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Abstract

The cubic computational complexity of Gaussian Process Regression (GPR) with respect to
the number of data points is a major bottleneck to its scalability. While various approaches
have been proposed to address this, few come with provable guarantees. Inspired by the
success of ridge leverage score based sampling in scaling kernel ridge regression |[El Alaoui &
Mahoney| (2015)), we propose a sketch-based approximation for GPR using ridge leverage
scores. We provide theoretical guarantees on the approximation of the predictive mean,
predictive variance, and negative log-marginal likelihood in this setting. To the best of
our knowledge, these are the first theoretical guarantees for approximating the predictive
variance and negative log-marginal likelihood of GPR using ridge leverage score sampling. We
further show that a carefully constructed sketch of the kernel matrix preserves key statistical
properties of the full GPR model with high probability. Our theoretical results are supported
by empirical evaluations on real-world datasets, demonstrating strong trade-offs between
accuracy and efficiency.

1 Introduction

Gaussian Process Regression (GPR) is a fundamental method in probabilistic machine learning, offering a
principled non-parametric approach to modeling distributions over functions [Rasmussen & Williams| (2005)).
Its strength lies in its ability to provide calibrated uncertainty estimates, which are critical in applications
such as Bayesian optimization Xu et al. (2024]), active learning |[Kapoor et al.| (2007)); |Schreiter et al.| (2015);
Tebbe et al.| (2024), and reinforcement learning Biyik et al.| (2020).

Gaussian Process Regression. Given a training dataset D = {(x;,y;)},, where z; € R? and y; € R,
we assume the outputs are generated from a latent function f ~ GP(m(-),ke(:,-)), corrupted by Gaussian
noise, i.e.,

yi = f(w) + &, & NN(OJ@-

Here, m(-) is the prior mean function (often taken as constant), and kg(-,-) is a positive-definite kernel
function parameterized by hyperparameters 6. A commonly used choice for the kernel function is the Radial
Basis Function (RBF) kernel, defined as,

x—a'?
ko(z,a') = 0} exp <—2£2”> (1)

where O'J% controls the variance and ¢ is the lengthscale hyperparameter.
The prior over latent function values f = [f(z1),..., f(x,)]" is multivariate Gaussian,
f~N(m(X),K)

where K € R"*" is the kernel matrix with entries K;; = kg(x;, ;), and m(X) is the vector of prior means
evaluated at training inputs.
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Under this model, the noisy observations y € R™ are distributed as

y ~ N(m(X),K + oI)

Prediction at Test Time. For a new test point x,, the predictive distribution of y, conditioned on the
training data is also Gaussian,
Yx ‘ Lxy X7 y~ N(M(l'*), Var(‘r*))

where the predictive mean and variance are respectively given as,

pla.) = k[ (K +0ZI)"y (2)
Var(z,) = k(z., 2.) — k(K + 0¢1) "'k, (3)

with k. = [kg(z4, 1), ..., ko(Ts, 2n)] "

Learning via Marginal Likelihood. Given the data, the task in GPR is to learn the kernel hyperpa-
rameters 6 and noise variance og . This is typically done by maximizing the log marginal likelihood of the
observed outputs,

1 1
logp(y | X,0) =— §yT(K + agl)_ly ~5 log det(K + 0?[) - glog 27 (4)
This objective balances data fit (first term), model complexity (second term), and normalization.

Computational Challenges. The exact computation of equation [2|to equation || requires O(n?) time
and O(n?) memory due to the inversion and determinant of the full kernel matrix [Rasmussen & Williams
(2005). This limits the applicability of standard GPR to small or moderate-sized datasets. In this work, we
address this scalability bottleneck through a sketching-based approximation using ridge leverage scores.

To handle this problem, a rich line of work has focused on approximating the kernel matrix using techniques
such as inducing points [Snelson & Ghahramani| (2006]), Nystrom methods |Williams & Seeger| (2001)), and
randomized sketching [El Alaoui & Mahoney| (2015)); [Pilanci & Wainwright| (2017)). Among these, sketching
methods stand out for their ability to compress large kernel matrices into compact representations with
statistical guarantees. However, existing analyses often fail to characterize the precise impact of sketching on
uncertainty quantification and negative log marginal likelihood of the gaussian process regression. [EI Alaoui
& Mahoney| (2015)) successfully applied the ridge leverage score based sampling technique to Nystrom
approximation for kernel ridge regression. However it is non-trivial to extend their method to the case of
GPR with provable guarantees , specifically for the predictive variance and negative log marginal likelihood
approximation. Inspired by their method, we next describe the Nystrom Sketching for Kernel Approximation
specifically for GPR and then describe our main contributions in this paper.

2 Nystrom Sketching for Kernel Approximation in GPR

To overcome the above computational challenges, we employ Nystrom sketching, which provides a low-rank
approximation K to K while preserving its essential spectral structure.

Nystrom approximation. Let J C {1,...,n} be a set of m < n sampled indices. Define
C = K. jeR™™ W = K; ;e Rm*™ (5)
The classical Nystrom approximation is given by
K = cwicT, (6)

where W denotes the Moore-Penrose pseudoinverse of W. This approximation projects the kernel matrix
onto the span of the sampled columns, yielding a rank-m surrogate of K.
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Generalized sketching. More generally, let S € R™*™ be a tall, skinny sketching matrix (e.g., sampling
matrix, random projection, or structured transform). The Nystrom approximation associated with S can be
written as

Ks = KS(STKS)ISTK, (7)

which recovers equation [6] when S corresponds to column sampling.

Woodbury expansion for efficient solves. In GPR, inference requires computing (K + ng )=, where
oZ is the noise variance. Replacing K with K and applying the Woodbury identity With A=02I,U=C,
M=W-1,V =CT, we obtain

(K +02)" = o2 I —o7 C(W +o.2CTC) 'O (8)

Lemma 1 (Woodbury Nystrom Solve). Let K =CW~CT be the Nystrom approzimation of K. Then for
any y € R™,
(IA(JragI)*ly:0g2y70g4C(W+0gQCTC)7lCTy (9)

Proof. Apply the Woodbury matrix identity (A +UMV)™ ! = A= — A7WUM~1 + VATIU)"'V AL with
Azagl,UzC,M:W_l,VzCT. O

This expression involves inverting only an m X m matrix, substantially reducing the computational burden.

Predictive mean using Nystrom. The GPR predictive mean for a test point z,. with kernel vector
k. € R" is
Ha = k;r(K—FafI)_ly (10)

Using the Nystrom surrogate and equation |8} this becomes
_ _ _ -1
[1x R O 2kl y — P 4I€IC(W + o 2CTC) Cly (11)
Analogous derivations yield a similar reduction for the predictive variance.

Computational complexity. Constructing C requires O(nm) kernel evaluations and storing it uses O(nm)
memory. Forming and inverting A =W +o0, 20T C costs O(nm? +m?), and each test prediction costs O(m?).

This is a dramatic improvement over the O(n?) time and O(n?) memory required for standard GPR.

Our Contributions. The main challenge in applying the sketched Nystrom method to GPR lies in
designing an efficient sketching matrix and analyzing its impact on the predictive mean, predictive variance,
and negative log-marginal likelihood (NLML). While sketching methods particularly those based on ridge
leverage scores (RLS) have been well studied for Kernel Ridge Regression (KRR) [El Alaoui & Mahoney
(2015); Rasmussen & Williams| (2005)), their theoretical guarantees do not fully capture the unique properties
of GPR. KRR analyses typically bound the statistical risk of the point predictor [El Alaoui & Mahoney| (2015]),
whereas GPR’s strengths lie in uncertainty quantification via predictive variance and model selection through
NLML Hensman et al.|(2013). These quantities, fundamental to GPR, have no direct analogues in KRR;
the GPR posterior variance is distinct from the variance of the KRR, estimator, and NLML is critical for
hyperparameter learning. Our work bridges this gap by extending guarantees for the predictive mean and,
more importantly, providing the first explicit approximation bounds for the predictive variance and NLML
under RLS sketching, establishing a complete theoretical foundation for scalable, high-fidelity GPR.

To summarize, the main contributions of this work are as follows:

1. We propose a kernel sketching framework based on ridge leverage scores for Gaussian Process
Regression (GPR).



Under review as submission to TMLR

2. We provide, to the best of our knowledge, the first theoretical guarantees for ridge leverage score—based
sketching specifically for the GPR problem. Specifically, we derive non-trivial bounds on the
approximation error for the predictive mean, predictive variance, and negative log-likelihood.

3. We conduct extensive empirical evaluations across multiple real-world regression benchmarks, demon-
strating the effectiveness of our method compared to standard baselines.

It is important to note that while our approach is comparable to some state-of-the-art methods in terms of
runtime performance, we demonstrate that it achieves provable superior predictive quality and uncertainty
calibration, thereby offering an accurate and efficient alternative to existing scalable GP techniques.

