyperparameter tuning; and remarkably, we provide
rigorous global and local convergence analysis of the proposed algorithm, which
is lacking in the prior literature. Various numerical experiments are conducted to
demonstrate the effectiveness of the proposed algorithm in solving large-scale OT
problems.

1 Introduction

In recent years, optimal transport (OT, [36]) has received massive attentions from the deep learning
community, and has become a fundamental modeling tool in modern statistical machine learning
[35, 23]. One major challenge of applying OT to real-life problems, the computation of large-scale
OT, has also gained many progresses in the direction of approximate OT methods, especially the
entropic-regularized OT [6].

Consider two discrete probability measures µ =
∑n

i=1 aiδxi
and ν =

∑m
j=1 bjδyj

, where a =

(a1, . . . , an)
T and b = (b1, . . . , bm)T are two vectors satisfying

∑n
i=1 ai =

∑m
j=1 bj = 1, ai > 0,

bj > 0, i = 1, . . . , n, j = 1, . . . ,m, {xi}ni=1 and {yj}mj=1 are two sets of data points, and δx is the
Dirac measure at position x. Without loss of generality we assume that n ≥ m, as their roles can
be exchanged. Let M = (Mij) ∈ Rn×m be a cost matrix, whose entry Mij typically represents the
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distance between data points xi and yj . Also define Π(a, b) = {T ∈ Rn×m : T1m = a, TT1n =
b, T ≥ 0}, where the inequality sign applies elementwisely. Then OT between the two measures µ
and ν can be characterized by the following linear programming problem,

min
P∈Π(a,b)

⟨P,M⟩, (1)

where ⟨A,B⟩ = tr(ATB). Assuming n = m, the computational complexity of solving (1) using
standard linear programming solvers is typically at the order of O(n3 log(n)) [29], which can be
difficult even for moderate n and m. One approach to approximating the solution is to add an entropic
penalty term to the objective function, leading to the entropic-regularized OT problem [6]:

min
T∈Π(a,b)

⟨T,M⟩ − ηh(T ), (2)

where h(T ) =
∑n

i=1

∑m
j=1 Tij(1 − log Tij) is the entropy term, and η > 0 is a regularization

parameter. The objective function in (2) is η-strongly convex on Π(a, b), so (2) has a unique global
solution, denoted as T ∗. The matrix T ∗ is often referred to as the Sinkhorn transport plan. Problem (2)
can be solved by the celebrated Sinkhorn algorithm [38, 33], which is based on efficient matrix-vector
multiplication operations. Due to its computational advantage, the Sinkhorn algorithm has become
the de facto solution to large-scale OT problems for a long time.

However, from a practical point of view, the Sinkhorn algorithm typically demonstrates a sub-linear
convergence speed, thus requiring a large number of iterations for a moderately high precision. More
recently, second-order methods, such as the Newton method, have attracted a growing number of
researchers to rethink the solution to (2) [3, 34]. It has been shown that (2) has a dual problem
(Proposition 4.4 of [30]):

max
α,β
L(α, β) := max

α,β
αTa+ βT b− η

n∑
i=1

m∑
j=1

eη
−1(αi+βj−Mij), α ∈ Rn, β ∈ Rm. (3)

Let α∗ = (α∗
1, . . . , α

∗
n)

T and β∗ = (β∗
1 , . . . , β

∗
m)T be one optimal solution to (3), and then the

Sinkhorn transport plan T ∗ can be recovered as T ∗ = τ(α∗, β∗), where for two vectors α =
(α1, . . . , αn)

T and β = (β1, . . . , βm)T , τ(α, β) is a matrix with entries

[τ(α, β)]ij = exp
{
η−1(αi + βj −Mij)

}
.

Remarkably, (3) is equivalent to a smooth and unconstrained convex optimization problem, so it can
be solved using first-order methods such as gradient descent, or second-order methods including the
Newton method. It is well known that under some smoothness assumptions on the objective function,
the Newton method has a fast quadratic local convergence rate, and hence it typically requires much
fewer iterations than the Sinkhorn algorithm. However, each iteration in the Newton method involves
solving a dense linear system, resulting in a per-iteration cost of O(n3), which is nearly of the same
order as that of an unregularized OT problem. To this end, [34] proposes the Sinkhorn-Newton-Sparse
(SNS) algorithm, which approximates the Hessian matrix of (3) by a sparse one, so that each iteration
roughly has a computational cost of O(n2), the same order as the Sinkhorn algorithm.

The SNS algorithm demonstrates promising results for solving the entropic-regularized OT, yet there
remain a number of open questions. First, the SNS algorithm relies on initial Sinkhorn iterations
to achieve a moderately small optimality gap, but in practice, the cost for this warm initialization
also needs to be taken into account. Second, though SNS advocates using the conjugate gradient
(CG) method to solve the sparse linear systems, there is no strong guarantee on the invertibility of the
sparsified Hessian matrix. Third, [34] conjectures that SNS has a super-linear local convergence rate,
but it is not yet proven by theoretical analysis.

In this article, we make major progresses on the second-order method for entropic-regularized OT
by resolving the three challenges above. First, we carefully design a new sparsification algorithm
that has a well-controlled approximation error, and then propose a safe Newton-type algorithm, in
the sense that the linear systems for computing the search directions are always positive definite.
This property addresses the invertibility issues of existing sparsified Newton methods, and is crucial
for practical implementation. We also show that the proposed algorithm has a global convergence
guarantee, so no initial Sinkhorn iterations are needed. Most importantly, we provide solid theoretical
analysis of the proposed method, and show that it achieves a quadratic local convergence rate similar
to the vanilla Newton method.
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Contribution Our main contribution compared to prior art is summarized as follows:

1. We propose a novel Hessian sparsification scheme that promises a strict control of the approxi-
mation error.

2. Based on this sparsification scheme, we prove that the sparsified Hessian matrix is always
positive definite regardless of the sparsification parameter. This property then leads to a safe
Newton-type method that is guaranteed to avoid singularity in computing the search directions.

3. The developed algorithm has a clear implementation for practical use, avoiding most hyperpa-
rameter tuning. An efficient implementation is included in the RegOT Python package2.

4. We provide rigorous global and local convergence analysis of the proposed algorithm, which is
lacking in prior literature.

2 Background and Related Work

Notation Throughout this article, we use f(x), g(x), and H(x) to represent the objective function,
gradient, and Hessian matrix at point x, respectively. For a matrix A, let Ai· be the vector of the
i-th row of A, and A·j be the vector of the j-th column of A. For a vector v = (v1, . . . , vn)

T ,
let ṽ denote the vector (v1, . . . , vn−1)

T , and for a matrix A = (A·1, . . . , A·n), let Ã represent the
matrix (A·1, . . . , A·,n−1). The symbol ∥ · ∥ stands for the Euclidean norm for a vector argument, and
represents the operator norm for matrices. The ℓ1-norm and infinity norm are denote by ∥ · ∥1 and
∥ · ∥∞, respectively, applying to both vectors and matrices.

The main objective As has been explained in Section 1, the key to the computation of entropic-
regularized OT is to solve its smooth dual problem (3), which is equivalent to the convex optimization
problem minα,β −L(α, β). However, it is worth noting that the variables (α, β) have one redundant
degree of freedom: if (α∗, β∗) is one solution to (3), then so is (α∗ + c1n, β

∗ − c1m) for any c.
Therefore, to ensure identifiability, we globally set βm = 0 without loss of generality. In what
follows, we use the vector x = (αT , β̃T )T ∈ Rn+m−1 to collect all free dual variables. Clearly, we
always have β = (β̃T , βm)T = (β̃T , 0)T , so β̃ and β will be used interchangeably when we consider
functions of β. Then the main target of this article is to efficiently solve the optimization problem

min
x∈Rn+m−1

f(x) := −L(α, β) = η1T
n τ(α, β)1m − αTa− βT b. (4)

It is known that f(x) is a strictly convex function, so if (4) has a solution, then it is unique. It has also
been proven in the existing literature that the gradient and Hessian matrix of f(x) have the following
closed-form expressions (see for example [21]):

g(x) = −
[
∇αL(α, β)
∇β̃L(α, β)

]
=

[
T1m − a
T̃T1n − b̃

]
, T = τ(α, β), (5)

H(x) = −

[ ∇2
αL(α, β) ∇β̃ (∇αL(α, β))[

∇β̃ (∇αL(α, β))
]T

∇2
β̃
L(α, β)

]
= η−1

[
diag(T1m) T̃

T̃T diag(T̃T1n)

]
.

