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Abstract

Off-policy evaluation and learning are concerned with assessing a given policy and learning
an optimal policy from offline data without direct interaction with the environment. Often,
the environment in which the data are collected differs from the environment in which the
learned policy is applied. To account for the effect of different environments during learning
and execution, distributionally robust optimization (DRO) methods have been developed
that compute worst-case bounds on the policy values assuming that the distribution of the
new environment lies within an uncertainty set. Typically, this uncertainty set is defined
based on the KL divergence around the empirical distribution computed from the logging
dataset. However, the KL uncertainty set fails to encompass distributions with varying
support and lacks awareness of the geometry of the distribution support. As a result, KL
approaches fall short in addressing practical environment mismatches and lead to over-fitting
to worst-case scenarios. To overcome these limitations, we propose a novel DRO approach
that employs the Wasserstein distance instead. While Wasserstein DRO is generally com-
putationally more expensive compared to KL DRO, we present a regularized method and a
practical (biased) stochastic gradient descent method to optimize the policy efficiently. We
also provide a theoretical analysis of the finite sample complexity and iteration complexity
for our proposed method. We further validate our approach using a public dataset that was
recorded in a randomized stoke trial.

1 Introduction

Contextual bandits (Langford & Zhang, 2007) are a class of decision-making problems where a learner
repeatedly observes a context, takes an action from a set of candidate actions, and receives a cost for the
chosen action. This cost signal is often referred to as bandit feedback since no costs for the unchosen actions
are observed. The goal for the learner is to minimize the cost by selecting the best action for each context.
Many problems in practice can be modeled as contextual bandits, ranging from online news recommendation
(Li et al., 2011), advertising (Bottou et al., 2013) to personalized healthcare (Zhou et al., 2017).

In many high-stakes applications, such as healthcare, it is generally unsafe and not recommended to interact
with the environment directly in order to collect data and evaluate or learn a desired policy. Instead, in these
environments, observational data are often available, that have been collected by safe or risk-averse policies
that depend on different contexts, e.g., policies that assign placebos to high-risk patients when testing new
drugs. In this paper, we study off-policy evaluation (OPE) and off-policy learning (OPL) using observational
data (Dudík et al., 2014). OPE estimates the average cost of following a given policy, while OPL aims to
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(a) Patient age distribution (b) Risk index distribution

Figure 1: Two artificial datasets that represent patients’ contextual distributions, where x axis is the context
support and y axis is the probability. In (a), the distributions P and Q represent the patients’ ages and
are only different at the ages 55 and 60. The KL divergence is KL(Q||P ) = +∞ since the two distributions
have different supports, where the KL divergence between two discrete distributions P and Q is defined as
KL(Q||P ) =

∑
x∈X Q(x)(log(Q(x)/P (x)). In (b), the distributions Q1 and Q2 represent the patients’ risk

index, the higher the worse. They are equally distant from P under the KL divergence, i.e., KL(Q1||P ) =
KL(Q2||P ) = 0.21. However, the distribution Q1 represents a less challenging environment compared to
the nominal distribution P as the possibilities of encountering patients with higher risks in Q1 are smaller
than both P and Q2. Q2 represents a similar environment as P and is indeed closer to P than Q1 under
the Wasserstein distance, i.e., W (P, Q1) = 2.07 and W (P, Q2) = 1.42. See equation 2.2 for the Wasserstein
distance definition.

find the optimal policy that achieves the minimum cost. Generally, both OPE and OPL assume that the
environment in which the observational are collected (training set) and the environment in which the trained
policy is deployed (testing set) are identical. This means that the distributions of both contexts and costs do
not change. However, in practice, this assumption is often violated. For instance, in clinical trials (Finlayson
et al., 2021; Imai & Ratkovic, 2013), treatments that are tested and found effective using Randomized
Clinical Trials (RCT) are not necessarily equally effective in local hospitals since the patient populations can
be significantly different; RCTs use stringent inclusion and exclusion criteria to select the patient population
while local hospitals reflect the local care environment, determined, e.g., by local social determinants of
health. These differences between the training and testing environments are termed distribution shifts.

To address the effect of distribution shifts on OPE and OPL, distributionally robust optimization (DRO)
methods have been recently developed (Si et al., 2020; Kallus et al., 2022; Mu et al., 2022), that aim to obtain
worst-case bounds on the true OPE and OPL costs by assuming that the testing distributions lie within
an uncertainty set around the training distributions. This way, over-optimism in unknown environments is
avoided. Si et al. (2020) proposed importance sampling methods to solve both OPE and OPL problems,
assuming that the behavior policy used to collect the observational data is known. They also provided an
asymptotic convergence result, demonstrating that the proposed estimator converges to the true values at
a rate of Op(n−1/2), where n is the number of data samples. Kallus et al. (2022) further proposed doubly
robust methods that relax the assumption of knowing the behavior policy and achieve the same convergence
rate, even when the unknown behavior policy is non-parametrically estimated. A common assumption in
the previous work (Si et al., 2020; Kallus et al., 2022) is that potential distribution shifts appear across
both context and cost distributions. Mu et al. (2022) argue that this assumption can lead to conservative
performance, and the DRO objective may degenerate to a non-robust solution, especially when features are
continuous and the loss function is binary (Hu et al., 2018). To address this issue, Mu et al. (2022) proposed
a factored DRO formulation that treats distributional shifts in contexts and costs separately. This approach
provides non-asymptotic sample complexity results.

All previous works consider the distribution shifts under Kullback-Leibler divergence (KL), i.e., the size of
the uncertainty set is measured using the KL divergence. DRO problems based on the KL divergence enjoy
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a simple dual formulation with a scalar dual variable and strong duality holds under mild conditions; see
Hu & Hong (2013) for details. However, a KL uncertainty set requires a strong assumption on the testing
distributions, namely, that they are absolutely continuous with respect to the training (nominal) distribution.
This assumption excludes distributions with different supports compared to the training distribution and
can be often violated in practice; see Figure 1(a) for an example. In addition, using the KL divergence it
is not straightforward to obtain an initial estimate of the radius of the uncertainty set. One approach to
determine an initial radius of the uncertainty set is to divide training set into two subsets and compute the
distance between them. This approach is not possible using the KL divergence due to potential differences
in the supports of these subsets, that will result to the radius being infinite. Finally, it is important to
note that KL divergence cannot capture the geometric differences between distributions. For example, it is
possible that two distinct testing distributions have equal KL distances from the training distribution, but
one of them represents a more significant distribution shift compared to the other. A visual illustration of
this scenario can be observed in Figure 1(b). From a computational perspective, when the training set is
large, stochastic gradient descent (SGD) appears to be a promising method to solve KL DRO problems,
especially OPL problems since as it allows to iteratively search for the best policy. Yet, as mentioned by
Namkoong & Duchi (2016), SGD generally fails to converge because the variance of the objective and its
subgradients explodes as the dual variable approaches 0. The above limitations motivate the study of DRO
problems using different measures to define the uncertainty set.

Two popular measures, alternative to the KL divergence, that have been used to characterize the uncertainty
sets in DRO literature are uncertainty sets based on moment constraints (Delage & Ye, 2010; Zymler et al.,
2013; Yang et al., 2023) and uncertainty sets defined by the Wasserstein distance (Mohajerin Esfahani
& Kuhn, 2018; Zhao & Guan, 2018; Gao & Kleywegt, 2022). Moment constraints generally require the
testing distribution to have similar moments to the training distribution, such as means and variances (first
and second moments). Finite order moment constraints can be extended to infinite orders and have been
explored in the context of Kernel DRO (Zhu et al., 2021), where the kernel function defines a metric between
distributions, known as the maximum mean discrepancy (MMD) (Gretton et al., 2012). However, it has been
observed that in optimal transport problems (Feydy et al., 2019), the gradient vanishes when evaluating the
distance between two distributions under the MMD distance, leading to slow convergence rates in practice.
Detailed examples and discussions can be found in Feydy (2020, Chapter 3.2). In contrast, the Wasserstein
distance has been shown to result in fast and stable convergence in many optimal transport and machine
learning problems (Frogner et al., 2015; Arjovsky et al., 2017). The Wasserstein distance considers the
underlying geometry of the distributions, including their supports, and therefore allows to compare testing
and training distributions with different supports, something that KL methods are not able to do. While
Wasserstein DRO has been used to quantify uncertainty in various learning tasks including classification and
regression (Kuhn et al., 2019), its application to OPE and OPL problems is mostly unexplored yet with a few
recent exceptions (Kido, 2022; Adjaho & Christensen, 2022). Though Kido (2022) measures the distribution
shifts by Wasserstein distance, this work assumes that the context distribution of the testing set is absolutely
continuous with respect to the context distribution of the training set, i.e, the same assumption as in methods
that rely on KL (Si et al., 2020; Mu et al., 2022). This assumption simplifies the dual problem but excludes
potential shifts of different supports. The approach in Adjaho & Christensen (2022) considers OPL problems
with binary actions and allows for distribution shifts of different supports; simple and interpretable policies
are studied due to the assumptions that actions are binary, e.g., a threshold policy. However, finite sample
analysis is not the focus of this study.