3 Related Work

Various methods have been applied to scale GPR for the big data regime; see [Liu et al.| (2020) and references
therein. There are methods based on variational inference [Hensman et al.| (2013]), and conjugate gradient—based
iterative methods |Artemev et al.|(2021). However, handling GPR using sampling or sketching-based methods
with theoretical guarantees is relatively less explored. [Hayashi et al.| (2020), using a novel graphon-based
analysis, derive error bounds for Gaussian process subsampling via uniform random selection. However, their
bounds decay slowly; for example, predictive error scales like O(log_l/ 4 s) with the number of subsamples s.
Fiedler et al.| (2021)) provide practical bounds on GPR, in general; however, these bounds are not directly
comparable to ours.

Nystrom approximation |Williams & Seeger| (2001) reduces the computational complexity by projecting the
full kernel matrix onto a subspace spanned by a set of inducing points. However, uniform or heuristic-based
selection of these points often fails to capture critical data-dependent structure, especially in high-dimensional
or non-uniform settings.

This has led to the adoption of more principled sampling techniques based on ridge leverage scores |El Alaoui
& Mahoney| (2015), which offer spectral guarantees and have been successfully applied in kernel ridge
regression Rudi & Rosasco| (2015)); Musco & Musco| (2017) and randomized matrix approximation |Drineas
et al.| (2012)). Despite their theoretical appeal, ridge leverage based Nystrom approximations have not been
widely explored in the context of Gaussian Process Regression particularly with respect to predictive quantities
such as the posterior mean, variance, and marginal likelihood. Existing bounds are not directly applicable to
GPR settings. In contrast, we leverage similar sampling strategies but develop new, explicit guarantees on
these key predictive quantities, bridging this important gap.

4 Algorithms

In this section, we outline the algorithms used to sketch the kernel matrix. While similar techniques have
been studied in kernel ridge regression |[El Alaoui & Mahoney| (2015)), their application to Gaussian Process
Regression (GPR) with explicit theoretical guarantees has not been previously established.

We use a generalized notion of leverage scores specifically designed for the ridge regression setting, referred to
as the og—rz’dge leverage scores.

Definition 1. Given O'g > 0, the O'g -ridge leverage scores corresponding to a kernel matriz K and regulariza-
tion/noise parameter 02 are defined as

Vie{1,...,n}, li(Ug):Z ;

n
_ 9% 2
o;+o02 Y
j=1 "1 €

Here, li(og) represents the i*" diagonal entry of the matrix product K (K + O’?I )~1, where o; denotes the Gt
eigenvalue of the kernel matrix K, and U is the orthonormal matrix of eigenvectors from its eigendecomposition.
The set (li(O'g))lgiSn serves a similar role to classical leverage scores in statistics, as they help identify
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Algorithm 1 J?—Ridge Leverage Score Sampling with Rescaling for Kernel Sketching

Input: Kernel matrix K € R"*", noise parameter ag > 0, sketch size m < n, Nystrom regularization
parameter v > 0
Output: Sketching matrix S € R"*™, sketched kernel L., € R™*"

2
1: Compute ridge leverage scores: Eggg) — [K(K +02I) ' for all i € {1,...,n} > See Algorithm 2| for fast

Compute sketched kernel: L., < KS(STKS +~I)"1STK
return S, L,

computation

2: Normalize scores: p; < E(Ug)/ S o0

- AR =15
3: Initialize S € R™*™ as a zero matrix
4: for j =1 tom do
5: Sample index i; ~ Categorical(p1,...,py) > Sample with replacement

1 .

6: Set S;; j < NG > Apply reweighting
7. end for
8:
9:

Algorithm 2 Approximate J?—Ridge Leverage Score Computation via Nystrom Sketching |[El Alaoui &
Mahoney| (2015)

Input: Data points {x1,...,z,}, kernel function k(-,-), sampling distribution {p;}? ;, sketch size m,
regularization parameter og >0

Output: Approximate ridge leverage scores {gz}?zl

1: Sample indices 41, ..., 4, ~ Categorical(pi,...,p,) with replacement

2: Form matrix C' € R™*™ such that C,, = k(z;,z;,)

3: Form W e R™*™ with Wy, = k(x;,, x;,)

4: Compute B € R™*™ such that BBT = CWTCT > Can use Cholesky or QR on W
5: Compute matrix M = (BT B + agIm)’l

6: for i =1 ton do

7. Set {; + B MB; > B; is the i-th row of B
8: end for

9:

return {/;}7_,

influential data points that significantly impact the model output. In traditional settings, these scores are
often derived from the row norms of the left singular vectors in the matrix U.

The effective dimension, denoted by dcﬁ‘(ag), is defined as
degr(0F) = Tr (K(K + 021)7")

where K is the kernel matrix and o? > 0 is the regularization/noise parameter.

To efficiently approximate the J?—ridge leverage scores without computing the full eigendecomposition of the
kernel matrix, we adopt an approximation strategy inspired by Algorithm [2| [El Alaoui & Mahoney| (2015)).

The approximation algorithm [2| accepts as input a sampling distribution over the data points, which we set
to a simple yet effective diagonal proxy where each point is sampled with probability proportional to the
diagonal entry of the kernel matrix, i.e., p; = % This choice is motivated by the fact that the diagonal of
K captures the self-similarity of each point and offers a computationally efficient surrogate for ridge leverage
scores. The algorithm then selects a subset of size m, computes the corresponding kernel submatrices C' and
W, and uses a Nystrom-style factorization to produce an approximate low-rank embedding B. The resulting
approximate leverage scores are given by the quadratic form ¢; = B;r (BTB+ O’?I )~1B; for each point 7. This

method has runtime O(nm?) and storage complexity O(nm), and provides provably accurate approximations
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to the true ridge leverage scores with high probability, while being scalable to large datasets where exact
score computation is infeasible.

5 Theoretical Guarantees

In this section, we present our main theoretical results for the predictive mean (Theorem [2)), variance
(Theorem , and negative log-likelihood (Theorem [4]) under ridge leverage score-based sketching. We begin
by outlining the setup, notation, and assumptions common to all three theorems. For better readability, we
have deferred detailed proofs to the appendix.

Setup: Let D = {(z;,y:)}!., be the dataset, where z; € R? are the input points and y; € R are the
corresponding outputs. Let k(x, ') be the kernel function used in the Gaussian process regression, and let K

be the n x n kernel matrix such that K;; = k(x;,x;). Let the eigenvalue decomposition of the kernel matrix
be K = USUT.

Let S € R™*™ be a sketching matrix (obtained in Algorithm so that S;; = | /ﬁm ifi = i; else 0, where m <
n is obtained by probability distribution (pi)i<i<n such that Vi € {1,---,n}, pi > p-1li(6f)/ 31 li(0F)

for some 3 € (0,1]. We define the sketch of a kernel matrix L, = KS(STKS +~I)"1STK as the submatrix
of K where v > 0.

Moreover, let

D=®—-o2UuTssTua!/?

with @ = %(X +~I)~ L.

From, |[El Alaoui & Mahoney| (2015)) we have that, as long as the sketching matrix S satisfies Aoy (D) <t
for t € (0,1) and Ayqq denoting the maximum eigenvalue, we have that

g
< K_—L.< I
0= ”(1—t>

For the mean and variance inference on test data we also assume that k., = U« (ie., a; = u;fk:*) where,
a € R", and U = [uy,...,u,] is the eigenvector matrix of K.

5.1 Predictive Mean Estimation using Sketching

Theorem 2 (Predictive Mean Approximation under O'gf Ridge Leverage Score Sketching). For the notations
and assumptions defined in our Setup let

u(a®) = KE (K + 021) y

be the predictive mean of Gaussian Process Regression at a new point x* for the full kernel matriz. Here
ke = [k(z1,2%), k(z2,2%), ..., k(zn,2*)]T and crg is the noise. For the sketch of a kernel matriz L., the
predictive mean is,

ps(z*) = kI (L, + 02[)_1y

For the L., obtained using Algorithm we have

ue”) = e = (127) | 2o p s Il Amas(20)

1-1¢ pt Ez’,z‘+0§)

-1
where, Ap = (Z [I — 15 (E4+ 7])_1} + 0?1) , hold with probability at least 1 — &, if the sketch size m is
set so that
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m > 8 (dgﬁ + é) log (%)

5.2 Predictive Variance Estimation using Sketching

Theorem 3 (Predictive Variance Approximation under ag— Ridge Leverage Score Sketching). For the
notations and assumptions defined in our Setup let

Var(z*) = k(z*,2*) — k] (K + 0¢1) k.

be the predictive wvariance of Gaussian Process Regression at a mnew point x*. Here, k., =
(k(z1,2%), k(xo,x*), ... k(x,, 2*)]T and O'g is the noise variance. For the sketch of a kernel matriz L.,
the predictive variance 1is,

Vars(z*) = k(z*,2%) — k] (Ly + 021) "k,

For the L., obtained using Algom'thm we have

2
. . v - 1
|[Var(x™) = Varsg(z*)| < (1 t) HCYTADHQ' ;O‘? ((Z“ +0§)>

-1
where, Ap = (Z [I — 15+ 71)_1} + O’?I) , hold with probability at least 1 — ¢ if the sketch size m is
set so that J )

eff n
> - _
m_8<5—|—6>log(6>

Remark (Interpretation of « in the Predictive Mean and Variance Bounds). In the predictive
mean approximation bound, the term involving o? arises from expressing the test-to-train kernel vector
k« € R™ in the eigenbasis of the kernel matrix K = UEUT7 such that k, = Ua with a« = U"k,. The
coefficients «; quantify the alignment of the test point x, with the spectral components of the training kernel
and thus determine how the eigenvalue spectrum of K influences the approximation error.

