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Abstract
Visible-Infrared Person Re-Identification (VI-ReID) aims to retrieve a set of person images
captured from both visible and infrared camera views. Addressing the challenge of modal
differences between visible and infrared images, we propose a VI-ReID network based on
Feature Fusion and Deep Mutual Learning (DML). To enhance the model’s robustness to
color, we introduce a novel data augmentation method called Random Combination of
Channels (RCC), which generates new images by randomly combining R, G, and B chan-
nels of visible images. Furthermore, to capture more informative features of individuals,
we fuse the features from the middle layer of the network. To reduce the model’s depen-
dence on global features, we employ a fusion branch as an auxiliary branch, facilitating
synchronous learning of global and fusion branches through Deep Mutual Learning . Ex-
tensive experiments on the SYSU-MM01 and RegDB datasets validate the superiority of
our method, showcasing its excellent performance when compared to other state-of-the-art
approaches.
Keywords: Visible-Infrared Person Re-Indentification, Cross-modality, Feature Fusion,
Data Augmentation, Deep Mutual Learning.

1. Introduction
Person Re-identification (Re-ID) is directed towards retrieving images of the target per-

son with the same identity from multiple unconnected cameras. The majority of existing
Re-ID methods mainly concentrate on the matching among visible images which are typ-
ically collected under favorable lighting conditions. Nevertheless, in environments with
inadequate lighting, like at night, visible images are unable to offer sufficient information.
Due to this, VI-ReID has come into being as an alternative solution for the search between
visible and infrared images.

However, there are large intra-class differences and modality discrepancies between vis-
ible and infrared images. The intra-class differences are the appearance differences within
a certain mode caused by posture, clothing, angle and other factors, and the modality
discrepancies are the internal differences between visible and infrared images caused by
spectrum.

The researchers put forward a series of methods to narrow the modal gap between
visible and infrared images. One approach is to extract representations from visible and
infrared images and subsequently utilize feature-level constraints [20; 18] to align the feature
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distributions, thereby learning modal-invariant features. However, the aforesaid method
has a tendency to overlook crucial discriminatory information, leading to a reduction in the
accuracy of the model.

Another approach is to eliminate color differences. Several studies presently employ
generative adversarial networks (GANs) [16; 3] to generate cross-modal images that can
bridge the gap. However, the generation process frequently requires extra costs and creates
inevitable noise. Other studies have directly used grayscale images for cross-modal match-
ing, which eliminates color differences but also loses discriminant information in the color
channel.

In order to solve the above problems, we proposes an end-to-end dual-flow cross-modal
VI-ReID network to improve the cross-modality recognition performance. The main con-
tributions can be summarized as follows.

1) A novel data augmentation method named Random Combination of Channels (RCC)
is proposed to enhance the robustness of color and channel differences. The core concept
is randomly combining R, G and B channels of visible images to generate new images to
expand the dataset. Experiments have shown that this approach can improve performance
without introducing huge amounts of computation.

2) The features of the middle layer of the network are fused in order to acquire more
discriminatory features. Feature fusion effectively boosts the information of the person with
discriminating appearance cues, thereby enhancing the performance.

3) In order to compensate for the loss of feature information in the global branch, the
global and fusion branches are concatenated into a new branch, named joint branch. By
synchronous learning of multiple branches through deep mutual learning, the network’s
ability to obtain more discriminative features is improved.

2. Related work
2.1. Visible-Infrared Person Re-Indentification

The use of infrared cameras in surveillance systems is common for capturing high-quality
pedestrian imagery in low-light conditions. However, the challenge arises when applying
single-modal Re-ID methods directly, as modality differences can lead to decreased recog-
nition accuracy. VI-ReID plays a crucial role in addressing this issue by enabling identity
matching between visible and infrared images, thereby improving recognition accuracy and
overall system performance in surveillance applications.

