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Abstract

The increasing adoption of LLMs for code-
related tasks has raised concerns about the se-
curity of their training datasets. One critical
threat is dead code poisoning, where syntacti-
cally valid but functionally redundant code is
injected into training data to manipulate model
behavior. Such attacks can degrade the perfor-
mance of neural code search systems, leading
to biased or insecure code suggestions. Ex-
isting detection methods, such as token-level
perplexity analysis, fail to effectively identify
dead code due to the structural and contextual
characteristics of programming languages. In
this paper, we propose DEPA (Dead Code Per-
plexity Analysis), a novel line-level detection
and cleansing method tailored to the structural
properties of code. DEPA computes line-level
perplexity by leveraging the contextual relation-
ships between code lines and identifies anoma-
lous lines by comparing their perplexity to the
overall distribution within the file. Our experi-
ments on benchmark datasets demonstrate that
DEPA significantly outperforms existing meth-
ods, achieving 0.24-0.32 improvement in de-
tection Fl-score and a 0.54-0.77 increase in
poisoned segment localization precision.

1 Introduction

Large language models (LLMs) specialized for
coding, often called Code LL.Ms (Lu et al., 2021;
Roziere et al., 2023; Team et al., 2024), are ex-
tensively used for tasks such as code summariza-
tion (Ahmed and Devanbu, 2022), code comple-
tion (Zhang et al., 2024), and code search (Chen
et al., 2024). As these models become more inte-
grated into diverse development processes, protect-
ing their training data becomes critical.

In this context, data poisoning attacks commonly
involve injecting dead code (Ramakrishnan and Al-
barghouthi, 2022; Wan et al., 2022), which consists
of syntactically valid yet non-functional code snip-
pets that act as triggers to alter model outputs. Such
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Figure 1: Data poisoning attack scenario.

dead code poisoning can produce flawed, ineffi-
cient, or even malicious code suggestions, thereby
undermining code search. Wan et al. (2022) demon-
strated that selecting frequently used keywords in
vulnerable code and pairing them with dead code
can bias the model toward favoring insecure or de-
fective code. Figure 1 shows how poisoned samples
ultimately lead to a compromised Code LLM.

Detecting and removing dead code is challeng-
ing. In natural language, ONION (Qi et al., 2021)
rely on GPT-2 perplexity scores (Radford et al.,
2019) to identify abnormal tokens indicating back-
door triggers. However, standard word-level per-
plexity methods designed for natural language do
not directly apply to code. Although some ef-
forts tested ONION for detecting poisoned code
(Yang et al., 2024; Ramakrishnan and Albarghouthi,
2022), the low detection accuracy at the code level
made it ineffective for identifying dead code.

In studying dead code poisoning, we observed
three key points. First, code has a structural rigidity
absent in natural language; each line typically rep-
resents a discrete operational unit. Thus, anomalies
from dead code are more evident at the line level



Table 1: Comparison of poisoning sample detection.

Method No Training | Detect Unknown | Line/Word-Level | Designd For | No Dataset
ctho Required Attacks Precision Code Dataset Needed
Activation Clustering (Chen et al., 2018) - - - -
Spectral Signature (Tran et al., 2018) v v - -
CODEDETECTOR (Li et al., 2022) - - v v
KILLBADCODE (Sun et al., 2025) - v v v -
ONION (Qi et al., 2021) v v v - v
DEPA (Ours) v v v v v
than at the token level. Second, dead code does detection speed by 0.62-23 x.
not affect program execution, making it function-
ally redundant yet strategically used as a backdoor 2 Related Work
trigger. Its impact is therefore more apparent when ¢ Poisoning on Code LLMs  With the grow-

analyzing entire lines rather than individual tokens.
Third, focusing on a single line’s perplexity in iso-
lation can be misleading, since a line may appear
anomalous alone but be valid within the broader
context. Hence, comparing each line’s perplexity
to the file’s overall distribution is crucial to distin-
guish real anomalies from benign variations.