Discussion. The bound depends on the energy of the test kernel vector in the eigenbasis of K, captured
by 3,02/ (i + 0’?)2. This term directly links the approximation quality to both the spectral decay of the
kernel and the geometric relation between the test and training points. When the kernel spectrum decays
rapidly—such as for smooth kernels like RBF or high-order Matern the contributions from low-eigenvalue
directions are strongly attenuated, leading to tighter bounds. Similarly, a larger noise variance ag regularizes
the influence of small eigenvalues, further stabilizing the approximation. Hence, the derived error bounds
characterize how spectral compressibility of the kernel governs the fidelity of the sketched approximation
without imposing additional assumptions on the distribution of the test inputs. An analogous interpretation
applies to the predictive variance bound (Theorem , where the vector a again captures the projection of
the test point onto the eigenspace of the kernel matrix.

5.3 Negative Log Marginal Likelihood Approximation

Theorem 4 (Negative Log Marginal Likelihood Approximation under agf Ridge Leverage Score Sketching).
Let K € R™ ™ be a symmetric positive semi-definite kernel matriz and y € R™ the response vector. For
Ug > 0, the negative log marginal likelihood (NLML) be,

1 1
L(K) = 5y " (K + 02D~ y + 5 log det(K +o21) + g log(27)

The corresponding approzimate NLML for the sketch of the kernel matriz L., obtained using Algorithm 18
given as,
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1 1
L(L,) = §yT(L,y + o)y + 5 log det(L + 1) + glog(Zﬂ')

Then, for any 0 <6 <1, if

deﬁc 1 n
> - =
m_8<5+6>log(6>
then, with probability at least 1 — § following inequality holds,
LK) ~ £(Ly)| < 5 - B Amas (A) + 52 Tr(Ap)
7201 = 1) \ Ain(K + 021) 2(1—1)

-1
where, Ap = (2 [I— ﬁ(Z—i—yI)_l} +U§I) .

5.4 Interpretation of Ap

All bounds in our analysis share a central spectral term involving the matrix

-1
g _

where ¥ denotes the diagonal matrix of kernel eigenvalues, v > 0 is the regularization parameter, ¢t € (0, 1),
and 0‘2 is the noise.

Spectral Dependence of the Bounds. The tightness of the predictive mean, variance, and NLML
bounds is depends on the terms Apax(Ap) and Tr(Ap), both of which are minimized when the spectrum of
Y exhibits fast decay. In such cases, Ap becomes better conditioned, as low-eigenvalue directions are strongly
regularized or suppressed by the additive noise. This yields tighter theoretical guarantees for the sketched
approximation. Smooth kernels such as the RBF and high-v Matérn families naturally induce this spectral
decay, particularly when applied to well-distributed, low-dimensional inputs typical of geostatistical data or
physical simulations.

6 Experiments

All experiments were conducted on a machine equipped with an NVIDIA A100 PCle GPU with 32 GB of
memory. Our implementation is written in Python and leverages PyTorch and GPyTorch [Gardner et al.
(2018)) for efficient GPU-accelerated Gaussian Process modeling.

6.1 Datasets

We evaluate our methods on four real-world regression datasets: California Housing Pace & Barry| (1997)),
Elevators [Team| (1996), Airfoil Self-Noise H. et al|(1999), and Protein |Cai et al. (2003). All datasets
are standardized using z-score normalization for both inputs and targets. For California Housing and
Protein, we use a 70%/30% train/test split; for the others, we follow an 80%/20% split.

California Housing contains 20,640 samples with 8 real-valued features describing demographic and
geographic attributes from the 1990 U.S. Census. The target variable is the median house value in each
district, making it a widely used benchmark for medium-scale regression tasks with heterogeneous feature
distributions.

Elevators is a large-scale regression benchmark from the DELVE framework, hosted on the UCI repository.
It consists of 16,599 samples with 18 continuous features capturing the dynamics of a control system, and
a real-valued target representing elevator response time. The dataset exhibits moderately complex and
nonlinear patterns, making it well-suited for testing scalable GP models.
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Airfoil Self-Noise comprises 1,503 samples with 5 continuous features representing physical properties
and operating conditions of airfoils in a wind tunnel. The target is the scaled sound pressure level. Due to its
small size and nonlinear behavior, it serves as a testbed for evaluating predictive uncertainty in low-data
regimes.

Protein (also known as Protein Structure) is a large-scale regression dataset from the UCI repository
with 45,730 samples and 9 physicochemical features describing the secondary structure of proteins. The target
variable is the root mean square deviation (RMSD) of atomic positions, which measures structural variability.
This dataset is widely used to benchmark scalable kernel methods due to its size, moderate dimensionality,
and nonlinear structure.

6.2 Experimental Setup

We use the Radial Basis Function (RBF) kernel and Matern kernel for all three datasets. The kernel
hyperparameters, including the lengthscales and variance, are initialized to 1.0 in case of RBF kernel and in
Matern kernel v = 1.5 is initialized. The prior mean function is initialized as a constant set to 0 and is treated
as a learnable hyperparameter during training. Based on preliminary experiments, we fix the learning rate to
0.01 and train for 300 iterations across all methods. In contrast, SVGP was trained for 1000 iterations. This is
because SVGP, as a variational method, optimizes an objective (the ELBO) that iteratively approximates the
true posterior, a process that generally requires more iterations to stabilize than the methods that optimize
the exact marginal log-likelihood. We trained SVGP using Adam (lr=0.01) and mini-batch size 1024.

6.3 Baselines

We compare our Nystrom Ridge Leverage method against a comprehensive set of baselines spanning both
the coreset selection and scalable GPR literature which are described below. All methods are evaluated
over progressively increasing subset sizes, covering approximately 2% to 12% of the full training set. To
ensure statistical robustness and account for variability in subset construction, each experiment is repeated
across 5 independent random seeds, where each seed corresponds to a different data split and independently
selected subset. We report the mean metric values across these trials, along with the corresponding standard
deviations to reflect variability and robustness.

Uniform Subsampling. Uniform subsampling Hayashi et al.[ (2020); Malaviya et al.| (2024)) selects training
points uniformly at random, independent of the data distribution or kernel structure. Although simple and
computationally efficient, it often fails to capture important geometric or uncertainty-related aspects of the
data.

Leverage Score Sampling. Leverage score sampling prioritizes points with higher statistical influence,
emphasizing those contributing most to the low-rank structure of the kernel matrix Drineas et al.| (2012);
Zheng & Phillips (2017)); |Chhaya et al.| (2020). This data-aware selection improves representativeness over
uniform sampling and provides a foundation for more advanced sketching-based approaches.

k-Means Coreset We include a k-means-based coreset baseline using the Lightweight Coreset
method Bachem et al.| (2018); [Shit et al.| (2022)), which combines uniform and sensitivity-based sampling to
select representative points with replacement. This efficiently approximates the data’s clustering structure
and scales better than exact k-means on large datasets.

Stochastic Variational Gaussian Processes (SVGP) SVGP [Hensman et al.| (2013)) is a variational
inference framework for scalable GPR that optimizes an evidence lower bound (ELBO) via stochastic gradients.
It supports mini-batch training and inducing point learning, and is widely regarded as a state-of-the-art
method for large-scale Gaussian Processes.

IterGP IterGP (Wenger et all [2022)) introduces a computation-aware framework for Gaussian Process
inference that explicitly models both mathematical uncertainty (due to finite data) and computational
uncertainty (due to approximate inference). Unlike standard approximations such as SVGP or CG-based
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solvers that ignore the uncertainty introduced by limited compute, IterGP provides a combined posterior
whose covariance decomposes into mathematical and computational components. This guarantees convergence
of the posterior mean in RKHS norm and offers a worst-case bound on the approximation error.

Nystrom Approximations We compare three Nystrom based kernel approximation methods that differ
in how the inducing points (columns of the kernel matrix) are selected. The uniform variant samples columns
uniformly at random with replacement [Williams & Seeger| (2001)), while the leverage score variant uses
sampling probabilities proportional to the standard leverage scores |Gittens & Mahoney| (2016). Our method
employs ridge leverage score sampling, which incorporates the regularization parameter and provides a
data-aware, theoretically grounded alternative for constructing Nystrom approximations in GPR.

6.4 Evaluation Metrics

Model performance is evaluated using the following metrics: (i) predictive mean error, (ii) predictive variance
error, (iii) root mean squared error (RMSE), (iv) Negative Log Predictive Density (NLPD), (v) Mean
Standardized Log Loss (MSLL), and (vi) Negative log likelihood (NLL). Predictive mean and variance errors
are computed as the relative 5 norm difference with respect to the full Gaussian Process model, defined as

[ 6gant — psketenl| /|| peeant || and ||<7f2u11 - U§ketch||/ ||<7f2u11||7 respectively.