In 2017, Wu et al. [15] publicly presented a large-scale VI-ReID dataset named SYSU-
MM01 and proposed a zero-padding strategy. TSLFN [29] horizontally divides the global
feature mapping into multiple stripes and employs local constraints for each stripe, , thereby
enhancing recognition accuracy. Ye et al. [21] proposed a dynamic dual-attentive aggre-
gation (DDAG) learning, which utilizes dynamic dual-attentive aggregation to improve
model performance by leveraging attention-aware functions. Additionally, other studies
have explored adversarial training strategies, such as D2RL[14] and cmGAN[3], to reduce
cross-modal differences at the image level in VI-ReID tasks.

In recent research, Zhang et al.[26] introduced FMCNet, a network that addresses miss-
ing modal information at feature level, outperforming models that rely on image-level com-
pensation. Neural feature search (NFS) [1] explores a method to automate feature selection
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processes. Liu et al. [9] proposed the spectrum-aware feature augmentation network (SFA-
Net), a dual-stream network that processes visible and infrared images simultaneously to
enhance feature alignment and capture human cross-modal features effectively. Liu et al.
[10] proposed AGMNet, which uses a CycleGAN [28] to normalize the grayscale of infrared
images to generate a unified intermediate mode to overcome the modal differences.

2.2. Data augmentation
Data augmentation is a crucial technique widely used in various computer vision tasks

to prevent overfitting of training data. Its primary purpose is to enhance the diversity
of training data, thereby improving the model’s generalization ability. By introducing
variations and perturbations to the training data, data augmentation helps the model learn
robust features and patterns.

Traditional data augmentation methods include random flipping, rotation, random eras-
ing, cropping, warp scaling, adding noise, color jitter. Color jitter improves an image’s colors
by changing its brightness, contrast, and saturation, making the model less sensitive to color
changes. Channel-level random erasing (CRE)[22] randomly select rectangular regions in
the training image and replace their pixel values with random values from all three channels
to simulate uncertain occlusion for enriching the variety of training samples.

Another research is based on image blending methods, including global image blending,
such as MixUp [25], and local image blending, such as CutMix[24]. These methods synthe-
size virtual training samples by linearly interpolating the images and corresponding labels,
resulting in smoother decision boundaries and reducing overfitting of the training data.

2.3. Deep Mutual Learning
Knowledge Distillation[6], first proposed by Hinton in 2014, involves transferring knowl-

edge from a complex model (teacher) to a simpler model (student). However, traditional
knowledge distillation faces challenges in VI-ReID due to the difficulty in creating a high-
accuracy teacher model and the student model’s limited learning from the teacher.

Zhang et al.[27] proposed Deep Mutual Learning, where the network serves as both
teacher and student. This collaborative approach enables mutual learning and teaching
between models during training.

3. Proposed method
In this section, we introduce the structure of the proposed VI-ReID network which is

shown in Fig. 1. It mainly includes the following four modules: data augmentation module,
feature extraction module, feature fusion module and deep mutual learning module. Next,
we will introduce them in detail.

3.1. Data augmentation module
The Random Combination of Channels method is able to expand the data without

introducing huge computational overhead. As shown in Fig. 2, its main idea is to disrupt
the order of channels (R, G, or B), including R-G-B, R-B-G, B-G-R, B-R-G, G-B-R and
G-R-B. In addition, the visible image is converted into a grayscale image. Randomly select
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Figure 1: Framework of the proposed Network for Visible-Infrared Person Re-Identification

Figure 2: Illustration of the Random Combination of Channels(RCC)

one of the seven images mentioned above to replace the visible image. Integrating this
method with other fundamental data augmentation techniques like random flipping, random
erasing, and random cropping can enhance the model’s performance with minimal additional
computational cost. Compared with color jitter, RCC focuses more on the channels of image
to enhance model’s robustness of the differences between channels, which is beneficial for
processing cross-modality images.