In this paper, we focus on OPE and OPL for contextual bandit problems under distribution shifts. Specifi-
cally, we assume that shifts occur in both the context and the cost distributions for each context-action pair
and employ Wasserstein DRO to develop worst-case bounds on policy values. For OPE problems, we first
calculate upper bounds on cost values that account for cost shifts in each context-action pair. These bounds
are then used to determine upper bounds on the policy values that account for context shifts. We provide
a finite sample analysis of our proposed method and demonstrate that the policy value obtained from a
dataset of size n converges to the true value at a rate of Op(n−1/2). Compared to OPE problems that rely
on KL DRO (Si et al., 2020; Kallus et al., 2022; Mu et al., 2022), the use of Wasserstein DRO introduces an
inner maximization sub-problem, that increases computational cost. To overcome this challenge, we propose
a regularized DRO method that approximates the inner maximization sub-problem using smoothing. For
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OPL problems, we demonstrate that both Wasserstein DRO and regularized Wasserstein DRO methods
converge to the optimal policy at the rate of Op(n−1/2). The regularized DRO method improves the query
complexity of the Wasserstein DRO method in finding a δ-accurate solution by an order of O(δ−1) when the
OPL problem is convex. Since the query complexity of both Wasserstein DRO and regularized Wasserstein
DRO methods depends on the size of the support of the distributions, we also propose a (biased) SGD
method that can find the optimal policy with query complexity independent of the distribution support size.
It is worth noting that previous works (Si et al., 2020; Kallus et al., 2022; Mu et al., 2022) do not provide
explicit query complexities. In our study, we validate the proposed methods using a randomized controlled
trial dataset that study the effects of drug treatment on acute ischemic stroke, further demonstrating their
effectiveness.

2 Problem definition and preliminaries

Denote X ⊂ Rm the set of contexts and A = {a1, · · · , ak} the set of discrete actions. Let Dn :=
{(Xi, Ai, Yi)}n

i=1 be the observational dataset of size n. We assume the dataset is generated as follows.
The contexts {Xi}n

i=1 are independent and identically distributed (i.i.d.) samples from a fixed context dis-
tribution P 0

x . Actions {Ai}n
i=1 are selected according to a context-dependent behavior policy π0, i.e, Ai is

sampled from the distribution π0(·|Xi). After taking the action Ai, a random cost Yi is announced and it is
an i.i.d sample from a fixed cost distribution P 0

Xi,Ai
.

Assumption 2.1 We make the following assumptions on the behavior policy π0, the cost functions and the
contexts.

1. Sufficient exploration: π0(A|X) ≥ µπ0 > 0 for all context action pairs;

2. Discrete and bounded costs: ∀x ∈ X , a ∈ A, Ξx,a is discrete, finite, and known. Moreover, 0 ≤
yx,a(ξ) ≤ Ymax, ∀ξ ∈ Ξx,a. For simplicity, we assume Ξx,a = Ξ for all (x, a) ∈ X × A;

3. Discrete contexts with positive mass: the context set X is a finite and known discrete set and the
probability mass of each context is bounded from below, i.e., there exists an µx0 > 0 such that
P (X = x) ≥ µx0 for all x ∈ X .

The first two assumptions in Assumption 2.1 are standard in non-robust OPE and OPL problems (Dudík
et al., 2014; Wang et al., 2017) and are adopted in the KL DRO problems (Si et al., 2020; Kallus et al., 2022;
Mu et al., 2022). The last assumption together with the first assumption in Assumption 2.1 ensure that the
observational dataset contains sufficient samples across all context and action pairs, which is also assumed
in Mu et al. (2022). We further make the following assumption on the random costs Y .

Assumption 2.2 For each context action (x, a) pair, we are given a measurable function yx,a(ξ) : Ξ → R
and Ξ ⊂ Rm is known. The observational dataset is provided in the form of Dn := {(Xi, Ai, ξi, Yi)}n

i=1,
where ξi is an i.i.d sample from a fixed distribution P 0

ΞXi,Ai
and the cost Yi = yXi,Ai

(ξi) is then calculated
from the given function yx,a.

Assumption 2.2 holds in many applications. For example, in clinical trials, ξ can represent a patient’s health
condition after the treatment, e.g., blood pressure, which is random and can be monitored; a cost function is
defined according to this health condition. Alternatively, in news recommendation systems, ξ can represent a
user’s behavior after receiving a batch of news, e.g., clicking or not, time spent on the page. A cost function
can be designed to encourage specific user behaviors, e.g., y(click) = −1 and y(not click) = 1.

If the random cost Y is observed directly from the environment, one can set yx,a(ξ) = ξ which is an
identity function mapping the random cost to itself or set yx,a(ξ) = Ymax for all ξ that are not observed in
the observational dataset. We note, however, that our analysis here applies to general cost functions that
only need to satisfy Assumption 2.2. We note also that Assumption 2.2 subsumes the special case when
yx,a(ξ) = y(ξ) for all (x, a) pairs and a given cost function y(ξ), i.e., the case when the cost function only
depends on the random observation ξ, as the examples discussed above. Thus, knowing the cost function
does not imply knowing the relations between different (x, a) pairs.
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We assume distribution shifts happen both in the distribution of contexts and the distributions of the cost
functions. Specifically, denote by Px the distribution of the contexts in the testing environment and assume
that Px is contained in a uncertainty set U(ϵx; P 0

x ) that is centered around the training distribution P 0
x ,

i.e., Px ∈ U(ϵx; P 0
x ) = {P : D(P, P 0

x ) ≤ ϵx} where ϵx > 0 and D is a distance metric to be specified
later. Similarly, for each context and action pair (x, a), we assume the distribution of the cost in the testing
environment satisfies Px,a ∈ U(ϵc; P 0

x,a) where ϵc > 0.

Due to the possible distributional shifts in P 0
x and P 0

x,a, we want to be conservative when evaluating or
learning a new policy in the testing environment. To do so, we focus on the worst-case value of the new
policy obtained over all possible distributions within the uncertainty sets.

Definition 2.3 For given ϵx, ϵc > 0 and policy π, define the distributionally robust policy value V (π) as:

V (π) = sup
Px∈U(ϵx;P 0

x )
Ex∼Px

[
Ea∼π(·|x)

[
sup

Px,a∈U(ϵc;P 0
x,a)

EPx,a
[Y ]
]]

. (2.1)

Remark 2.4 The formulation in equation 2.1 implies that given any two context and action pairs
(x, a), (x′, a′) and their training cost distributions P 0

x,a, P 0
x′,a′ , the testing cost distributions Px,a, Px′,a′ are

independent. Thus, the inner maximization problem is not coupled across contexts or actions and can be
solved individually for each context and action pair.

In this paper, we employ the Wasserstein distance as a distance metric between two probability distributions
P and Q, defined as

D(P, Q) := inf
σ

{
E(ξ,ζ)∼σ [c(ξ, ζ)] : σ1 = P, σ2 = Q

}
, (2.2)

where c(ξ, ζ) is a continuous function that captures the cost of moving the point ξ to ζ. In what follows,
we assume c(ξ, ζ) = (ξ − ζ)2.In equation 2.2, σ is the coupling distribution with its first marginal σ1 and
second marginal σ2 being P and Q, respectively. The optimal coupling distribution σ provides the best
transportation plan that moves P to Q with respect to the cost function c(·, ·).

We now present some preliminary results on the DRO using the Wasserstein distance. Specifically, given a
nominal distribution P 0 with support X , a loss function f(x), and a uncertainty parameter ϵ, the (primal)
Wasserstein DRO problem is defined as

(P ) = sup
P ∈U(ϵ;P 0)

Ex∼P [f(x)] , (2.3)

where U(ϵ; P 0) = {P ∈ M+ : infσ

{
E(ξ,ζ)∼σ[c(ξ, ζ)] : σ1 = P 0, σ2 = P

}
≤ ϵ} and M+ represents the set of

all probability measures. Observe that solving the primal DRO problem is challenging since the optimization
variable is a measure function and the expectation is taken with respect to an unobserved distribution P .
This difficulty can be avoided if the DRO problem 2.3 is studied in its dual form, where the optimization
variable becomes a scalar. In fact, Zhao & Guan (2018) showed that, under mild conditions, strong duality
holds, i.e., zero duality gap; see Proposition 2 thereof for the details. The dual Wasserstein DRO problem
can be formulated as

(D) = inf
λ≥0

{
ϵλ + Ex∼P 0

[
sup
ζ∈X

(
f(ζ) − λ(x − ζ)2) ]}. (2.4)

Indeed, in this dual problem, the optimization variable is a scalar and the expectation is taken with respect
to the given nominal distribution P 0. Recent literature on policy evaluation has studied this dual DRO
problem (Si et al., 2020; Mu et al., 2022), but using the KL divergence to characterize the uncertainty set
(Hu & Hong, 2013). In this case, the dual KL DRO problem becomes:

(DKL) = inf
λ≥0

{
ϵλ + λ lnEx∼P 0 [exp(f(x)/λ)]

}
. (2.5)

As discussed before, compared to the Wasserstein DRO problem (D), the KL DRO problem, (DKL) tends to
up-weight the samples with high costs and may over-fit to outliers since it is not aware of the geometry of the
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distribution. See Appendix E for an example that compares KL DRO and Wasserstein DRO. Nevertheless,
the Wasserstein dual problem (D) is computationally more challenging as it involves an inner maximization
problem.

The following lemma shows that if f(·) is bounded, the optimal solution to the dual problem (D) is finite.
This avoids limit arguments in the proofs that involve the dual variable λ.

Lemma 2.5 Consider the dual problem in equation 2.4. If 0 ≤ f(x) ≤ fmax for all x ∈ X , then the optimal
solution to equation 2.4 satisfies λ∗ ∈ [0, fmax/ϵ] and the optimal value of equation 2.4 attained at λ∗ satisfies
D∗ ≤ fmax.

The proof is provided in Appendix B.

3 Wasserstein DRO for policy evaluation

In this section, we focus on the OPE problem equation 2.1 with the uncertainty set described using the
Wasserstein distance metric.

Proposition 3.1 Let Assumption 2.2 hold. The policy evaluation problem equation 2.1 is equivalent to the
following two-step dual problem.

V (π) = inf
λ≥0

{
ϵxλ + Ex∼P 0

x

[
sup
ζ∈X

(
Ea∼π(·|ζ) [m(ζ, a)] − λ(x − ζ)2) ]}, (3.1)

where m(x, a) = inf
λ≥0

{
ϵcλ + Eξ∼P 0

Ξx,a
sup

ζ∈Ξx,a

(
yx,a(ζ) − λ(ξ − ζ)2)}, ∀x ∈ X , a ∈ A. (3.2)

Proof The result follows by applying the duality as in equation 2.4 to both contexts and costs.

