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Abstract

Recently, there has been a growing trend of uti-001
lizing Large Language Model (LLM) to eval-002
uate the quality of other LLMs. Many studies003
have fine-tuned judge models based on open-004
source LLMs for evaluation. While the fine-005
tuned judge models are claimed to achieve com-006
parable evaluation capability with GPT-4, in007
this work, we conduct an empirical study of008
LLM-as-a-Judge. Our findings indicate that009
although the fine-tuned judge models achieve010
high performance on in-domain test sets, even011
surpassing GPT-4, they underperform GPT-4012
across several dimensions, including generaliz-013
ability, fairness and adaptability. We also reveal014
that the fine-tuned judge model inherently op-015
erates as a task-specific classifier, consequently016
imposing the limitations1.017

1 Introduction018

Recently, the evaluation for Large-scale Language019

Models (LLMs) has drawn significant attention020

(Liang et al., 2022; Chang et al., 2023). Some021

research has proposed LLM-as-a-Judge (Li et al.,022

2023b; Zheng et al., 2023), namely utilizing pro-023

prietary LLMs, especially GPT-4 (Achiam et al.,024

2023), to evaluate the LLM’s response. By defining025

evaluation schemes in the prompt template, propri-026

etary LLMs can provide an accurate evaluation027

with high agreement with human evaluators.028

However, relying on external API for evaluation029

may introduce consideration about privacy leak-030

age, and the opacity of API models also challenges031

the evaluation reproducibility. To address these032

issues, several fine-tuned judge models are pro-033

posed (Zhu et al., 2024; Wang et al., 2024; Ke et al.,034

2024), relying on open-source foundation models035

and data constructed from either GPT-4 or human036

annotation, as shown in Figure 1. These models037

are validated on their respective meta-evaluation038

1Codes are anonymously available at https:
//anonymous.4open.science/r/UnlimitedJudge-7687

Which response is better?
Instruction: What is 1 plus 1.
Response 1: The result is 2.
Response 2: The result is 3.
Response 1 is better.
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Score the response from 1 to 5.
Instruction: What is 1 plus 1.
Response: The result is 2.
The score is 4.
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Figure 1: The general training and inference procedure
of fine-tuned judge models.

benchmarks, where the finetuned models exhibit 039

performance on par with GPT-3.5 and GPT-4, lead- 040

ing to the affirmation of their evaluation capability. 041

In this paper, we conduct an empirical study for 042

the evaluation capability of judge models. Experi- 043

ment results indicate that while the fine-tuned judge 044

models achieve superior accuracy on their respec- 045

tive in-domain test sets, they still exhibit limitations 046

compared with close-sourced proprietary models: 047

• The fine-tuned judge model is constrained by 048

specific evaluation scheme; 049

• The fine-tuned judge model is biased towards 050

superficial quality; 051

• The fine-tuned judge model is incapable of 052

aspect-specific evaluation; 053

We argue that these limitations primarily stem 054

from the fine-tuning process, where the foundation 055

model is transformed into a task-specific classifier 056

overfitted to the fine-tuning data. To draw a con- 057

clusion, the fine-tuned judge model cannot serve 058

as a general substitute for GPT-4 in terms of LLM 059

evaluation. It is advisable to exercise caution when 060

leveraging them for evaluation in real applications, 061

watching for the overlap between the evaluation 062
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Model Foundation Instruction Response Annotation Evaluation Scheme Testset

JudgeLM
(Zhu et al., 2024)

Vicuna Instruct Datasets
(Alpaca-GPT4,
Dolly-15K...)

11 models
(Alpaca,Vicuna...)

GPT-4 Pairwise Grading GPT-4

PandaLM
(Wang et al., 2024)

LLaMA Alpaca 52K 5 models
(LLaMA, Bloom...)

GPT3.5 Pairwise Selection Human

Auto-J
(Li et al., 2024a)

LLaMA2-chat Preference Datasets
(Chatbot Arena,
OpenAI WebGPT...)

Preference Datasets Human Pairwise Selection
Pointwise Grading

Human

Prometheus
(Kim et al., 2024)

LLaMA2-chat GPT-4 Generated GPT-4 Generated GPT-4 Pointwise Grading GPT-4

Table 1: Detailed statistics of the four fine-tuned judge models, which is the foundation of our empirical study.

