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Abstract
In-context learning (ICL) suffers from oversen-001
sitivity to the prompt, making it unreliable in002
real-world scenarios. We study the sensitivity003
of ICL with respect to multiple perturbation004
types. First, we find that label bias obscures the005
true sensitivity, and therefore prior work may006
have significantly underestimated ICL sensitiv-007
ity. Second, we observe a strong negative cor-008
relation between ICL sensitivity and accuracy:009
predictions sensitive to perturbations are less010
likely to be correct. Motivated by these find-011
ings, we propose SENSEL, a few-shot selective012
prediction method that abstains from sensitive013
predictions. Experiments on ten classification014
datasets show that SENSEL consistently out-015
performs a commonly used confidence-based016
baseline on abstention decisions.017

1 Introduction018

Few-shot learning (FSL) refers to a system’s ability019

to quickly learn a new task based on a few labeled020

examples. Recently, in-context learning (ICL) has021

made significant progress in FSL, where a language022

model (LM) is prompted with a few demonstrated023

examples that enable it to make predictions for024

new examples without any gradient update. How-025

ever, a known issue of ICL is that it is oversensi-026

tive to the prompt (Zhao et al., 2021; Perez et al.,027

2021), making it less reliable in practice. Despite a028

near-universal acknowledgment of this issue, when029

and how the prediction is sensitive remains unclear030

(Min et al., 2022b; Kim et al., 2022). This paper031

fills these gaps.032

We conduct a systematic study of the ICL sensi-033

tivity to prompt perturbations. Specifically, we per-034

turb the task instruction (by paraphrasing and noise035

injection) and the in-context example orders. We036

then measure the prediction sensitivity by the mag-037

nitude of model output changes due to the prompt038

perturbation.039

Our first observation is that the extent of sensitiv-040

ity is significantly underestimated due to label bias041

in ICL: LMs tend to assign a higher probability 042

to a specific label regardless of the prompt (Zhao 043

et al., 2021), thus appearing to make stable predic- 044

tions. Our study shows that the adjusted sensitivity 045

after mitigating label bias is up to 2.8x of the raw 046

sensitivity. 047

After mitigating label bias, we observe a neg- 048

ative correlation between the adjusted sensitivity 049

and the accuracy of ICL: if a prediction is sensi- 050

tive to prompt perturbations, then it is likely to be 051

incorrect (Figure 1 left). This finding aligns with 052

our intuition that if the prediction is sensitive to the 053

prompt that elicits the LM concept (e.g., sentiment) 054

(Xie et al., 2022), then the example is likely not 055

typical for that concept, and is thus more challeng- 056

ing. Our experiments show a significant negative 057

correlation of up to −0.40 (Pearson) between ICL 058

sensitivity and accuracy. 059

Given the above findings, a natural idea is to use 060

sensitivity as a signal to abstain from making pre- 061

dictions on error-prone examples—an important 062

mechanism to increase user trust when deploying 063

ICL models to high-stakes domains such as health- 064

care (Korngiebel and Mooney, 2021; Sezgin et al., 065

2022) and legal systems (Eliot and Lance, 2021). 066

Our proposed method, Sensitivity-based Selective 067

prediction (SENSEL), uses sensitivity to make ab- 068

stention decisions: the LM abstains on examples 069

where its prediction is sensitive to prompt pertur- 070

bations (Figure 1 right). Compared to the common 071

approach of training a separate model to make ab- 072

stention decisions (Platt et al., 1999; Geifman and 073

El-Yaniv, 2019; Kamath et al., 2020), our approach 074

does not require large amounts of labeled data and 075

thus is more suitable for the few-shot setting. 076

Our experiments show that sensitivity is a 077

stronger signal than output probabilities for absten- 078

tion. SENSEL consistently outperforms a base- 079

line based on model probabilities (MAXPROB) by 080

up to +4.1 AUC points. Further analysis shows 081

that SENSEL and MAXPROB are complementary— 082
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Figure 1: ICL sensitivity-accuracy correlation (left): We plot the prediction sensitivity against the prediction
accuracy averaged over examples with that sensitivity. Different colors represent different perturbation sets
(Section 2.1), and color bands represent 95% confidence intervals. We observe a significant negative correlation
between the prediction sensitivity and accuracy of ICL. SENSEL (right): SENSEL measures the sensitivity of model
predictions to prompt perturbations, and abstains from making predictions on examples with high sensitivity.