Computational OT There are a huge number of methods developed to solve (2) and (4). The
Sinkhorn algorithm [38, 33, 6] can be interpreted as applying the block coordinate descent (BCD),
also known as the alternating minimization (AM) method, to (4). Along this direction, many
extensions of the Sinkhorn algorithm have been proposed. For example, [13] develops an accelerated
version of AM, and a greedy variant of the Sinkhorn algorithm, named Greenkhorn, is developed in
[1]. Accelerated first-order methods, such as the adaptive primal-dual accelerated gradient descent
(APDAGD, [10]) and adaptive primal-dual accelerated mirror descent (APDAMD, [19]), have been
proposed to solve the constrained problem (2). Moreover, since the dual problem (4) is smooth,
various quasi-Newton methods, such as the limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) method [20], have also been used [7]. Second-order methods are less common in the
literature to solve (4), mainly due to the high cost of solving the linear systems, and [34] proposes
a practical sparsified Newton method to approximate the true Hessian by a sparse matrix. Another
direction to utilize the sparsity is the importance sparsification method [18], which replaces the dense
kernel matrix in the Sinkhorn algorithm by a sparsified one through random sampling.

2https://github.com/yixuan/regot-python.
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Newton-type methods The Newton method is a classical second-order optimization algorithm that
has been extensively studied. Assuming f is twice continuously differentiable, the Newton method
generates a sequence of iterates {xk} using the updating formula xk+1 = xk − [H(xk)]

−1g(xk).
However, computing the linear system [H(xk)]

−1g(xk) with a dense Hessian matrix generally costs
O(n3) of computation, so the sparsification of H(xk) with a solid convergence guarantee is the main
focus of this article. The Newton method also has many extensions, for example the regularized
Newton method to solve problems with non-isolated solutions [17], and the inexact Newton method
[8] that allows inexact solutions to the linear system [H(xk)]

−1g(xk). Our proposed method use a
combination of these ideas to reduce the computational cost of the classical Newton method.

OT in machine learning OT is a blooming research topic in modern machine learning research. As
a powerful tool to characterize the transformation of statistical distributions, OT has wide applications
in deep generative models [2, 11, 14], domain adaptation and transfer learning [5, 4], and fairness in
machine learning [12, 25, 32], among many others. Readers are referred to review articles such as
[35, 23] for a summary of machine learning tasks and methods that utilize OT.

3 The Proposed Algorithm

To complement existing second-order methods for entropic-regularized OT, in this article we propose
the SSNS algorithm, short for safe and sparse Newton method for Sinkhorn-type OT. It has two
central components: a new scheme to sparsify the Hessian matrix, and a Newton-type algorithm to
update iterates.

3.1 Sparsifying the Hessian matrix

Ideally, the sparsified Hessian matrix, denoted by Hδ(x), should meet two criteria: first, it should be
close to the true H(x) with a tunable approximation error; second, it needs to preserve the positive
definiteness of the original Hessian matrix. The first point is to ensure that Hδ(x) does not lose
too much information of the true H(x). The second point is especially important in implementing
the Newton method, since a linear system [Hδ(x)]d = −g(x) needs to be solved to compute the
search direction d, and one needs to make sure that Hδ(x) is invertible. These two points are briefly
mentioned in [34] as an implementation practice, but without a strong theoretical guarantee.

To this end, we introduce a new adaptive method to sparsify H(x), which takes the two points above
as first principles in both theoretical analysis and practical implementation. To describe the whole
algorithm, first define an operator select_small(v, δ), which takes a vector v = (v1, . . . , vn)

T

and a scalar δ > 0 as inputs, and outputs a mask vector ϕ = (ϕ1, . . . , ϕn)
T in the following way.

Suppose that vπ(1) ≤ vπ(2) ≤ · · · ≤ vπ(n) are the sorted values of v, where π(s) is the original index
of the s-th smallest element in v. We also define π−1(·) to be the inverse of π(·), i.e., π−1(i) is the
integer such that π(π−1(i)) = i. Let S be the largest integer such that

∑S
s=1 vπ(s) ≤ δ. Then we set

ϕi = 1 if π−1(i) ≤ S, and ϕi = 0 otherwise. For example, if v = (2, 1, 3, 5, 2)T and δ = 6, then we
have ϕ = (1, 1, 0, 0, 1)T , since 1 + 2 + 2 ≤ δ but 1 + 2 + 2 + 3 > δ.

Next, define an operator apply_mask(v, ϕ), which inputs a vector v = (v1, . . . , vn)
T and a mask

ϕ = (ϕ1, . . . , ϕn)
T , and outputs a vector u = (u1, . . . , un)

T with ui = ϕi ·vi. For the example above,
we have apply_mask(v, ϕ) = (2, 1, 0, 0, 2)T . Then given the current dual variables x = (αT , β̃T )T ,
Algorithm 1 outputs a sparse matrix Hδ as an approximation to the true Hessian matrix H(x).

It is worth noting that in the construction of Hδ , the diagonal elements diag(T1m) and diag(T̃T1n)
use the original T matrix, whereas the off-diagonal elements are the sparsified Tδ matrix, with the last
column removed. In this way, Theorem 2 shows that Hδ indeed has a well-controlled approximation
error as requested by our first criterion.

Theorem 1 (Approximation error of sparsification). Let Hδ be output by Algorithm 1 with a given
vector x, and define D = H(x) −Hδ. Then for any δ ≥ 0, we have D ≥ 0, where the inequality
sign holds elementwisely, and for each i, j = 1, 2, . . . , n+m− 1,

∥Di·∥1 ≤ η−1δ, ∥D·j∥1 ≤ η−1δ.

Moreover, ∥D∥ ≤ η−1δ.
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Algorithm 1 Sparsifying the Hessian matrix.

Input: Dual variable vector x = (αT , β̃T )T , threshold parameter δ ≥ 0
Output: Sparsified Hessian matrix Hδ

1: Initialize a zero matrix ∆ ∈ Rn×m and compute T = τ(α, β)
2: for j = 1, 2, . . . ,m− 1 do
3: ϕ← select_small(T·j , δ), ∆·j ← apply_mask(T·j , ϕ)
4: for i = 1, 2, . . . , n do
5: ϕ← select_small(∆i·, δ), ∆i· ← apply_mask(∆i·, ϕ)
6: Tδ ← T −∆

7: Hδ ← η−1

[
diag(T1m) T̃δ

T̃T
δ diag(T̃T1n)

]

Theorem 1 shows that all the row-wise and column-wise ℓ1-norms of the residual matrix D is
bounded by the pre-specified threshold δ, up to a constant multiplier η−1. More importantly, the
overall operator norm of D also has the same upper bound, and this property plays a key role in
analyzing the convergence behavior of the SSNS algorithm later in Section 3.2.

Next, Theorem 2 validates our second criterion on Hδ: the sparsified Hessian matrix by Algorithm 1
is guaranteed to be positive definite, regardless of the threshold parameter δ. Therefore, it can be
safely used to compute the Newton search directions.

Theorem 2 (Positive definiteness). Suppose that n ≥ m. For any α ∈ Rn, β̃ ∈ Rm−1, and
M ∈ Rn×m, let T = τ(α, β), r = T1m, and c = TT1n. Then for any δ ≥ 0, the matrix Hδ output
by Algorithm 1 is always positive definite. Specifically, we have

σmax(Hδ) ≤ 2η−1 ·max{∥r∥∞, ∥c∥∞}, σmin(Hδ) ≥ η−1 · n−m+ 1

2n
·min

i,j
Tij ,

where σmax(·) and σmin(·) represent the largest and smallest eigenvalues of a symmetric matrix,
respectively.

The two features presented by Theorem 1 and Theorem 2 are crucial in designing the optimization
algorithm and analyzing its theoretical properties, which we introduce in details in Section 3.2.

3.2 The SSNS algorithm

In Theorem 2, we have shown that the sparsified Hessian matrix Hδ is always positive definite, thus
invertible. However, in actual computation, Hδ may be nearly singular, thus causing numerical
instability. To further stabilize the optimization procedure, we propose a safe and sparse Newton
method inspired by the regularized Newton method [17] and the Levenberg–Marquardt algorithm
[16, 22].

One of the key ingredients of SSNS is to introduce a shift parameter λ in solving the Newton linear
system, leading to a search direction of the form p = −(Hδ + λI)−1g(x) in each iteration. The shift
parameter λ has multiple functions. First, it stabilizes the vanilla Newton linear system H−1

δ g(x), as
the matrix Hδ + λI has a smaller condition number than Hδ , which potentially accelerates iterative
linear solves such as the CG method. Second, if we allow λ to vary along iterations, λ has the effect
of adjusting the search direction when −H−1

δ g(x) is not a good candidate. Third, as we will later
show in the convergence analysis, an adaptive λ plays an important role in both the global and local
convergence of the algorithm.

On the other side, the sparsification threshold δ is also essential to the design of the algorithm, as
we need to control the approximation error of Hδ during the iterations. Intuitively, when the current
iterate xk is close to the optimum,Hδ should be also close to the true Hessian matrixH(xk) to achieve
the fast convergence rate, whereas when xk is far away, it may be beneficial to use a large δ, since
Hδ is then more sparse and leads to a faster computation of the linear system −(Hδ + λI)−1g(x).