Negative Log Predictive Density (NLPD) To evaluate the quality of uncertainty estimates in Gaussian
Process Regression (GPR), we report the Negative Log Predictive Density (NLPD). NLPD measures how
well the predicted Gaussian distribution aligns with the true targets, penalizing both misestimated means and
variances. Formally, for test data {(z;,v;)}"; with predictive mean p; and variance 0?2, NLPD is computed

as:
n

_1 (yi —pi)? | 1 2
NLPD =~ > < 507 + 5 log(2ra?) (12)

i=1
Lower values indicate better predictive performance and better-calibrated uncertainty. NLPD is a proper

scoring rule and is widely used in evaluating probabilistic regression models |Artemev et al.| (2021)); Rasmussen
& Williams| (2005).

Mean Standardized Log Loss (MSLL). Unlike standard error metrics such as RMSE, MSLL evaluates
how well the predictive distribution improves over a simple baseline model (typically the empirical mean and
variance of the training targets). Formally, MSLL is defined as

n

1
MSLL = ~ > [10gp(Yi | Ti, Dirain) — 108 Phasetine (Vi | )], (13)

i=1

where p(y; | i, Dirain) denotes the model’s predictive density and ppaseline (¥i | ;) corresponds to the baseline
predictive distribution. A negative MSLL indicates that the model outperforms the baseline in terms of log
predictive density. MSLL is particularly useful because it standardizes performance across datasets with
different output scales and provides a more interpretable measure of probabilistic performance than raw log
likelihood (Rasmussen & Williams), 2005)).

6.5 Results and Analysis

Our main results, presented in the figures below and detailed in the tables in the appendices, demonstrate
that the proposed Nystrom ridge leverage sketching method consistently outperforms all considered baselines
across datasets, most notably on strong metrics such as NLPD and MSLL. Despite SVGP and IterGp being
a state-of-the-art approach for scalable GPs, particularly in probabilistic modeling, our method achieves
superior performance, especially in terms of Negative Log Predictive Density (NLPD), which is a proper
scoring rule sensitive to both prediction accuracy and uncertainty calibration. Our method also achieves
consistently lower predictive mean and variance errors, indicating that it more accurately approximates
the true posterior distribution of the Gaussian Process Regression. Notably, the NLPD gains are achieved
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Figure 1: Results on UCI Elevators Dataset. Evaluation of Gaussian Process Regression methods on the UCI
Elevators dataset using the RBF kernel. Predictive mean error, predictive variance error, and RMSE are plotted
versus subset size. Ridge Leverage based GPR yields the best tradeoff across metrics. All results are averaged over 5
random trials with standard deviation shown as error bars. The dashed horizontal line indicates the performance of
the full-dataset (exact GP) model.
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Figure 2: Results on Protein Dataset. Performance comparison of various Gaussian Process Regression (GPR)
methods on the Protein dataset using the RBF kernel. The ridge leverage—based sketching method achieves
superior predictive variance and NLPD compared to uniform, IterGp, SVGP and other baselines, demonstrating its
robustness on this high-dimensional, large-scale regression task. The reported NLPD and uncertainty metrics are
averaged over 5 random trials, with error bars representing standard deviations across runs. The dashed horizontal
line indicates the performance of the full-dataset (exact GP) model.

using an efficient, approximate version of ridge leverage score computation Algorithm [2] showcasing the
scalability and effectiveness of our approach. The best-performing results are shown in bold. We focus on
these representative baselines to cover the most widely used paradigms for scalable GPR subset selection,
Nystrom approximation, iterative approximation, and variational inference.

While several variational approaches to scalable Gaussian Process inference exist, we include SVGP as it
remains the most widely adopted and well-established representative of this class. Additionally, we compare
against IterGP, a recent state-of-the-art scalable GPR method, to benchmark our approach against the
strongest contemporary baselines.

For the California Housing dataset, we were unable to include the Nystrom (leverage) baseline, as the resulting
kernel matrix approximation was not positive semi-definite, which caused instability during model training.
More results are included in the appendix.

Training Time and Dataset Scale Justification. In our experiments, the SVGP baseline often required
longer training time than exact GPR despite its theoretical scalability. This effect is prominent for moderate-
scale datasets (n = 15K to 30K), as GPyTorch’s exact GPR leverages efficient conjugate gradient routines and
optimizes only a few kernel hyperparameters, whereas SVGP jointly learns kernel and variational parameters
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Figure 3: Results on Protein Dataset. Performance comparison of various Gaussian Process Regression (GPR)
methods on the Protein dataset using the Matern kernel. The ridge leverage—based sketching method achieves
superior predictive variance and NLPD compared to uniform, IterGp, SVGP and other baselines, demonstrating its
robustness on this high-dimensional, large-scale regression task. The reported NLPD and uncertainty metrics are
averaged over 5 random trials, with error bars representing standard deviations across runs. The dashed horizontal
line indicates the performance of the full-dataset (exact GP) model.
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Figure 4: Comparison of Negative Log Likelihood (NLL) across different subset sizes and Gaussian Process approxi-
mation methods on the Protein, Elevators, and Housing datasets using the RBF kernel. Each subplot reports the
mean and standard deviation over five random trials. The dashed horizontal line denotes the performance of the
full-data (Exact GP) model.

through stochastic updates. Moreover, mini-batching and stochastic optimization introduce additional
overhead at this scale, making SVGP slower in wall-clock time compared to the exact solver for moderate n,
a behavior also observed in prior work (Wilson & Nickisch| |2015; |Gardner et al., 2018; [Pleiss et al., 2018)).
We therefore restrict our benchmark to the Protein dataset (n = 45,730) the largest size for which full
GPR remains tractable on a 32 GB GPU. Beyond this scale, storing and inverting the full kernel (O(n?)
time, O(n?) memory) becomes infeasible, preventing computation of reference quantities such as predictive
mean or variance errors. This regime allows meaningful and fair comparison against scalable methods while
maintaining exact GPR as a ground-truth reference (Rasmussen & Williams|, 2005; (Gardner et al., 2018;
Wang et al 2019).

7 Conclusion

We proposed a scalable Gaussian Process Regression method that combines Nystrom approximation with
ridge leverage score sampling. While ridge leverage scores have been used in kernel ridge regression and
matrix approximation, our work is the first to apply them in the Gaussian Process setting with theoretical
guarantees on predictive mean, variance, and negative log-likelihood. Our analysis shows how the quality
of the approximation depends on the kernel spectrum and sketch size, and our experiments demonstrate
consistent improvements over existing baselines.
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A Appendix

In this section, we present our main theoretical results for the predictive mean (Theorem [5)), variance

(Theorem , and negative log-likelihood (Theorem @ under ridge leverage score-based sketching. We begin
by outlining the setup, notation, and assumptions common to all three theorems.
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A.1 Common Theoretical Setup:

Let D = {(z4,y:)}1, be the dataset, where z; € R? are the input points and y; € R are the corresponding
outputs. Let k(x,2’) be the kernel function used in the Gaussian process regression, and let K be the kernel
matrix n x n such that K;; = k(z;, ;). Let the eigenvalue decomposition of the kernel matrix, K = UXU7.
Let S € R™™™ be a sketching matrix (obtained in Algorithm 1) so that .S;; = | /mip if i = 4; else 0, where m <
n is obtained by probability distribution (pi)i<i<n such that Vi € {1,---,n}, pi > B-1li(6f)/ 31 li(0F)
for some S € (0,1].

We define the sketch of a kernel matrix L, = KS(STKS +~I)"1ST K as the submatrix of K where v > 0.

Moreover, let

D=&—oY2UuTssTUudl/?

with @ = %(X +~I)7L.

Following the result of [El Alaoui & Mahoney| (2015)), we assume that the sketching matrix S € R™*™ satisfies
the spectral condition
Amax(D) <t for some t € (0,1)

where A\pax denotes the maximum eigenvalue. Under this condition, they show that the approximation error
between the original kernel matrix K and its sketched version L. is bounded as

y
<K-L,=<(—-)rI
=K1 3 (75)

To ensure this bound holds, we follow the sketch size guarantee provided in Theorem 2 of Appendix B
in |[El Alaoui & Mahoney| (2015]), which characterizes the required number of samples m based on the
ridge leverage score distribution. This setup is used as the basis for all theoretical results presented in the
subsequent sections.

For the mean and variance inference on test data we also assume that k., = U« (i.e., a; = u;fk*) where,
a € R", and U = [uy,...,u,] is the eigenvector matrix of K.