Model JudgeLM-test PandaLM-test Auto-J-test Prometheus-test MT-Bench
accuracy F1 accuracy F1 agreement PCC-ind PCC-ood accuracy F1

JudgeLM-7B 82.39 72.97 68.17 65.18 45.3 0.398 0.384 48.7 48.7
PandaLM-7B 66.44 56.01 68.97 60.95 40.0 0.417 0.386 55.2 46.8
Auto-J-13B 77.79 62.64 72.17 64.10 53.6 0.614 0.591 51.7 43.7

Prometheus-13B 24.58 23.39 29.03 27.92 16.2 0.864 0.869 53.2 47.1
+grade-twice 54.24 50.04 45.25 43.58 47.8 — — — —
GPT-3.5-0613 72.57 51.40 64.36 46.40 42.7 0.636 0.563 — —
GPT-4-1106 84.24 72.83 75.78 71.51 56.9 0.742 0.743 66.9 61.9

Table 2: Results of evaluators on different evaluation schemes. Notice JudgeLM-test, PandaLM-test, Auto-J-test are
pairwise selection, Prometheus-test is pointwise grading, and MT-Bench is multi-turn evaluation.

scenario and the fine-tuning process.063

2 How Far can Fine-tuned Judges Go?064

In this section, we make a comprehensive empirical065

study based on four representative fine-tuned judge066

models in Table 12, and reveal there exist several067

limitations about their evaluation capabilities.068

2.1 Constrained by Evaluation Scheme069

One of the most appealing attributes of LLMs is070

their generalization ability, enabling them to exe-071

cute various tasks defined by various instructions072

(Zhu et al., 2023). Under the case of LLM evalua-073

tion, the instruction can also be formed in various074

schemes: pairwise selection, pointwise grading,075

chain-of-thought evaluation, etc. Since different076

judge models are fine-tuned on different schemes,077

we would like to verify their capability on uncov-078

ered schemes. Specifically, we apply their pub-079

licly released checkpoints, and cross-validate the080

judge models on each other’s testsets. We also vali-081

date the models on MT-bench (Zheng et al., 2023),082

which is a multi-turn meta-evaluation dataset.083

As shown in Table 2, all four models perform the084

2We make minimal change to the predefined prompts to
adapt the judge model to different schemes. Please refer to
Appendix A.2 for detailed implementations.

JudgeLM-test PandaLM-testModel accuracy F1 accuracy F1
JudgeLM-7B 82.39 72.97 68.17 65.18

+ CoT 81.68 71.59 68.03 64.42
+ ICL 68.57 58.52 41.14 40.39

PandaLM-7B 66.44 56.01 68.97 60.95
+ CoT 65.85 56.59 68.03 60.42
+ ICL 66.16 55.94 68.97 59.40

Auto-J-13B 77.79 62.64 72.17 64.10
+ ICL 76.20 59.12 68.37 58.44

GPT-3.5-0613 72.57 51.40 64.36 46.40
+ CoT 75.24 60.71 69.97 63.66
+ ICL 69.38 57.46 70.67 56.12

GPT-4-1106 84.24 72.83 75.78 71.51
+ CoT - - 77.08 71.77
+ ICL - - 64.86 56.20

Table 3: Results of evaluators with ICL and CoT. We
did not apply GPT-4 on JudgeLM-test as the annotation
of JudgeLM-test is conducted with GPT-4 without ICL
and CoT. We only apply ICL on Auto-J as the original
prompt of Auto-J comprises CoT.

best on their own training schemes, respectively, 085

with results comparable with GPT-4. However, 086

if we employ a model on an evaluation scheme 087

where it is not trained, the evaluation performance 088

would drop by a large margin. On the contrary, 089

close-sourced proprietary models such as GPT-3.5 090

or GPT-4 consistently exhibit superior performance 091

across various evaluation schemes. 092

2



HaluEval-QA HaluEval-Sum HaluEval-Dial ToxicChat SALAD-BenchModel accuracy F1 accuracy F1 accuracy F1 accuracy F1 accuracy F1
JudgeLM-7B - - - - - - - - 82.45 57.44
PandaLM-B - - - - - - - - 57.03 37.23
Auto-J-13B 58.30 56.03 53.10 43.34 63.10 62.90 87.40 52.24 86.88 52.66
w/o adapt 59.60 57.38 53.47 43.55 64.50 63.71 87.70 51.15 71.77 47.86