Overall, in SSNS we allow δ and λ to vary in each iteration, and use the notation δk and λk to reflect
this adaptivity. Intuitively, both δk and λk cause approximation errors to the true Hessian matrix in
determining the Newton search direction, so they should tend to zero when xk is sufficiently close to

5



the optimum. On the other hand, we do not want δk and λk to decay too fast, since otherwise they
make Hδ too dense and the linear system may be ill-conditioned. To this end, we set their values
according to the current gradient norm ∥g(xk)∥, which can be viewed as an indicator of the distance
between xk and the optimum x∗. Specifically, we set λk = µk∥g(xk)∥ and δk = ν0∥gk∥γ , where µk

is a parameter that dynamically changes in each iteration, and ν0 > 0 and γ ≥ 1 are two constants.
These settings are justified by the convergence analysis later in Theorems 3 and 5.

Before presenting the full details, we first introduce a few functions and quantities that play important
roles in the algorithm. In each iteration, SSNS computes a quantity ρk,

ρk =
f(xk)− f(xk + ξkpk)

mk(0)−mk(ξkpk)
,

where ξk > 0 is a step size parameter, and the mk(·) function is a local quadratic approximation to
the objective function:

mk(p) = f(xk) + [g(xk)]
T p+

1

2
pTHδkp. (6)

The quantity ρk has two functions: first, it adjusts the µk parameter, and second, it also determines
whether one should accept the proposed new iterate xk + ξkpk. A negative value of ρk means that the
objective function actually increases at the new iterate, so one should reject the proposed point, and
increase λk in the next iteration for a potentially better search direction. The overall SSNS algorithm
is then given in Algorithm 2.

Algorithm 2 Safe and sparse Newton method for Sinkhorn-type optimal transport.

Input: Initial point x0, parameters {µ0, ν0, cl, cu, κ} > 0, γ ≥ 1, ρ0 ∈ (0, 12 ), εtol > 0

Default values: µ0 = 1, ν0 = 0.01, cl = 0.1, cu = 1, κ = 0.001, γ = 1, ρ0 = 1
4

Output: xk
1: for k = 0, 1, 2, . . . do
2: Compute gk = g(xk), δk = ν0∥gk∥γ
3: if ∥gk∥ < εtol then
4: return xk
5: Compute Hδk according to Algorithm 1 with x← xk
6: Compute pk = −(Hδk + µk∥gk∥I)−1gk
7: Select any ξk ∈ [cl, cu]

8: Compute ρk =
f(xk)− f(xk + ξkpk)

mk(0)−mk(ξkpk)
, mk(·) is defined in (6)

9: Update µk+1 =


4µk, if ρk < ρ0
max{µk/2, κ}, if ρk ≥ 1− ρ0
µk, otherwise

10: if ρk > 0 then
11: xk+1 = xk + ξkpk
12: else
13: xk+1 = xk

3.3 Step size selection

It is worth noting that in Algorithm 2, the step size ξk can be taken an arbitrary value from a
fixed interval [cl, cu]. This is quite different from typical line search methods, which require the
new iterate xk + ξkpk to satisfy certain conditions, such as the sufficient decrease condition and
the curvature condition [24]. In other words, it is one of the advantages of SSNS that the cost of
step size selection is predictable: we can consider a fixed number of candidates, and select one
of them according to some criterion. At one extreme, it is completely acceptable to always set
ξk = 1. However, in practice, we advocate Algorithm 3 to heuristically choose ξk, which considers
a fixed number of candidates, and computes the objective function value for each candidate. The
algorithm will early stop if a decrease in function value is found. If all candidates increase the
function value, then return the step that results in the smallest function value. Based on our empirical
results, setting (ξ[0], ξ[1], ξ[2], ξ[3]) = (1, 0.5, 0.25, 0.1) gives reasonably good performance in most
numerical experiments.
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Algorithm 3 A practical step size selection method for Algorithm 2.

Input: Candidate step sizes 1 = ξ[0] > ξ[1] > · · · ξ[N ] > 0, current xk, pk, objective function f(·)
1: Initialize ξ∗ = 1, f∗ = +∞
2: for i = 0, 1, . . . , N do
3: Compute xtrial = xk + ξ[i]pk, ftrial = f(xtrial)
4: if ftrial < f∗ then
5: ξ∗ = ξ[i], f∗ = ftrial
6: if f∗ < f(xk) then
7: return ξ∗, f∗
8: return ξ∗, f∗

4 Theoretical Guarantees on Convergence

In this section, we present our major theoretical contributions to the sparsified Newton method for
entropic-regularized OT. We first show that starting from an arbitrary initial point x0, the iterates
generated by Algorithm 2 eventually converge to the unique global optimum x∗. Therefore, SSNS
does not require a warm initialization using the Sinkhorn algorithm as in [34].

Theorem 3 (Global convergence guarantee). Let {xk} be generated by Algorithm 2, and x∗ is an
optimal point of (4). Then either Algorithm 2 terminates in finite iterations, or xk satisfies

lim
k→∞

∥g(xk)∥ = 0, lim
k→∞

∥xk − x∗∥ = 0.

The next theorem characterizes the behavior of SSNS when the iterates are sufficiently close to the
optimum. Since in Algorithm 2, the proposed new iterate xk + ξkpk is rejected if ρk ≤ 0, it is
important to show that such rejections will be very rare as the algorithm proceeds.

Theorem 4. There exists an integer K > 0 such that for all k ≥ K, ρk ≥ 1− ρ0, µk+1 ≤ κ, and
xk+1 = xk + ξkpk.

Theorem 4 indicates that eventually the parameter µk is upper bounded by the pre-specified value κ,
making the shift parameter of the Newton method, namely, µk∥gk∥, tend to zero. This is consistent
with the intuition we have described in Section 3.2. More importantly, the quantity ρk will also be
greater than the threshold 1− ρ0, so the new step proposed by the Newton direction will always be
accepted, regardless of the bounds cl and cu. This makes SSNS quite flexible in picking the step
sizes, unlike classical line search algorithms that pose various conditions that need to be satisfied.

Finally, Theorem 5 shows that SSNS indeed has a quadratic local convergence rate that matches the
Newton method based on genuine and dense Hessian matrices.

Theorem 5 (Quadratic local convergence rate). Fix ξk ≡ 1. Then there exists an integer K ′ > 0 and
a constant L > 0 such that for all k ≥ K ′,

∥xk+1 − x∗∥ ≤ L∥xk − x∗∥2.

Overall, Theorems 3 to 5 provide solid theoretical guarantees on the proposed SSNS algorithm, which
are a major complement to the existing literature on solving entropic-regularized OT using realistic
second-order methods. More importantly, they validate that SSNS is indeed a “safe” algorithm that is
quite robust to the choice of initial value, step sizes, strength of sparsification, and hyperparameters.

5 Numerical Experiments

In this section, we test the performance of the proposed SSNS algorithm on various numerical
experiments3. There are a huge number of algorithms developed for entropic-regularized OT, and we
focus on representative ones from each category of optimization methods: 1. the Sinkhorn algorithm
as the default option for entropic-regularized OT, interpreted as a BCD method; 2. the APDAGD

3The programming code to reproduce the results is available at https://github.com/TangZihao1997/
SSNS.
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algorithm for accelerated first-order method; 3. the L-BFGS algorithm for quasi-Newton method; 4.
the globalized Newton method with line search; 5. the proposed SSNS algorithm.

We first consider three benchmark datasets to define the OT problem, each with two ways of
constructing the cost matrices. More explanations of the experiment setting are given in Section A.2.

• (Fashion-)MNIST: OT between a pair of images from the MNIST [15] or Fashion-MNIST [37]
dataset. The a and b vectors are flattened and normalized pixel values, and the cost matrix holds
the ℓ1-distances or squared Euclidean distances between individual pixels. The problem size is
n = m = 784.

• ImageNet: OT between two categories of images from the ImageNet dataset [9]. We use a
subset of ImageNet from the Imagenette Github repository4, which contains ten classes of
ImageNet images. Approximately 1000 images per category are selected. We map each image
to a 30-dimensional feature vector by first passing the image to a ResNet18 network, resulting
in a 512-dimensional vector, then followed by a dimension reduction by principal component
analysis. Let xi ∈ R30 be the feature vector of an image in the first category, i = 1, . . . , n,
and yj ∈ R30 be the feature vector of an image in the second category, j = 1, . . . ,m. Then
a = n−11n, b = m−11m, and the cost matrix is Mij = ∥xi − yj∥1 or Mij = ∥xi − yj∥2. The
problem size is n ≈ m ≈ 1000.