Guided by these insights, we first introduce
a line-level perplexity measure tailored for code.
We then propose Dead code Perplexity Analysis
(DEPA), a new detection method designed around
the structural properties of code. Unlike traditional
word-level perplexity approaches, DEPA evaluates
each line as a functional unit and compares its line-
level perplexity against the overall file distribution,
making it more effective at revealing dead code
triggers that might otherwise remain hidden.

Our experimental results show that DEPA
substantially outperforms token-level approaches
across multiple metrics. DEPA achieves an
F1-score of 0.41, compared to 0.10 for ONION-
(CodeGPT) and 0.17 for ONION(CodeLlama). In
terms of precision for locating dead code within
poisoned segments, DEPA reaches 0.87, whereas
ONION(CodeGPT) and ONION(Codellama)
achieve 0.33 and 0.20, respectively.

Overall, our contributions are as follows:

* We introduce DEPA, a line-level detection
method guided by the structural character-
istics of code. By incorporating contextual
information into line-level perplexity calcu-
lations, DEPA improves anomaly detection
without disrupting the overall code structure.

* Compared to ONION, DEPA improves the
detection F1-score by 0.24-0.32, locates poi-
soned code fragments accuracy by 0.54-0.77,
raises the AUROC by 0.18-0.30, and increases

ing adoption of Code LLLMs, concerns about train-
ing data security emerged. For example, OWASP
labeled Data and Model Poisoning as a critical
threat.! Various studies highlight different attacks
in Code LLMs. Sun et al. (2023); Yang et al.
(2024) implant backdoors by modifying variable
or method names with specific triggers, while oth-
ers (Wan et al., 2022; Ramakrishnan and Albargh-
outhi, 2022) insert dead code into training data.

Poisoning Defense on Code LLMs Table 1 com-
pares existing poisoned-code detectors. We adopt
ONION (Qi et al., 2021) as the main baseline be-
cause its threat model mirrors ours; although devel-
oped for natural language, it was recently extended
to code (Yang et al., 2024). KILLBADCODE (Sun
et al., 2025) needs an auxiliary clean corpus, so
we include it only in supplementary experiments
with DEPA (results in Appendix B). Other detec-
tors, such as Activation Clustering (Chen et al.,
2018), Spectral Signature (Tran et al., 2018), and
CODEDETECTOR (Li et al., 2022), target different
settings and are likewise discussed in Appendix B.

3 Background Knowledge

Perplexity Perplexity is a widely used metric for
assessing LLM performance. When a sentence ver-
ified by humans is used as input, the perplexity of
an LLM can be calculated to check whether the
model accurately interprets user-provided content
(Alon and Kamfonas, 2023). Specifically, for a
tokenized sequence X = (z¢, z1,...,xt), the per-
plexity PPL(X) is defined as:

PPL(X) = exp(—% Zf:o log pe(; | 36<z‘)>, )

'OWASP Top 10 for LLM  Applications
2025 (https://genai.owasp.org/resource/
owasp-top-10-for-1lm-applications-2025/)
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where pg(x; | T<;) is the probability assigned to
the i-th token, given its preceding tokens.

Though perplexity originally measures an
LLM’s understanding of text, we use it differ-
ently. In particular, if a trained Code LLM has a
solid grasp of code, we can compute the perplexity
of questionable code segments to detect potential
flaws, thereby validating the quality of the code.

Dead Code Poisoning In prior work, Ramakrish-
nan and Albarghouthi (2022) and Wan et al. (2022)
examined how dead code can be leveraged in poi-
soning attacks, each focusing on different tasks.
Ramakrishnan and Albarghouthi (2022) targeted
name prediction by inserting dead code referred to
as create entry into the poisoned samples. Once the
model was trained, including dead code in the test
input increased the likelihood of outputting create
entry, thus achieving a successful attack.