MAXPROB falters on high-sensitivity tasks because083

it relies on oversensitive model probabilities for084

abstention, while SENSEL capitalizes ICL sensitiv-085

ity for abstention and hence works better on high-086

sensitivity tasks.1087

2 ICL Sensitivity Study088

In this section, we study the interplay between label089

bias and prediction sensitivity in ICL, as well as090

the relation between sensitivity and accuracy.091

2.1 ICL Sensitivity092

Background In-context learning is a FSL093

method using LMs. Given a test example x, we094

concatenate the task instruction I , a few (K) la-095

beled examples S = [(xσ(i), yσ(i))]
K
i=1 in σ order,096

and the test input x. The probability of each la-097

bel is then assigned by the next-word probabilities098

from the LM. We use pLM(y | x, I, S, σ) to denote099

the prediction probabilities, and f(x, I, S, σ) =100

argmaxy pLM(y | x, I, S, σ) to denote the pre-101

dicted (most likely) label.102

Despite its success, ICL is known to be highly103

sensitive. Several methods have been proposed104

to address this issue. Zhou et al. (2022) fine-tune105

LM to produce consistent predictions on various106

prompts, while Chen et al. (2022) and Min et al.107

(2022a) meta-train models to perform ICL to re-108

duce sensitivity. Lu et al. (2022) search for high-109

performance prompts that lead to less sensitive pre-110

dictions. Parallel to these works, we connect ICL111

1We will release our code after peer-review.

sensitivity to label bias and prediction accuracy, 112

and propose a new few-shot selective prediction 113

approach based on sensitivity. 114

Measuring Sensitivity We measure prediction
sensitivity by the magnitude of the changes in the
predicted label when the prompt is perturbed. We
perturb the task instruction and the order of the
in-context examples respectively. Formally, we
measure the sensitivity of a prediction f(x, I, S, σ)
with respect to perturbation set P as

1

|P |
∑

(I′,S′,σ′)∈P

1[f(x, I, S, σ) ̸= f(x, I ′, S′, σ′)].

We use three perturbation sets. Human Instruc- 115

tion Perturbation (INSTH) replaces the instruction 116

with other human-written instructions for the same 117

task; Automatic Instruction Perturbation (INSTA) 118

perturbs the task instruction by dropping out words 119

and paraphrasing (details in Appendix B); Exam- 120

ple Ordering Perturbation (EXORD) permutes the 121

ordering of the in-context examples. 122

Confounding with Label Bias One known issue 123

of ICL is label bias, where LMs assign a higher 124

probability to a specific label regardless of the 125

prompt, and hence appearing to make stable predic- 126

tions when the prompt is perturbed. Prior work mit- 127

igates label bias by adjusting the decision bound- 128

ary. For example, contextual calibration (CC) re- 129

normalizes the predicted label distribution such 130

that it is uniform given null examples (Zhao et al., 131

2021). Prototypical calibration (PC) clusters the 132
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Figure 2: We compare the raw sensitivity with the adjusted sensitivity (label bias mitigated with PC). We observe
that the adjusted sensitivity is consistently higher than the raw sensitivity for all three perturbation sets. Error bars
represent 95% confidence intervals.

Perturb Set AG News ARP DBP Emo CARER WikiQA YAT LYR YRFS MR Avg

INSTH −0.49 −0.55 −0.55 −0.28 −0.31 0.04 −0.35 −0.61 −0.27 −0.49 −0.39
(0.04) (0.02) (0.10) (0.11) (0.01) (0.10) (0.02) (0.09) (0.04) (0.02) (0.02)

INSTA −0.40 −0.39 −0.65 −0.27 −0.31 −0.18 −0.55 −0.41 −0.25 −0.39 −0.38
(0.02) (0.03) (0.08) (0.12) (0.04) (0.01) (0.01) (0.05) (0.03) (0.03) (0.01)

EXORD −0.38 −0.46 −0.82 −0.17 −0.32 −0.09 −0.51 −0.52 −0.26 −0.47 −0.40
(0.08) (0.02) (0.02) (0.06) (0.06) (0.05) (0.07) (0.03) (0.04) (0.07) (0.03)

Table 1: We report the Pearson correlation coefficient (and its standard deviation in parenthesis) between ICL
sensitivity and accuracy across five randomly sampled sets of few-shot examples (label bias mitigated with PC). We
observe a strong negative correlation between the ICL sensitivity and accuracy for all three perturbation sets.