B Predictive Mean Estimation using Sketching

Theorem 5 (Predictive Mean Approximation under Ug— Ridge Leverage Score Sketching). For the notations
and assumptions defined in our Setup let

ule*) = K (K +02D) "'y

be the predictive mean of Gaussian Process Regression at a new point x* for the full kernel matriz. Here
ke = [k(z1,2%), k(xo,2*), ... k(z,, 2*)]T and crg is the noise. For the sketch of a kernel matriz L., the
predictive mean s,

ps(z*) = k' (L, + UEI)_ly

For the L., obtained using Algorithm 1 we have

() — ps(a®)| < (”) > (a ylle - Amac(Ap)

1-t¢ pt Ei,H’Uf)

-1
where, Ap = (E [I - 15 (E+ 7[)_1} + 0’?[) , holds with probability at least 1 — &, if the sketch size m is
set so that
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Proof.
(") — ()| = [KT(K + 02D)~Yy — KT (L, + 021) Yy
= |/<JT K+ 021)71 — (L, —|—a§])71]y|

< |JKEIE + 02071 = (Ly + 02D 7, -yl
= ||k (K + 021) " (Ly = K)(Ly + 02D) ||, - [yl
= ||k (K + 021) 7 (K = Ly)(Ly + 02D ||, - [yl
< KT + 02D 7 (K = L)), (B + 02D 7| - llylle

< (2

v

> [ (K + o2 D) |, [[(Ly + 02Dyl (As, 0= K — Ly < (ﬁ) I)

—_

< [T (K + 2D, - 1yll2 - Amaa(AD)

—_
~

(Putting bound on, ||(L, + aZI)~"

from equation below)
op

~2

||kT UE[]T + O'EI IH Hy”Q . )\max(AD)

;_n
«Q
~

Hk‘T E—FU&I UT 1“ ||y||2 ')\maI(AD)

—— ) kLU E+ 2T, 2 - Amaz(AD)

-

._\
H-
N— N N~ N———

[U) " (UE+aZDUT)|, - lyll2 - Amaz(Ab) (Substitute, k. = U«)

—
= |
~

I
S~ N7 N7 N7 N7 NN VS
[
\g
H-

[ UTUE+oZD)TUT||, - lyll2 - Amaz(AD)

—_
|
o~

1 i t> ||OKT(E + O?I)ilHQ ’ Hy||2 ' )\max(AD)

The spectral norm decomposes as:

[CHORR I JZQ? <M>

Therefore, in the final bound we have

|M(l‘*)—us($*)lé(1_t>JZ s ol A (A)

C Negative Log Marginal Likelihood Approximation
Theorem 6 (Negative Log Marginal Likelihood Approximation under 05 Ridge Leverage Score Sketching).

Let K € R™ ™ be a symmetric positive semi-definite kernel matriz and y € R™ the response vector. For
Ug > 0, the negative log marginal likelihood (NLML) be,
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1 1
L(K)= §yT(K + agl)fly + 3 log det(K + oZ1) + glog(%’)

The corresponding approzimate NLML for the sketch of the kernel matriz L, obtained using Algorithm 1 is
given as,

1 1 n
L(L,) = in(L7 + agl)_ly + 3 log det(L., + 0’2]) + 3 log(2m)

Then, for any 0 <6 <1, if

deﬁ 1 n
> — =
m_8<5+6>log(6>
then, with probability at least 1 — & following inequality holds,
L(K) = £(Ly)| < 5 . I3 Amaz (Ap) + 5 Tr(Ap)
T 2(1 =) \ Amin(K + 021) 2(1 —t)

where, Ap = (2 [I— ﬁ(Z—i—fyI)_l} +0? )71.

Proof. To analyze the negative log marginal likelihood (NLL), we omit the additive constant term involving
5 log(2m), as it does not affect the optimization or approximation. The resulting expression consists of two
principal components: a quadratic term and a log-determinant term. We derive separate bounds for each of
these components and then combine them to obtain an overall bound on the NLML approximation error.

1 1
L(K) = 5y" (K +02D) Yy + 5 log det(K +021) + g log(2r)

Since, we have 0 < K — L, = (ﬁ) I bound from El Alaoui & Mahoney| (2015]),

% " (K + 02"y —y" (Ly +02D) " y| = % Y (K +021)™" = (L, + o21) "y
< LI 42D = (L a2 - ol
= LI + o207 L~ KLy + D7, - ol
= S 02D (K~ L)Ly + 0207, - i3
< SN + 207 (0 = L), 1o +02D) 7, - ol
< s 10+ 02D, B + 02D, -
(As, 0 < K — L, < (%)I)
< s gy 10+ 02D 7y 11 - Ama ()

(Putting bound on, ||(L, + 0’2])71

from equation below)
op

Y 1 2
< '  Amag A

For, ||(Ly + agl )~ we can get upper bound like following,

op
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L,=KS(STKS+~1) ' STK
With K = USU " and R =3Y2U7S, L, = R(RTR+~I)"'R", we have
L,=Ux'2L. Y2y

Due to the matrix inversion lemma, we have

L,=RR"(RR" +~I)™*
=I—5[RR" +~D)7!
=I—yX+~[+RR" —%)7!
=T —~A(S+~D) VAT = D)"Y +~1)~ V2

with

D= (2 +~I) Y32 -~ RR")(Z +~1)~ /2
=3 -o2UuTSsTU!/?

and ® = X(X +~I)~ L.

If the sketching matrix S satisfies Aoz (® — @/2UTSSTURY?) = Aoy (D) < t for t € (0,1) where Apag
denotes the maximum eigenvalue we can derive the lower bound for Ev as the following,

Ly=T—x(S+~D) (I = D) (S 4~1)~ /2

= I — (S +4D) 2 <11t) I(S 4 ~1) /2 (As, (1= D)7 = (5) 1)

=1- (7) (S +~I)~

1-1¢

Now, lets put this I“/ into L.,

L,=UxY?L s2y”

= Ux/? {1 - (1 2l t) (z +71)1] $2yT

=U {z - (Jit) (S + 71)1} uT

:L'Y

Therefore, L, = U [~ (1% ) B(Z +71)~*| UT is the lower bound for L.

. . /
term we need lower bound on L. which is L,

For the upper bound of H(Lﬂ, + o2l
op
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- (U {z - (17> S8+ 71)—1} U7 + agl) -

- (U {z - (ﬂ) (S +~0) 7t + agl} UT) -

~

op

~

op

Using the eigendecomposition K = UXU T, and orthogonality of U, the operator norm simplifies as following,

Given the eigendecomposition of the kernel matrix K = ULU ", where ¥ = diag(\y, ..., \,), the following
expression arises in the analysis,

<z [I - %_t(z + 71)1] + a§I> -

(U [z - <17_t) S(E +4I) ! + agf] UT>1

op ‘

op
—1
Lets denote, Ap = (E [I — 15 (E+ 7])_1} + U,?I) then we have,
I(Ly + 2D, < Amas(Ab) (14)

Now, lets bound log determinant term,

1
5 ltog [(K + ogD)| = log (L + oZ1)|

Now, we use proposition [Bhatia) (2013); [Boyd & Vandenberghe| (2004) which says for any two symmetric
positive semi-definite matrix, A > 0 and 0 < A < o/ following inequality holds,

llog|A+ A| —log|A|| < Tr(A™'A) < aTr(A™Y)

In above proposition if, A = L., + ng , A=K —-L,and a = (ﬁ) then,
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llog |A + Al —log|Al| = |log |(Ly + 0£1) + (K — Ly)| — log | L + 0¢1||
:‘log|K+UgI|fl0g| (Ly + o21)||
<Tr[L +a§1 (K — L,)]

Tr|(L), + o21)™ (Since, L, = L and L, is PSD)

)
()7
_ (17_t) r _(U {z _ (11&) (s +w)—1] uT 4 0—21)_1]
()
()

Tr _<U {z - (17t) (S +4I) "+ a?l} UT)_ll

(2 [I— %(EHVI) } +a§.r>1]

(Using the orthogonality of U)

Therefore bound for log determinant term is,

v
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1
5 ’Zog|(K+U§I)‘ —log|(L7 —&-U?I)H <

(2 [z— (50 } +a£1)_1]

-1
Since we are saying, Ap = (E [I -5 &+ 7])*1} + O’?I) , we have,

1 2 2
5 |log |(K + o21)| — log |(Ly + a£1)|| < 20— 1) Tr(Ap)
Now, combining both terms bound we will get overall bound,
Y 1 2
L(K)—L(L,)| < : - Amaz (A Tr(A

D Predictive Variance Estimation using Sketching
Theorem 7 (Predictive Variance Approximation under 05 Ridge Leverage Score Sketching). For the
notations and assumptions defined in our Setup let

Var(z*) = k(z*,2*) — k] (K + 0¢1) k.

be the predictive wvariance of Gaussian Process Regression at a new point x*. Here, k., =
[k(z1,2%), k(xg,2%),. .., k(zn, 2*)]T and of is the noise variance. For the sketch of a kernel matriz L.,
the predictive variance 1is,

Vars(z*) = k(z*,2*) — k] (L, + agl)flk*
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For the L., obtained using Algorithm 1 we have

2
Var(z*) — Varg(a*)] < <1V_t> lo" Apll, - J > of <w>

-1
where, Ap = (Z {I — 15 (E4+ 7])_1} + 0?1) , holds with probability at least 1 — § if the sketch size m is

set so that J )
off n
> — —
m_8< 5 +6>10g(6)

Proof.
\Var(z*) — Varg(z*)| = |k(z*,2*) — kI (K + U?I)flk* —k(z*, 2*) + kL (L, + U?I)flk*|
= |-kl (K +02D) 'ku + kL (Ly 4+ 021) k.|
= |kl (Ly + 02D) " ke — kI (K + 021) " k.|
= kI (Ly + 021) ™ — (K + 021) k.|
= |kI[(Ly + 021) "N (K — L)) (K + 021) k.|
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The spectral norm decomposes as:

(S +02D) |, = \IZ (W)

Therefore, in the final bound we have
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n 2
. . g 1
Var(z®) = Vars(a")| < (1 = t) o Apll, | 2 o <(zm~ - a@)

E Additional Experimental Details

In this section, we provide supplementary experimental results obtained using the Matern kernel in addition
to the RBF kernel used in the main paper. These additional experiments are designed to validate the
robustness of our proposed Nystrom ridge leverage score sketching method across different kernel choices.