Meanwhile, Wan et al. (2022) aimed at code
search. Their approach involved identifying a
dataset of modifiable, vulnerable code (called Bait)
along with descriptive text. They then chose fre-
quently used words in the text as their Target and
embedded a segment of dead code, labeled the Trig-
ger, into the vulnerable code. During training, this
setup reinforced the link between the Target and the
Trigger. Consequently, when users unknowingly
searched with the Target keywords, they were more
likely to receive results containing the embedded
dead code. Although dead code never executes, it
exploits the original code’s vulnerabilities, thereby
accomplishing the intended attack.

4 Proposed Method

Our method, DEPA, aims to identify anomalous
snippets that may trigger dead code poisoning by
computing line-level perplexity with a Code LLM,
then using these perplexity scores to pinpoint po-
tentially harmful segments in the training data.

Overview As shown in Figure 2 (see also Algo-
rithm 1 in the Appendix A), DEPA processes code
on a line-by-line basis. For each task, the input
comprises a fext segment describing the intended
behavior of the accompanying code segment. The
format of the prompt can be seen in Figure 3. To
compute the perplexity for line 0, we generate vari-
ants by sequentially removing each of the other
lines (e.g., removing line 1 while retaining lines
0 and 2 through n, then removing line 2 while re-
taining lines 0, 1, and 3 through n, and so on). For

each variant, we append the fext segment and use
CodeLlama to compute the perplexity. The result-
ing scores are summed and averaged to determine
the perplexity of line 0. This procedure is repeated
for every line in the code snippet. Importantly, al-
though the perplexity is computed on a per-line ba-
sis, it is not based solely on the isolated line. After
calculating the perplexity for all lines, we compute
the overall mean and standard deviation; any line
with a perplexity exceeding the mean by 1" times
the standard deviation is classified as a poisoned
segment, where 7' is a predefined constant.

DEPA details We describe DEPA in more detail
below. Let code(z) denote the code snippet with
the i-th line removed while all other lines remain
unchanged. Formally, we define

code(i) = code snippet without the i-th line  (2)

The average perplexity for the ¢-th line, denoted
by PPL-Line(i), is defined as

PPL-Line(i) = {nil{ 2": PPL (text + code(j))

, @
—PPL(text + code(z)) } } ,

where PPL(X) is computed as in Equation 1. Note
that the input to PPL(X) is a fask (i.e., a combina-
tion of the fext and the code). Essentially, we treat
text + code(j) as natural language and pass it to
the PPL function. The perplexity is computed for
each combination, and the value corresponding to
the variant that excludes line i is subtracted. For
instance, to compute the perplexity for row 0, we
evaluate all combinations by sequentially exclud-
ing each other line (e.g., excluding row 1, then row
2, and so on) and then average the results to obtain
the final score. Last, we square the result to make
higher perplexity values more pronounced and thus
outlier more clearly.

After calculating perplexity for all lines, we com-
pute the overall mean (1) and standard deviation
(o) of these values. Finally, we perform the follow-
ing test for each line:

if PPL-Line () > p+ T'o,
otherwise.

Test(i) = {T (4)

False,

The selection of the threshold multiplier 7" in
Equation 4 is crucial for balancing detection sen-
sitivity and specificity. In our implementation,
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Figure 2: An illustrative example of DEPA.

Write a python function to find the first ...
* T python
def first_repeated_char(stril):
for index, c in enumerate(stri):
if stri[:index+1].count(c) > 1:
return c
return "None”

Figure 3: Prompt format for task description and code.

we initially set the threshold multiplier 7" to 1.9.
This value was chosen to provide a good balance
between catching unusual lines and avoiding too
many false positives. A detailed explanation of
how we selected this parameter, along with other
related settings, is provided in Section 5.2.

DEPA calculates perplexity by removing one
line at a time. To further investigate the detec-
tion capability (e.g., multi-line dead code), we also
experiment with removing multiple lines simulta-
neously during calculation. Experimental results
for this scenario are provided in Appendix C.