To make the regularization parameter η comparable in different settings, we normalize all cost
matrices to have unit infinity norms, namely, M ←M/∥M∥∞. Then we consider two settings of the
regularization parameter, η = 0.01 and η = 0.001.

For entropic-regularized OT, a commonly-used criterion to evaluate optimality is the marginal error
of the estimated transport plan. Let xk = (αT

k , β̃
T
k )

T be the current iterate for dual variables,

and set Tk = τ(αk, βk). Then the marginal error is given by
√
∥Tk1m − a∥2 + ∥TT

k 1n − b∥2.
Coincidentally, this is exactly the current gradient norm ∥g(xk)∥ as indicated by (5). Figure 1 shows
the plots of marginal errors against iteration number or run time for different algorithms on the three
benchmark datasets.
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Figure 1: Top: Marginal error vs. iteration number for different algorithms on three datasets. Bottom:
Marginal error vs. run time. The cost matrix is based on the ℓ1-distance, and η = 0.01.

From the top row of Figure 1, it is clear that second-order methods have much faster convergence
speed compared to first-order and quasi-Newton methods. However, for the vanilla Newton method,
this advantage is weakened by its high per-iteration cost, resulting in less competitive run time
performance as shown in the bottom row of Figure 1. The SSNS algorithm avoids this issue by using
sparse matrix operations, and hence for the run time results, it still shows an order of magnitude
speedup for MNIST and Fashion-MNIST data. The run time for SSNS is relatively longer in the
ImageNet dataset, mostly because the transport plan is more dense under η = 0.01. We show in

4https://github.com/fastai/imagenette.
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Figure 2 that as η becomes smaller, the Hessian matrix can be better approximated by a sparse matrix,
thus enlarging the advantage of SSNS. This point is consistent with Theorem 1 of [34], which states
that smaller η in general results in better sparse approximation. More discussions on the impact of
regularization parameter is given in Section A.3.
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Figure 2: Top: Marginal error vs. iteration number for different algorithms on three datasets. Bottom:
Marginal error vs. run time. The cost matrix is based on the ℓ1-distance, and η = 0.001.

We also note that with η = 0.001, the Newton method encounters numerical issues in solving the
linear systems: the Hessian matrix is nearly singular, and the line search procedure fails along the
computed search direction. Therefore, the Newton method does not generate any valid results in
Figure 2. This issue further validates our intuition in Section 3.2: when H(x) is nearly singular,
−[H(x)]−1g(x) may not be a good search direction, and the introduction of the shift parameter λ in
SSNS may give a better candidate −(Hδ + λI)−1g(x).

In the ImageNet experiments above, we map each image to a 30-dimensional feature vector to
compute the cost matrix. To study the impact of the feature dimension, in Section A.4, we conduct
additional experiments with d = 60, 90, 200, 300, 500, under the same setting as in Figure 2.

Next, we show in Figure 3 the results for cost matrices based on squared Euclidean distances. The
implications are similar: the Newton method fails in the ImageNet dataset, and costs too much
run time in the other two datasets. In contrast, SSNS shows great computational advantage. The
experiment results for more test cases are given in Section A.5 in the appendix.

Finally, to study the scalability of SSNS, we consider the following synthetic OT problem that can
generate data with arbitrary dimensions.

• Large-scale synthetic data: The basic setting is to approximate the OT between two continuous
distributions: the source is an exponential distribution with mean one, and the target is a normal
mixture distribution 0.2 ·N(1, 0.2)+0.8 ·N(3, 0.5). We discretize the problem in the following
way: let xi = 5(i − 1)/(n − 1), i = 1, . . . , n, and yj = 5(j − 1)/(m − 1), j = 1, . . . ,m,
which are equally-spaced points on [0, 5]. Define the cost matrix as Mij = (xi − yj)2. Let f1
and f2 be the density functions of the source and target distributions, respectively. Then we set
ãi = f1(xi), b̃j = f2(yj), ai = ãi/ (

∑n
k=1 ãk), and bj = b̃j/

(∑m
k=1 b̃k

)
.

Similar to the previous experiment setting, we normalize the cost matrix, M ← M/∥M∥∞, and
set η = 0.001. We then solve the problem at the scales of n = m = 1000, 5000, and 10000, but
only considering BCD and SSNS, as other methods are too time-consuming to proceed. The results
are visualized in Figure 4, whose pattern is clear: BCD demonstrates a linear-like convergence rate,
and SSNS has a fast convergence speed consistent with the theoretical quadratic rate. Thanks to the
Hessian sparsification, SSNS does not suffer from a high per-iteration cost, so overall it provides an
efficient solver for entropic-regularized OT even on very large problems.
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Figure 3: Top: Marginal error vs. iteration number for different algorithms on three datasets. Bottom:
Marginal error vs. run time. The cost matrix is based on the squared Euclidean distance, and
η = 0.001.
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Figure 4: Comparing BCD and SSNS on large OT problems. Top: Marginal error vs. iteration
number for different problem sizes. Bottom: Marginal error vs. run time.

6 Conclusion

In this article, we have carefully designed and analyzed a new variant of the sparsified Newton
method for solving large-scale entropic-regularized OT problems. As demonstrated by [34], the
sparsified Newton method typically enjoys visibly faster convergence speed than first-order methods,
and meanwhile maintains a comparable computational cost per iteration. This paper substantially
complements the existing literature on sparsified Newton method on the following aspects. First, a
new Hessian sparsification method is developed, which nicely interacts with the convergence theory.
Second, based on this scheme, we prove that the sparsified Hessian matrix is always positive definite,
thus promising a safe Newton direction computation. Third, we have a thorough theoretical analysis
of the proposed SSNS algorithm, which affirmatively answers a previous conjecture made in [34] on
the convergence speed. Finally, our algorithm features an easy and clear implementation that does not
require warm initialization or heavy hyperparameter tuning, thus being user-friendly for practical use.

Limitations A potential limitation of the proposed method is that for some specific OT problems,
the transport plan may not be well approximated by a sparse matrix. In such cases, the Hessian matrix
may be too dense even after the adaptive sparsification step.

10



Acknowledgements

Yixuan Qiu’s work was supported in part by National Natural Science Foundation of China
(12101389), Shanghai Pujiang Program (21PJC056), MOE Project of Key Research Institute of
Humanities and Social Sciences (22JJD110001), and Shanghai Research Center for Data Science and
Decision Technology.

References
[1] Altschuler, J., Niles-Weed, J., and Rigollet, P. (2017). Near-linear time approximation algorithms

for optimal transport via Sinkhorn iteration. In Advances in Neural Information Processing
Systems, volume 30.

[2] Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial networks.
In Proceedings of the 34th International Conference on Machine Learning, pages 214–223.

[3] Brauer, C., Clason, C., Lorenz, D., and Wirth, B. (2017). A Sinkhorn-Newton method for entropic
optimal transport. arXiv preprint arXiv:1710.06635.

[4] Courty, N., Flamary, R., Habrard, A., and Rakotomamonjy, A. (2017a). Joint distribution optimal
transportation for domain adaptation. In Advances in Neural Information Processing Systems,
volume 30.

[5] Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A. (2017b). Optimal transport for domain
adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(9):1853–1865.

[6] Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. In Advances
in Neural Information Processing Systems, volume 26.

[7] Cuturi, M. and Peyré, G. (2018). Semidual regularized optimal transport. SIAM Review.

[8] Dembo, R. S., Eisenstat, S. C., and Steihaug, T. (1982). Inexact Newton methods. SIAM Journal
on Numerical Analysis, 19(2):400–408.

[9] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Li, F.-F. (2009). ImageNet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255.

[10] Dvurechensky, P., Gasnikov, A., and Kroshnin, A. (2018). Computational optimal transport:
Complexity by accelerated gradient descent is better than by Sinkhorn’s algorithm. In Proceedings
of the 35th International Conference on Machine Learning, pages 1367–1376.

[11] Genevay, A., Peyre, G., and Cuturi, M. (2018). Learning generative models with Sinkhorn
divergences. In Proceedings of the Twenty-First International Conference on Artificial Intelligence
and Statistics, pages 1608–1617.

[12] Gordaliza, P., Barrio, E. D., Fabrice, G., and Loubes, J.-M. (2019). Obtaining fairness using
optimal transport theory. In Proceedings of the 36th International Conference on Machine
Learning, pages 2357–2365.

[13] Guminov, S., Dvurechensky, P., Tupitsa, N., and Gasnikov, A. (2021). On a combination of
alternating minimization and Nesterov’s momentum. In Proceedings of the 38th International
Conference on Machine Learning, pages 3886–3898.

[14] Huynh, V., Phung, D., and Zhao, H. (2021). Optimal transport for deep generative models: State
of the art and research challenges. In Twenty-Ninth International Joint Conference on Artificial
Intelligence, volume 5, pages 4450–4457.