Prometheus-7B 47.90 45.84 44.50 40.38 51.00 45.17 77.10 58.14 - -
w/o adapt 48.90 45.10 46.60 36.43 53.40 50.24 81.20 61.87 - -

GPT-3.5-0613 57.50 57.10 62.60 60.27 72.10 72.08 95.10 80.80 95.54 61.70
GPT-4-1106 72.50 72.50 72.00 71.44 84.50 84.78 94.50 82.78 98.75 65.55

Table 4: Results of evaluators on aspect-specific evaluation. w/o adapt denotes using the original prompt without
adaptation to the specific aspect. For more details please refer to A.2.

Model LLMBar
Natu. Neig. GPTI. GPTO. Manu.

JudgeLM-7B 62.0 23.1 26.1 46.8 28.3
PandaLM-7B 59.0 16.5 21.7 42.6 26.1
Auto-J-13B 70.0 20.9 21.7 46.8 23.9

Prometheus-7B 53.0 22.4 17.4 27.7 32.6
GPT-4-1106 93.5 64.2 76.6 76.6 75.0

Table 5: Accuracy of evaluators on bias evaluation.

We also validate the judge models with two rep-093

resentative prompt engineering strategies, namely094

In-context Learning (ICL) (Dong et al., 2023) and095

Chain-of-Thought prompting (CoT) (Wei et al.,096

2022). As shown in Table 3, while the proprietary097

models are improved by a large margin through098

both prompt engineering strategies, the fine-tuned099

judges hardly benefit from these strategies, some-100

times even experiencing severe performance de-101

cline. Specifically, in the case of CoT prompt-102

ing, despite we modified the prompts for JudgeLM103

and PandaLM to generate CoT firstly, both models104

failed to produce CoT and adhered to their origi-105

nal output format, as they have lost their general106

instruction-following ability.107

2.2 Biased Towards Superficial Quality108

Recently, there has been a lot of research on the109

bias of LLM-based evaluators, namely the evalua-110

tor would favor more verbose answers, or answers111

with similar format (Wang et al., 2023b; Saito et al.,112

2023). Subsequently, Zeng et al. (2023) proposed113

LLMBar as a testbed for the fairness of evaluators.114

It comprises four adversarial testsets (Neig., Manu.,115

GPTO., GPTI.) with paired outputs of a correct an-116

swer and an incorrect answer with better superficial117

quality (e.g., more fluent, more verbose, etc.).118

We evaluate the judge models on LLMBar. As119

shown in Table 5, the fine-tuned judge models per-120

form poorly on adversarial testsets, even worse than121

random-guess. This notifies that they are severely 122

biased toward superficial quality such as formality 123

or verbosity, while neglecting crucial properties 124

such as instruction following, resulting in the pref- 125

erence for incorrect answers. On the other hand, 126

GPT-4 does not over-rely on the superficial features 127

and achieves decent accuracy on LLMBar. 128

2.3 Incapable of Aspect-specific Evaluation 129

LLM evaluation covers various aspects such as 130

helpfulness, safety, etc. In this part, we would like 131

to assess the evaluation capability of judge mod- 132

els on fine-grained aspects, based on the following 133

datasets: 1) HaluEval (Li et al., 2023a): for fac- 134

tuality evaluation; 2) ToxicChat (Lin et al., 2023): 135

for toxicity evaluation; 3) SALAD-Bench (Li et al., 136

2024b): for safety evaluation. 137

As can be seen from Table 4, the fine-tuned 138

judges fall far behind on all fine-grained aspects. 139

