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Abstract

Various Reinforcement Learning (RL) algorithms rely on
learning state-action value functions to learn an optimal pol-
icy. This framework can be easily extended to a Multi-Agent
RL (MARL) setting by considering joint actions, making
it the most common approach to this new scenario. How-
ever, such a setting presents challenges due to the exponen-
tial growth of the action space, the need for decentralized
policies for real-world applications, and dealing with non-
stationary environments during the learning process. This
work aims to study the performance of different MARL meth-
ods when scaling the number of agents. We also propose
two approaches to tackle the issue of scalability: a) a new
algorithm MFQMIX, which combines different techniques
for Q-value factorization, and b) using Incremental Learn-
ing, i.e. slowly increasing the number of agents in the envi-
ronment. We show that MFQMIX outperforms all baselines
when trained in a non-stationary setting against each other,
but its performance stalls when increasing the number of
agents. Nonetheless, Incremental Learning successfully im-
proves scalability, allowing agents to learn in more than twice
as crowded environments.

Introduction
Multi-Agent Reinforcement Learning (MARL) is a field that
has gained some traction recently (Busoniu, Babuska, and
De Schutter 2008; Zhang, Yang, and Başar 2021) for the
multiple applications it offers. From transmit power con-
trol (Nasir and Guo 2019) to UAV swarms (Chen, Chang,
and Zhang 2020), MARL has great potential to tackle many
emerging problems. Prior work has shown great results in
complex environments with a limited number of agents
(Bansal et al. 2017; Vinyals et al. 2019; Lowe et al. 2017).
However, the performance of these algorithms deteriorates
with large populations, hindering their possible applications.

We focus our work on obtaining good policies even with
a large population in a cooperative setting. In particular, we
work in environments consisting of two teams competing
against each other, where the agents within one team act co-
operatively. However, we will be modeling only the agents
of one of the teams, that is, the other agents are understood
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as part of the environment, which is why we consider this
to be a cooperative setting. Additionally, our work is framed
in a setting where we only have a single common team re-
ward (i.e. all agents share and observe the same reward),
since it’s a very general framework and the most suitable for
real use cases. Notice that depending on whether the other
team is being modeled by a fixed policy or a dynamic one,
we will be working in a stationary or a non-stationary set-
ting respectively. Even though we will be focusing mostly
on stationary settings, we will conduct some experiments on
a non-stationary setting, to better tell apart which algorithms
are more performant than the others, and to make sure that
algorithms are able to adapt to changes in the environment,
which is a desirable characteristic, since most real-life sce-
narios may require it.

When having direct feedback for each agent (i.e. each
agent observes its own contribution towards the shared team
reward), some prior work has shown great results even with
many agents (Yang et al. 2018; Subramanian et al. 2020).
Among these methods, those leveraging Mean Field Games
(MFG) theory (Jovanovic and Rosenthal 1988; Guo et al.
2019), seem to perform better (Yang and Wang 2020). This
framework makes a pass to the limit and characterizes all
agents through a mean field distribution, reducing the multi-
agent problem to a two-player game: that is, an arbitrary
agent and an agent with an action distribution given by the
mean-field action (Carmona, Delarue et al. 2018). However,
such methods have some strong assumptions about the envi-
ronment, such as considering all agents are similar to each
other. And crucially, their performance doesn’t scale well
when dealing with a single joint team reward among all
agents: i.e. when the agents cannot observe their individ-
ual contributions, but are just given feedback of the whole
team’s performance, which is the scenario that concerns us.

In this work, we study the scalability of the most recent
work in terms of performance when having joint feedback
for the team. We propose a new algorithm MFQMIX, that
combines MFG techniques with the best-performing algo-
rithms on MARL algorithms for a small number of agents, to
tackle the issue of scalability. We also propose using Incre-
mental Learning by slowly increasing the number of agents
interacting in the environment during the learning process,
which we show helps mitigate the degradation in perfor-
mance that scaling the number of agents produces.



Preliminaries
This work deals with mixed cooperative-competitive games,
where two teams compete against each other. However, we
only model one of the teams at a time, understanding the
other one as part of the environment. Hence, formally, we
work in a strictly cooperative setting. From the perspective
of the modeled team, a game can be represented by a tu-
ple G = ⟨S,A, P,R, µ, γ, n⟩, where S represents the state
space, A = A1 × · · · × An represents the action space,
in which Ai denotes the set of actions of the i-th agent
(which in our case is symmetric for all agents: Ai = A1),
P : S × A → ∆(S) represents the transition probabilities,
R : S ×A → R the rewards, µ ∈ ∆(S) the initial state dis-
tribution, n the number of agents of the team and γ ∈ [0, 1)
the discount factor. Let rt = R(st,at) denote the reward
of the team at timestep t. Our objective is to find a policy
π = π1 × · · · × πn : S → ∆(A), where πi : S → ∆(Ai),
that maximizes the expected discounted joint reward, that is,