[15] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[16] Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares.
Quarterly of Applied Mathematics, 2(2):164–168.

11



[17] Li, D.-H., Fukushima, M., Qi, L., and Yamashita, N. (2004). Regularized Newton methods
for convex minimization problems with singular solutions. Computational Optimization and
Applications, 28(2):131–147.

[18] Li, M., Yu, J., Li, T., and Meng, C. (2023). Importance sparsification for Sinkhorn algorithm.
Journal of Machine Learning Research, 24(247):1–44.

[19] Lin, T., Ho, N., and Jordan, M. I. (2022). On the efficiency of entropic regularized algorithms
for optimal transport. Journal of Machine Learning Research, 23(137):1–42.

[20] Liu, D. C. and Nocedal, J. (1989). On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(1):503–528.

[21] Luise, G., Rudi, A., Pontil, M., and Ciliberto, C. (2018). Differential properties of Sinkhorn ap-
proximation for learning with Wasserstein distance. In Advances in Neural Information Processing
Systems, volume 31.

[22] Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters.
Journal of the Society for Industrial and Applied Mathematics, 11(2):431–441.

[23] Montesuma, E. F., Mboula, F. N., and Souloumiac, A. (2023). Recent advances in optimal
transport for machine learning. arXiv:2306.16156.

[24] Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer Series in Operation
Research and Financial Engineering. Springer, New York, NY, second edition.

[25] Oneto, L., Donini, M., Luise, G., Ciliberto, C., Maurer, A., and Pontil, M. (2020). Exploiting
MMD and Sinkhorn divergences for fair and transferable representation learning. In Advances in
Neural Information Processing Systems, volume 33.

[26] Ortega, J. M. and Rheinboldt, W. C. (1970). Iterative Solution of Nonlinear Equations in Several
Variables. SIAM.

[27] Papadakis, N. (2015). Optimal Transport for Image Processing. Thesis, Université de Bordeaux
; Habilitation thesis.

[28] Pasechnyuk, D. A., Persiianov, M., Dvurechensky, P., and Gasnikov, A. (2023). Algorithms for
Euclidean-regularised optimal transport. In Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay,
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A Additional Experiment Details

A.1 Computing environment

All experiments in this article are conducted on a personal computer with an Intel i9-13900K CPU,
32 GB memory, and a Ubuntu 24.10 operating system.

A.2 Motivation

The experiments in Section 5 are designed to reflect two typical uses of OT. In the (Fashion-)MNIST
experiment, images are vectorized as density vectors, and OT is a used as a tool for image morphing
and interpolation [27]. We follow the experiment settings in the existing literature such as [28] and
[34] to define a, b, and M : given two images, let a ∈ R784 be the vectorized and normalized pixel
values of the first image, and similarly define b ∈ R784 for the second image. For pixel i in the first
image and pixel j in the second image, let (w, h) and (w′, h′) be their original coordinates in the
image, respectively. Then the cost value between pixel i and pixel j is

Mij = |w − w′|+ |h− h′|

based on the ℓ1-distance, or
Mij = (w − w′)2 + (h− h′)2

base on the squared Euclidean distance. The whole cost matrix M ∈ R784×784 then collects all
pairwise cost values Mij .

The ImageNet experiment uses OT as a statistical distance to measure the difference between two
distributions. In this setting, each image is one observation of a distribution, and we use OT to
compute the (approximate) Wasserstein distance between two classes of images. Since each image is
mapped to a 30-dimensional feature vector, the entries of the cost matrix are simply the ℓ1-distances
or squared Euclidean distances between the feature vectors of two images.

A.3 Impact of the regularization parameter

In Figures 1 and 2, we have shown that the regularization parameter η may affect the performance of
optimization algorithms. To further study this effect, we consider a series of equally-spaced η values
in the logarithmic domain, and display the run times and number of iterations of each algorithm. For
brevity, we focus on the comparison between BCD and SSNS, and the results are given in Table 1.

Table 1: Performance comparison between BCD and SSNS under different regularization parameters
for the ImageNet experiment in Section 5. The convergence tolerance is set to εtol = 10−8. Left:
cost matrix based on the ℓ1-distance. Right: cost matrix based on the squared Euclidean distance.

log10(η) Method Time (s) Iterations

-2 BCD 1.628 217
SSNS 1.523 13

-2.25 BCD > 3.765 > 500
SSNS 0.960 20

-2.5 BCD > 3.765 > 500
SSNS 0.461 30

-2.75 BCD > 3.766 > 500
SSNS 0.383 57

-3 BCD > 3.767 > 500
SSNS 0.771 120

log10(η) Method Time (s) Iterations

-2 BCD 0.438 59
SSNS 2.235 11

-2.25 BCD 0.853 114
SSNS 1.066 15

-2.5 BCD 3.327 443
SSNS 0.997 23

-2.75 BCD > 3.773 > 500
SSNS 0.529 35

-3 BCD > 3.773 > 500
SSNS 0.458 68

From Table 1 we can find that BCD is very sensitive to the value of η. When η is large, BCD may
demonstrate some computational advantages, but when η is small, BCD typically fails to meet the
error tolerance within 500 iterations. The pattern of SSNS shows some interesting points: when η
becomes smaller, the number of iterations also increases, but the overall runtime of SSNS may even
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decrease. This is because smaller η values typically result in more sparse Hessian approximations,
thus leading to faster sparse linear system solving. These findings are consistent with our explanations
in Section 5.

A.4 Impact of the feature dimension

In the ImageNet experiment in Section 5, we map each image to a 30-dimensional feature vector
to compute the cost matrix. To study the impact of the feature dimension, we conduct five more
experiments with d = 60, 90, 200, 300, 500, under the same setting as in Figure 2. The results are
shown in Figure 5. The plots demonstrate similar patterns, implying that the convergence property of
SSNS is robust to the feature dimension of input images.
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(e) d = 300
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(f) d = 500

Figure 5: ImageNet experiment with different feature dimensions. The cost matrix is based on the
ℓ1-distance, and η = 0.001.

A.5 Additional test cases

Besides the numerical experiments in Section 5, here we include two more test cases from each
dataset. The first test case shown in Figure 6 uses ℓ1-distances to construct cost matrix, and the
second one, demonstrated in Figure 7, is based on squared Euclidean distances. Both test cases use
the regularization parameter η = 0.001.

B Proof of Theorems

B.1 Proof of Theorem (1)

In this proof all inequality signs hold elementwisely when applied to vectors and matrices.

By Algorithm (1), Tδ = T −∆, where each element ∆ij of ∆ is either zero, or the corresponding
element Tij of T . Clearly, we have ∆ ≥ 0. Due to the selection scheme in Algorithm (1), each
row sum and each column sum of ∆ is upper bounded by the threshold δ, i.e., ∆1m ≤ δ1n and
∆T1n ≤ δ1m. Since the last column of ∆ is always a zero vector by the design of the algorithm, we
also easily get ∆̃1m−1 = ∆1m ≤ δ1n and ∆̃T1n = d̃ ≤ δ1m−1, where d = ∆T1n.

Note that

D = H(x)−Hδ = η−1

[
O ∆̃
∆̃T O

]
:=

[
D1

D2

]
,
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Figure 6: Additional test cases based on ℓ1-distances and η = 0.001. Top: Marginal error vs. iteration
number for different algorithms on three datasets. Bottom: Marginal error vs. run time.
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Figure 7: Additional test cases based on squared Euclidean distances and η = 0.001. Top: Marginal
error vs. iteration number for different algorithms on three datasets. Bottom: Marginal error vs. run
time.

so D ≥ 0, D11n+m−1 = η−1∆̃1m−1 ≤ η−1δ1n and D21n+m−1 = η−1∆̃T1n ≤ η−1δ1m−1.
Overall, we have D1n+m−1 ≤ η−1δ1n+m−1. Since D ≥ 0, this is equivalent to

∥Di·∥1 ≤ η−1δ, i = 1, 2, . . . , n+m− 1.

Since D is symmetric, we also have

∥D·j∥1 = ∥Dj·∥1 ≤ η−1δ, j = 1, 2, . . . , n+m− 1.

Let

Pk =
∑
j ̸=k

|Dkj |, k = 1, . . . , n+m− 1,

and note that all diagonal elements of D are zero. So by the Gershgorin circle theorem, every
eigenvalue of D must be smaller than or equal to the maximum of Dkk + Pk = ∥Dk·∥1, which is
upper bounded by η−1δ. Therefore, ∥D∥ = σmax(D) ≤ η−1δ.
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B.2 Proof of Theorem (2)

Consider the matrix

A =

[
diag(r) T̃δ
T̃T
δ diag(c̃)

]
∈ R(n+m−1)×(n+m−1),

and suppose that T = (Tij), Tδ = (Sij). Clearly, Sij = Tij −∆ij ≤ Tij . Let

Pk =
∑
j ̸=k

|Akj |, k = 1, . . . , n+m− 1,

and then it is easy to find that

Akk + Pk =

{
rk +

∑m−1
j=1 Skj ≤ 2rk, k = 1, . . . , n

ck−n +
∑n

i=1 Si,k−n ≤ 2ck−n, k = n+ 1, . . . , n+m− 1
.