3.2. Feature extraction module
Global features are extracted using a ResNet-50[5] network that includes modal-specific

and modal-shared modules. Specifically, the cross-modal datasets after data augmentation
are input into the network separately. After passing through the modal-specific module
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Figure 3: Framework of the Feature Fusion

layer0, the extracted features are spliced separately to obtain f0. The f0 is then input
into the modal sharing module,and the layeri represents the i-th layer of the Resnet-50.
Therefore, the output of layeri can be represented as

fi = layeri(fi−1), i = 1, 2, 3, 4. (1)

the final output of resnet-50 is f4, expressed in fglobal.
To reduce the amount of computation, GeM pooling is used to transform a 3D feature

fglobal into a 1D embedding vector V global.

3.3. Feature fusion module
Color and texture are often considered shallow features of an image. In contrast, deep

features are advanced features learned from data through methods such as neural networks,
usually including the shape, posture, angle, etc of objects. Feature fusion of shallow and
deep features can improve the performance of the model since it can obtain more critical
information. For the fusion of feature maps of different scales, directly using traditional
feature fusion methods may result in the loss of some important information. Adaptively
spatial feature fusion (ASFF)[11] is different from the previous multi-level feature fusion
method based on elements. Its core idea is to adaptively learn the spatial weights of feature
map fusion at various scales to achieve optimal feature fusion.

The feature f1, f2 and f3 output from layer1, layer2 and layer3 of the backbone network
are fused. As shown in Fig. 3, since f1, f2 and f3 have different resolutions and different
channel counts, we make them the same through corresponding operations.

Specifically, channel numbers of f1, f2 and f3 are reduced to 256 by 1×1 convolution
and obtain f

′
1, f

′
2 and f

′
3. Afterwards, perform double upsampling on f

′
2 and quadruple

upsampling on f
′
3 to obtain f

′′
2 and f

′′
3 , so that they have the same resolutions and channel

counts. The weight parameter matrix α, β and γ consistent with the resolution of the
feature map f

′
1, f

′′
2 and f

′′
3 are multiplied point-by-point with them, respectively. The
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values of each position in these weight matrixes are obtained by network training. Merge
the multiplied features to obtain the fusion features ffusion, calculated as

ffusion =
(
α⊗ f

′
1

)
⊕
(
β ⊗ f

′′
2

)
⊕
(
γ ⊗ f

′′
3

)
. (2)

where ⊗ represents point multiplication and ⊕ means concatenate method.
Similarly, GeM pooling is used to transform 3D feature ffusion into 1D embedding vector

V fusion.

3.4. Deep Mutual Learning module

We merge the embedding vectors of the global and fusion branches into a new branch
to obtain the joint feature, that is

V joint = V global ⊕ V fusion. (3)

V joint is used as the final representation for this task. Combine global and fusion
information into high-dimensional information to generate prediction results. The predicted
results are used as teacher signal, transmitted to specific branches to guide their learning
process. Specific branch will adjust their learning objectives to align their outputs as closely
as possible with teacher signal. As shown in Fig.1, without introducing additional pre-
trained teacher model, the joint branch is used as an intermediary to conduct deep mutual
learning with global branch and fusion branch respectively in order to achieve synchronous
learning of the three branches.

Specifically, using softmax function for global, fusion and joint branches to obtain the
posterior probabilities pgi , pfi and pji which will be used as soft target to achieve mutual
supervision and learning.

Formally, given N training samples defined as {xi}Ni from M classes. xi represents the
person images. N represents the number of samples and i means the i-th sample. We define
the corresponding label set as {yi}Ni with yi ∈ {1, 2, . . . ,M}. The posterior probability pgi
can be obtained as follows

pgi = p (yi | xi) =
exp

(
Wi × V global

i

)
∑M

m=1 exp
(
Wm × V global

i

) . (4)

where Wm is the weight parameter matrix of the last fully connected (FC) layer for m-th
identity. pfi and pji can be obtained through the same method.