LM’s predictions, maps each cluster to a label, and133

make predictions for new examples by their most134

likely cluster assignments (Han et al., 2022).135

2.2 Experimental Setup136

We first compare the raw sensitivity with the ad-137

justed sensitivity. We then compute the Pearson138

correlation coefficient (Freedman et al., 2007) be-139

tween the adjusted sensitivity and accuracy.140

We run experiments on ten classification datasets141

covering sentiment classification, emotion classifi-142

cation, topic classification, and question-answering.143

See Appendix A for dataset details. We use GPT-J144

6B (Wang and Komatsuzaki, 2021). We describe145

additional implementation details in Appendix B.146

For label bias mitigation, because the same obser-147

vations hold for PC and CC, we report PC results148

in the main paper and CC results in Appendix C.1.149

2.3 Findings150

Sensitivity is underestimated due to label bias.151

We report raw and adjusted sensitivity with respect152

to each perturbation set in Figure 2. ICL becomes153

more sensitive when label bias is mitigated. After154

prototypical calibration, the adjusted sensitivity is155

on average 99.0% higher. Therefore, we argue156

that the true sensitivity may have been significantly157

underestimated if label bias is not mitigated.158

Among the three perturbation sets, ICL is most159

sensitive to human instruction perturbations: the160

perturbations cause the predicted label to change 161

43.0% of the time (after mitigating label bias). This 162

may be caused by the semantic difference in var- 163

ious human instructions for the same task, such 164

as changing “Is this product review positive?” to 165

“Based on this review, would the user recommend 166

this product?”. 167

Sensitivity is negatively correlated to accuracy. 168

After mitigating label bias, we measure the Pear- 169

son correlation coefficient between sensitivity and 170

accuracy (Table 1). We observe a significant nega- 171

tive correlation between sensitivity (with respect to 172

all perturbation sets) and accuracy across datasets. 173

The correlation is strongest for human instruction 174

perturbations (−0.42). 175

3 Sensitivity-based Selective Few-shot 176

Prediction 177

Motivated by the correlation between the sensitiv- 178

ity and accuracy of ICL, we propose SENSEL—a 179

selective few-shot prediction method based on sen- 180

sitivity. 181

Problem Statement The goal of selective predic- 182

tion is to abstain on examples that the model is not 183

confident about, to avoid presenting wrong predic- 184

tions to users (Chow, 1957; El-Yaniv and Wiener, 185

2010). Selective prediction methods score model 186

confidence C on each example, and abstain on ex- 187

amples with low prediction confidence (C < γ), 188
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Figure 3: We compare our SENSEL method (label bias mitigated with PC) to the MAXPROB baseline on abstention,
measured by AUC score. SENSEL consistently outperforms MAXPROB on both the INST and NO INST setting.