Overall, we have Akk + Pk ≤ U := 2max{∥r∥∞, ∥c∥∞}. By the Gershgorin circle theorem, every
eigenvalue of A must be smaller than or equal to the maximum value of Akk + Pk, which is upper
bounded by U <∞.

For some columns of ∆, say, column k, it may be the case that ∆·k = 0, indicating that there is
no thresholding on T·k. Note that if we simultaneously permute the columns of T and Tδ, then the
eigenvalues of A do not change. Therefore, without loss of generality we can assume that the first d
columns and the last column of ∆ are exactly zero, 0 ≤ d ≤ m− 1 (∆·m = 0 always holds by the
design of Algorithm 1). Then we can partition Tδ as Tδ = [T (1), T

(2)
δ , T·m], where T (1) ∈ Rn×d and

T·m ∈ Rn have strictly positive elements. Accordingly, A can be partitioned as

A =

diag(T1m) T (1) T
(2)
δ

T (1)T diag(T (1)T1n) O

T
(2)T
δ O diag(T

(2)T
δ 1n)

 .
Consider the matrix B = A− svvT , where v ∈ Rn+m−1 is a vector whose first (n+ d) elements
are ones and the remaining elements are zeros, and s is a positive scalar. Define

Rk =
∑
j ̸=k

|Bkj |, k = 1, . . . , n+m− 1,

and suppose that s ≤ min1≤i≤n,1≤j≤d Tij . Then for k = 1, . . . , n, it is easy to find that

Rk = (n− 1)s+
d∑

j=1

(Skj − s) +
m−1∑
j=d+1

Skj = (n− d− 1)s+
m−1∑
j=1

Skj .

For k = n+ 1, . . . , n+ d,

Rk =

n∑
i=1

(Ti,k−n − s) + (d− 1)s =

n∑
i=1

Ti,k−n − (n− d+ 1)s.

For k = n+ d+ 1, . . . , n+m− 1,

Rk =

n∑
i=1

Si,k−n =

n∑
i=1

Ti,k−n −
n∑

i=1

∆i,k−n <

n∑
i=1

Ti,k−n. (7)

The inequality sign in (7) is strict, since we have assumed that at least one element of ∆·,k−n is
nonzero. Moreover,

Bkk =


∑m

j=1 Tkj − s, k = 1, . . . , n∑n
i=1 Ti,k−n − s, k = n+ 1, . . . , n+ d∑n
i=1 Ti,k−n, k = n+ d+ 1, . . . , n+m− 1

,
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so overall we can obtain that

Bkk −Rk =


∑m−1

j=1 ∆kj + Tkm − (n− d)s, k = 1, . . . , n

(n− d)s, k = n+ 1, . . . , n+ d∑n
i=1 ∆i,k−n, k = n+ d+ 1, . . . , n+m− 1

.

Now take
s =

min1≤i≤n,1≤j≤m Tij
2n

,

and then we can verify that s satisfies the condition s ≤ min1≤i≤n,1≤j≤d Tij . Moreover, for
k = 1, . . . , n, we have

Bkk −Rk ≥ Tkm − ns = Tkm −
1

2
·min

i,j
Tij ≥

1

2
·min

i,j
Tij .

For k = n+ 1, . . . , n+ d,

Bkk −Rk = (n− d)s ≥ (n−m+ 1)s =
n−m+ 1

2n
·min

i,j
Tij .

For k = n+ d+ 1, . . . , n+m− 1, since ∆i,k−n is either zero or Ti,k−n, and at least one element
of ∆·,k−n is nonzero, we then have

Bkk −Rk =

n∑
i=1

∆i,k−n ≥ min
1≤i≤n

Ti,k−n ≥ min
i,j

Tij .

Combining all the possibilities, we get

Bkk −Rk ≥ L :=
n−m+ 1

2n
·min

i,j
Tij > 0

for all k and d.

By the Gershgorin circle theorem, every eigenvalue ofB must be greater than or equal to the minimum
value of Bkk − Rk, which is lower bounded by L > 0. Since A = B + svvT and vvT is positive
semi-definite, we have σmin(A) ≥ L > 0, implying that A is positive definite.

B.3 Proof of Theorem 3

We first introduce some necessary notation. Define the level set as L(x0) = {x : f(x) ≤ f(x0)},
and let

f∗ = inf{f(x) : x ∈ L(x0)},
β1 = sup{∥g(x)∥ : x ∈ L(x0)},
β2 = sup{∥Hδ(x)∥ : x ∈ L(x0), δ > 0}.

Define the function Φ(x, d) = f(x+ d)− f(x)− g(x)T d. We then present a few technical lemmas,
followed by the proof of the main theorem.
Lemma 6. L(x0) is a bounded and closed convex set, f∗ > −∞, β1 <∞, and β2 <∞.

Proof. Clearly, f(x) is a continuously differentiable and strictly convex function. Define Lc = {x :
f(x) ≤ c}, and then Lc is a closed convex set.

Lemma 1 of Dvurechensky et al. [10] shows that if (α∗, β∗) is an optimal solution to (3), then

max
j
β∗
j −min

j
β∗
j ≤ R,

where R = ∥M∥∞/η − log(mini,j{ai, bj}). Since we have fixed β∗
m = 0, we immediately obtain

that ∥β∗∥ <∞. Given β∗, α∗ has a closed form,

α∗
i = η log ai − η log

 m∑
j=1

eη
−1(β∗

j −Mij)

 ,
18



so ∥α∗∥ is also bounded.

Let x∗ = (α∗T , β̃∗T )T and f∗ = f(x∗), and then clearly f∗ > −∞. Take c = c∗ = {f∗}, and
obviously, Lc∗ is non-empty and bounded. Then Corollary 8.7.1 of [31] shows that Lc is bounded for
every c, implying that L(x0) = Lf(x0) is bounded. Since g(x) is continuous on L(x0) and L(x0) is
compact, it is easy to show that β1 <∞.

By Theorem 2, ∥Hδ∥ = σmax(Hδ) ≤ 2η−1 ·max{∥r∥∞, ∥c∥∞}, where r = T1m and c = TT1n.
Clearly, every element of T is bounded if x is bounded, making ∥r∥∞ and ∥c∥∞ also bounded. As a
result, ∥Hδ∥ is bounded on L(x0), implying that β2 <∞.

Lemma 7. For any ε > 0, there exists a constant δ0 > 0 such that for all η ∈ [cl, cu], x ∈ L(x0),
and ∥p∥ ≤ δ0 satisfying x+ ηp ∈ L(x0), we have

|Φ(x, ηp)| ≤ ρ0clε

4
∥p∥.

Proof. Since f is continuously differentiable on L(x0), by the mean value theorem for multivariate
functions, there exists some ψ ∈ (0, 1) such that for all x ∈ L(x0) and x+ ηp ∈ L(x0),

f(x+ ηp)− f(x) = g(x+ ψηp)T (ηp).

Therefore,

Φ(x, ηp) = g(x+ ψηp)T (ηp)− g(x)T (ηp) = [g(x+ ψηp)− g(x)]T (ηp).

By Lemma 6, g is continuous on L(x0) and L(x0) is a compact set, so g is uniformly continuous on
L(x0). Therefore, for any ε > 0, there exists a constant δ0 > 0 such that whenever ∥p∥ ≤ δ0, we
have

∥g(x+ ψηp)− g(x)∥ ≤ ρ0clε

4cu
.

As a result,
|Φ(x, ηp)| ≤ ∥g(x+ ψηp)− g(x)∥ · ∥ηp∥ ≤ ρ0clε

4
∥p∥.

Lemma 8. Let {xk} be generated by Algorithm 2, and then

mk(0)−mk(ξkpk) ≥
1

2
∥gk∥ ·min

{
∥ξkpk∥,

∥gk∥
∥Hδk∥

}
.

Proof. Let fk = f(xk) and rk = ∥ξkpk∥. If we take (p, λ) = (ξkpk, µk∥gk∥), and then we can
verify that (p, λ) meets the following relations:

gk +Hδkp+ λp = 0

λ ≥ 0

rk − ∥p∥ ≥ 0

λ · (rk − ∥p∥) = 0.