argmaxπ E [r|s0 ∼ µ,at ∼ π(·|st), st+1 ∼ P (st,at)]
where r =

∑∞
t=0 γ

trt. Notice that we require the policy
to allow a factorization in terms of independent agent poli-
cies πi, because we want to obtain decentralized policies,
i.e. each agent should decide its action on its own, given the
current state. A joint policy has associated a joint action-
value function Qπ(s,a) = E [r|s0 = s,a0 = a, P, π]. No-
tice that such a Q-value function allows us to find the best
possible joint action a by considering argmaxa∈A Q(s,a).
However, evaluating this expression takes exponential time
with respect to the number of agents, and does not allow
us to obtain decentralized policies. Most algorithms (Sune-
hag et al. 2017; Rashid et al. 2020; Peng et al. 2021) tackle
this issue by assuming the existence of a factorization of the
joint Q function into individual Q-value functions Qπi

(s, ai)
such that the joint Q-function can be obtained by a (poten-
tially non-linear) combination of the individual ones. We
will compare different approaches used to factorize the joint
state-action values and propose a new method that leverages
techniques from Mean Field Games in order to find a factor-
ization of the joint Q-function that approximates it better.

Related Work
Most prior work aims to decompose the joint state-action
value function into independent ones, i.e. Q(s,a) =
f(Q1(s, a1), . . . , Qn(s, an)). One of the first such methods
was VDN (Sunehag et al. 2017), which factorizes Q(s,a) as
a sum of Qi(s, ai), where each Qi(s, ai) is represented by a
neural network (NN). More recent work (Rashid et al. 2020)
shows that we can factorize Q using a non-linear function
f , and that, as long as f is monotonically increasing, the
joint action maximizing the Q-function is the one formed
by maximizing each Qi function independently, meaning
we can extract optimal decentralized policies from it. In
(Rashid et al. 2020) the authors model f also using a NN: fθ,
but guaranteeing its monotonicity by generating its weights
through a hyper-network. Finally, some of the most recent
work (Peng et al. 2021) shows that by modeling f as a non-
monotonic function, i.e. without said restriction, and by just

taking the maximum action for each agent, one can get sim-
ilar and even in some cases better results.

Some other works are framed in a different setting: each
agent has an individual reward function, meaning each agent
i gets an individual feedback rit. In this setting, the indi-
vidual rewards give rise to independent Q-value functions
Qi(s,a) = E

[
ri
]

where ri denotes the discounted total re-
ward for agent i. However, methods assuming direct feed-
back on each agent also require breaking down the joint
action on each individual Q-function in order to get a de-
centralized and good-performing policy. Some of the most
successful recent work (Yang et al. 2018; Subramanian et al.
2020), leverages the theory on MFG to propose a completely
different way to factorize it. In (Yang et al. 2018) the authors
show that we can approximate Qi(s,a) ≈ Qi(s, ai, ai),
where ai denotes the mean action taken by the local neigh-
borhood Ni of agent i. Assuming that agents outside this
neighborhood don’t contribute to rit, such an approximation
theoretically guarantees the convergence of the method, and
that a Nash Equilibrium will be reached.

Experiment details
The experiments are run in general-sum games from Ma-
gent2 (Zheng et al. 2018). The environments feature two
agent populations. In Adversarial Pursuit, a fixed num-
ber of predators earn rewards for tagging prey, while prey
can move again after being tagged. Predators are penal-
ized for attempting to tag but rewarded upon success. Preys
are penalized only when tagged. In Battle, two symmetri-
cal teams compete, earning rewards for tagging opponents.
The algorithms are implemented using the MARL frame-
work XuanCe (Liu et al. 2023).

We are running two sets of experiments. First, we com-
pare each method against a random policy in Adversarial
Pursuit. This allows for an easy comparison of the methods
in a stationary setting, showing which ones scale and per-
from better overall. Secondly, we run a simulation between
every pair of methods in Battle, where they learn at the same
time. This reveals the algorithms’ true performance in a non-
stationary setting and which method performs better in a fair
head-to-head.

Adversarial Pursuit is shown in Figure 1. The agents un-
der an MFQ policy after convergence are shown. We can
observe how the different predators learn to corner prey and

Figure 1: Adversarial pursuit environment. The beginning
of the game is shown at the left, and an advanced step after
convergence is shown at the right. Red are the predators, and
blue are the prey (random policy).