Kullback-Leibler (KL) Divergence is a metric used to measure the similarity between
two probability distributions. For global branch, using KL Divergence for pj and pg, as
well as pg and pj to obtain the DKL

(
pji ∥ pgi

)
and DKL

(
pgi ∥ pji

)
. For fusion branch, using

the same method to obtain DKL

(
pji ∥ pfi

)
and DKL

(
pfi ∥ pji

)
. We use LKD1 and LKD2

to reduce the distance between two predicted distributions, thereby achieving synchronous
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learning of multi branches. The formulas for LKD1 and LKD2 are as follows

LKD1 =
1

2

[
DKL

(
pji ∥ pgi

)
+DKL

(
pgi ∥ pji

)]
=

1

2

[
N∑
i=1

pji

(
ln pji − lnpgi

)
+

N∑
i=1

pgi

(
ln pgi − lnpji

)]
.

(5)

LKD2 =
1

2

[
DKL

(
pji ∥ pfi

)
+DKL

(
pfi ∥ pji

)]
=

1

2

[
N∑
i=1

pji

(
ln pji − lnpfi

)
+

N∑
i=1

pfi

(
ln pfi − lnpji

)]
.

(6)

3.5. Loss function

Identity loss. Cross Entropy (CE) loss is widely used in classification tasks to measure
the difference between the true value and the model’s predicted value.

The identity loss of global branch is computed as

Lglobal
id = − 1

N

N∑
i=1

log pgi . (7)

where N is the total number of training samples.
Similarly, the expression for the identity loss of the fusion branch and joint feature

branch are as follows

Lfusion
id = − 1

N

N∑
i=1

log pfi , L
joint
id = − 1

N

N∑
i=1

log pji . (8)

The LKD1 and LKD2 are taken as label smoothing regularization terms for Lglobal
id and

Lfusion
id , respectively. The final identity loss of the global and fusion branches are as follows

L̃global
id = Lglobal

id + θ1LKD1 . (9)

L̃fusion
id = Lfusion

id + θ2LKD2 . (10)

where θ1 and θ2 is the predefined weight coefficient, which will be analyzed in 4.4.
Weighted Regularization Triplet (WRT) loss. The joint feature are trained with

the WRT loss which inherits the advantages of optimizing the relative distance between
positive and negative pairs and avoids introducing additional margin parameters. WRT
loss is computed as

LWRT (i, j, k) = ln (1 + exp(wp
i d

p
ij − wn

i d
n
ik)). (11)

wp
i =

exp(dpij)∑
dp∈P (d

p)
, wn

i =
exp(dnik)∑
dn∈N (dn)

. (12)
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where N is the total number of training samples, (i, j, k) represent the triplets within each
training batch, P and N are the positive and negative sample set, dpij and dnik represent the
Euclidean distance between positive and negative samples.

Total loss. Combining these individual losses, we finally define the total loss for the
overall network as follows

Ltotal = L̃global
id + L̃fusion

id + Ljoint
id + LWRT . (13)

4. Experiments and analysis

4.1. Dataset and Evaluation Metric

Dataset. In this work, we use two public datasets, SYSU-MM01 [15] and RegDB [13]
to evaluate the performance of proposed model.

SYSU-MM01 dataset is a large cross-modality dataset collected by Sun Yat-sen Uni-
versity. It contains images taken by six cameras (two infrared cameras and four visible cam-
eras), including indoor and outdoor environments. The dataset contains a total of 30,071
visible images and 15,792 infrared images of 491 individual identities. In this work, We con-
ducted experiments in two different evaluation modes, namely All-search and Indoor-search
modes. For All-search mode, 3803 IR images from cameras 3 and 6 are used for querying.
For Indoor-search, images taken by only two indoor cameras are used.

RegDB dataset consists of 8240 images with 412 identities, of which 206 identities are
used for training and the rest for testing. For each person, there are 10 visible and infrared
images. The dataset has two modes: visible images query infrared images and infrared
images query visible images.