It deserves to notice that while Prometheus is de- 140

signed for fine-grained evaluation, it obtains an 141

inferior performance on both benchmarks, which 142

notifies that it failed to learn the correlation be- 143

tween fine-grained aspects and evaluation results. 144

For the purpose of comparison, we also apply 145

Auto-J and Prometheus with their original prompt 146

on aspect-specific evaluation. As can be seen in 147

Table 4, to our surprise, their performance remains 148

roughly the same compared with aspect-specific 149

prompts, notifying that both models have lost the 150

general instruction-understanding ability, therefore 151

the aspect-specific prompt is not taking effect. 152

3 The Essence of Fine-tuned Judge: A 153

Task-specific Classifier 154

Combining all the limitations revealed in our exper- 155

iments, we would like to claim that after the fine- 156

tuning process on a single task, the judge model has 157

degenerated into a task-specific classifier, which is 158
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Model JudgeLM-test PandaLM-test Auto-J-test Prometheus-test
accuracy F1 accuracy F1 agreement PCC-ind PCC-ood

Released Models† 82.39 72.97 68.97 60.95 53.6 0.864 0.869
Vicuna-generation‡ 82.44 71.77 72.37 60.78 47.6 0.826 0.815

Vicuna-classification‡ 82.16 70.07 70.87 60.34 46.8 0.846 0.831
DeBERTa-classification‡ 81.30 68.34 72.27 51.75 31.7 0.835 0.813

GPT-3.5-0613 72.57 51.40 64.36 46.40 42.7 0.636 0.563
GPT-4-1106-preview 84.24 72.83 75.78 71.51 56.9 0.742 0.743

Table 6: Comparison of generation and classification-based evaluators. Results with † are from evaluating the four
publicly released models on their respective testsets, and results with ‡ are from evaluating models trained by us.

F1 score GPT4

100 83.27 82.74 64.96

83.27 100 84.51 64.29

82.74 84.51 100 65.03

GPT4 64.96 64.29 65.03 100

Vicuna-
classification

DeBERTa-
classification

Vicuna-
generation

Vicuna-
generation

Vicuna-
classification

DeBERTa-
classification

Figure 2: The F1 score between the predictions of dif-
ferent evaluators on JudgeLM testset.

pearson GPT4

1.0 0.961 0.954 0.630

0.961 1.0 0.977 0.627

0.954 0.977 1.0 0.623

GPT4 0.630 0.627 0.623 1.0

DeBERTa-
classification

Vicuna-
classification

Vicuna-
generation

Vicuna-
generation

Vicuna-
classification

DeBERTa-
classification

Figure 3: The pearson coefficient between the predic-
tions of different evaluators on Prometheus testset.

overfitted to the training data. To support this, we159

fine-tune three groups of judges based on the four160

groups of data as listed in Table 13:161

1. Vicuna-generation (Chiang et al., 2023): It162

formulates the evaluation task in a generation-163

style, and the prediction head reuses the pre-164

trained language model head;165

2. Vicuna-classification: It formulates the eval-166

uation task as classification or regression, and167

the prediction head is newly initialized as a168

linear projection layer;169

3. DeBERTa-classification: It also formulates170

as a classification task, based on DeBERTaV3-171

large (He et al., 2023), which is 20 times172

smaller than the 7B version of Vicuna;173

3Please refer to Appendix A.1 for training details.