Recall that Assumption 2.2 poses an extra condition on the cost functions. From the dual problem perspec-
tive, we observe that this assumption is necessary for addressing distribution shifts in Wasserstein DRO as
the dual problem equation 3.2 contains an inner maximization problem, which requires the knowledge of the
function values for all realizations. Additional assumptions on the cost functions are required when applying
KL DRO to OPE and OPL problems, where the probability mass function P (Y = y|x, a) is lower bounded
for all y across all context and action pairs (Si et al., 2020; Kallus et al., 2022; Mu et al., 2022). Similarly,
this lower bound assumption ensures that the dual problem under KL is well defined.

Note that, in general, it is intractable to directly solve equation 3.1 and equation 3.2 since these problems
involve an inner maximization problem that is hard to solve. The inner maximization problem can be solved
efficiently assuming, e.g., that X and Ξ are discrete. Besides, the distributions P 0

x and P 0
Ξ in equation 3.1

and equation 3.2 are unknown and can only be estimated from the finite sample dataset Dn.

Given the observational dataset Dn, denote P̂ 0
x and {P̂ 0

Ξx,a
}x∈X ,a∈A the empirical distribution estimates of

P 0
x and {P 0

Ξx,a
}x∈X ,a∈A, respectively. We define the empirical policy evaluation problem as follows:

V̂ (π) = inf
λ≥0

{
ϵxλ + Ex∼P̂ 0

x

[
sup
ζ∈X

(
Ea∼π(·|ζ) [m̂(ζ, a)] − λ(x − ζ)2) ]}, (3.3)

where m̂(x, a) = inf
λ≥0

{
ϵλ + Eξ∼P̂ 0

Ξx,a

[
sup

ζ∈Ξx,a

(
yx,a(ζ) − λ(ξ − ζ)2) ]}, ∀x ∈ X , a ∈ A. (3.4)

The goal of the OPE problem is to estimate the policy value V (π). As we can only estimate the empirical
policy value V̂ (π) using the offline data in practice, in the following theorem, we provide a finite sample
analysis of the gap between V̂ (π) and V (π).
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Theorem 3.2 Given an evaluation policy π, let Assumptions 2.1 and 2.2 hold and select the total number
of samples as n ≥ 2 log(4|X ||A|/δ)/(µπ0µx0)2. Then, with probability 1 − δ, the following inequality holds,

|V̂ (π) − V (π)| ≤ Ymax

(√
2 log (2/δ)

n
+
√

|X |
n

+

√
4 log (4|X ||A|/δ)

nµπ0µx0

+

√
2|Ξ|

nµπ0µx0

)

= O
(√

log (|X ||A|/δ)
n

)
+ O

(√
|X | + |Ξ|

n

)
. (3.5)

The proof is provided in Appendix A.1. Theorem 3.2 shows that the policy evaluation error decreases at a
rate of n−1/2. Note that Mu et al. (2022) consider a similar problem using the KL divergence to characterize
the uncertainty set. In this case, they show that the policy evaluation error satisfies |V̂ (π) − V (π)| =
O(
√

(log(n) log (|X ||A|/δ))/(ϵcn)), where ϵc is the KL uncertainty set radius.

Our error bound in Theorem 3.2 contains an extra term O(
√

(|X | + |Ξ|)/n) that is due to the use of Wasser-
stein distance and is directly related to the total variation of the empirical discrete distribution compared
to the true discrete distribution. This error increases if the size of the supports of X and Ξ increases as
the Wasserstein distance is a geometry-aware metric. Comparing the first term in equation 3.5 to the KL
error bounds provided in Mu et al. (2022), we observe that our result improves the error bound by an order
of
√

log(n). We believe that the extra
√

log(n) term in the error bound in Mu et al. (2022) is caused by
the corresponding analysis rather than the different characterizations of the uncertainty set; the KL error
bound can be improved by using a similar analysis as in Lemma 5 in Zhou et al. (2021), which studies a
distributionally robust reinforcement learning problem using a KL uncertainty set.

Note that the KL error bound additionally depends on the radius of the uncertainty set ϵc, which is due
to the fact that the dual variable λ multiplies the log-expectation term as in equation 2.5. This KL error
bound increases when the radius of the uncertainty set decreases. Although this error bound is always
upper bounded by Ymax, it becomes uninformative when the distributional shift is small. This is because
O(
√

(log(n) log (|X ||A|/δ))/(ϵcn)) ≫ Ymax when ϵc → 0. On the other hand, this KL error bound decreases
as the radius of the uncertainty set increases. This is because when ϵc is large, the optimal dual variable λ
in KL dual problem is small and thus the value of λ lnEx∼P 0 [exp(f(x)/λ)] converges to the highest cost. In
contrast, our proposed Wasserstein error bound in equation 3.5 does not depend on the uncertainty radius.

Concurrently with the method proposed here, Xu et al. (2023) studied a DRO problem for a robust reinforce-
ment learning problem also using the Wasserstein distance. However, in Xu et al. (2023) the cost function
is known and deterministic while here we consider stochastic costs with distributional shifts. Besides, the
error bound provided in Xu et al. (2023) is radius-dependent and will not be informative when the radius is
small, similar to the KL formulation in Mu et al. (2022) discussed above. We believe that this dependency
is due to the covering number type of arguments in the analysis, which is designed for improving state de-
pendency in the sample complexity results. A reinforcement learning OPE problem using Wasserstein DRO
has recently been studied in Wang et al. (2021), assuming that the behavior policy that collects the training
set is known or can be estimated accurately. This known behavior policy is directly used in the primal and
dual formulations. More importantly, to achieve zero duality gap, extra assumptions on this behavior policy
are required as stated in their Theorem 1 in Wang et al. (2021). These extra assumptions cannot be verified
for the problem considered here that only assumes knowledge of the finite training set.

In practice, ϵc can be selected proportional to the sample size to capture uncertainties caused by finite
samples (Ramdas et al., 2017), e.g., ϵc = O(n−1/2). Then, the policy evaluation error decreases at the rate
of n−1/4 under KL divergence while the rate under Wasserstein distance in equation 3.5 remains the same
of n−1/2.

4 Regularized Wasserstein DRO for policy evaluation

The empirical policy evaluation problem under the Wasserstein distance can be reformulated as a linear
program (LP) and thus can be solved using commercial linear programming solvers, e.g., Gurobi (Gurobi
Optimization, LLC, 2023). However, as often discussed in much of the optimal transport literature (Cuturi,
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2013; Genevay et al., 2016; Weed, 2018), calculating the Wasserstein distance between two distributions
is computationally expensive when the support set is large, e.g., when |X | or |Ξ| is large. In this case,
entropy-regularized methods have been proposed to reduce the computational complexity of optimal trans-
port problems. Inspired by these methods, we simplify the dual problem in equation 2.4 by replacing the
maximization operation with a smooth “softmax” function, e.g., the log-sum-exp function. Specifically, we
define the smoothed dual problem as:

(Dη) := inf
λ≥0

{
ϵλ + Ex∼P 0

x

[
1/η log

(∑
ζ∈X 1/|X |eη(f(ζ)−λ(x−ζ)2))]}, (4.1)

where η > 0 is a hyper-parameter that controls the distance between the “softmax” and the maximum. The
primal problem of the smoothed dual problem (Dη) is indeed a DRO problem but with an entropy-regularized
objective function. See Appendix D for the duality connection.

Remark 4.1 Although the smoothed dual problem (Dη) and dual problem DKL in equation 2.5 may look
similar to each other, they are in fact fundamentally different. Specifically, in DKL, the dual variable λ
directly affects the exponential function inside the expectation, e.g., a small λ up-weights regions of X with
high costs f(x). On the other hand, in (Dη), η is a pre-specified tuning parameter and the dual variable λ is
directly related to the geometry of the domain X , e.g., for a given x, a large λ only up-weights regions of X
with high costs that are close to x. In addition, (Dη) simplifies the theoretical analysis since the “softmax"
function in (Dη) is not be unbounded when λ goes to 0. To avoid this technical challenge, Mu et al. (2022)
instead assume that the λ in DKL is bounded from below.

We define the empirical policy evaluation problem using the regularized dual problem as follows:

V̂η(π) = inf
λ≥0

{
ϵxλ + Ex∼P̂ 0

x

[
1/η log

(∑
ζ∈X 1/|X |eη(Ea∼π(·|ζ)[m̂η(ζ,a)]−λ(x−ζ)2))]}, (4.2)

where m̂η(x, a) = inf
λ≥0

{
ϵcλ + Eξ∼P̂ 0

Ξx,a

[
1/η log

(∑
ζ∈Ξx,a

1/|Ξx,a|eη(yx,a(ζ)−λ(ξ−ζ)2))]}. (4.3)

In the following theorem, we provide a finite sample analysis on the gap between V̂η and V for the empirical
policy evaluation problem equation 4.2 and equation 4.3 that uses the regularized dual method.

Theorem 4.2 Given an evaluation policy π, let Assumptions 2.1 and 2.2 hold and select the total number
of samples as n ≥ 2 log(4|X ||A|/δ)/(µπ0µx0)2. Then, with probability 1 − δ, the following inequality holds,

|V̂η(π) − V (π)| ≤ Ymax

(√
2 log (2/δ) /n +

√
|X |/n +

√
4 log (4|X ||A|/δ)/(nµπ0µx0) +

√
2|Ξ|/(nµπ0µx0)

)
+ log(|X |)/η.

Theorem 4.2 implies that the entropy regularized OPE problem can find the policy value V̂η(π) almost as
efficiently as the un-regularized OPE problem in equation 3.3 and equation 3.4. The error term log(|X |)/η
is caused by the approximation of inner maximization by the “softmax”.