Figure 2: Battle environment example: The left shows the
game at the start; the right depicts a later stage after conver-
gence. Red represents MFQ, and blue a random policy.

tag them all the time, maximizing their reward. The envi-
ronment Battle is shown in Figure 2. After convergence, the
populations whose policy has been trained (red) tend to stick
together in separate groups, with a small tagging fight along
the separating plane.

Methods
Motivation
Current MARL algorithms struggle with large populations
when dealing with a common reward for the whole team.

Figure 3 depicts the performance of some of the baselines,
namely QMIX, MFQ, and IQL, in a joint reward setting. The
plot shows that QMIX and MFQ scale better than IQL with
the number of agents, and, in particular, MFQ converges
much faster than QMIX when dealing with large popula-
tions. However, no method manages to obtain a good policy
when the number of agents is 25 or higher (they just collapse
to 0 reward, which is the equivalent of not tagging at all).
That is, no algorithm scales well in a joint reward setting.

Additionally, Figure 4 compares the performance of MFQ
with varying number of agents in two settings: shared team
rewards and individual rewards based on each agent’s con-
tribution to the total team reward (sum of rewards). The re-
sults show a major performance drop in the joint rewards set-
ting as agent numbers increase, highlighting the challenge of
disentangling a shared reward into individual contributions.
This motivates the search of better methods to disentangle
team rewards as the population scales. Hence, in this work
we:
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Figure 3: Baseline performance in Adversarial Pursuit
across different population sizes. Predators learn policies us-
ing various algorithms, while prey follows a fixed random
policy. The map size scales with the number of agents, and
rewards are normalized.

0 0.5M 1M 1.5M 2M 2.5M 3M

−50

0

50

100

150

200

250

300

350 2 agents
7 agents
25 agents

Joint Rewards - Adversarial pursuit

Number of steps

R
ew

ar
d

0 0.5M 1M 1.5M 2M 2.5M 3M

−50

0

50

100

150

200

250

300
2 agents
7 agents
25 agents

Independent Rewards - Adversarial pursuit

Number of steps

R
ew

ar
d

Figure 4: Training MFQ in Adversarial Pursuit: Left plot
shows training with a shared team performance reward,
while the right plot uses individual agent contributions as
rewards. Rewards are normalized by the number of agents.

• Develop MFQMIX, a new algorithm designed to im-
prove scalability and performance in MARL by making
a less harsh approximation of the joint Q function into
individual Q functions.

• Use Incremental Learning by starting with smaller popu-
lations, where fewer agents make it easier to disentangle
the team reward, and gradually expanding to larger pop-
ulations.

Mean Field QMIX
We propose a new algorithm MFQMIX, which lever-
ages the use of MFG theory displayed by some previ-
ous work focused on individual agent rewards, to boost
some of the best methods dealing with team rewards.
In particular, we propose to make a less optimistic ap-
proximation than QMIX, by approximating Q(s,a) ≈
f(Q1(s,a), · · · , Qn(s,a)), on the premise that, in most sce-
narios, we can decompose the joint reward into a reward
based on each agent’s performance, which might be in-
fluenced, to a certain extent, by other agents. Notice we
keep the monotonicity constraint of QMIX. We can lever-
age the typical approximation in MFQ by considering the
other agents as a distribution over actions. In our case,
we further use this technique to approximate the joint Q-
value function Q(s,a) ≈ f(Q1(s,a), · · · , Qn(s,a)) ≈
f(Q1(s, a1, a1), · · · , Qn(s, an, an)), where ai denotes the
action distribution over the agents in Ni: the neighborhood
of agent i (which consists of the 10% closest agents to agent
i). In practice, we don’t train separate neural networks for
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Figure 5: MFQMIX breaks down the joint Q-value by con-
sidering a combination of individual Q-functions together
with the mean actions of their neighborhood.



each agent. Instead, we use a shared network with unique
embeddings for each agent. This allows agents to develop
distinct policies while benefiting from the shared learning
history of other agents.

We will be studying a set of baselines from both settings:
QMIX (Rashid et al. 2020), MFQ (Yang et al. 2018) and,
IQL (Tan 1993), with which we aim to compare our method.

Incremental Learning
We observed that performance declines in large populations
likely because it’s difficult to disentangle each agent’s con-
tribution to the team’s reward. To address this, we propose
Incremental Learning in multi-agent environments, grad-
ually increasing the number of agents. Initially, inactive
agents are excluded from training, simplifying reward attri-
bution for smaller groups. This helps agents better under-
stand the environment. As more agents are added, the ear-
lier ones adapt more easily due to their established policies.
Since all agents share some policy parameters (with specific
embeddings), newly added agents also benefit from a better
starting point than random initialization.