As shown in Table 6, the classification model per- 174

forms equally well as the generation model. The 175

formidable generative capabilities of LLMs hardly 176

bring any improvement to the evaluation, as they 177

are fitting to the same group of data. Moreover, 178

the DeBERTa-based classifier achieves compara- 179

ble performance with the LLM-based evaluators4, 180

which might be argued for that the encoder-only 181

architecture is more suitable for classification. 182

We also analyze the correlation between differ- 183

ent predictions made by different evaluators. As 184

shown in Figure 2 and 3, the correlation among 185

different classification models is much closer than 186

their correlation with GPT-4. Different as they are 187

in architectures, all three models are inherently clas- 188

sifiers fitting to the same set of supervision, leading 189

to similar evaluation outcomes. 190

Although prior research on instruction-tuning all 191

emphasizes the importance of data diversity (Zhou 192

et al., 2023; Lu et al., 2024), the fine-tuning of 193

judges is doing the opposite thing. Therefore, after 194

fine-tuning for a single task with a fixed prompt 195

template, the model lost its generalization ability, 196

and degenerate into a task-specific classifier, which 197

exhibits several limitations due to overfitting. 198

4 Conclusion 199

Although the fine-tuned models demonstrate supe- 200

rior performance on in-domain test sets, they still 201

have several limitations compared to GPT-4. While 202

increasing the fine-tuning data could possibly mit- 203

igate some of the limitations, as the potential of 204

LLM extends beyond boundaries, there will always 205

be new domains and tasks that are not covered by 206

the fine-tuning scope. Therefore, the fine-tuned 207

judge model cannot replace GPT-4 as a universal 208

evaluator for LLMs, and should be used judiciously 209

by watching the domain and task adaptability. 210

4The only exception is on Auto-J-test, which is possibly
due to a large proportion of the test data exceeds 512.
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Limitations211

Our work still has some limitations: 1) Due to212

space limitation, we did not present a possible solu-213

tion to mitigate the limitations of fine-tuned judge214

models. Instead, we present the possible solution215

in Appendix A.3, which mitigates the limitations216

with the integration of GPT-4. 2) The work of217

Zeng et al. (2023) is only a general assessment of218

evaluator bias, and we did not include fine-grained219

assessment for different biases, such as position220

bias (Wang et al., 2023a), verbosity bias (Saito221

et al., 2023), etc. 3) Due to time constraints, we did222

not incorporate manual inspection into the meta-223

evaluation process. Including human evaluators224

would enhance the credibility of our claims.225
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A Appendix 371

A.1 Training Settings 372

As mentioned in Section 2, we fine-tune our judge models based on the four groups of data (JudgeLM 373

(Zhu et al., 2024), PandaLM (Wang et al., 2024), Auto-J (Li et al., 2024a), Prometheus (Kim et al., 2024)), 374

both in generation-style and in classification-style, for the purpose of comparison. 375

Configuration Vicuna DeBERTa
max length 2048 512
learning rate 2e-5 2e-5
scheduler cosine decay cosine decay
optimizer AdamW AdamW
AdamW beta1 0.9 0.9
AdamW beta2 0.999 0.98
weight decay 0.0 0.0
training epochs 3 3
batch size 128 128
warmup ratio 0.003 0.003
numerical precision bf16 fp16
ZeRO optimizer stage 2 None

Table 7: Configurations of the fine-tuned judge models. Both classification and generation models leverage the same
group of configs based on their foundation model.

We train all the models on NVIDIA A100-80GB GPUs with Huggingface-transformers (Wolf et al., 376

2020) and DeepSpeed (Rasley et al., 2020). Detailed hyperparameters are presented in Table 7. Notice 377

when comparing generation and classification models, we adopt the same prompt template and same 378

hyper-parameters, with the only difference lying in the prediction method, as illustrated in Figure 4. For 379

generation model, the prediction head reused the pretrained language model head and is trained akin to 380

the process of language modeling. For classification (regression) model, the prediction head is newly 381

initialized as a linear projection layer, and is decoupled from the language modeling process5. 382

Figure 4: The architecture of classification-based judge model. The major difference lies in the prediction head,
where a new classification (regression) head is initialized for predicting the result.

A.2 Prompt Templates 383

As mentioned in Section 2, we take the publicly released checkpoints of the four fine-tuned judge models 384

and validate their performance. To make a fair comparison, we make minimal modifications to their 385

pre-defined prompts, to adapt them to different scenarios. The specific prompts designed for different 386

sections are listed as follows: 387

1. For Section 2.1, we adopt the prompts presented in Figure 7 to 14 for cross validation. Notice for 388

JudgeLM and PandaLM, their predefined prompts are in the form of pairwise selection, and we make 389

slight modifications to apply them on pointwise grading. For Prometheus, the predefined prompt is in 390

5Please refer to the class AutoModelForSequence Classification in Huggingface library for more details.
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Figure 5: The overall framework of CascadedEval. Conf. denotes the confidence score qualified by our indicator.

the form of pointwise grading, and we make slight modifications to apply it on pairwise selection. For391

Auto-J, they predefined prompts both for pairwise selection and pointwise grading. We also adopt the392

prompts presented from Figure 15 to 18 on MT-Bench, which are all adapted to multi-turn evaluation.393

We adopt the prompts presented in Figure 23 and Figure 24 for chain-of-thought prompting.394