5 Wasserstein DRO for policy learning

In this section, we consider the OPL problem using the Wasserstein distance to characterize the uncertainty.
Let Π be the policy space. Define the optimal distributionally robust policy π∗ = arg minπ∈Π V (π) with
optimal value V ∗ = V (π∗). Similarly, define the empirical optimal distributionally robust policy π̂∗ =
arg minπ∈Π V̂ (π) with optimal value V̂ ∗ = V̂ (π̂∗). In the following theorem, we provide a finite sample
analysis of the gap between V ∗ and V̂ ∗.

Theorem 5.1 Given a learning policy space Π, let Assumptions 2.1 and 2.2 hold and select the total number
of samples n ≥ 2 log(4|X ||A|/δ)/(µπ0µx0)2. Then, with probability 1 − δ, the following inequality holds,

|V̂ ∗ − V ∗| ≤ Ymax
(√

2 log
(
2/δ
)
/n +

√
|X |/n +

√
4 log

(
4|X ||A|/δ

)
/(nµπ0µx0)

+
√

2|Ξ|/(nµπ0µx0)
)
.
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The proof is provided in Appendix C.1. Note that the results of Theorem 5.1 can be easily extended to the
entropy-regularized problem described in Section 3.

Theorem 5.1 assumes that we can solve the optimization problem exactly without specifying how. In practice,
if we parameterize the policy π by θ ∈ Θ, we can use first-order methods to find the optimal policy.
Specifically, denote l̂(θ, ζ) = Ea∼πθ(·|ζ)

[
m̂(ζ, a)

]
. Then, we can define the OPL problem for the Wasserstein

and regularized Wasserstein DRO formulations as follows:

V̂ (π∗) = inf
θ,λ≥0

{
Ex∼P̂ 0

x

[
sup
ζ∈X

(
l̂(θ, ζ) − λ(x − ζ)2 + ϵxλ

)]}
, (5.1)

V̂η(π∗) = inf
θ,λ≥0

{
Ex∼P̂ 0

x

[
1
η

log
(∑

ζ∈X

1
|X |

eη
(

l̂(θ,ζ)−λ(x−ζ)2
))]

+ ϵxλ

}
. (5.2)

In general, the regularized problem in equation 5.2 is preferred to equation 5.1 in solving for the optimal
solution. For example, consider a specific where P̂ 0

x is a point mass at x0. Then, equation 5.1 is equivalent
to inf(θ,λ) L(θ, λ), where L(θ, ζ) = maxζ∈|X |

{
fζ(θ, λ)

}
and fζ(θ, λ) = l̂(θ, ζ) − λ(x0 − ζ)2 + ϵxλ. Therefore,

in this case, L(θ, λ) is the point-wise maximum of the set of functions fζ indexed by ζ. Note that L(θ, λ)
is not guaranteed to be smooth even if all functions {fζ}ζ∈|X | are smooth. Thus, if we further assume
that each fζ(θ, λ) is convex in (θ, λ) and solve the problem using first-order methods, e.g., subgradient
methods (Nesterov et al., 2018), it will require O(δ−2) iterations to find a δ-accurate optimal solution and
each iteration requires O(|X |) queries to evaluate fζ and ∇fζ . However, as discussed in Nesterov (2005),
if the “softmax” is used to approximate the inner maximization problem, the smoothed problem Lη(θ, λ)
is smooth when all functions {fζ}ζ∈|X | are smooth, e.g., when ∇fζ is O(δ−1)-Lipschitz continuous, and it
only takes Õ(δ−1) iterations to find a δ-accurate optimal solution to the original problem L(θ, ζ) by selecting
η = O(log |X |/δ). For each iteration, it requires the same O(|X |) of queries to calculate the gradient.
Since querying the functions fζ is computational costly in practice, solving equation 5.2 reduces the query
complexity from O(|X |δ−2) to Õ(|X |δ−1) when fζ are convex and smooth and P̂ 0

x is a point mass.

Note that although the regularized OPL problem equation 5.2 improves the query complexity by an order
of O(δ−1), the linear dependency on |X | remains. If |X | is large, e.g., if |X | ≫ δ−1, the computational
advantage of solving the regularized DRO problem equation 5.2 compared to the un-regularized DRO problem
equation 5.1 is marginal. To further improve the query complexity in |X |, we propose a biased stochastic
gradient descent (SGD) method to approximate the gradient of equation 5.2. Specifically, at each time step,
we sample one point from P̂ 0

x and sample multiple points uniformly from the set X . We then construct
a biased gradient estimate using those samples. Note that unlike the SGD methods typically used in the
machine learning literature, the finite sample stochastic gradient estimate is biased due to the nonlinear
logarithm function in equation 5.2. The full algorithm is presented in Algorithm 1.

Theorem 5.2 (Iteration and query complexity of Algorithm 1). Assume that the policy space Θ is compact
and there exists a finite number B > 0 such that for any x, y ∈ X , ∥x − y∥2 ≤ B. i) Suppose that
l̂(θ, ζ) =

∑k
i=1 πθ(ai|ζ)m̂(ζ, ai) is convex in θ and Ll̂-smooth in θ for any ζ ∈ X . Then, the number of

iterations required to find a δ-accurate solution is in the order O(δ−2) iterations to find a δ-accurate optimal
solution and the total query complexity is O(δ−3). ii) Suppose that l̂(θ, ζ) is Ll̂-smooth in θ for any ζ ∈ X .
Then, the number of iterations required to find a δ-accurate stationary point is in the order O(δ−4) iterations
and the total query complexity is O(δ−6).

Theorem 5.2 provides query complexity of Algorithm 1 for both convex and nonconvex smooth functions. The
regularized DRO problem is a special case of so-called conditional stochastic optimization (CSO) problems
(Hu et al., 2020). The proof of Theorem 5.2 is directly adapted from Theorem 3.2 and 3.3 in Hu et al. (2020)
and is provided in Appendix C.2. As finding the optimal query complexity is not the focus of this paper, we
defer readers to Carmon et al. (2021); Hu et al. (2020); Wang et al. (2021) for related discussions.
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Algorithm 1 Policy learning using biased stochastic gradient descent
Require: Robust cost estimates m̂(s, a) for each (s, a) pair; context uncertainty radius ϵx; parameterized policy πθ,

where θ ∈ Θ; number of iterations T ; inner batch size mt and step size γt,; initial policy parameter θ0 and dual
variable λ0; smoothing parameter η; context support set X and nominal context distribution P̂ 0

x .
1: for t = 0, . . . , T − 1 do
2: Sample a single context xt from P̂ 0

x and mt points {ζj}mt
j=1 uniformly from the support set X .

3: Evaluate the function values {g(ζj ; θt, λt)}mt
j=1, where g(ζj ; θt, λt) = eη(l̂(θt,ζj )−λt(xt−ζj )2)

4: Calculate the biased stochastic gradients ∇θt V̂η(θt, λt) and ∂V̂η(θt, λt)/∂λt according to equation 5.3 equa-
tion 5.4:

∇θt V̂η(θt, λt) =
∑mt

j=1 g(ζj ; θt, λt)∇θt l̂(θt, ζj)∑mt

j=1 g(ζj ; θt, λt)
, (5.3)

∂V̂η(θt, λt)
∂λt

= −
∑mt

j=1 g(ζj ; θt, λt)(xt − ζj)2∑mt

j=1 g(ζj ; θt, λt)
+ ϵx. (5.4)

5: Update the policy parameter and the dual variable:

θt+1 = ΠΘ
(
θt − ηt∇θt V̂η(θt, λt)

)
, λt+1 = max

{
λt − ηt∂V̂η(θt, λt)/∂λt, 0

}
.

6: end for

6 Policy evaluation and learning for the international stroke trial

In this section we validate our regularized Wasserstein DRO methods for both OPE and OPL problems on
the International Stroke Trial (IST) (Group et al., 1997) dataset.

IST is a randomized controlled trial that aims to study the effects of early administration of aspirin and/or
heparin on the clinical course of acute ischaemic stroke. The IST dataset (Sandercock et al., 2011) includes
19,435 patients with logged contextual information such as age, gender, and level of consciousness before
treatment admissions, as well as follow-up results on day 14, including the occurrence of recurrent stroke,
pulmonary embolism, and death. We define two actions from the IST dataset: the treatment action of pre-
scribing both aspirin and heparin (high or medium doses) (a1) and the control action of of not administering
any treatment, neither aspirin or heparin (a2). The behavioral policy π0(a = a1) = 0.5. The cost function
is calculated based on the recorded follow-up events on day 14.

To introduce distribution shifts, we split the dataset into a training set and a testing set, and we introduce
a selection bias into the training set. Specifically, we randomly remove 50% of the patients in the training
set who are not fully conscious. This creates a difference in the context distribution between the training set
and the testing set, with the patients in the testing set being more likely to be unconscious before treatment
than those in the training set. In this simulation, we only consider context shifts and assume that the cost
functions do not change between the training and testing sets. Due to the limited number of data points
in the IST dataset, we further use decision trees and binning methods to reduce the number of distinct
contexts. The detailed experimental setup are provided in Appendix F.

We first consider the OPE problem for a random policy using the training set. Although any policy can be
evaluated using the proposed methods, we select the random policy since it is the same as the behavioral
policy, and thus the underlying truth can be estimated more accurately from the testing set, i.e., the impor-
tance ratio is always 1 (Dudík et al., 2014). One main challenge in DRO is the selection of the radius, as the
final robust value depends on this choice. When similar datasets that include both the testing and training
sets are available, the uncertainty set radius can be selected by calculating the distance between the testing
and the training sets; however, this distance is not always well-defined under KL divergence. Specifically,
for a large number of contexts, it is unlikely that all contexts have been observed for any two given finite
datasets. Therefore, the two datasets are likely to have different supports, resulting in an unbounded KL
radius. Since the Wasserstein distance is well-defined regardless of possible differences in the supports of
the context distributions in the two datasets, we can split the training set into two parts and calculate the
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Table 1: Policy evaluation and learning results
Method / Uncertainty set radius (ϵW) 0.03 0.05 0.1
OPE: Factor KL DRO (ϵKL) 0.30 (0.01) 0.374 (0.1) 0.74 (1.0)
OPE: Wasserstein DRO (LP on sub-support) 0.53 0.61 0.79
OPE: Regulated Wasserstein DRO (BSGD) 0.59 0.76 1.05
OPL: Factor KL DRO (ϵKL) 0.28 (0.01) 0.368 (0.1) 0.69 (1.0)
OPL: Regulated Wasserstein DRO (BSGD) 0.54 0.62 0.92

Expectation under P̂ (training set, random policy) 0.28
Expectation under Q (testing set, random policy) 0.38

Wasserstein distance between them, which yields the uncertainty set ϵw = 0.03 in this simulation. This
distance captures the data uncertainty due to finite samples and provides a lower bound on the uncertainty
set radius. To further capture distribution shifts, we should select the radius larger than this distance.