Evaluation Metric. Following the previous works [19], Cumulative Matching Char-
acteristics (CMC) and mean Average Precision (mAP) are used as evaluation metrics. In
addition, we also introduced mean Inverse Negative Penalty (mINP) [23] metric to measure
the retrieval performance of the model. CMC is a metric used to evaluate the performance
of retrieval systems, which measures the performance by considering the correct match rate
within the top n positions (rank-n) of the retrieval results.

4.2. Experimental Settings

The experiments are deployed on an NVIDIA GeForce 3080 GPU with Pytorch. All
input images are adjusted to 288×144. These images are data augmented by RCC and
CRE[22].

The total number of training epochs is 80, the batch size is set to 64. For each mini-
batch, 8 identities are randomly sampled, each identity contains 4 visible images and 4
infrared images. When training on SYSU-MM01 and RegDB datasets, the initial learning
rate is 0.1 and reduce by 0.1 and 0.01 times at 20, 50 epochs. An SGD optimizer with a
weight attenuation of 5× 10−4 and a momentum of 0.9 are used to update the parameters
of the network. The weight parameters θ1 and θ2 are set to 0.6 and 1.8.



Short Title

Table 1: Evaluate our methods under All-search mode on SYSU-MM01 dataset

Methods All-search
Baseline RCC CRE Fusion DML r=1 r=10 r=20 mAP mINP

✓ - - - - 49.86 86.98 93.70 46.55 33.10
✓ - - ✓ - 54.12 89.90 95.15 52.99 39.80
✓ ✓ - - - 56.87 91.64 96.70 54.30 39.89
✓ - ✓ - - 59.48 92.29 96.43 59.16 43.82
✓ ✓ ✓ - - 65.45 94.55 97.96 60.78 44.92
✓ ✓ ✓ ✓ - 69.68 96.28 98.87 65.66 50.86
✓ ✓ ✓ ✓ ✓ 72.57 96.60 98.89 68.61 54.64

Table 2: Ablation experimental of feature fusion at different layers.

Settings All-search
layer1 layer2 layer3 layer4 r=1 r=10 r=20 mAP mINP
✓ ✓ - - 66.01 94.49 98.19 62.30 47.68
✓ - ✓ - 71.58 95.90 98.72 67.19 52.55
- ✓ ✓ - 72.39 96.64 99.02 68.10 53.47
✓ ✓ ✓ - 72.57 96.60 98.89 68.61 54.64
✓ ✓ - ✓ 67.59 95.09 98.31 65.39 52.52
✓ - ✓ ✓ 70.21 95.82 98.66 66.83 53.66
- ✓ ✓ ✓ 71.08 96.07 98.84 67.43 53.96
✓ ✓ ✓ ✓ 71.69 96.15 98.87 67.52 54.39

Table 3: Evaluation for global and fusion branches on SYSU-MM01 dataset using different
classification loss. Lid means Lglobal

id and Lfusion
id . LKD means LKD1 and LKD2 . LSR

denotes label smoothing regularization.

Settings All-search
Lid LKD LSR r=1 r=10 r=20 mAP mINP

- - - 69.59 96.06 98.74 65.36 50.40
✓ - - 69.68 96.28 98.87 65.66 50.86
- ✓ - 68.37 95.75 98.56 65.32 50.35
✓ ✓ - 71.24 96.02 98.82 67.38 53.21
✓ ✓ ✓ 72.57 96.60 98.89 68.61 54.64

Table 4: Evaluation the application of Deep Mutual Learning across different branches.
None means not using DML. Global-to-Fusion represents the knowledge transfer from the
global branch to the fusion branch.