As mk(·) is a convex function, we have that ξkpk is a KKT point and an optimal solution to the
constrained optimization problem

min
p

mk(p) = fk + gTk p+
1

2
pTHδkp

s.t. ∥p∥ ≤ rk. (8)

Next, consider the Cauchy point defined in Chapter 4 of Nocedal and Wright [24],

pkc = −τk
rk
∥gk∥

gk,

where

τk =

{
1, if gTkHδkgk ≤ 0

min
{
1, ∥gk∥3

rkgT
k Vkgk

}
, if gTkHδkgk > 0

.
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Then we can obtain the following inequality by Lemma 4.3 of Nocedal and Wright [24]:

mk(0)−mk(p
k
c ) ≥

1

2
∥gk∥ ·min

{
rk,
∥gk∥
∥Hδk∥

}
.

Meanwhile, the Cauchy point pkc is a feasible point for the constrained problem (8), and ξkpk is an
optimal solution for this problem. Therefore, mk(p

k
c ) ≥ mk(ξkpk), and we have

mk(0)−mk(ξkpk) ≥
1

2
∥gk∥ ·min

{
rk,
∥gk∥
∥Hδk∥

}
.

Lemma 9. Let gk and µk be generated by Algorithm 2. If there exists a constant ε > 0 and an
integer K such that ∥gk∥ ≥ ε for all k ≥ K, then there must exist a sufficiently large constant µ̄ > 0,
such that µk+1 ≤ 4µ̄ for all k ≥ K.

Proof. For a given µ̄, define I1 = {k : k ≥ K,µk < µ̄} and I2 = {k : k ≥ K,µk ≥ µ̄}. If for
some µ̄, I2 is finite, then it trivially holds that all µk has a global upper bound, which leads to the
desired conclusion. Therefore, we only consider the case that I2 is infinite for all µ̄ > 0. Since µ̄ can
be chosen arbitrarily, {µk}k∈I2 must be unbounded.

Then we will estimate the bound of the following quantity,

|ρk − 1| =
∣∣∣∣mk(ξkpk)− f(xk + ξkpk)

mk(0)−mk(ξkpk)

∣∣∣∣ .
According to Lemma 6, one has ∥gk∥ ≥ ε and ∥gk∥ ≤ β1 for k ≥ K. Theorem 2 shows that Hδk is
positive definite, so

σmin(Hδk + µk∥gk∥) ≥ µkε,∥∥(Hδk + µk∥gk∥I)−1
∥∥ ≤ µ−1

k ε−1.

By Algorithm 2, we have
ξkpk = ξk(Hδk + µk∥gk∥I)−1gk,

and hence for all k ∈ I2,

∥ξkpk∥ ≤ ξk
∥∥(Hδk + µk∥gk∥I)−1

∥∥ · ∥gk∥ ≤ ξkµ−1
k ε−1β1. (9)

Equation (9) indicates that ∥ξkpk∥, k ∈ I2 can be made arbitrarily small with a sufficiently large µ̄.
Therefore, we can choose some µ̄ such that

∥ξkpk∥ ≤ min

{
δ0,

ε

β2
,
ρ0clε

2cuβ2

}
, ∀k ∈ I2, (10)

where δ0 is defined in Lemma 7. Meanwhile, we know

|mk(ξkpk)− f(xk + ξkpk)| =
∣∣∣∣Φ(xk, ξkpk)− 1

2
(ξkpk)

THδk(ξkpk)

∣∣∣∣
≤ |Φ(xk, ξkpk)|+

1

2
∥Hδk(ξkpk)∥ · ∥ξkpk∥

≤ |Φ(xk, ξkpk)|+
cu
2
∥Hδk∥ · ∥ξkpk∥ · ∥pk∥.

Lemma 7 indicates that when ∥ξkpk∥ ≤ δ0, we have

|Φ(xk, ξkpk)| ≤
ρ0clε

4
∥pk∥.

Therefore, with pk that satisfies (10), we obtain

|mk(ξkpk)− f(xk + ξkpk)| ≤
ρ0clε

4
∥pk∥+

cu
2
· β2 ·

ρ0clε

2cuβ2
· ∥pk∥ =

ρ0clε

2
∥pk∥.
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On the other hand, Lemma 8 indicates that

mk(0)−mk(ξkpk) ≥
1

2
∥gk∥ ·min

{
∥ξkpk∥,

∥gk∥
∥Hδk∥

}
≥ 1

2
ε ·min

{
∥ξkpk∥,

ε

β2

}
=

1

2
ε · ∥ξkpk∥ ≥

clε

2
· ∥pk∥,

so we have

|ρk − 1| =
∣∣∣∣mk(ξkpk)− f(xk + ξkpk)

mk(0)−mk(ξkpk)

∣∣∣∣ ≤ ρ0clε
2 ∥pk∥

clε
2 · ∥pk∥

= ρ0,

which means that ρk ≥ 1−ρ0 for all k ∈ I2. Then by the design of Algorithm 2, we have µk+1 ≤ µk

for all k ∈ I2.

Now we can show that µk+1 ≤ 4µ̄ for all k ≥ K by induction. First, enlarge µ̄ when necessary to
ensure that µ̄ > µK . Then by Algorithm 2, we must have µK+1 ≤ 4µ̄. Now suppose that µl+1 ≤ 4µ̄
for some l ≥ K. If µl+1 ∈ I1, then clearly µl+2 ≤ 4µ̄ immediately holds. Otherwise, µl+1 ∈ I2, so
by the argument above, we have µl+2 ≤ µl+1 ≤ 4µ̄. In both cases, the conclusion holds.

Lemma 10. Under the same conditions as in Lemma 9, define

K = {k : k ≥ K, ρk ≥ ρ0} .

Then K must be a finite set.

Proof. We use proof by contradiction. Suppose that K is an infinite set. Since

ρk =
f(xk)− f(xk + ξkpk)

mk(0)−mk(ξkpk)
,

and note that xk+1 = xk if ρk < 0, we have f(xk+1) ≤ f(xk + ξkpk). Therefore, by Lemma 8, it
holds that

f(xk)− f(xk+1) ≥ ρ0[mk(0)−mk(ξkpk)] ≥
ρ0
2
∥gk∥ ·min

{
∥ξkpk∥,

∥gk∥
∥Hδk∥

}
≥ ρ0

2
ε ·min

{
∥ξkpk∥,

ε

β2

}
for all k ∈ K. Combined with Lemma 6, we find that f(xk) is monotonically non-increasing with a
lower bound, so f(xk) has a limit, and hence

lim
k∈K,k→∞

∥ξkpk∥ = 0.

On the other hand, pk = −(Hδk + µk∥gk∥I)−1gk, which means that gk = −(Hδk + µk∥gk∥)pk.
Therefore,

ε ≤ ∥gk∥ = ∥(Hδk + µk∥gk∥I)pk∥ ≤ ∥Hδk + µk∥gk∥∥ · ∥pk∥

≤ [∥Hδk∥+ µk∥gk∥] · ∥pk∥ ≤ (β2 + µkβ1) ·
1

cl
· ∥ξkpk∥.

In other words,
0 ≤ clε

β2 + µkβ1
≤ ∥ξkpk∥ → 0,

which implies that µk → ∞ for k ∈ K, k → ∞. This contradicts with the fact that µk ≤ 4µ̄ as
shown in Lemma 9. So to conclude, K must be a finite set.

Lemma 11. Let {xk} be generated by Algorithm 2. Then either Algorithm 2 terminates in finite
iterations, or g(xk) satisfies

lim inf
k→∞

∥g(xk)∥ = 0.
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Proof. We prove this lemma by contradiction. Suppose that there exist some ε > 0 and an integer K
such that

∥gk∥ > ε, ∀k ≥ K.
Then Lemma 10 implies that the index set

K = {k : k ≥ K, ρk ≥ ρ0}

is infinite. This means that there is a sufficiently large integer K ′ such that ρk < ρ0 for all k ≥ K ′.
According to Algorithm 2, we must have

µk+1 = 4µk, ∀k ≥ K ′,

which means that µk →∞. However, this contradicts with the fact that µk ≤ 4µ̄ for some µ̄ > 0 as
shown in Lemma 9. Therefore, we must have

lim inf
k→∞

∥gk∥ = 0.

Then we are ready to prove Theorem 3. Let x∗ be the unique global optimum of (4). Clearly, f(x)
and g(x) are Lipschitz continuous on L(x0), so there exist constants C1, C2 > 0 such that

|f(xk)− f(x∗)| ≤ C1∥xk − x∗∥, (11)
∥g(xk)− g(x∗)∥ ≤ C2∥xk − x∗∥. (12)

On the other hand, by taking δ = 0, Theorem 2 shows that there is a constant c1 > 0 such that
σmin(H(x)) ≥ c1 for all x ∈ L(x0), so there is a constant c2 > 0 such that

∥g(xk)∥ = ∥g(xk)− g(x∗)∥ ≥ c2∥xk − x∗∥. (13)

Also by Taylor’s theorem,

f(xk) = f(x∗) + [g(x∗)]T (xk − x∗) +
1

2
(xk − x∗)TH(z1)(xk − x∗),

where z is some point between xk and x∗. Since g(x∗) = 0, we obtain

f(xk)− f(x∗) ≥
c1
2
∥xk − x∗∥2. (14)

By the design of Algorithm 2, f(xk) is non-increasing and is lower bounded by f∗ = f(x∗), so
f(xk) must have a limit. Suppose that

lim
k→∞

|f(xk)− f∗| = ε ≥ 0,

and then (11) and (13) indicate that for sufficiently large k,

1

2
C−1

1 ε ≤ C−1
1 |f(xk)− f(x∗)| ≤ ∥xk − x∗∥ ≤ c

−1
2 ∥g(xk)∥.