The policy evaluation results are presented in Table 1. Solving the OPE problem using the Wasserstein
DRO method is challenging since the support size is large. Therefore, we approximate the solution by only
considering observed contexts in training set instead of the full set X . However, this Wasserstein DRO
using the sub-support only provides a lower bound to the full support DRO method, as the inner maximum
problem is approximated by maximizing over a smaller subset for a given radius. On the other hand,
regularized Wasserstein DRO does not face the issue of a large support set, as it directly approximates the
solution through sampling. It is important to observe that both Wasserstein DRO methods provide upper
bounds to the true expectation under the testing distribution Q as in Table 1. Since we consider separate
uncertainty sets on both the contexts and the rewards, we adopt the Factor KL DRO method developed
in Mu et al. (2022) to benchmark the performance of Wasserstein DRO, where similar separate uncertainty
sets are considered. As no specific numerical algorithm is provided in Mu et al. (2022) to solve the KL DRO
problem, we simply use a gradient descent method to find the optimal solution. Note that the DRO problem
under KL divergence is convex, gradient descent is guaranteed to converge to the global optimal point.
The gradient derivations of KL DRO can be found in the appendix of Mu et al. (2022). As estimating the
uncertainty set radius for KL divergence is not straightforward, we test different radii when using KL DRO.
However, it is worth noting that the KL DRO method fails to provide valid upper bounds when ϵKL = 0.01
or 0.1.

Finally, we consider the OPL problem by parameterizing a context-dependent policy. Specifically, if a patient
is not fully conscious, there is a probability θ1 of taking action a1, and if a patient is fully conscious, there
is a probability θ2 of taking action a1. The optimal policy values are shown in Table 1, where the Factor
KL DRO is solved by gradient descent on both the policy parameters and the KL dual variable. Note that
the optimal policies achieve lower costs compared to the random policy for both methods under all three
uncertainty sets, indicating that the random policy is not robustly optimal. The optimal policy parameters
of the regulated Wasserstein DRO converge to θ1 = 0.8 and θ2 = 1 when ϵW = 0.03, which suggest that the
early administration of aspirin and/or heparin is effective on the clinical course of acute ischaemic stoke at
the population level. Note that the optimal robust policy is not necessary deterministic as the value function
in equation 5.1 is not linear in the policy parameters. Further results on policy learning can be found in
Appendix F.

7 Conclusion

In this work, we proposed a distributionally robust optimization (DRO) framework using Wasserstein dis-
tance (Wasserstein DRO) to address distribution shifts in OPE and OPL problems. We provided a finite
sample analysis and showed that the policy value obtained from a dataset of size n converges to the true
values at a rate of Op(n−1/2) under the proposed framework. As Wasserstein DRO is computationally
challenging when the support set of the underlying distribution is large, we further formulated a regularized
Wasserstein DRO problem and provided a corresponding biased stochastic gradient descent algorithm that is
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independent of the distribution support size and can numerically solve the regularized problem; the proposed
algorithm achieves better iteration and query complexity compared to solving Wasserstein DRO using linear
programs while maintaining the same convergence rate. We validated our proposed methods using a medical
stroke trial dataset.
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Appendix

A Proofs for Off-Policy Evaluation

A.1 Proof of Theorem 3.2

In what follows, we first provide an error decomposition lemma.

Lemma A.1 Let Assumptions 2.2 and 2.1 hold. Denote p(xi) = P 0
x (X = xi) and p̂(xi) = P̂ 0

x (X = xi). For
any given policy π, define l(ζ) = Ea∼π(·|ζ) [m(ζ, a)] and l̂(ζ) = Ea∼π(·|ζ) [m̂(ζ, a)]. We have that

|V̂ (π) − V (π)| ≤ Ymax

 |X |∑
i=1

|p̂(xi) − p(xi)|

+ sup
ζ∈X

{∣∣∣l̂(ζ) − l(ζ)
∣∣∣} ,

where l(ζ) represents the distributionally robust cost of following policy π at the context ζ.

Lemma A.1 indicates that the gap between V̂ (π) and V (π) is upper bounded by the error from the contexts
distribution estimate and the empirical distributionally robust cost function estimate. Since both errors are
caused by finite samples, the errors will decrease if we increase the size of the observational dataset.

Lemma A.2 Let P be a discrete distribution of size m. For each i ∈ [m], denote p(i) the true probability
and p̂(i) = 1

n

∑n
j=1 I{sj = i} the empirical probability, where {sj}n

j=1 are n i.i.d. samples drawing from P .
Denote f(p) =

∑m
i=1 |p̂(xi) − p(xi)| the random distance between p and p̂ after observing n samples. For a

given δ ∈ (0, 1), we have that, with probability at least 1 − δ,

f(p) ≤
√

2 log (1/δ)
n

+
√

m

n
. (A.1)

Lemma A.3 Consider a Bernoulli distribution P that takes the value 1 with probability p > 0. With
probability 1 − δ, one observes at least np

2 samples of value 1 out of n trials as long as n ≥ 2 log(1/δ)
p2 .

Lemma A.4 Let Assumption 2.1 hold. Given δ ∈ (0, 1), with probability 1 − δ, if we choose n ≥
2 log(2|X ||A|/δ)

(µπ0 µx0 )2 , we have ∀(x, a) ∈ X × A, it holds that

|m(x, a) − m̂(x, a)| ≤ Ymax

(√
4 log (2|X ||A|/δ)

nµπ0µx0

+

√
2|Ξ|

nµπ0µx0

)
. (A.2)

Proof [Proof of Theorem 3.2] According to Lemma A.1, we have that

|V̂ (π) − V (π)| ≤ Ymax

 |X |∑
i=1

|p̂(xi) − p(xi)|

+ sup
ζ∈X

{∣∣∣l̂(ζ) − l(ζ)
∣∣∣} .

We first bound the term Ymax

(∑|X |
i=1 |p̂(xi) − p(xi)|

)
, which relates to the total variation between the em-

pirical estimate and the true discrete distribution. For a given δ ∈ (0, 1), Lemma A.2 implies that, with
probability at least 1 − δ, we have that

Ymax

 |X |∑
i=1

|p̂(xi) − p(xi)|

 ≤ Ymax

(√
2 log (1/δ)

n
+
√

|X |
n

)
, (A.3)

where n is the number of samples.
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We now bound the term supζ∈X

{∣∣∣l̂(ζ) − l(ζ)
∣∣∣}, which relates to the difference between m(ζ, a) and m̂(ζ, a)

due to the following fact

sup
ζ∈X

{∣∣∣l̂(ζ) − l(ζ)
∣∣∣} = sup

ζ∈X

{∣∣Ea∼π(·|ζ) [m̂(ζ, a)] − Ea∼π(·|ζ) [m(ζ, a)]
∣∣}

≤ sup
ζ∈X ,a∈A

{|m̂(ζ, a) − m(ζ, a)|} . (A.4)

Lemma A.4 implies that, with probability 1 − δ, if we choose n ≥ 2 log(2|X ||A|/δ)
(µπ0 µx0 )2 , then |m(x, a) − m̂(x, a)| ≤

Ymax

(√
4 log (2|X ||A|/δ)

nµπ0 µx0
+
√

2|Ξ|
nµπ0 µx0

)
, ∀(x, a) ∈ X × A. Since it holds for all context actions pairs, we have

that

sup
ζ∈X ,a∈A

{|m̂(ζ, a) − m(ζ, a)|} ≤ Ymax

(√
4 log (2|X ||A|/δ)

nµπ0µx0

+

√
2|Ξ|

nµπ0µx0

)
. (A.5)

Taking a union bound of the events when both inequalities equation A.3 and equation A.5 hold, we have
that with probability 1 − δ, by selecting n ≥ 2 log(4|X ||A|/δ)

(µπ0 µx0 )2 , the following inequality holds

|V̂ (π) − V (π)| ≤ Ymax

(√
2 log (2/δ)

n
+
√

|X |
n

+

√
4 log (4|X ||A|/δ)

nµπ0µx0

+

√
2|Ξ|

nµπ0µx0

)
.

A.2 Proof of Theorem 4.2

Lemma A.5 Given a set of n numbers {x1, · · · , xn} and let xmax = max{x1, · · · , xn}, we define the Log-
Sum-Exp (LSE) function as LSE(x1, · · · , xn) = 1

η log
( 1

n

∑n
i=1 exp(ηxi)

)
. Then, the following inequalities

hold:

xmax − log(n)
η

≤ LSE (x1, · · · , xn) ≤ xmax.

Proof Observe that 1
n exp(ηxmax) ≤ 1

n

∑n
i=1 exp(ηxi) ≤ exp(ηxmax). The result follows by taking the

logarithms to the inequalities and multiplying by 1/η.

Lemma A.5 shows that the DRO problem under the regularized Wasserstein distance can be a good approx-
imation to the original DRO problem if we select the smoothing parameter η properly.