where γ is a threshold to control the trade-off be-189

tween accuracy and coverage.190

Sensitivity-based Selective Prediction SENSEL191

scores ICL prediction confidence as the negative192

value of the prediction’s sensitivity to prompt per-193

turbations, and then abstains on on examples whose194

confidence scores (i.e., negative sensitivity scores)195

are below a certain threshold γ.196

Experiment Setup For SENSEL, we always use197

the adjusted sensitivity computed after mitigating198

the label bias. As writing good task instructions199

can be hard (Gao et al., 2021), we experiment with200

two settings: INST (a task instruction is available),201

and NO INST (no task instruction is available).202

We perturb the task instruction in the INST set-203

ting (SENSEL-INSTH, SENSEL-INSTA), and per-204

turb the example ordering in the NO INST setting205

(SENSEL-EXORD). We compare SENSEL to a206

simple yet strong baseline, MAXPROB, which uses207

the maximum output probability over the labels208

as the confidence score (Hendrycks and Gimpel,209

2017; Lakshminarayanan et al., 2017) We evaluate210

the effectiveness of selective prediction methods211

with the area under the F1-Coverage curve (AUC),212

which measures the average F1-score at different213

coverage rates (Kamath et al., 2020). For label bias214

mitigation, since the same conclusion holds for PC215

and CC, we report the results for PC in the main216

paper and the results for CC in Appendix C.2.217

Results According to Figure 3, SENSEL consis-218

tently outperforms MAXPROB. Among the three219

perturbation sets, SENSEL with human-written in-220

struction perturbations performs the best (outper-221

forming MAXPROB by an average margin of +4.1222

AUC points), which is consistent with our sensitiv-223

ity study that sensitivity to human-written instruc-224

tions has the strongest correlation with accuracy.225

Even when instructions are not available, SENSEL-226

EXORD outperforms MAXPROB consistently.227

To understand how well SENSEL and MAX-228

PROB perform on different tasks, we analyze the 229

two methods on tasks with different prediction sen- 230

sitivity. Specifically, we measure the correlation 231

between task sensitivity and task abstention perfor- 232

mance (measured by the AUC of each abstention 233

method minus that of a random abstention base- 234

line). Results show that MAXPROB works better 235

on tasks with low prediction sensitivity (Pearson 236

correlation −0.17), while SENSEL works better on 237

tasks with high prediction sensitivity (correlation 238

+0.28) (Figure 2, Figure 3). Hence, SENSEL and 239

MAXPROB are complementary: MAXPROB fal- 240

ters on high-sensitivity tasks (e.g., DBP) because 241

it relies on oversensitive model probabilities for 242

abstention, while SENSEL capitalizes ICL sensitiv- 243

ity for abstention and hence works even better on 244

high-sensitivity tasks. 245

4 Conclusion 246

While ICL sensitivity is a widely-known issue, its 247

relation to other variables is not studied. This work 248

first conducts a comprehensive study, and finds 249

that ICL sensitivity is negatively correlated with 250

accuracy when label bias is mitigated. Based on 251

this observation, we develop a few-shot selective 252

prediction method that abstains on highly sensi- 253

tive predictions. Our results show that ICL sen- 254

sitivity exhibits a useful pattern—it reflects how 255

confidently an LM understands the task. 256

There are many open questions for future work. 257

First, our study of the sensitivity-accuracy relation 258

is correlational but not causal. Future work should 259

explore causal experiments to study whether ICL 260

predictions are sensitive because they are uncer- 261

tain. Second, it remains unclear why sensitivity is 262

negatively correlated with accuracy in ICL, which 263

requires a better understanding of the mechanism 264

of ICL. Third, our work mainly focuses on the text 265

classification tasks. Future work can further ex- 266

plore other tasks such as text generation and ques- 267

tion answering with structured output. 268

4



References269

Stephen Bach, Victor Sanh, Zheng Xin Yong, Albert270
Webson, Colin Raffel, Nihal V. Nayak, Abheesht271
Sharma, Taewoon Kim, M Saiful Bari, Thibault272
Fevry, Zaid Alyafeai, Manan Dey, Andrea Santilli,273
Zhiqing Sun, Srulik Ben-david, Canwen Xu, Gun-274
jan Chhablani, Han Wang, Jason Fries, Maged Al-275
shaibani, Shanya Sharma, Urmish Thakker, Khalid276
Almubarak, Xiangru Tang, Dragomir Radev, Mike277
Tian-jian Jiang, and Alexander Rush. 2022. Prompt-278
Source: An integrated development environment and279
repository for natural language prompts. In Proceed-280
ings of the Association for Computational Linguistics:281
System Demonstrations.282

Ankush Chatterjee, Kedhar Nath Narahari, Meghana283
Joshi, and Puneet Agrawal. 2019. SemEval-2019284
task 3: EmoContext contextual emotion detection in285
text. In Proceedings of the International Workshop286
on Semantic Evaluation.287

Yanda Chen, Ruiqi Zhong, Sheng Zha, George Karypis,288
and He He. 2022. Meta-learning via language model289
in-context tuning. In Proceedings of the Association290
for Computational Linguistics.291

C. K. Chow. 1957. An optimum character recognition292
system using decision functions. IRE Transactions293
on Electronic Computers.294

Ran El-Yaniv and Yair Wiener. 2010. On the founda-295
tions of noise-free selective classification. Journal of296
Machine Learning Research.297

Dr Eliot and B Lance. 2021. Generative pre-trained298
transformers (gpt-3) pertain to ai in the law. Avail-299
able at SSRN 3974887.300

David Freedman, Robert Pisani, and Roger Purves.301
2007. Statistics: Fourth International Student Edi-302
tion. International student edition. W.W. Norton &303
Company.304

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.305
Making pre-trained language models better few-shot306
learners. In Proceedings of the Association for Com-307
putational Linguistics.308

Yonatan Geifman and Ran El-Yaniv. 2019. Selec-309
tiveNet: A deep neural network with an integrated310
reject option. In Proceedings of the International311
Conference on Machine Learning.312

Zhixiong Han, Yaru Hao, Li Dong, and Furu Wei. 2022.313
Prototypical calibration for few-shot learning of lan-314
guage models. ArXiv.315

Dan Hendrycks and Kevin Gimpel. 2017. A baseline for316
detecting misclassified and out-of-distribution exam-317
ples in neural networks. In International Conference318
on Learning Representations.319

Amita Kamath, Robin Jia, and Percy Liang. 2020. Se-320
lective question answering under domain shift. In321
Proceedings of the Association for Computational322
Linguistics.323

Junyeob Kim, Hyuhng Joon Kim, Hyunsoo Cho, 324
Hwiyeol Jo, Sang-Woo Lee, Sang-goo Lee, 325
Kang Min Yoo, and Taeuk Kim. 2022. Ground-truth 326
labels matter: A deeper look into input-label demon- 327
strations. ArXiv. 328

Diane M. Korngiebel and Sean D. Mooney. 2021. Con- 329
sidering the possibilities and pitfalls of Generative 330
Pre-trained Transformer 3 (GPT-3) in healthcare de- 331
livery. NPJ Digital Medicine. 332

Balaji Lakshminarayanan, Alexander Pritzel, and 333
Charles Blundell. 2017. Simple and scalable pre- 334
dictive uncertainty estimation using deep ensembles. 335
In Advances in Neural Information Processing Sys- 336
tems. 337

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, 338
Dimitris Kontokostas, Pablo Mendes, Sebastian Hell- 339
mann, Mohamed Morsey, Patrick Van Kleef, Sören 340
Auer, and Christian Bizer. 2014. Dbpedia - a large- 341
scale, multilingual knowledge base extracted from 342
wikipedia. Semantic Web Journal. 343

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, 344
and Pontus Stenetorp. 2022. Fantastically ordered 345
prompts and where to find them: Overcoming few- 346
shot prompt order sensitivity. In Proceedings of the 347
Association for Computational Linguistics. 348

Julian McAuley and Jure Leskovec. 2013. Hidden fac- 349
tors and hidden topics: Understanding rating dimen- 350
sions with review text. In Proceedings of the ACM 351
Conference on Recommender Systems. 352

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han- 353
naneh Hajishirzi. 2022a. MetaICL: Learning to learn 354
in context. In Proceedings of the North American 355
Chapter of the Association for Computational Lin- 356
guistics: Human Language Technologies. 357

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, 358
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle- 359
moyer. 2022b. Rethinking the role of demonstrations: 360
What makes in-context learning work? ArXiv. 361