Consistent with our findings in the main text, the results with the Matern kernel confirm that our method
continues to outperform all baseline methods across multiple datasets and evaluation metrics. In particular, it
achieves superior performance in terms of Negative Log Predictive Density (NLPD), a proper scoring rule
that captures both prediction accuracy and uncertainty calibration. Our approach also yields lower predictive
mean and variance errors, indicating more accurate posterior approximations of the underlying Gaussian
Process Regression model.

These trends hold across all evaluated datasets, and the improvements remain significant despite the
change in kernel. Importantly, the approzimate ridge leverage score algorithm (used to efficiently construct
the sketch matrix) remains effective, demonstrating both scalability and predictive reliability of our
framework. Results from these additional experiments are presented in accompanying tables and figures,
where the best-performing entries are shown in bold. We note that while several scalable variational
methods exist, SVGP is included as a strong and widely adopted representative of the variational
family. Our method demonstrates consistently lower NLPD and better uncertainty calibration than
SVGP, IterGP, and other baselines across all kernel configurations, highlighting its robustness and effectiveness.

As shown in Table[l] full-data GP requires approximately 23.48 GB to store the kernel matrix for the Protein
dataset ( 46K samples), reflecting its O(n?) memory complexity. In contrast, our Nystrom (Ridge Leverage)
sketch avoids forming the full kernel, using only 2.25 to 5.64 GB depending on the sketch size.

Table 1: Memory usage (MB) across subset sizes on the Protein dataset (around 46K samples). All values
are averaged over five random trials with standard deviations shown after +. Full-data GPR requires around
23.48GB.

Method 2% 4% 6% 8% 10%
Full Data (Exact GP) 23477.29

Uniform 6709.6 &+ 3678.6 4109.7 £ 23.1 41784+ 7.8 4302.0 £10.6 4424.3+ 13.7
Leverage 4121.3 +£19.1 4109.2 + 23.5 4178.3+ 7.6 4302.0 £ 10.6  4424.1 +13.6
KMeans 4121.9 + 18.7 4109.8 4+ 23.2 4178.3+ 7.6 4302.0 £10.6  4424.3 +13.7
SVGP 1756.8 £1657.6 1121.5+73.2 1734.7+73.7 2372.0£73.3 3036.2+73.9
TterGP 2034.7 £ 0.0 2034.7 £ 0.0 2034.7 £ 0.0 2034.7+0.0 2034.7+0.0
Nystrém (Uniform) 1953.9 + 75.5 2842.3 +79.6 3753.2 +84.8  4687.5+89.2 5644.0 +93.7
Nystrom (Leverage) 2255.6 + 347.5 2843.8 +79.4 3754.7£84.9  4689.1 £89.0 5645.5+ 93.6
Nystrom (Ridge Leverage) 2253.5 4+ 347.7 2842.4 +79.8 3753.7+84.9  4687.7+89.2 5644.3 +93.7
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Table 2: Comparison of negative log predictive density (NLPD), mean standardized log loss (MSLL) and
runtime (in seconds) for Gaussian Process Regression (GPR) methods on the UCI Elevators dataset using
the RBF kernel. Each experiment is repeated over 5 random seeds, and we report the mean and standard
deviation across runs. Lower values are better for all metrics.

Method Subset % NLPD MSLL Time (s)
Full Data —0.7540 —0.8224 38.45

Uniform 2% 0.4791 +0.1192 0.4107 +£0.1192 5.6802 £ 0.0415
Leverage 2% 0.2869 + 0.0543 0.2185 + 0.0543 5.6877 + 0.0433
Kmeans 2% 0.4359 £ 0.0824 0.3675 + 0.0824 5.6594 + 0.0470
Svgp 2% 40.7380 + 0.2973 40.6696 £ 0.2973 114.2088 +0.3616
Ttergp 2% —0.2166 + 0.0000 —0.2850 &£ 0.0000 8.7699 + 0.2120
Nystrom(uniform) 2% 0.2323 + 0.0000 0.1639 + 0.0000 16.4537 £+ 0.0354
Nystrom(leverage) 2% —0.1789 4+ 0.0352 —0.2473 £ 0.0352 17.0823 £ 0.0296
Nystrom(ridge leverage) 2% —0.5551+0.0034 —0.6235+0.0034 21.1613 £+ 0.1409
Uniform 4% 0.2258 + 0.0428 0.1574 £ 0.0428 6.1125 + 0.0073
Leverage 4% 0.1558 + 0.0174 0.0874 +0.0174 6.1252 + 0.0429
Kmeans 4% 0.3369 + 0.0516 0.2685 + 0.0516 6.1207 + 0.0113
Svgp 4% 41.6886 £ 0.2967 41.6202 + 0.2967 116.2481 4+ 0.1822
Itergp 4% —0.3124 £ 0.0000 —0.3808 £ 0.0000  22.2070 £0.1170
Nystrom (uniform) 4% —0.4713 £ 0.0492 —0.5397 £+ 0.0492 18.6045 + 0.0160
Nystrom(leverage) 4% —0.3172 £ 0.0174 —0.3856 £ 0.0174 19.0833 + 0.0375
Nystrom(ridge leverage) 4% —0.6380 £0.0032 —0.7064 +=0.0032 21.7761 £ 0.0655
Uniform 6% 0.1517 + 0.0509 0.0833 + 0.0509 6.4596 + 0.0220
Leverage 6% 0.1157 +0.0173 0.0473 £0.0173 6.4745 + 0.0210
Kmeans 6% 0.3647 £+ 0.1634 0.2963 £+ 0.1634 6.4564 + 0.0371
Svgp 6% 40.0423 4+ 0.1234 39.9739 4+ 0.1234 118.1078 4+ 0.2941
Ttergp 6% —0.3415 4 0.0000 —0.4099 £+ 0.0000  43.3009 + 0.0840
Nystrom (uniform) 6% —0.5925 4+ 0.0074 —0.6609 = 0.0074  20.4320 + 0.0431
Nystrom (leverage) 6% —0.4420 £ 0.0122 —0.5104 £ 0.0122 20.9021 £ 0.0344
Nystrom(ridge leverage) 6% —0.6815 +0.0021 —0.7499 +0.0021 22.7822 + 0.1542
Uniform 8% 0.1517 +0.0308 0.0833 + 0.0308 7.1314 + 0.0217
Leverage 8% 0.0987 + 0.0140 0.0303 + 0.0140 7.2971 4+ 0.0233
Kmeans 8% 0.3060 + 0.0824 0.2376 £+ 0.0824 7.2365 £+ 0.0169
Svgp 8% 38.7838 £ 0.2665 38.7154 £ 0.2665  122.1149 £ 0.1595
Ttergp 8% —0.3629 + 0.0000 —0.4313 £ 0.0000 70.7370 4+ 0.2089
Nystrom (uniform) 8% —0.6465 =+ 0.0031 —0.7149 £ 0.0031 20.5632 £ 0.0910
Nystrom (leverage) 8% —0.5343 4+ 0.0088 —0.6027 £ 0.0088  21.2114 +0.2373
Nystrom(ridge leverage) 8% —0.7115+0.0021 —0.7799 +0.0021 22.5875 + 0.1829
Uniform 10% 0.1202 4 0.0399 0.0518 £ 0.0399 7.1129 + 0.0575
Leverage 10% 0.0541 + 0.0274 —0.0143 £ 0.0274 7.2908 4+ 0.0144
Kmeans 10% 0.2613 4 0.0984 0.1929 + 0.0984 7.2396 4+ 0.0129
Svgp 10% 37.5595 £ 0.0773 37.4911 +£0.0773  127.6543 £+ 0.3152
Itergp 10% —0.3798 £+ 0.0000 —0.4482 £ 0.0000  104.1623 £+ 0.1610
Nystrom(uniform) 10% —0.6804 + 0.0022 —0.7488 + 0.0022 22.1774 £ 0.0991
Nystrom(leverage) 10% —0.5982 + 0.0048 —0.6666 + 0.0048 22.7742 4+ 0.0430
Nystrom(ridge leverage) 10% —0.7323 £0.0024 —0.8007 0.0024 23.9634 £ 0.0825
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Table 3: Comparison of negative log predictive density (NLPD), mean standardized log loss (MSLL) and
runtime (in seconds) for Gaussian Process Regression (GPR) methods on the UCI California Housing dataset
using the Matern kernel. Each experiment is repeated over 5 random seeds, and we report the mean and
standard deviation across runs. Lower values are better for all metrics.