Proof Proof of Theorem 4.2: Lemma A.5 implies that 1
η log

(∑
ζ∈X

1
|X | e

η(f(ζ)−λ(x−ζ)2)
)

≤
supζ∈X

(
f(ζ) − λ(x − ζ)2) for any given function f(ζ). As a result, similar to the proof as in Theorem 3.2, for

any given policy π, both V̂η(π) and m̂η(x, a), ∀(x, a) ∈ X ×A are upper bounded by Ymax according to Lemma
2.5. In addition, if we denote λ∗ and λ̂∗ the optimal solution to V and V̂η, we have λ∗, λ̂∗ ∈ [0, Ymax/ϵx].
Define l(ζ) = Ea∼π(·|ζ) [m(ζ, a)] and l̂(ζ) = Ea∼π(·|ζ) [m̂(ζ, a)]. Without loss of generality, for a given policy
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π, we assume V̂ (π) ≥ V (π) and we have that

|V̂η(π) − V (π)|

=

ϵλ̂∗ +
|X |∑
i=1

p̂(xi)
1
η

log

∑
ζ∈X

1
|X |

eη(l̂(ζ)−λ̂∗(xi−ζ)2)
−

ϵλ∗ +
|X |∑
i=1

p(xi) sup
ζ∈X

{
l(ζ) − λ∗(xi − ζ)2}

≤

ϵλ∗ +
|X |∑
i=1

p̂(xi)
1
η

log

∑
ζ∈X

1
|X |

eη(l̂(ζ)−λ∗(xi−ζ)2)
−

ϵλ∗ +
|X |∑
i=1

p(xi) sup
ζ∈X

{
l(ζ) − λ∗(xi − ζ)2}

=
|X |∑
i=1

p̂(xi)
1
η

log

∑
ζ∈X

1
|X |

eη(l̂(ζ)−λ∗(xi−ζ)2)
− p(xi) sup

ζ∈X

{
l(ζ) − λ∗(xi − ζ)2} ,

where the inequality holds since λ̂∗ is the optimal solution to V̂η(π) while λ∗ is not. Then, it follows that

|V̂η(π) − V (π)|

≤
|X |∑
i=1

p̂(xi)
1
η

log

∑
ζ∈X

1
|X |

eη(l̂(ζ)−λ∗(xi−ζ)2)
− p(xi)

1
η

log

∑
ζ∈X

1
|X |

eη(l̂(ζ)−λ∗(xi−ζ)2)


+p(xi)
1
η

log

∑
ζ∈X

1
|X |

eη(l̂(ζ)−λ∗(xi−ζ)2)
− p(xi) sup

ζ∈X

{
l̂(ζ) − λ∗(xi − ζ)2

}

+p(xi) sup
ζ∈X

{
l̂(ζ) − λ∗(xi − ζ)2

}
− p(xi) sup

ζ∈X

{
l(ζ) − λ∗(xi − ζ)2})

≤ Ymax

|X |∑
i=1

|p̂(xi) − p(xi)| + log(|X |)
η

+
|X |∑
i=1

p(xi) sup
ζ∈X

{∣∣∣l̂(ζ) − l(ζ)
∣∣∣} ,

The last inequality holds since 1
η log

(∑
ζ∈X

1
|X | e

η(l̂(ζ)−λ∗(xi−ζ)2)
)

≤ maxζ∈X {l̂(ζ) − λ∗(xi −
ζ)2} ≤ maxζ∈X {l̂(ζ)} ≤ Ymax. In addition, according to Lemma A.5, we have that∣∣∣ 1

η log
(∑

ζ∈X
1

|X | e
η(l̂(ζ)−λ∗(xi−ζ)2)

)
− supζ∈X

{
l̂(ζ) − λ∗(xi − ζ)2

}∣∣∣ ≤ log(|X |)
η . Observe that the last

inequality is the same as in Lemma A.1 except for the extra error term log(|X |)
η ; we complete the proof by

applying the results from Theorem 3.2 to the last inequality.

B Proofs of Supporting Lemmas

B.1 Proof of Lemma 2.5

Proof Denote D∗ = ϵλ∗ + Ex∼P 0
[
supζ∈X

(
f(ζ) − λ∗(x − ζ)2)]. For a given point x and λ∗, we have

that supζ∈X
(
f(ζ) − λ∗(x − ζ)2) ≥ supζ=x

(
f(ζ) − λ∗(x − ζ)2). Taking the expectation of x with respect

to the distribution P 0 and adding ϵλ∗ on both sides, we have ϵλ∗ + Ex∼P 0
[
supζ∈X

(
f(ζ) − λ∗(x − ζ)2)] ≥

ϵλ∗+Ex∼P 0
[
supζ=x

(
f(ζ) − λ∗(x − ζ)2)] = ϵλ∗+Ex∼P 0 [f(x)], which implies D∗ ≥ ϵλ∗+Ex∼P 0 [f(x)] ≥ ϵλ∗.

By the definition of the dual problem, we have D∗ ≤ ϵ · 0 + Ex∼P 0
[
supζ∈X

(
f(ζ) − 0 · (x − ζ)2)] = fmax.

The result follows from the fact that 0 ≤ ϵλ∗ ≤ D∗ ≤ fmax.
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B.2 Proof of Lemma A.1

Proof Denote λ∗ and λ̂∗ the optimal solution to V and V̂ . Applying Lemma 2.5 to equation 3.2 and
equation 3.4, we have m(s, a) and m̂(s, a) are upper bounded by Ymax since the costs are upper bounded
by Ymax. This further implies that l(x) and l̂(x) are upper bounded by Ymax. Applying Lemma 2.5 to
equation 3.1 and equation 3.3, we have λ∗, λ̂∗ ∈ [0, Ymax/ϵx]. Without loss of generality, for a given policy
π, we assume V̂ (π) ≥ V (π) and we have |V̂ (π) − V (π)|

= (ϵλ̂∗ +
|X |∑
i=1

p̂(xi) sup
ζ∈X

{
l̂(ζ) − λ̂∗(xi − ζ)2

}
) − (ϵλ∗ +

|X |∑
i=1

p(xi) sup
ζ∈X

{
l(ζ) − λ∗(xi − ζ)2})

≤ (ϵλ∗ +
|X |∑
i=1

p̂(xi) sup
ζ∈X

{
l̂(ζ) − λ∗(xi − ζ)2

}
) − (ϵλ∗ +

|X |∑
i=1

p(xi) sup
ζ∈X

{
l(ζ) − λ∗(xi − ζ)2})

=
|X |∑
i=1

(
p̂(xi) sup

ζ∈X

{
l̂(ζ) − λ∗(xi − ζ)2

}
− p(xi) sup

ζ∈X

{
l(ζ) − λ∗(xi − ζ)2}) .

The first inequality follows from the fact λ̂∗ is the optimal solution to V̂ while λ∗ is not. Then, we have

|V̂ (π) − V (π)| ≤
|X |∑
i=1

(
p̂(xi) sup

ζ∈X

{
l̂(ζ) − λ∗(xi − ζ)2

}
− p(xi) sup

ζ∈X

{
l̂(ζ) − λ∗(xi − ζ)2

}
+p(xi) sup

ζ∈X

{
l̂(ζ) − λ∗(xi − ζ)2

}
− p(xi) sup

ζ∈X

{
l(ζ) − λ∗(xi − ζ)2})

≤
|X |∑
i=1

|p̂(xi) − p(xi)| sup
x,ζ∈X

{
l̂(ζ) − λ∗(x − ζ)2

}
+

|X |∑
i=1

p(xi) sup
ζ∈X

{∣∣∣l̂(ζ) − l(ζ)
∣∣∣}

≤ Ymax

 |X |∑
i=1

|p̂(xi) − p(xi)|

+
|X |∑
i=1

p(xi) sup
ζ∈X

{∣∣∣l̂(ζ) − l(ζ)
∣∣∣} .

The second inequality holds since supx f(x) − supx g(x) ≤ supx|f(x) − g(x)|. The last inequality holds
due to the fact that l̂(ζ) ≤ Ymax and λ∗ ≥ 0. Note that if V̂ (π) ≤ V (π), we will replace the term
supx,ζ∈X

{
l̂(ζ) − λ∗(x − ζ)2

}
by the term supx,ζ∈X

{
l(ζ) − λ̂∗(x − ζ)2

}
in first inequality and the result

still holds.

B.3 Proof of Lemma A.2

Proof Observe that changing any single sample can at most change the value of f by 1/n. Applying
McDiarmid’s inequality to the function f , we have that

P [f(p) − E[f(p)] ≥ ϵ] ≤ e
− 2ϵ2

n( 1
n

)2 = e−2nϵ2
,

which implies with probability at least 1 − δ, f(p) − E[f(p)] ≤
√

2 log (1/δ)
n by setting ϵ =

√
2 log (1/δ)

n . Thus,
to bound f(p), we only need to bound the first-moment term E[f(p)]. Specifically, we have that

E[f(p)] =
m∑

i=1
E [|p̂(xi) − p(xi)|] ≤

m∑
i=1

√
E [|p̂(xi) − p(xi)|2] =

m∑
i=1

√
1
n

p(xi) (1 − p(xi)),
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where the first inequality follows from Jensen’s inequality. The second inequality holds due to the fact that
np̂(xi) follows from the binomial distribution and E

[
|p̂(xi) − p(xi)|2

]
= 1/n2 ·Var(np̂(xi)) = 1/n2 ·np(xi)(1−

p(xi)). Since 1 − p(xi) ≤ 1, we have that
m∑

i=1

√
1
n

p(xi) (1 − p(xi)) ≤
m∑

i=1

√
1
n

√
p(xi) ≤

√
1
n

√
m =

√
m

n
,

where the second inequality follows from Cauchy–Schwarz inequality. Putting everything together, we have
f(p) ≤

√
2 log (1/δ)

n +
√

m
n .