Settings All-search
r=1 r=10 r=20 mAP mINP

None 69.68 96.28 98.87 65.66 50.86
Global-to-Fusion 68.67 94.76 97.84 64.31 49.44
Joint-to-Global 70.18 95.59 98.48 65.95 51.31
Joint-to-Fusion 70.87 95.68 98.49 66.78 52.38
Joint-to-Global&Fusion 72.57 96.60 98.89 68.61 54.64
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4.3. Ablation experiment

In order to verify the effectiveness of the proposed method, ablation experiments are
performed under All-search mode on SYSU-MM01 dataset, and the experimental results are
shown in Table 1. The baseline method uses ResNet-50 as the backbone network followed
by the GeM pooling, batch normalization and fully connected layer and trained with WRT
loss and CE loss in this setting.

Effectiveness of the Random Combination of Channels (RCC). Comparing the
results of the first and third rows, it can be seen that rank-1, mAP and mINP increased
by 7.01%, 7.75% and 6.79% after using RCC, which fully proved the effectiveness of this
method.

Effectiveness of the Feature Fusion. Comparing the experimental results in the
first and second rows, it can be seen that the rank-1, mAP and mINP are 4.26%, 6.44% and
6.70% higher than baseline after using feature fusion, which indicates that feature fusion
can capture feature information at different layers. We conducted ablation experiments on
feature fusion between different layers. As shown in Table 2. When layer1, layer2, and
layer3 are fused, the best result can be obtained. The fusion of the layer4 will result in
reduced performance and increased computational complexity.

Effectiveness of the Deep Mutual Learning (DML). Comparing the fifth and
sixth rows, DML improves the rank-1, mAP and mINP by 2.89%, 2.95% and 3.78%. This
proves that using fusion branch as an auxiliary branch to reduce network’s dependence on
global features is effective.

To further explore the role of DML, we experimented with different classification func-
tions on the global and fusion branches. As shown in Table 3. When using the Lid or
LKD alone, the improvement in accuracy is marginal. When Lid and LKD are employed
concurrently, the performance the performance is superior to either used alone, owing to
the interplay between the Lid (hard target) and the LKD (soft target). In addition, the
introduction of LKD as a label smoothing regularization term improved the performance of
the model, indicating its contribution to enhancing the model’s generalization ability.

Furthermore, as shown in Table 4, we employ DML between different branches. DML
between global and fusion branches resulted in a decrease of 1.01%/1.35%/1.42% in rank-
1/mAP/mINP because the global and fusion branches are asynchronous. If the prediction
from one branch is used as the target distribution, the learned asynchronous knowledge
will result in performance degradation. The model’s performance is improved through
the DML between global or fusion branches and joint branch because joint feature are
high-dimensional information that includes both global and local features. Therefore, joint
branch enables synchronized learning with the global and fusion branches. When these
three branches learn synchronously, the model achieves its peak performance.

4.4. Parameter analysis

In this section, the weight parameters θ1 and θ2 introduced in 3.5 are analyzed. Fixing
one parameter and then adjusting the other. Specifically, when evaluating the parameter
θ1, we first assign θ2 a fixed value of 1.0, and then adjust θ1 ∈ [0, 2] to observe the change
in performance. We conducted experiments under the All-search mode of SYSU-MM01
dataset. The experimental results are shown in the Fig. 4.
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Figure 4: Evaluate the effect of parameters θ1 and θ2 under the All-search mode on SYSU-
MM01 dataset.

As can be seen from Fig. 4(a), when θ1 is less than 0.6, rank-1 and mAP also increase
and reach the highest value when θ1 = 0.6. After that, with the increase of θ1, rank-1 and
mAP showed a downward trend. Therefore, we choose 0.6 as the value of θ1 for the later
experiment.

Fix θ1 and adjust θ2, the experimental results are shown in Fig. 4(b), θ2 meets three
peak points at 0.4, 1 and 1.8. When θ2 = 1.8, rank-1 and mAP are the highest so that we
select 1.8 as the value of θ2. In summary, the weight parameters θ1 and θ2 are set to 0.6
and 1.8.