Method Subset % NLPD MSLL Time (s)
Full Data 0.8987 —0.6563 45.83
Uniform 2% 2.0318 £0.1416 0.4768 £ 0.1416 5.4882 £ 0.0558
Leverage 2% 1.8690 + 0.0424 0.3140 £ 0.0424 5.4729 £+ 0.0127
Kmeans 2% 2.0137 £ 0.1869 0.4587 £+ 0.1869 5.4678 + 0.0423
Svegp 2% 10.9006 £ 0.1611 9.3456 £+ 0.1611 117.4531 4+ 1.7228
Ttergp 2% 1.0109 +0.0000 —0.5442 + 0.0000 10.6045 £ 1.0680
Nystrom(uniform) 2% 1.1239 £+ 0.0189 —0.4311 £0.0189 22,7375 £ 0.4177
Nystrom(ridge leverage) 2% 1.0696 + 0.0072 —0.4854 + 0.0072 24.4552 4+ 0.3453
Uniform 4% 2.0952 £ 0.1466 0.5402 £ 0.1466 6.1049 £ 0.0349
Leverage 4% 1.9214 + 0.0978 0.3663 £ 0.0978 6.0918 + 0.0116
Kmeans 4% 2.0195 £ 0.1899 0.4645 £ 0.1899 6.1105 £ 0.0348
Svgp 4% 10.7327 £ 0.1574 9.1777 £0.1574 118.4384 £+ 0.3412
Ttergp 4% 0.9691 £ 0.0000 —0.5859 + 0.0000 36.8662 + 0.4266
Nystrom (uniform) 4% 0.9720 £+ 0.0076 —0.5830 £ 0.0076 24.5613 £+ 0.2247
Nystrom(ridge leverage) 4% 0.9479 £0.0075 —0.6071+0.0075  26.3090 £ 0.1460
Uniform 6% 2.0469 £ 0.0724 0.4918 £ 0.0724 6.9879 + 0.0088
Leverage 6% 1.8013 4+ 0.0543 0.2462 £+ 0.0543 7.1414 £ 0.0070
Kmeans 6% 1.9992 4+ 0.1683 0.4441 £+ 0.1683 7.1341 £ 0.0030
Svegp 6% 10.3749 £ 0.1324 8.8199 £ 0.1324 121.4746 +£0.2119
Ttergp 6% 0.9521 £ 0.0000 —0.6029 +£ 0.0000 83.7735 £+ 1.2646
Nystrom(uniform) 6% 0.9040 £+ 0.0074 —0.6510 £ 0.0074 26.6897 £ 0.1512
Nystrom(ridge leverage) 6% 0.8791 £ 0.0059 —0.6759 +0.0059  28.5945 + 0.1527
Uniform 8% 1.9365 + 0.0553 0.3815 £ 0.0553 7.0778 £ 0.0072
Leverage 8% 1.7552 £ 0.0312 0.2002 £ 0.0312 7.1491 £ 0.0216
Kmeans 8% 1.9944 + 0.1438 0.4394 £ 0.1438 7.1731 £ 0.0027
Svgp 8% 10.0673 £ 0.1195 8.5122 £ 0.1195 127.7320 £ 0.4636
Ttergp 8% 0.9474 £+ 0.0000 —0.6076 £ 0.0000  145.2249 + 11.9784
Nystrom(uniform) 8% 0.8518 £+ 0.0039 —0.7032 £ 0.0039 30.2436 + 0.1127
Nystrom(ridge leverage) 8% 0.8387 £0.0017 —0.7164+0.0017  25.1814 + 3.6309
Uniform 12% 1.8548 £ 0.0359 0.2998 £ 0.0359 7.1411 £ 0.0161
Leverage 12% 1.6833 £ 0.0524 0.1283 £ 0.0524 7.1168 £+ 0.0035
Kmeans 12% 1.8868 + 0.0508 0.3318 £ 0.0508 7.1536 £ 0.0042
Svegp 12% 9.6147 £ 0.1137 8.0597 £ 0.1137 135.3741 4+ 1.4913
Itergp 12% 0.9388 £ 0.0000 —0.6162 £ 0.0000  296.5839 + 83.5047
Nystrom(uniform) 12% 0.8121 £+ 0.0012 —0.7429 £ 0.0012 39.2689 £+ 0.0813
Nystrom(ridge leverage) 12% 0.8103 + 0.0009 —0.7447 +0.0009 30.3013 £ 0.3381
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Table 4: Comparison of negative log predictive density (NLPD), mean standardized log loss (MSLL) and
memory usage (in megabytes) for Gaussian Process Regression (GPR) methods on the UCI Airfoil Self-Noise
dataset using the Matern kernel. Results are averaged over 5 random seeds, with standard deviations reported.

Method Subset % NLPD MSLL Memory (MB)
Full Data 2.4025 —0.9750 51.12
Uniform 2% 3.9157 £ 0.2636 0.5383 £ 0.2636 26.6922 £ 5.0963
Leverage 2% 3.8053 £ 0.0263 0.4278 £+ 0.0263 26.1291 + 0.1068
Kmeans 2% 3.8010 £ 0.1398 0.4236 £+ 0.1398 24.1977 £ 0.1063
Svgp 2% 4.7646 £ 0.0660 1.3871 + 0.0660 19.9855 + 2.2387
Itergp 2% 3.0549 £ 0.0000 —0.3225 £ 0.0000  19.2832 + 0.0000
Nystrom(uniform) 2% 3.1717 £ 0.1845 —0.2058 £+ 0.1845 20.7281 +0.1014
Nystrom(leverage) 2% 3.5400 + 0.0000 0.1625 £ 0.0000 22.7260 + 0.4168
Nystrom(ridge leverage) 2% 2.9451 +£0.0147 —0.4323 +0.0147  20.9984 + 0.4168
Uniform 1% 3.8199 £ 0.1304 0.4425 £+ 0.1304 24.2454 £ 0.0131
Leverage 4% 3.6805 £ 0.0497 0.3030 £ 0.0497 26.1022 £0.0133
Kmeans 4% 3.6971 £ 0.0458 0.3196 £ 0.0458 24.2459 + 0.0131
Svegp 4% 4.6540 £ 0.0517 1.2765 £ 0.0517 20.4402 £ 0.1234
Itergp 4% 2.8807 £ 0.0000 —0.4968 £ 0.0000  19.2832 £ 0.0000
Nystrom(uniform) 1% 2.8716 £ 0.0090 —0.5059 % 0.0090 22.2289 £ 0.0959
Nystrom(leverage) 4% 3.0367 £0.0244  —0.3408 £0.0244  22.7094 + 0.0959
Nystrom(ridge leverage) 4% 2.8157+£0.0144 —0.5618 +0.0144  22.2401 £ 0.0959
Uniform 6% 3.7120 £ 0.0882 0.3345 &+ 0.0882 24.3877 £ 0.0225
Leverage 6% 3.6156 & 0.0349 0.2381 £ 0.0349 26.1542 £ 0.0227
Kmeans 6% 3.7218 £ 0.0667 0.3443 £+ 0.0667 24.3882 £+ 0.0225
Svegp 6% 4.3329 £+ 0.0323 0.9554 £ 0.0323 22.1729 £0.1336
Itergp 6% 2.8622 +£ 0.0000 —0.5153 £0.0000  19.2832 + 0.0000
Nystrom(uniform) 6% 2.7624 £+ 0.0061 —0.6151 £ 0.0061 23.7790 £ 0.1021
Nystrom(leverage) 6% 2.8627 £ 0.0060 —0.5148 £ 0.0060 23.8132+0.1021
Nystrom(ridge leverage) 6% 2.7159+£0.0120 -0.6615+0.0120 23.7907 £ 0.1021
Uniform 8% 3.6108 £ 0.0535 0.2333 £ 0.0535 24.5618 £ 0.0307
Leverage 8% 3.5720 £ 0.0161 0.1945 £+ 0.0161 26.2272 + 0.0309
Kmeans 8% 3.6473 £ 0.1022 0.2698 £+ 0.1022 24.5623 £ 0.0307
Svgp 8% 4.2478 £ 0.0368 0.8703 & 0.0368 23.9900 + 0.1410
Itergp 8% 2.8677 £ 0.0000 —0.5098 £ 0.0000  19.2832 + 0.0000
Nystrom (uniform) 8% 2.6889 £ 0.0075 —0.6886 £ 0.0075 25.3638 £ 0.1064
Nystrom(leverage) 8% 2.7807 £ 0.0060 —0.5968 =+ 0.0060 25.3979 £ 0.1064
Nystrom(ridge leverage) 8% 2.6559+£0.0113 —0.7216 £0.0113  25.3755 £ 0.1064
Uniform 10% 3.5457 £+ 0.0460 0.1682 £ 0.0460 24.7744 £ 0.0400
Leverage 10% 3.5409 £ 0.0136 0.1634 £ 0.0136 26.3231 £ 0.0402
Kmeans 10% 3.5957 £ 0.0854 0.2182 £ 0.0854 24.7749 £ 0.0400
Svgp 10% 4.0887 + 0.0631 0.7112 £ 0.0631 25.9065 £ 0.1508
Itergp 10% 2.8104 £ 0.0000 —0.5671 £ 0.0000  19.2832 £ 0.0000
Nystrom(uniform) 10% 2.6252 £ 0.0045 —0.7523 & 0.0045 26.9956 + 0.1123
Nystrom(leverage) 10% 2.7220 £ 0.0029 —0.6555 £ 0.0029 27.0298 £0.1123
Nystrom(ridge leverage) 10% 2.6130 £0.0244 —0.7645+0.0244  27.0073 £0.1123
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Table 5: Comparison of negative log predictive density (NLPD), mean standardized log loss (MSLL) and
memory usage (in megabytes) for Gaussian Process Regression (GPR) methods on the UCI Elevators dataset
using the Matern kernel. Results are averaged over 5 random seeds, with standard deviations reported.