In our experiments, the number of agents and prey remain
constant, but only a subset of agents T use our policy (the
other ones act randomly), and it is this subset that is being
used to train the policy. As training goes on, we increase the
number of learning agents by including more agents in T .
We do so linearly, adding a batch of learning agents every
few epochs, giving enough time for the network to converge
with each new batch.

Results
We ran all experiments using 5 different seeds, reporting the
mean and standard deviation in each plot. Figure 7 shows the
performance of MFQMIX compared to the baselines in the
two described environments. In the upper plot, we observe
that MFQMIX is still not able to achieve high rewards with
large populations. In the non-stationary setting in the bot-
tom, we compare QMIX, MFQ, and MFQMIX in a head-
to-head battle. The reward difference is shown and reveals
that MFQMIX is the most performant algorithm, achiev-
ing higher reward differences. The curves for QMIX and
MFQMIX show unstable training due to the complex archi-
tecture on which they rely, as seen in (Hu et al. 2021).
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Figure 6: Incremental Learning during training allows
agents to learn effectively in up to twice larger populations.
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Figure 7: MFQMIX is tested in a stationary setting in adver-
sarial pursuit (up). Moreover, MFQ, QMIX, and MFQMIX
are run against each other (i.e. non stationary setting) in bat-
tle with 12 agents per team (down). Both teams have the
same reward function and we study their differences.

Incremental Learning, on the other hand, allows us to
tackle the scalability issue. Figure 6 shows how training us-
ing incremental learning breaks the 0-reward barrier, allow-
ing it to scale up to double the number of agents. It is ob-
served that, as the number of agents is larger, the reward per
agent is not as great. The achieved policy is not as good as
with a smaller number of agents, leaving room for improve-
ment for a very large number of agents.

Conclusion
In this work, we showed the problem of scalability in
MARL, motivating the need to find better alternatives. We
proposed new methods to tackle this issue.

• We characterized the problem of scalability in MARL
and proposed two approaches to tackle it. A new al-
gorithm MFQMIX, and a training method (incremental
learning) and its benefits were experimentally shown.

• MFQMIX still struggles with scalability, though it is
more performant than QMIX and MFQ in non-stationary
settings. This result highlights the importance of the
mean-field action as a contribution to the algorithms.

• Incremental Learning is experimentally found to greatly
improve scalability, allowing the agents to learn in much
large populations. This result is explained by its ability to
better disentangle the reward between different agents.

Future work includes analyzing different Incremental
Learning strategies, as well as a theoretical analysis of the
reward decomposition.



References
Bansal, T.; Pachocki, J.; Sidor, S.; Sutskever, I.; and Mor-
datch, I. 2017. Emergent complexity via multi-agent com-
petition. arXiv preprint arXiv:1710.03748.
Busoniu, L.; Babuska, R.; and De Schutter, B. 2008. A
comprehensive survey of multiagent reinforcement learning.
IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 38(2): 156–172.
Carmona, R.; Delarue, F.; et al. 2018. Probabilistic theory
of mean field games with applications I-II. Springer.
Chen, Y.-J.; Chang, D.-K.; and Zhang, C. 2020. Au-
tonomous tracking using a swarm of UAVs: A constrained
multi-agent reinforcement learning approach. IEEE Trans-
actions on Vehicular Technology, 69(11): 13702–13717.
Guo, X.; Hu, A.; Xu, R.; and Zhang, J. 2019. Learning
mean-field games. Advances in neural information process-
ing systems, 32.
Hu, J.; Jiang, S.; Harding, S. A.; Wu, H.; and Liao, S.-
w. 2021. Rethinking the implementation tricks and mono-
tonicity constraint in cooperative multi-agent reinforcement
learning. arXiv preprint arXiv:2102.03479.
Jovanovic, B.; and Rosenthal, R. W. 1988. Anonymous se-
quential games. Journal of Mathematical Economics, 17(1):
77–87.
Liu, W.; Cai, W.; Jiang, K.; Cheng, G.; Wang, Y.; Wang,
J.; Cao, J.; Xu, L.; Mu, C.; and Sun, C. 2023. XuanCe: A
Comprehensive and Unified Deep Reinforcement Learning
Library. arXiv preprint arXiv:2312.16248.
Lowe, R.; Wu, Y. I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.;
and Mordatch, I. 2017. Multi-agent actor-critic for mixed
cooperative-competitive environments. Advances in neural
information processing systems, 30.
Nasir, Y. S.; and Guo, D. 2019. Multi-agent deep reinforce-
ment learning for dynamic power allocation in wireless net-
works. IEEE Journal on Selected Areas in Communications,
37(10): 2239–2250.
Peng, B.; Rashid, T.; Schroeder de Witt, C.; Kamienny, P.-
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