B.4 Proof of Lemma A.3

Proof Let p̂ the empirical estimate of p after n trials, i.e., p̂ = 1
n

∑n
i=1 I{sj = 1}, where {sj}n

j=1 are n i.i.d.
samples drawing from P . We first show that the probability p̂ ≤ p

2 is low. We have that

P
(

p̂ ≤ p

2

)
= P

(
(p − p̂) ≥ p

2

)
≤ exp

(
−2n

(p

2

)2
)

= exp
(

−np2

2

)
,

where the inequality follows from Hoeffding’s inequality. For a given δ > 0, by choosing n ≥ 2 log(1/δ)
p2 , we

have that with probability at least 1 − δ, p̂ ≥ p
2 . This implies that we observe at least np

2 samples of value 1
out of n trials.

B.5 Proof of Lemma A.4

Proof Without loss of generality, we assume m̂(x, a) ≥ m(x, a) and let λ∗ and λ̂∗ the optimal solution to
m and m̂, we have that

|m̂(x, a) − m(x, a)|

=
(

ϵλ̂∗ + Eξ∼P̂ 0
Ξ

sup
ζ∈Ξ

(
yx,a(ζ) − λ̂∗(ξ − ζ)2

))
−

(
ϵλ∗ + Eξ∼PΞ0

sup
ζ∈Ξ

(
yx,a(ζ) − λ∗(ξ − ζ)2))

≤

(
ϵλ∗ + Eξ∼P̂ 0

Ξ
sup
ζ∈Ξ

(
yx,a(ζ) − λ∗(ξ − ζ)2))−

(
ϵλ∗ + Eξ∼PΞ0

sup
ζ∈Ξ

(
yx,a(ζ) − λ∗(ξ − ζ)2))

≤ Ymax

|Ξ|∑
i=1

|p̂(ξi) − p(ξi)|.

Observe that
∑|Ξ|

i=1 |p̂(ξi) − p(ξi)| directly depends on the number of samples. Denote n(x, a) the random
variable representing the number of (x, a) pairs observed in the dataset. Let px,a be the probability of
observing each pair (x, a). Lemma A.3 implies that if we select n ≥ 2 log(1/δ)

p2
x,a

, we will observe at least npx,a

2
samples of (s, a) pairs with high probability. In addition, according to Lemma A.2, with high probability,
we have

|Ξ|∑
i=1

|p̂(ξi) − p(ξi)| ≤

√
2 log (1/δ)

n(x, a) +

√
|Ξ|

n(x, a)

Take a union bound on the following two events

{
n(x, a) ≥ npx,a

2

}
and


|Ξ|∑
i=1

|p̂(ξi) − p(ξi)| ≤

√
2 log (1/δ)

n(s, a) +

√
|Ξ|

n(x, a)

 ,
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we have that, with probability 1 − δ, if we select n ≥ 2 log(2/δ)
p2

x,a
, then

|Ξ|∑
i=1

|p̂(ξi) − p(ξi)| ≤

√
4 log (2/δ)

npx,a
+

√
2|Ξ|
npx,a

.

We complete the proof by taking the union bounds over all state action pairs and using the fact that px,a is
lower bounded by µπ0µx0 , which is implied by Assumption 2.1.

C Proofs for Off-Policy Learning

C.1 Proof of Theorem 5.1

Proof When V̂ ∗ ≥ V ∗, we obtain that |V̂ ∗ − V ∗| = V̂ (π̂∗) − V (π∗) ≤ V̂ (π∗) − V (π∗). Then,
the result follows by applying Theorem 3.2 to the policy π∗. When V ∗ ≥ V̂ ∗, we have that
|V̂ ∗ −V ∗| = V (π∗)− V̂ (π̂∗) ≤ V (π̂∗)− V̂ (π̂∗). The result follows by applying Theorem 3.2 to the policy π̂∗.

C.2 Proof of Theorem 5.2

Due to page limit, the sample size and the learning rate are not specified in Theorem 5.2. The theorem
below provides a complete version of Theorem 5.2.

Theorem C.1 (Query complexity of Algorithm 1). Assume that the policy space Θ is compact and convex
and there exist a finite number B > 0 such that for any x, y ∈ X , ∥x − y∥2 ≤ B. i) Suppose that l̂(θ, ζ) =∑k

i=1 πθ(ai|ζ)m̂(ζ, ai) is convex in θ and Ll̂-smooth in θ for any ζ ∈ X . For a given accuracy δ > 0, if we
set mt = O(δ−1) and γt = O(T −1/2), then it requires O(δ−2) iterations to find a δ-accurate optimal solution.
The total query complexity is O(δ−3). ii) Suppose that l̂(θ, ζ) =

∑k
i=1 πθ(ai|ζ)m̂(ζ, ai) is Ll̂-smooth in θ for

any ζ ∈ X . For a given accuracy δ > 0, if we set mt = O(δ−2) and γt = O(T −1/2), then it requires O(δ−4)
iterations to find a δ-accurate stationary point. The total query complexity is O(δ−6).

Before proving Theorem C.1, we first introduce some notations and study our problem under the framework
of conditional stochastic optimization (Hu et al., 2020).

Notations A function f(·) : Rk → R is said to be L-Lipschitz continuous on X if for any x, y ∈ X ,
|f(x) − f(y)| ≤ L∥x − y∥2; f(·) is said to be S-Lipschitz smooth on X if for any x, y ∈ X , f(x) − f(y) −
∇f(y)⊤(x−y) ≤ S

2 ∥x−y∥2
2; f(·) is said to be µ-convex on X if for any x, y ∈ X , f(x)−f(y)−∇f(y)⊤(x−y) ≥

µ
2 ∥x − y∥2

2.

Conditional stochastic optimization Consider the following conditional stochastic optimization prob-
lem:

min
u∈U

F (u) = Ex

[
fx

(
Eζ|x [gζ (u, x)]

)]
, (C.1)

where U ⊂ Rd, gζ(·, x) is a function that depends on random variables x and ζ. For a fixed x and given m
samples {ζj}m

j=1, define the finite sample function

F̂ (u; x, {ζj}m
j=1) = fx

 1
m

m∑
j=1

gζj
(u, x)

 .

20



Published in Transactions on Machine Learning Research (01/2024)

In addition, the biased gradient of F (u) is defined as:

∇uF̂ (u; x, {ζj}m
j=1) =

∇ufx

 1
m

m∑
j=1

gζj
(u, x)

⊤ 1
m

m∑
j=1

∇ugζj
(u, x)

 .

Recall the regularized Wasserstein DRO problem is defined as:

V̂η(π∗) = inf
θ,λ≥0

Ex∼P̂ 0
x

1
η

log

∑
ζ∈X

1
|X |

eη(l̂(θ,ζ)−λ(x−ζ)2)
+ ϵxλ

 . (C.2)

We now convert the regularized Wasserstein DRO problem into the conditional stochastic optimization
problem. Denote u = (θ, λ), for a fixed x sample from P̂ 0

x , we define

gζ(u, x) = eη(l̂(θ,ζ)−λ(x−ζ)2) · eηϵxλ, fx(·) = 1
η

log(·).

Thus we have V̂η(π∗) = infu F̂ (u) = infu

{
Ex∼P̂ 0

x

[
fx

(
Eζ∼uniform(X ) [gζ(u, x)]

)]}
. The regularized Wasser-

stein DRO problem is indeed a conditional stochastic optimization problem. Its biased gradient with respect
to θ, λ can be computed as follows:

∇θF̂ (θ, λ; x, {ζj}m
j=1) =

∑m
j=1 eη(l̂(θ,ζj)−λ(x−ζj)2)∇θ l̂(θ, ζj)∑m

j=1 eη(l̂(θ,ζj)−λ(x−ζj)2) ,

∇λF̂ (θ, λ; x, {ζj}m
j=1) = −

∑m
j=1 eη(l̂(θ,ζj)−λ(x−ζj)2)(x − ζj)2∑m

j=1 eη(l̂(θ,ζj)−λ(x−ζj)2) + ϵx.

As proven in Theorem 3.2 and 3.3 in Hu et al. (2020), to prove Theorem C.1, it suffices to show that the
following properties hold for our problem:

1. Bounded variance: σ2
g := supx,u∈U Eζ|x∥gζ(u, x) − Eζ|x [gζ(u, x)]∥2

2 < +∞

2. F̂ (u; x, {ζj}m
j=1) is convex in u if l̂(θ, ζ) is convex in θ and is Ll̂-smooth in θ (convex case); fx and

gzj are Lipschitz continuous and smooth if l̂(θ, ζ) is only Ll̂-smooth in θ (non-convex case)

3. Bounded second moment: there exist M > 0 such that E
[
∥∇uF̂ (u; x, {ζj}m

j=1)∥2
2|x
]

≤ M2 for any
u.

1. We first verify that regularized DRO problem satisfies the bounded variance propriety. Note that for any
x, u, ζ, as 0 ≤ l̂ ≤ Ymax and 0 ≤ λ ≤ Ymax/ϵx, we have that

eη(0− Ymax
ϵx

B2+0) ≤ gζ(x, u) ≤ eη(Ymax−0+ϵx
Ymax

ϵx
),

which implies that σ2
g ≤

(
e2ηYmax − e−ηYmaxB2/ϵx

)2
≤ e4ηYmax < +∞.

2. We now verify the convex case of the second propriety. For a given x and ζj , denote h(θ, λ; x, ζj) =
l̂(θ, ζj) − λ(x − ζj)2. As l̂(θ, ζj) is convex in θ by assumption and λ(x − ζj)2 is linear in λ, h(θ, λ; x, ζj) is
convex in θ and λ jointly. Consequently, for a given x ∈ X and {ζj}m

j=1, the function F̂ (u; x, {ζj}m
j=1) =

1
η log

(∑m
j=1

1
m eη(l̂(θ,ζj)−λ(x−ζj)2)

)
+ ϵxλ is convex in (θ, λ) since log

∑m
j=1

1
m exp (h(θ, λ; x, ζj)) preserves

convexity when h(θ, λ; x, ζj) is convex in (θ, λ).