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit- 362
ing class relationships for sentiment categorization 363
with respect to rating scales. In Proceedings of the 364
Association for Computational Linguistics. 365

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021. 366
True few-shot learning with language models. In 367
Advances in Neural Information Processing Systems. 368

John Platt et al. 1999. Probabilistic outputs for sup- 369
port vector machines and comparisons to regularized 370
likelihood methods. Advances in large margin clas- 371
sifiers. 372

Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, 373
Junlin Wu, and Yi-Shin Chen. 2018. CARER: Con- 374
textualized affect representations for emotion recog- 375
nition. In Proceedings of Empirical Methods in Nat- 376
ural Language Processing. 377

5

https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/2022.acl-long.53
https://doi.org/10.18653/v1/2022.acl-long.53
https://doi.org/10.18653/v1/2022.acl-long.53
https://doi.org/10.1109/TEC.1957.5222035
https://doi.org/10.1109/TEC.1957.5222035
https://doi.org/10.1109/TEC.1957.5222035
https://dl.acm.org/doi/pdf/10.5555/1756006.1859904
https://dl.acm.org/doi/pdf/10.5555/1756006.1859904
https://dl.acm.org/doi/pdf/10.5555/1756006.1859904
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3974887
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3974887
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3974887
https://books.google.com/books?id=vWeQDAAAQBAJ
https://books.google.com/books?id=vWeQDAAAQBAJ
https://books.google.com/books?id=vWeQDAAAQBAJ
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://proceedings.mlr.press/v97/geifman19a.html
https://proceedings.mlr.press/v97/geifman19a.html
https://proceedings.mlr.press/v97/geifman19a.html
https://proceedings.mlr.press/v97/geifman19a.html
https://proceedings.mlr.press/v97/geifman19a.html
https://arxiv.org/pdf/2205.10183.pdf
https://arxiv.org/pdf/2205.10183.pdf
https://arxiv.org/pdf/2205.10183.pdf
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=Hkg4TI9xl
https://doi.org/10.18653/v1/2020.acl-main.503
https://doi.org/10.18653/v1/2020.acl-main.503
https://doi.org/10.18653/v1/2020.acl-main.503
https://arxiv.org/pdf/2205.12685.pdf
https://arxiv.org/pdf/2205.12685.pdf
https://arxiv.org/pdf/2205.12685.pdf
https://arxiv.org/pdf/2205.12685.pdf
https://arxiv.org/pdf/2205.12685.pdf
https://doi.org/10.1038/s41746-021-00464-x
https://doi.org/10.1038/s41746-021-00464-x
https://doi.org/10.1038/s41746-021-00464-x
https://doi.org/10.1038/s41746-021-00464-x
https://doi.org/10.1038/s41746-021-00464-x
https://doi.org/10.1038/s41746-021-00464-x
https://doi.org/10.1038/s41746-021-00464-x
https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://aclanthology.org/2022.acl-long.556
https://aclanthology.org/2022.acl-long.556
https://aclanthology.org/2022.acl-long.556
https://aclanthology.org/2022.acl-long.556
https://aclanthology.org/2022.acl-long.556
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.18653/v1/2022.naacl-main.201
https://doi.org/10.18653/v1/2022.naacl-main.201
https://doi.org/10.18653/v1/2022.naacl-main.201
https://arxiv.org/pdf/2202.12837.pdf
https://arxiv.org/pdf/2202.12837.pdf
https://arxiv.org/pdf/2202.12837.pdf
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://proceedings.neurips.cc/paper/2021/file/5c04925674920eb58467fb52ce4ef728-Paper.pdf
https://www.researchgate.net/publication/2594015_Probabilistic_Outputs_for_Support_Vector_Machines_and_Comparisons_to_Regularized_Likelihood_Methods
https://www.researchgate.net/publication/2594015_Probabilistic_Outputs_for_Support_Vector_Machines_and_Comparisons_to_Regularized_Likelihood_Methods
https://www.researchgate.net/publication/2594015_Probabilistic_Outputs_for_Support_Vector_Machines_and_Comparisons_to_Regularized_Likelihood_Methods
https://www.researchgate.net/publication/2594015_Probabilistic_Outputs_for_Support_Vector_Machines_and_Comparisons_to_Regularized_Likelihood_Methods
https://www.researchgate.net/publication/2594015_Probabilistic_Outputs_for_Support_Vector_Machines_and_Comparisons_to_Regularized_Likelihood_Methods
https://doi.org/10.18653/v1/D18-1404
https://doi.org/10.18653/v1/D18-1404
https://doi.org/10.18653/v1/D18-1404
https://doi.org/10.18653/v1/D18-1404
https://doi.org/10.18653/v1/D18-1404


Emre Sezgin, Joseph Sirrianni, Simon L Linwood, et al.378
2022. Operationalizing and Implementing Pretrained,379
Large Artificial Intelligence Linguistic Models in380
the US Health Care System: Outlook of Generative381
Pretrained Transformer 3 (GPT-3) as a Service Model.382
JMIR Medical Informatics.383

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A384
6 Billion Parameter Autoregressive Language Model.385