Comparing the performance curves in Fig. 4(a) and Fig. 4(b), we can see that the
performance curve of θ1 is relatively stable, while the performance curve of θ2 fluctuates
significantly. This indicates that our model is more sensitive to θ2, which means it is
necessary to balance the contributions of global and fusion branches.

4.5. Visualization

Attentive feature maps. GradCam is employed to produce attentive feature maps for
visualizing the features learned by the global and fusion branches. In an attentive feature
map, regions closer to red indicate higher values. As shown in Fig. 5, the results reveal that
the red area in the output of the fusion branch is more extensive compared to the global
branch output. This suggests that the fusion branch can extract more feature information,
compensating to some extent for the crucial person-related information overlooked by the
global branch.

Retrieval result. Fig. 6 shows the top 10 search results of the proposed method on
the SYSU-MM01 dataset are displayed, with the order of images indicating the similarity
ranking. In the results, a green box signifies a match between the retrieved image and the
query image, while a red box indicates a mismatch. These results demonstrate that the
methods introduced in this paper enhance the accuracy of image retrieval, showcasing the
effectiveness of the proposed approach in VI-ReID tasks.
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Figure 5: Example of the attentive feature maps. The first row is the original image, the
second and third rows are the outputs of the global and fusion branches.

Figure 6: Example of retrieval results on SYSU-MM01 dataset.

4.6. Comparison with state-of-the-arts

The method is compared with various state-of-the-art VI-ReID approaches on the SYSU-
MM01 and RegDB datasets. These comparisons include the earlier methods Zero-Pad[15]
and Hi-CMD[2], the methods based on feature-level constraints such as BDTR[19] and
AGW[23] , the methods based on generative adversarial networks like cmGAN[3] and
D2RL[14], the intermediate mode-based methods including X-model[8] and cm-SSFT[12],
as well as advanced methods like SFA-Net[9], NFS[1], FMCNet[26], MID[7], MCLNet[4],
AGMNet[10] and MFCS[17]. Benchmarking the proposed approach against established
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Table 5: Comparison with other advanced methods under Visible-Thermal mode on RegDB
dataset.

Methods Publish Visible-Thermal Thermal-Visible
r=1 r=10 r=20 mAP mINP r=1 r=10 r=20 mAP mINP

Zero-Pad[15] ICCV17 17.75 34.21 44.35 18.90 - 16.63 34.68 44.25 17.82 -
BDRT[19] IEEE19 34.62 58.96 68.72 33.46 - 34.21 58.74 68.64 32.49 -
D2RL[14] CVPR19 43.40 66.10 76.30 44.10 - - - - - -
X-model[8] AAAI20 62.21 83.13 91.72 60.18 - - - - - -
DDAG[21] ECCV20 69.34 86.19 91.49 63.46 49.24 68.06 85.15 90.31 61.80 48.62
AGW[23] TPAMI21 70.05 86.21 94.55 66.37 50.19 70.49 87.21 91.84 65.90 51.24
Hi-CMD[2] CVPR20 70.93 86.39 - 66.04 - - - - - -
cm-SSFT[12] CVPR20 72.30 - - 72.90 - 71.00 - - 71.70 -
SFA-Net[9] IEEE21 76.31 91.02 94.27 68.00 - 70.15 85.24 89.27 63.77 -
MCLNet[4] ICCV21 80.31 92.70 96.03 73.07 57.39 75.93 90.93 94.59 69.49 52.63
NFS[1] CVPR21 80.54 94.96 95.07 72.10 - 77.95 90.45 93.62 69.79 -
MFCS[17] IEEE24 85.34 - - 76.39 - 83.88 - - 75.16 -
MID[7] AAAI22 87.45 - - 84.85 - 84.29 93.44 - 81.41 -
AGMNet[10] IEEE23 88.40 95.10 96.94 81.45 68.51 85.34 94.56 97.48 81.19 65.76
FMCNet[26] CVPR22 89.12 - - 84.43 - 88.38 - - 83.86 -
Ours 92.00 97.34 98.38 88.01 79.77 90.01 96.90 98.30 86.15 75.31

methods allows for a comprehensive evaluation of its performance and effectiveness in the
VI-ReID tasks.