For the non-convex case, we need to show both fx and gζj are smooth. As derived in the first property,
gζ is bounded. Thus, the domain of the function fx is restricted to the set [e−ηYmaxB2/ϵx , e2ηYmax ] and thus
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Table 2: Comparison between KL DRO and Wasserstein DRO
Method 0.8ϵ∗

1 ϵ∗
1 1.2ϵ∗

1 0.8ϵ∗
2 ϵ∗

2 1.2ϵ∗
2

KL DRO 47.27 49.84 52.20 49.86 53.07 56.09
Wasserstein DRO 41.53 43.36 45.04 41.82 43.72 45.49
Expectation under Q 35.58

fx(·) = 1
η log(·) is eηYmaxB2/ϵx/η-Lipschitz continuous and e2ηYmaxB2/ϵx/η2-Lipschitz smooth. We now show

that gζ(·, x) is smooth. For any given two points u and u′, we have that

∥∇ugζ(u, x) − ∇ugζ(u′, x)∥ ≤ ∥∇θgζ(u, x) − ∇θgζ(u′, x)∥ + ∥∇λgζ(u, x) − ∇λgζ(u′, x)∥
= ∥gζ(u, x)η∇θ l̂(θ, ζ) − gζ(u′, x)η∇θ l̂(θ′, ζ)∥ + ∥(gζ(u, x) − gζ(u′, x)) η(ϵx − (x − ζ)2)∥, (C.3)

where the equality follows from the definition of gζ functions for the regularized DRO problem. As l̂ is
Lipschitz smooth in θ, we can further bound equation C.3 as follows

equation C.3 ≤ ηe2ηYmax∥∇θ l̂(θ, ζ) − ∇θ l̂(θ′, ζ)∥ + ηB2∥gζ(u, x) − gζ(u′, x)∥

≤ ηe2ηYmaxLl̂∥θ − θ′∥ + ηB2eηYmax∥eηϵxλ − eηϵxλ′
∥

≤ ηe2ηYmaxLl̂∥θ − θ′∥ + ηB2e2ηYmax∥λ − λ′∥ ≤
√

2η(B2 + 1)e2ηYmax(Ll̂ + 1)∥u − u′∥.

As a result, gζ(u, x) is
√

2η(B2 + 1)e2ηYmax(Ll̂ + 1)-Lipschitz smooth in u for any x, ζ.

3. The bounded second moment property hold due to the fact that both ∥∇θ l̂(θ, ζj)∥ and ∥x − ζj∥ are
bounded as Θ is compact and ∥x − ζj∥ ≤ B.

As all three properties hold for the regularized Wasserstein DRO problem, we complete the proof.

D Connection of regularized Wasserstein DRO to entropy regularized primal
problems

Lemma D.1 (Strong duality for cost-regularized Wasserstein DRO (Azizian et al., 2022, Theorem 3.1)).
Take ϵ, η > 0. Then we have

sup
P ∈U(ϵ;P0)

Eξ∼P [f(ξ)] − 1
η

KL(σ|σ0) inf
λ≥0

{
ϵλ + Ex∼P0

[
1
η

log
(
Eζ∼σ0(·|x)

[
eη(f(ζ)−λ(x−ζ)2)

])]}
,

where U(ϵ; P0) = {P ∈ M+ : infσ

{
E(ξ,ζ)∼σ[c(ξ, ζ)] : σ1 = P 0, σ2 = P

}
≤ ϵ} and σ0(·|x) is a pre-specified

probability measure for each x ∈ X .

The dual problem in Lemma D.1 coincides with our dual formulation equation 4.1 if σ0(·|x) is chosen as a
uniform distribution over X .

Remark D.2 Note that the entropy-regularized term in the primal problem is added to the objective function.
It is possible to add the entropy-regularized term on the uncertainty set as well, which is referred to as
Sinkhorn distance in the optimal transport literature (Cuturi, 2013). Distributionally robust optimization
using Sinkhorn distance has recently been explored in Wang et al. (2021). Our construction is motivated
by directly smoothing the dual problem while Sinkhorn DRO starts from regularizing the primal problem. A
similar idea of smoothing dual problems was studied for semi-supervised learning problems; see Blanchet &
Kang (2020) for details.

E Comparison between KL DRO and Wasserstein DRO

We provide a simple DRO example to illustrate the differences when using different uncertainty set measures.
Let X = {xi}51

i=1 be the support set that spanning uniformly from 0 to 10. The true training distribution
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Figure 2: Distributions

P , the empirical training distribution P̂ and testing distribution Q are depicted in Figure 2. Note that only
the empirical distribution P̂ can be observed. We define the cost function f : X → R = x2. We then set the
radius for both KL (ϵ∗

KL) and Wasserstein (ϵ∗
W) by directly calculating the distance between P̂ and Q. The

robust values are shown in Table 2. With a slightly abuse of notation, ϵ∗
1 is defined as KL(Q||P̂ ) = 0.52 and

W(P̂ , Q) = 1.85 for each method, respectively. Since in practice we don’t observe Q and cannot compute
the true distance ϵ∗, we also provide results when ϵ is not accurate, e.g., when ϵ = 0.8ϵ∗

1 or ϵ = 1.2ϵ∗
1.

The expectation under Q method represents the true expected cost when x is distributed according to the
testing distribution Q. Both DRO methods provide valid upper bounds to the true expected costs. As
mentioned in Section 2, KL DRO tends to over-fit the largest cost and is not aware of the geometry of the
support. Here, we modify the distribution P̂ by setting x51 = 12 and the cost f(x51) = x2

51 and keep the
probability P̂ (X = x51) the same as before, i.e., only the last point of the support is modified. We call the
modified distribution P̃ . This new point x51 can be seen as an outlier to the original support set. We then
define ϵ∗

2 = KL(Q||P̃ ) = 0.52 and ϵ∗
2 = W(P̃ , Q) = 1.92 for each method, respectively. Observe that the

KL divergence does not change since the probability P̂ (X = x51) remains the same while the Wasserstein
distance increases as we increase one value of the support. As shown in Table 2, the Wasserstein DRO
method is robust to the outlier; the robust values obtained by the KL DRO method increase substantially
though the true expect cost remains the same.

In practice, if the dataset is not free of outliers and the outliers incur larger costs, it is better to use the
Wasserstein DRO method since it considers the geometry of the dataset and does not simply over-fit to high
costs.

F Additional Details of the Stroke Trial Application

The selected contextual variables, actions and follow-up events are described in Table 3. The cost function
is defined according to the random follow-up events:

cost = I{ISC14} + I{NK14} + I{HTI14} + I{PE14}
+ I{DVT14} + I{NCB14} + 3 · I{DDEAD}.

After removing patients according to the selection bias, the training set contains 4,340 patients. However,
since there are 9,936 distinct contexts, the number of data points for most contexts is limited. To address
this issue, we train two decision tree models , one for each action, to learn the average cost of each context
and action pair by grouping similar contexts together. We further group the contextual variables AGE and
RSBP into bins with size of 10 to reduce the support sizes. The decision trees parameters are cross-validated
and shown in Table 4. The same decision trees are used as inputs to all KL and Wasserstein DRO OPE and
OPL methods that are listed in Table 1.
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Table 3: Dataset summary
Variables Descriptions
RCONSC Conscious state at randomization (F-fully alert, D-drowsy, U-unconscious)
SEX M = male; F = female
AGE Age in years
RSLEEP Symptoms noted on waking (Y/N)
RATRIAL Atrial fibrillation (Y/N)
RSBP Systolic blood pressure at randomisation (mmHg)
STYPE Stroke subtype (TACS/PACS/POCS/LACS)
Action 1 If aspirin is allocated and heparin is allocated either 12500 or 5000 unites
Action 2 If both aspirin and heparin are not allocated
DDEAD Dead on discharge form within 14 days (Y/N)
ISC14 Indicator of ischaemic stroke within 14 days (Y/N)
NK14 Indicator of indeterminate stroke within 14 days (Y/N)
HTI14 Indicator of haemorrhagic transformation within 14 days (Y/N)
PE14 Indicator of pulmonary embolism within 14 days (Y/N)
DVT14 Indicator of deep vein thrombosis on discharge form (Y/N)
NCB14 Indicator of any non-cerebral bleed within 14 days (Y/N)

Table 4: Decision trees parameters
Parameters Action 1 Action 2
max depth 4 4
min samples leaf 5 2
score function mean squared error mean squared error

We calculate the initial Wasserstein distance ϵw = 0.03 by solving a linear program. Since the number of
optimization variables in the linear program is very large (approximately 108 variables), affecting our ability
to solve it, we restrict linear program to the subset of the support X , specifically, we only consider the
observed contexts in the training set. We calculate the Wasserstein distance between two random splits of
the training set restricted to a subset of the context variables. Note that this linear program restricted to
a subset of the context variables provides an upper bound to the solution of the linear program with full
context, as the search space is smaller and the linear program is a minimization problem.

The dual variables convergence results for OPE and OPL problems using Wasserstein DRO are presented
in Figure 3(a) and Figure 4(b) and the convergence results of using KL DRO are presented in Figure 3(b)
and Figure 5(b). Additionally, the policy parameters learning curves of the OPL problems of two different
methods are provided in 4(a) and 5(a), respectively.
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(a) Convergence curve of the dual variable of the regulated
Wasserstein DRO (BSGD) (ϵW = 0.03).

(b) Convergence curve of the dual variable of the Factor
KL DRO (gradient descent) (ϵKL = 0.1).

Figure 3: Policy evaluation convergence curves of the dual variables. The solid line and shades are averages
and standard deviations over 20 runs.

(a) Convergence curve of the policy parameters (b) Convergence curve of the dual variable

Figure 4: Policy learning convergence results of the regulated Wasserstein DRO (BSGD) (ϵW = 0.03). The
solid lines and shades are averages and standard deviations over 20 runs.

(a) Convergence curve of the policy parameters (b) Convergence curve of the dual variable

Figure 5: Policy learning convergence results of the Factor KL DRO (gradient descent) (ϵKL = 0.1). There
is no variance since the gradient descent method is deterministic.
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