Sang Michael Xie, Aditi Raghunathan, Percy Liang,386
and Tengyu Ma. 2022. An explanation of in-context387
learning as implicit bayesian inference. In Interna-388
tional Conference on Learning Representations.389

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.390
WikiQA: A challenge dataset for open-domain ques-391
tion answering. In Proceedings of Empirical Meth-392
ods in Natural Language Processing.393

Xiang Zhang and Yann LeCun. 2015. Text understand-394
ing from scratch. ArXiv.395

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.396
Character-level convolutional networks for text clas-397
sification. In Advances in Neural Information Pro-398
cessing Systems.399

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.400
PAWS: Paraphrase adversaries from word scrambling.401
In Proceedings of the North American Chapter of the402
Association for Computational Linguistics: Human403
Language Technologies.404

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and405
Sameer Singh. 2021. Calibrate before use: Improv-406
ing few-shot performance of language models. In407
Proceedings of the International Conference on Ma-408
chine Learning.409

Chunting Zhou, Junxian He, Xuezhe Ma, Taylor Berg-410
Kirkpatrick, and Graham Neubig. 2022. Prompt con-411
sistency for zero-shot task generalization. ArXiv.412

6

https://pubmed.ncbi.nlm.nih.gov/35142635/
https://pubmed.ncbi.nlm.nih.gov/35142635/
https://pubmed.ncbi.nlm.nih.gov/35142635/
https://pubmed.ncbi.nlm.nih.gov/35142635/
https://pubmed.ncbi.nlm.nih.gov/35142635/
https://pubmed.ncbi.nlm.nih.gov/35142635/
https://pubmed.ncbi.nlm.nih.gov/35142635/
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI
https://doi.org/10.18653/v1/D15-1237
https://doi.org/10.18653/v1/D15-1237
https://doi.org/10.18653/v1/D15-1237
https://arxiv.org/pdf/1502.01710.pdf
https://arxiv.org/pdf/1502.01710.pdf
https://arxiv.org/pdf/1502.01710.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://doi.org/10.18653/v1/N19-1131
http://proceedings.mlr.press/v139/zhao21c/zhao21c.pdf
http://proceedings.mlr.press/v139/zhao21c/zhao21c.pdf
http://proceedings.mlr.press/v139/zhao21c/zhao21c.pdf
https://arxiv.org/pdf/2205.00049.pdf
https://arxiv.org/pdf/2205.00049.pdf
https://arxiv.org/pdf/2205.00049.pdf