Method Subset % NLPD MSLL Memory (MB)
Full Data —0.8485 —0.9169 4055.47

Uniform 3% 0.2850 £ 0.0241 0.2166 + 0.0241 990.2746 + 539.8686
Leverage 3% 0.2107 £ 0.0137 0.1423 + 0.0137 721.6564 + 2.7777
Kmeans 3% 0.3394 £ 0.0787 0.2710 £ 0.0787 721.6564 + 2.7777
Svep 3% 4.5856 £ 0.0548 4.5172 £ 0.0548 161.6910 + 16.6343
Ttergp 3% —0.1158 £ 0.0000 —0.1842 4+ 0.0000 224.2437 + 0.0000
Nystrom (uniform) 3% —0.3056 £ 0.0063 —0.3740 £+ 0.0063 483.4021 £ 16.9635
Nystrom(ridge leverage) 3% —0.4026 £ 0.0099 —0.4710 + 0.0099 514.8188 + 45.6582
Uniform 5% 0.2149 + 0.0229 0.1465 + 0.0229 742.7208 + 4.5334
Leverage 5% 0.1754 + 0.0113 0.1070 £ 0.0113 742.7237 £ 4.5334
Kmeans 5% 0.3074 + 0.0845 0.2390 4 0.0845 742.7237 + 4.5334
Svegp 5% 4.5543 £ 0.0655 4.4859 £ 0.0655 272.8118 £11.1136
Ttergp 5% —0.1522 £ 0.0000 —0.2206 +£ 0.0000 224.2437 + 0.0000
Nystrom (uniform) 5% —0.3952 £ 0.0037 —0.4636 £ 0.0037 674.9846 + 12.0901
Nystrom(ridge leverage) 5% —0.4389 £0.0057 —0.5073 +0.0057 675.0925 £ 12.0901
Uniform 6% 0.1786 + 0.0247 0.1102 + 0.0247 757.2636 + 2.4379
Leverage 6% 0.1606 + 0.0136 0.0922 + 0.0136 757.2670 + 2.4379
Kmeans 6% 0.3217 + 0.1206 0.2533 + 0.1206 757.2670 + 2.4379
Svep 6% 4.5257 + 0.0321 4.4573 £ 0.0321 327.4325 £ 5.6037
Itergp 6% —0.1639 £ 0.0000 —0.2323 £ 0.0000 224.2437 + 0.0000
Nystrom (uniform) 6% —0.4211 + 0.0065 —0.4895 £ 0.0065 771.6616 + 6.2375
Nystrom(ridge leverage) 6% —0.4577 £0.0015 —0.5261 +0.0015 771.6937 £ 6.1928
Uniform 9% 0.1461 £ 0.0159 0.0777 £ 0.0159 745.4193 + 5.8440
Leverage 9% 0.1261 +0.0153 0.0577 +0.0153 745.4242 + 5.8440
Kmeans 9% 0.2655 + 0.0595 0.1971 4+ 0.0595 745.4242 + 5.8440
Svegp 9% 4.3862 £+ 0.0311 4.3178 £0.0311 494.8212 4+ 15.9441
Ttergp 9% —0.1921 +£ 0.0000 —0.2605 £ 0.0000 224.2437 + 0.0000
Nystrom (uniform) 9% —0.4750 £ 0.0044 —0.5434 £+ 0.0044 1056.8524 + 19.7632
Nystrom(ridge leverage) 9% —0.4933 £0.0015 —0.5617 +0.0015 1057.1027 £ 19.4862
Uniform 10% 0.1282 +0.0165 0.0598 + 0.0165 749.2726 + 0.9944
Leverage 10% 0.1052 + 0.0175 0.0368 £ 0.0175 749.2779 + 0.9944
Kmeans 10% 0.2356 + 0.0455 0.1672 + 0.0455 749.2779 + 0.9944
Svep 10% 4.3341 + 0.0123 4.2657 £ 0.0123 556.8342 + 4.8722
Ttergp 10% —0.1979 £ 0.0000 —0.2663 £ 0.0000 224.2437 + 0.0000
Nystrom (uniform) 10% —0.4861 £ 0.0030 —0.5545 £+ 0.0030 1169.6672 4+ 7.5045
Nystrom(ridge leverage) 10% —0.5036 £ 0.0035 —0.5720+ 0.0035  1169.7800 + 7.5045
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Figure 5: Comparison of Negative Log Likelihood (NLL) across different subset sizes and Gaussian Process approxi-
mation methods on the Protein, Elevators, and Housing datasets using the Matern kernel. Each subplot reports the
mean and standard deviation over five random trials. The dashed horizontal line denotes the performance of the
full-data (Exact GP) model.
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Figure 6: Results on California Housing Dataset. Evaluation of Gaussian Process Regression methods on the
Housing dataset using the Matern kernel. Predictive mean error, predictive variance error, and RMSE are plotted
versus subset size. Ridge leverage—based GPR yields the best tradeoff across metrics. All results are averaged over 5
random trials, with standard deviations shown as error bars. The dashed horizontal line indicates the performance of
the full-dataset (exact GP) model.
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Figure 7: Results on UCI Elevators Dataset. Evaluation of Gaussian Process Regression methods on the UCI
Elevators dataset using the Matern kernel. Predictive mean error, predictive variance error, and RMSE are plotted
versus subset size. Ridge leverage-based GPR yields the best tradeoff across metrics. All results are averaged over 5
random trials, with standard deviations shown as error bars. The dashed horizontal line indicates the performance of
the full-dataset (exact GP) model.
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Figure 8: Results on California Housing Dataset. Evaluation of Gaussian Process Regression methods on the
Housing dataset using the RBF kernel. Predictive mean error, predictive variance error, and RMSE are plotted
versus subset size. Ridge Leverage based GPR yields the best tradeoff across metrics. All results are averaged over 5
random trials with standard deviation shown as error bars. The dashed horizontal line indicates the performance of
the full-dataset (exact GP) model.

B uniform [0 leverage M kmeans [N svgp [ IterGp [ nystrom_uni 3 nystrom_lev B nystrom_rls

Mean Error vs Sample Size (%) Variance Error vs Sample Size (%) RMSE vs Sample Size (%)
20

(=]
i
u
o

o
i
N
3

=]
-
o
o

0.0754

Predictive Mean Error |

o o
o o
N wu
w o
Predictive Variance Error

0.000-

2% 4% 6% 8% 10% 2% 4% 6% 8% 10%

Sample Size in (%) of Full Data Sample Size in (%) of Full Data Sample Size in (%) of Full Data

2% 4% 6% 8% 10%

Figure 9: Results on Airfoil Self-Noise Dataset. Performance of various GPR methods on the Airfoil dataset
using the RBF kernel. Ridge leverage—based sketching again outperforms uniform and SVGP in both predictive
accuracy and variance estimation. All results are averaged over 5 random trials with standard deviation shown as
error bars. The dashed horizontal line indicates the performance of the full-dataset (exact GP) model.
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Figure 10: Results on Airfoil Self-Noise Dataset. Performance of various GPR methods on the Airfoil dataset
using the RBF kernel. All results are averaged over 5 random trials, with standard deviations shown as error bars.
The dashed horizontal line indicates the performance of the full-dataset (exact GP) model. Due to the relatively small
dataset size, the memory usage of the proposed and baseline approximation methods remains nearly constant across
subset sizes from 2% to 10%. Nevertheless, all approximation methods consume substantially less memory than the
full GP, highlighting their efficiency.
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Figure 11: Results on Airfoil Self-Noise Dataset. Performance of various Gaussian Process Regression (GPR)
methods on the UCI Airfoil Self-Noise dataset using the Matern kernel. Ridge leverage—based sketching consistently
outperforms uniform sampling and SVGP in both predictive accuracy and variance estimation. All results are
averaged over 5 random trials, with standard deviations shown as error bars. The dashed horizontal line indicates the
performance of the full-dataset (exact GP) model.
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