2. For Section 2.2, we adopt the prompts presented in Figure 7, 9, 11 and 13, as LLMBar is pair-wise395

selection.396

3. For Section 2.3, we adopt the prompts presented in Figure 19 to 22 for JudgeLM, PandaLM and397

Auto-J, respectively. For Prometheus, as its original prompt comprises of scoring rubrics, we simply398

define the corresponding rubrics for different benchmarks. As HaluEval and ToxicChat are both399

binary classifications, we apply Auto-J and Prometheus with pointwise grading and conduct a grid400

search to determine the classification threshold. On the other hand, as SALAD-Bench is a pairwise401

classification, we apply pairwise selection models, namely JudgeLM, PandaLM, and Auto-J to select402

a better response.403

A.3 Integrate Fine-tuned Judge with GPT-4404

A.3.1 CascadedEval405

Despite the limitations revealed in our study, we aim not to disregard the significance of fine-tuned judges406

entirely. While LLMs are becoming increasingly prevalent, task-specific models are still wildly used in407

real applications, considering their superior in-domain performance and cost-effectiveness. Therefore,408

to make the most of fine-tuned judges for LLM evaluation, we propose a novel method, CascadedEval,409

integrating proprietary models such as GPT-4 to compensate for the limitations.410

The framework of CascadedEval is shown in Figure 5. When applying fine-tuned judge for evaluation,411

CascadedEval derive the confidence scores as a by-product and allocate the less confident samples to be412

re-evaluated by GPT-4.413

The key of our method is the confidence indicator. While previous works resort to perplexity or self-414

reflection to quantify the confidence (Jung et al., 2024), in this work, we propose an effective confidence415

indicator based on softmax probability distribution. Given an instruction x and a fine-tuned judge model416

with parameters θ, the confidence of evaluation y can be estimated as:417

SE(y|x, θ) = − 1

T

T∑
t=1

V∑
v=1

pθ(y
v
t )logpθ(y

v
t ), (1)418

where p(yt) represents the conditional distribution p(yt|x, y<t, θ) at each decoding step, T is the response419

length, and V is the vocabulary size. If the majority of the probability mass is concentrated on a limited420

number of vocabulary words, it indicates that the model is confident and the evaluation is more likely to421

be accurate, and vice versa.422

As we would like to quantify whether the sample lies in the task-specific fine-tuning scope, we further423

calibrate the SE as follows:424

SE-Cali(y|x, θj) = SE(y|x, θj)− SE(y|x, θb), (2)425

where θj denotes the fine-tuned judge model, and θb denotes its corresponding foundation model. By426

calibration, we aim to exclude the influence of foundation model, thus modeling solely the confidence427

instilled by the task-specific fine-tuning process.428
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Model SALAD-Bench JudgeLM-test PandLM-test Auto-J-test Averageaccuracy F1 accuracy F1 accuracy F1 agreement
GPT-4-1106 98.75 65.55 84.24 72.83 75.78 71.51 56.90 78.92
JudgeLM-7B 82.81 57.46 82.39 72.97 68.17 65.18 45.33 69.68

+CascadedEval 96.35 64.56 84.53 71.69 75.08 71.19 54.09 77.51
Auto-J-13B 72.76 52.72 77.79 62.64 72.17 64.10 53.59 69.08

+CascadedEval 93.85 62.73 81.07 64.91 76.27 72.09 57.69 77.22

Table 8: Experiment results of our proposed CascadedEval. We use SE-Cali to quantify the confidence of fine-tuned
judge models, and then allocate the less confident 50% to be evaluated by GPT-4.

Model Indicator SALAD-Bench JudgeLM-test PandLM-test Auto-J-test Averageaccuracy F1 accuracy F1 accuracy F1 agreement

JudgeLM-7B

random 82.50 57.36 80.40 71.87 67.54 65.20 43.25 59.42
perplexity 88.09 59.57 85.48 74.38 72.34 63.25 49.57 61.69

SE 95.10 63.62 89.40 78.09 77.96 64.01 55.89 65.40
SE-Cali 91.56 61.47 88.70 76.30 79.76 67.05 56.32 65.29

Auto-J-13B

random 72.29 48.10 77.27 60.7 71.54 63.51 46.12 54.61
perplexity 77.47 52.56 80.28 61.85 75.55 65.84 50.35 57.65

SE 81.98 54.68 79.13 63.58 80.16 66.61 53.01 59.47
SE-Cali 82.08 54.75 80.19 63.58 81.36 70.00 52.30 60.16

Table 9: Comparison of different confidence indicators for the judge models. We split the test sets into halves based
on different indicators, and report the performance of the judge on the half with higher scores.