A Datasets413

We study ICL sensitivity and few-shot selective414

prediction on the following datasets: AG News415

(Zhang et al., 2015), Amazon Review Polarity416

(ARP, McAuley and Leskovec (2013)), DBPe-417

dia14 (DBP, Lehmann et al. (2014)), Emo2019418

(Emo, Chatterjee et al. (2019)), Contextualized419

Affect Representations for Emotion Recognition420

(CARER, Saravia et al. (2018)), Wiki Question421

Answering (WikiQA, (Yang et al., 2015)), Yahoo422

Answers Topics (YAT, Zhang and LeCun (2015)),423

Large Yelp Review (LYR, Zhang et al. (2015)),424

Yelp Reviews Full Star (YRFS, Zhang and LeCun425

(2015)), and Rotten Tomatoes Movie Review (MR,426

Pang and Lee (2005)).427

B Sensitivity Study Implementation428

Details429

ICL We set the number of shots K to four be-430

cause the performance flattens out beyond four ex-431

amples in our setting. All results are averaged over432

five randomly sampled sets of few-shot examples.433

Label Bias To reduce label bias, for CC we fol-434

low Zhao et al. (2021) and use the empty string, the435

“[MASK]” token, and the “N/A” string as the null436

examples. For PC, similar to Han et al. (2022) we437

use 1000 unlabeled examples for clustering.438

Perturbation Set For human instruction pertur-439

bation, we use task instructions from PromptSource440

(Bach et al., 2022), which provides on average 7441

task instructions for each task. For automatic in-442

struction perturbation, we generate 10 perturbed443

instructions by randomly dropping out 20% of the444

tokens in the instruction, and another 10 perturbed445

instructions by using a neural paraphrase model.446

We use a T5 model fine-tuned on the Google PAWS447

dataset (Zhang et al., 2019) as the paraphrase model448

and decode with nucleus sampling of top-p = 0.9.449

C Additional Results450

C.1 ICL Sensitivity Study451

Confounding Label Bias We report raw and ad-452

justed sensitivity (label bias mitigated by CC) in453

Figure 4. Similar to our observations on PC, ICL454

becomes more sensitive when label bias is miti-455

gated with CC. We also show the sensitivity scores456

for raw, CC and PC as table in Table 2.457

Sensitivity-Accuracy Correlation We report the 458

correlation between prediction sensitivity and ac- 459

curacy for raw and CC in Table 3. Similar to our 460

observations on PC, there is a significant negative 461

correlation between sensitivity and accuracy across 462

datasets for both raw and CC. 463

C.2 Sensitivity-Based Selective Few-shot 464

Prediction 465

Similar to results on PC, all three variants of 466

SENSEL consistently outperform MAXPROB when 467

CC is used to mitigate label bias (Figure 5). Among 468

the three perturbation sets, SENSEL with human- 469

written instruction perturbations performs the best 470

(outperforming MAXPROB by an average margin 471

of +3.9 AUC points). Similar to results on PC, 472

SENSEL-EXORD outperforms MAXPROB consis- 473

tently even when instructions are not available. We 474

also show the AUC scores as table in Table 4. 475

We also plot the Coverage-F1 curves, which 476

show coverage rates at different F1 thresholds 477

(Figure 6). The coverage-F1 curves for SENSEL- 478

INSTH and MAXPROB further verify that SENSEL 479

consistently outperforms MAXPROB on different 480

thresholds (Figure 6). 481
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Figure 4: We compare the raw sensitivity with the adjusted sensitivity (label bias mitigated with CC). We observe
that the adjusted sensitivity is consistently higher than the raw sensitivity for all three perturbation sets (INSTH:
Human Instruction Perturbation, INSTA: Automatic Instruction Perturbation, and EXORD: Example Ordering
Perturbation). Error bars represent 95% confidence intervals.

Perturb Set Sensitivity AG News ARP DBP Emo CARER WikiQA YAT LYR YRFS MR Avg

INSTH

Raw 0.46 0.21 0.37 0.46 0.24 0.01 0.40 0.27 0.29 0.20 0.29
(0.12) (0.01) (0.09) (0.11) (0.17) (0.02) (0.07) (0.01) (0.08) (0.06) (0.02)

PC 0.34 0.10 0.64 0.65 0.63 0.45 0.64 0.28 0.44 0.14 0.43
(0.05) (0.05) (0.05) (0.04) (0.03) (0.01) (0.04) (0.02) (0.04) (0.04) (0.01)

CC 0.43 0.19 0.42 0.56 0.35 0.52 0.48 0.25 0.33 0.21 0.37
(0.10) (0.08) (0.02) (0.06) (0.07) (0.05) (0.09) (0.02) (0.03) (0.08) (0.01)

INSTA

Raw 0.12 0.05 0.14 0.20 0.11 0.01 0.18 0.10 0.18 0.09 0.12
(0.04) (0.01) (0.03) (0.08) (0.08) (0.01) (0.02) (0.01) (0.04) (0.03) (0.01)

PC 0.24 0.06 0.54 0.55 0.58 0.20 0.57 0.09 0.38 0.08 0.33
(0.04) (0.02) (0.06) (0.03) (0.02) (0.01) (0.02) (0.00) (0.02) (0.02) (0.01)

CC 0.13 0.08 0.17 0.27 0.22 0.17 0.14 0.09 0.20 0.11 0.16
(0.02) (0.01) (0.04) (0.04) (0.06) (0.03) (0.01) (0.02) (0.02) (0.03) (0.01)

EXORD

Raw 0.20 0.12 0.17 0.33 0.12 0.00 0.36 0.12 0.29 0.13 0.18
(0.10) (0.06) (0.07) (0.18) (0.08) (0.00) (0.18) (0.03) (0.14) (0.09) (0.01)

PC 0.21 0.03 0.32 0.52 0.61 0.16 0.68 0.06 0.46 0.12 0.32
(0.08) (0.00) (0.05) (0.05) (0.02) (0.02) (0.03) (0.01) (0.05) (0.06) (0.01)

CC 0.12 0.07 0.12 0.46 0.33 0.07 0.46 0.10 0.27 0.24 0.23
(0.03) (0.03) (0.05) (0.08) (0.07) (0.06) (0.08) (0.01) (0.07) (0.08) (0.03)

Table 2: We compare the raw sensitivity with the adjusted sensitivity after mitigating label bias. We observe that
the adjusted sensitivity is consistently higher than the raw sensitivity for all three perturbation sets (INSTH: Human
Instruction Perturbation, INSTA: Automatic Instruction Perturbation, and EXORD: Example Ordering Perturbation).
The standard deviation across five randomly sampled sets of few-shot examples is reported in parenthesis.

Sensitivity Perturb Set AG News ARP DBP Emo CARER WikiQA YAT LYR YRFS MR Avg

Raw

INSTH −0.49 −0.50 −0.11 −0.21 −0.12 −0.09 −0.25 −0.54 −0.24 −0.31 −0.29
(0.14) (0.10) (0.17) (0.13) (0.12) (0.05) (0.03) (0.04) (0.05) (0.13) (0.04)

INSTA −0.24 −0.29 −0.17 −0.09 −0.06 −0.32 −0.19 −0.31 −0.12 −0.18 −0.20
(0.08) (0.12) (0.16) (0.12) (0.10) (0.23) (0.13) (0.03) (0.07) (0.11) (0.06)

EXORD
−0.14 −0.36 −0.16 −0.30 −0.08 / −0.13 −0.59 −0.22 −0.32 −0.26
(0.12) (0.16) (0.22) (0.19) (0.04) / (0.10) (0.03) (0.07) (0.13) (0.05)