Since in Lemma (11) we have shown that lim infk→∞ ∥gk∥ = 0, ε cannot be any positive value.
Therefore, ε = 0. Combining (12) and (14), we have

c1
2C2

2

∥gk∥2 ≤
c1
2
∥xk − x∗∥2 ≤ f(xk)− f(x∗)→ ε = 0,

which implies that limk→∞ ∥gk∥ = 0 and limk→∞ ∥xk − x∗∥ = 0.

B.4 Proof of Theorem 4

For convenience, let Hk = H(xk) and Bk = Hδk + µk∥gk∥I . Theorem 2 shows that for any δ,

σmin(Hδ) ≥ η−1 · n−m+ 1

2n
·min

i,j
Tij .

Note that
T = τ(α, β) =

(
eη

−1(αi+βj−Mij)
)
,
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and each (αi + βj) is bounded on L(x0), so each element of T must be bounded below from zero
on L(x0). Therefore, there exists a constant 0 < C1 < ∞ such that σmin(Hδ) ≥ C−1

1 for all
x ∈ L(x0).
By the design of Algorithm 2, xk ∈ L(x0) for all k. As a result,

∥B−1
k ∥ = [σmin(Bk)]

−1 ≤ [σmin(Hδk)]
−1 ≤ C1, (15)

and hence ∥pk∥ = ∥B−1
k gk∥ ≤ C1∥gk∥ for all k. Moreover, Theorem 2 shows that ∥Hδk∥ =

σmax(Hδk) ≤ C2 for some C2 > 0, so by Lemma 8, we have

mk(0)−mk(ξkpk) ≥
1

2
∥gk∥ ·min

{
∥ξkpk∥,

∥gk∥
∥Hδk∥

}
≥ 1

2C1
∥pk∥ ·min

{
cl∥pk∥,

∥pk∥
C1C2

}
≥ min{cl, C−1

1 C−1
2 }

2C1
· ∥pk∥2 := C3∥pk∥2.

On the other hand,

|mk(ξkpk)− f(xk + ξkpk)| =
∣∣∣∣f(xk + ξkpk)− f(xk)− gTk (ξkpk)−

1

2
(ξkpk)

THδk(ξkpk)
T

∣∣∣∣
≤

∣∣∣∣f(xk + ξkpk)− f(xk)− gTk (ξkpk)−
1

2
(ξkpk)

THk(ξkpk)
T

∣∣∣∣
+

∣∣∣∣12(ξkpk)T (Hk −Hδk)(ξkpk)
T

∣∣∣∣ . (16)

By Taylor’s theorem,∣∣∣∣f(xk + ξkpk)− f(xk)− gTk (ξkpk)−
1

2
(ξkpk)

THk(ξkpk)
T

∣∣∣∣ = o(∥ξkpk∥2).

For the second term of (16), let Dk = Hk −Hδk , and then Theorem 1 shows that ∥Dk∥ ≤ η−1δk.
By Algorithm 2, δk ≤ ν0∥gk∥γ , so ∥Hk −Hδk∥ ≤ η−1ν0∥gk∥γ . Then∣∣∣∣12(ξkpk)T (Hk −Hδk)(ξkpk)

T

∣∣∣∣ ≤ ν0
2η
∥gk∥γ · ∥ξkpk∥2 = o(∥ξkpk∥2).

As a result, |mk(ξkpk)− f(xk + ξkpk)| = o(∥ξkpk∥2), and hence

|ρk − 1| =
∣∣∣∣mk(ξkpk)− f(xk + ξkpk)

mk(0)−mk(ξkpk)

∣∣∣∣ ≤ o(∥ξkpk∥2)
C3∥pk∥2

→ 0.

This implies that there is an integer K > 0 such that for all k ≥ K, ρk ≥ 1− ρ0. By the design of
Algorithm (2), we have µk+1 ≤ κ and xk+1 = xk + ξkpk for all k ≥ K.

B.5 Proof of Theorem 5

We first present a classical result derived from the mean value theorem of vector-valued functions.
Lemma 12 (Theorem 3.2.12 of [26]). Let g : D ⊂ Rn → Rm be continuously differentiable on a
convex set D0 ⊂ D and suppose that for constants α ≥ 0 and p ≥ 0,∇g satisfies

∥∇g(u)−∇g(v)∥ ≤ α∥u− v∥p, ∀u, v ∈ D0.

Then, for any x, y ∈ D0,

∥g(y)− g(x)−∇g(x)(y − x)∥ ≤ [α/(p+ 1)] · ∥y − x∥p+1. (17)

Then we are ready to prove Theorem 5. Let x∗ be the unique global optimum of (4), and then
g(x∗) = 0. Clearly, g(x) and H(x) are Lipschitz continuous on L(x0), so there exist constants
L1, L2 > 0 such that for all x, y ∈ L(x0),

∥g(x)− g(y)∥ ≤ L1∥x− y∥,
∥H(x)−H(y)∥ ≤ L2∥x− y∥.
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This implies that g satisfies the conditions in Lemma 12 with α = L2 and p = 1. By substituting
x← xk and y ← x∗, we have

∥g(xk)∥ = ∥g(xk)− g(x∗)∥ ≤ L1∥xk − x∗∥,

∥g(x∗)− g(xk)−H(xk)(x
∗ − xk)∥ = ∥g(xk)− g(x∗)−H(xk)(xk − x∗)∥ ≤

1

2
L2∥xk − x∗∥2.

Without loss of generality let K ′ > K, and then for all k ≥ K ′, µk ≤ κ and xk+1 = xk + pk. In the
proof of Theorem 5, we have shown that

∥Hk −Hδk∥ ≤ η−1ν0∥gk∥γ ,

so for ∥gk∥ ≤ 1,

∥Hk −Bk∥ ≤ ∥Hk −Hδk∥+ µk∥gk∥ ≤ (η−1ν0 + κ)∥gk∥ ≤ L1(η
−1ν0 + κ)∥xk − x∗∥.

Also note that ∥B−1
k ∥ ≤ C1 from (15), and then we have

∥xk+1 − x∗∥ = ∥xk + pk − x∗∥ = ∥xk − x∗ −B−1
k gk∥

= ∥B−1
k (Bk(xk − x∗)− gk)∥

≤ ∥B−1
k ∥ · ∥gk − g(x

∗)−Hk(xk − x∗) +Hk(xk − x∗)−Bk(xk − x∗)∥
≤ C1 (∥gk − g(x∗)−Hk(xk − x∗)∥+ ∥(Hk −Bk)(xk − x∗)∥)

≤ C1

(
1

2
L2∥xk − x∗∥2 + ∥Hk −Bk∥ · ∥xk − x∗∥

)
≤ C1

(
1

2
L2∥xk − x∗∥2 + L1(η

−1ν0 + κ)∥xk − x∗∥2
)

= C1

(
1

2
L2 + L1(η

−1ν0 + κ)

)
∥xk − x∗∥2.
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support the claims made in the abstract.
Guidelines:
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: We have mentioned in the conclusion part that our proposed method relies on the
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• The answer NA means that the paper has no limitation while the answer No means that the
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problems of privacy and fairness.
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role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.
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complete (and correct) proof?
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proof in the appendix.
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experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the code to reproduce the experiments in the article.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good way
to accomplish this, but reproducibility can also be provided via detailed instructions for
how to replicate the results, access to a hosted model (e.g., in the case of a large language
model), releasing of a model checkpoint, or other means that are appropriate to the research
performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: All datasets used are publicly available, and we have provided the programming
code.
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• While we encourage the release of code and data, we understand that this might not be
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparame-
ters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: The detailed settings are reflected in the main article as well as the programming
code.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This article is mostly concerned with the optimization convergence properties
instead of statistical uncertainties.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We have provided the details in Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research does not involve human subjects, and there is no clear harmful
consequence of the output of this work.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [NA]
Justification: This article is mostly a theoretical and computational work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not pose such risks.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: We have cited the original papers that provide the datasets.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service
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• If assets are released, the license, copyright information, and terms of use in the package
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licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: This article does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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of the paper involves human subjects, then as much detail as possible should be included in
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applicable), such as the institution conducting the review.
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