With the effective confidence indicator, CascadedEval enhances the accuracy of fine-tuned judges by 429

routing the samples that fall outside the fine-tuning scope to GPT-4. Conversely, compared to using GPT-4 430

for all evaluations, CascadedEval significantly reduces the API expense without leading to performance 431

degradation. This is combining the best of both worlds. 432

A.3.2 Experiments 433

In this part, we verify the effectiveness of our proposed CascadedEval on both in-domain and out-of- 434

domain meta-evaluation testsets. As shown in Table 8, by allocating 50% of the less confident samples 435

to GPT-4, CascadedEval achieves an accuracy on par with GPT-4, even surpassing GPT-4 sometimes. 436

This verifies that the fine-tuned judges are highly effective when the evaluation sample aligns with the 437

fine-tuning scope. With our proposed confidence indicator, the degree of this alignment can be accurately 438

quantified, allowing for the targeted processing of less confident cases using enhanced proprietary models. 439

We also conducted an ablation study, where we control the proportion of samples allocated to GPT-4. 440

As shown in Figure 6, with more GPT-4 involvement, the evaluation accuracy firstly increases and then 441

slightly decreases. This notifies that there exists a balance in CascadedEval between fine-tuned judge and 442

GPT-4, which should be carefully monitored to ensure maximum benefit. 443

Moreover, to verify the effectiveness of the confidence indicator, we re-conduct the cross-validation in 444

Section 2, wherein the test set was split into halves based on different indicators6. As shown in Table 9, 445

our proposed indicators managed to select the samples with higher accuracy. This verifies the effectiveness 446

of softmax distribution-based indicator for confidence estimation. 447

In an additional experiment, we group the test set into five distinct buckets based on the SE-Cali scores 448

of each sample, and evaluate the accuracy for each bucket separately. As shown in Figure 6, the accuracy 449

on each bucket exhibit a strong correlation with the SE-Cali score. This underscores the efficacy of 450

SE-Cali as a reliable confidence indicator of the judge model. 451

6We did not compare with self-reflection, as the judge model has failed the general instruction-following ability.
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Figure 6: Left is the variation of accuracy on PandaLM-test with more samples allocated to GPT-4, and right is the
accuracy of Auto-J on SALAD-Bench when applied to different buckets of data grouped by SE-Cali scores, highest
in bucket 1 while lowest in bucket 5.

Figure 7: Prompt template for JudgeLM applied for pairwise selection.

Figure 8: Prompt template for JudgeLM applied for pointwise grading.
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Figure 9: Prompt template for PandaLM applied for pairwise selection.

Figure 10: Prompt template for PandaLM applied for pointwise grading.

Figure 11: Prompt template for Auto-J applied for pairwise selection.

Figure 12: Prompt template for Auto-J applied for pointwise grading.
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Figure 13: Prompt template for Prometheus applied for pairwise selection.

Figure 14: Prompt template for Prometheus applied for pointwise grading.
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Figure 15: Prompt template for JudgeLM applied for multi-turn grading.

Figure 16: Prompt template for PandaLM applied for multi-turn grading.
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Figure 17: Prompt template for Auto-J applied for multi-turn grading.

Figure 18: Prompt template for Prometheus applied for multi-turn grading.
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Figure 19: Prompt template for JudgeLM applied on SALAD-Bench.

Figure 20: Prompt template for Auto-J applied on HaluEval.

Figure 21: Prompt template for Auto-J applied on ToxicChat.
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Figure 22: Prompt template for Auto-J applied on SALAD-Bench.

Figure 23: Prompt template for JudgeLM applied with chain-of-thought prompting.
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Figure 24: Prompt template for PandaLM applied with chain-of-thought prompting.
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