CC

INSTH −0.50 −0.57 −0.38 −0.06 −0.29 −0.34 −0.35 −0.48 −0.28 −0.48 −0.37
(0.07) (0.05) (0.09) (0.04) (0.02) (0.09) (0.02) (0.10) (0.02) (0.10) (0.02)

INSTA −0.26 −0.24 −0.38 0.00 −0.14 −0.35 −0.28 −0.33 −0.20 −0.38 −0.26
(0.05) (0.12) (0.08) (0.03) (0.05) (0.03) (0.04) (0.09) (0.03) (0.08) (0.02)

EXORD
−0.19 −0.47 −0.52 −0.22 −0.30 −0.33 −0.37 −0.58 −0.20 −0.47 −0.37
(0.11) (0.07) (0.03) (0.08) (0.05) (0.09) (0.06) (0.05) (0.03) (0.05) (0.02)

Table 3: We report the Pearson correlation coefficient (and its standard deviation in parenthesis) between ICL
sensitivity and accuracy across five randomly sampled sets of few-shot examples (label bias mitigated with CC). We
observe a strong negative correlation between the ICL sensitivity and accuracy for all three perturbation sets.
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Figure 5: We compare our SENSEL method (confounding label bias mitigated by CC) to the MAXPROB baseline.
SENSEL consistently outperforms MAXPROB under both the INST setting and the NO INST setting.

PC

Method AG News ARP DBP Emo CARER WikiQA YAT LYR YRFS MR Avg

INST: MAXPROB
64.9 94.2 51.0 27.2 36.1 39.7 43.9 82.7 42.6 92.3 57.5
(4.0) (3.2) (8.5) (2.2) (2.9) (2.2) (1.3) (1.9) (1.6) (2.2) (0.7)

INST: SENSEL-INSTH 70.2 96.6 63.1 32.7 40.9 37.7 45.1 91.0 45.2 93.3 61.6
(4.5) (1.8) (11.0) (4.3) (2.1) (4.8) (1.5) (3.6) (3.5) (1.1) (1.1)

INST: SENSEL-INSTA 64.6 93.3 65.6 30.8 39.2 42.1 47.2 85.1 42.9 90.8 60.2
(3.5) (3.0) (10.5) (3.5) (2.5) (2.4) (1.5) (1.3) (1.8) (1.8) (0.8)

NO INST: MAXPROB
65.7 97.5 76.7 25.2 27.7 43.3 27.7 94.5 38.3 91.9 58.8
(6.0) (0.4) (6.1) (2.4) (4.9) (2.5) (6.6) (1.4) (2.9) (3.4) (1.5)

NO INST: SENSEL-EXORD
65.8 97.6 92.2 25.9 31.1 44.1 31.5 97.3 40.4 92.3 61.8
(5.1) (0.2) (3.9) (2.1) (6.4) (3.2) (7.9) (0.5) (3.3) (2.6) (2.1)

CC

Method AG News ARP DBP Emo CARER WikiQA YAT LYR YRFS MR Avg

INST: MAXPROB
59.6 86.5 52.3 21.2 49.5 38.6 45.2 80.6 47.6 77.3 55.8
(7.7) (7.1) (12.7) (3.1) (3.8) (4.2) (2.9) (3.4) (4.0) (13.5) (2.6)

INST: SENSEL-INSTH 67.1 92.1 54.4 20.6 46.7 43.3 49.3 85.8 57.2 81.0 59.7
(8.6) (8.6) (14.0) (3.7) (3.4) (2.4) (5.8) (6.5) (5.8) (15.9) (3.7)

INST: SENSEL-INSTA 59.5 83.5 53.8 18.1 45.4 41.9 49.3 82.4 52.5 77.4 56.4
(7.9) (9.8) (12.7) (3.2) (4.0) (1.9) (5.7) (3.4) (5.6) (12.3) (3.2)

NO INST: MAXPROB
51.4 94.7 87.0 31.3 32.1 50.7 27.7 93.0 37.7 73.3 57.9
(7.7) (2.4) (5.8) (4.4) (6.4) (0.7) (7.9) (3.9) (6.9) (7.7) (2.8)

NO INST: SENSEL-EXORD
52.9 96.4 83.2 34.5 33.1 51.1 29.5 97.1 40.9 80.8 60.0
(11.0) (1.8) (7.3) (5.7) (7.4) (1.3) (7.6) (1.6) (9.3) (6.2) (2.2)

Table 4: We report the AUC score of our SENSEL method and the MAXPROB baseline. SENSEL consistently
outperforms MAXPROB under both the INST setting and the NO INST setting. The standard deviation across five
randomly sampled sets of few-shot examples is reported in parenthesis.
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Figure 6: We plot the Coverage-F1 curves of MAXPROB and SENSEL-INSTH (confounding label bias mitigated by
PC). SENSEL-INSTH consistently achieves higher coverage rates at different F1 thresholds compared to MAXPROB.
Color bands represent 95% confidence intervals.
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