Evaluations on RegDB. As shown in Table 5, under the visible to thermal mode
of RegDB dataset, our method achieves the Rank-1 accuracy of 92.00%, mAP of 88.01%
and mINP of 79.77% . The rank-1 and mAP are increased by 2.88% and 3.58% compared
with FMCNet[26]. Compared with AGMNet[10], the rank-1/mAP/mINP have improved
by 3.60%/6.56%/10.60%.

Evaluations on SYSU-MM01. As shown in Table 6, our method performs bet-
ter than most existing SOTAs. Specifically, our method achieves the Rank-1 accuracy of
72.57%, mAP of 68.61% and mINP of 54.64% in all-search mode. Compared with the
latest method MFCS[17], the rank-1/mAP of our work have increased 1.98%/1.12% and
2.03%/1.15% under All-search and Indoor-search modes, respectively.

According to the above comparative experiments, it can be seen that the proposed
method has achieved good results on both SYSU-MM01 and RegDB datasets.

5. Conclution

To address the limitations posed by the small dataset size, we introduce a data augmen-
tation method named RCC, aimed at mitigating modal differences and enhancing model
performance without adding substantial computational overhead. By fusing middle layer
features of the network, we tackle the issue of shallow and deep features containing disparate
information, ensuring that key features are not overlooked. Through the implementation of
deep mutual learning, we enable synchronous learning across three branches. Experimental
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Table 6: Comparison with other advanced methods under All-search and Indoor-search
modes on SYSU-MM01 dataset

Methods Publish All-search Indoor-search
r=1 r=10 r=20 mAP mINP r=1 r=10 r=20 mAP mINP

Zero-Pad[15] ICCV17 14.80 54.21 71.33 15.95 - 20.58 63.38 85.79 26.92 -
cmGAN[3] IJCAI18 26.97 67.51 80.56 27.80 - 31.63 77.23 89.18 42.19 -
BDTR[19] IEEE19 27.32 66.96 81.07 27.32 - 32.46 77.42 89.62 42.46 -
D2RL[14] CVPR19 28.90 70.60 82.40 29.20 - - - - - -
Hi-CMD[2] CVPR20 34.94 77.58 - 35.94 - - - - - -
AGW[23] TPAMI21 47.50 84.39 92.14 47.65 35.30 54.17 91.14 95.98 62.97 59.20
X-model[8] AAAI20 49.92 89.79 95.96 50.73 - - - - - -
DDAG[21] ECCV20 54.75 90.39 95.81 53.02 39.62 61.02 94.06 98.41 67.98 62.61
NFS[1] CVPR21 56.91 91.34 96.52 55.45 - 62.79 96.53 99.07 69.79 -
MID[7] AAAI22 60.27 92.90 - 59.40 - 64.86 96.12 - 70.12 -
cm-SSFT[12] CVPR20 61.60 89.20 93.90 63.20 - 70.50 94.90 97.70 72.60 -
MCLNet[4] ICCV21 65.40 93.33 97.14 61.98 47.39 72.56 96.98 99.20 72.10 -
FMCNet[26] CVPR22 66.34 - - 62.51 - 68.15 - - 74.09 -
AGMNet[10] IEEE23 69.63 96.27 98.82 66.11 52.24 74.68 97.51 99.14 78.30 74.00
MFCS[17] IEEE24 70.59 96.22 98.77 67.49 - 75.98 98.12 99.62 80.24 -
Ours 72.57 96.60 98.89 68.61 54.64 78.01 98.13 99.64 81.39 77.54

results demonstrate the effectiveness of this approach compared to models solely relying on
global features, showcasing its capability to improve performance in VI-ReID tasks.
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