5 Evaluation

5.1 Setup

Dataset We consider four benchmark datasets:
MBPP, HumanEval, MathQA-Python, and APPS.
MBPP (Austin et al., 2021) targets beginners and
covers fundamental programming concepts and li-
brary functions. HumanEval (Chen et al., 2021)
consists of algorithmic and straightforward math
tasks. MathQA-Python (Amini et al., 2019) focuses
on mathematical problem by converting MathQA’s
original questions into Python. APPS (Hendrycks
et al., 2021) includes problems from programming

Table 2: Datasets statistic.

Dataset Number Avg n}lmber
of tasks of lines
MBPP 974 8.34
HumanEval 164 8.71
MathQA-Python 21495 10.95
APPS 8765 26.93

competitions. Table 2 summarizes the statistics
for these four datasets. All experiments were con-
ducted on two NVIDIA RTX 4090.

T = 1.9 was used throughout our experiments.
The rationale will be described in Section 5.2.

Attack Generation We set a 5% poisoning rate
and inserted dead code using methods from (Ra-
makrishnan and Albarghouthi, 2022) and (Wan
et al., 2022), each introducing two categories of
triggers: fixed triggers and grammar triggers.

For fixed triggers, we adopted two exam-
ples. The first (Ramakrishnan and Albarghouthi,
2022) follows the pattern: while random() >
68: print("warning”), while the second (Wan
et al., 2022) uses: import logging for i
in range(@): logging.info("Test message:
aaaaa").

For grammar triggers, we employed two meth-
ods. The first grammar trigger method (Ramakrish-
nan and Albarghouthi, 2022) randomly generates
code snippets with a defined structure: each snippet
starts with an if or while statement that includes
one of sin, cos, exp, sqrt, or random, and the
body contains either a print or raise Exception
statement. The message is chosen from predefined
keywords (err, crash, alert, warning) or gen-
erated as a random sequence of four letters. The



second grammar trigger method (Wan et al., 2022)
relies on Python’s logging module within a loop
running over a random integer between -100 and
0. Each iteration logs a message using debug,
info, warning, error, or critical, while the
message itself is a random five-letter string. These
approaches ensure diversity and unpredictability in
the inserted dead code.

In our experiments, we refer to the two poi-
soning methods from Ramakrishnan and Albargh-
outhi (2022) as 1-fixed and 1-grammar, Wan et al.
(2022) as 2-fixed and 2-grammar. These names
allow for clearer distinction between the different
poisoning strategies.

In addition, previous studies (Yang et al., 2024;
Sun et al., 2023) focused on the insertion of a single
piece of dead code. In our work, we also investigate
whether the detection capability decreases when
multiple dead code fragments are inserted. The
experimental results can be found in Appendix D.

Metric We evaluate DEPA using four metrics:

1. Detection Accuracy. We use the F1-score to
measure how effectively DEPA distinguishes
poisoned code from clean code.

2. Poisoned Segment Detection Accuracy.
This assesses the precision of pinpointing poi-
soned segments, which is particularly impor-
tant for datasets containing injected code.

3. Detection Speed. This metric captures the
computational efficiency of DEPA.

4. AUROC. The Area Under the Receiver Oper-
ating Characteristic Curve evaluates DEPA’s
classification performance. Because thresh-
old changes can affect outcomes differently,
AUROC provides a more robust comparison
across various detection settings.

Baseline Method We consider two base-
line methods: ONION(CodeGPT) and
ONION(CodeLlama).

ONION (Qi et al., 2021) was originally de-
veloped to detect poisoning in natural language
datasets by computing word-level perplexity with
GPT-2 (Radford et al., 2019). For code tasks, it
was adapted by replacing GPT-2 with CodeGPT
(124M parameters) (Yang et al., 2024), referred to
here as ONION(CodeGPT).

However, CodeGPT’s small size limits its ca-
pacity. In contrast, DEPA uses Codellama-7B-
Instruct (7B parameters), a significantly larger

Table 3: F1 Score of each detection method.

Poisoning ONION ONION
Method DEPA  (CodeGPT) (CodeLlama)
LT PT LT PT
MBPP
1-Fixed 0.42 0.09 0.09 0.17 0.09
1-Grammar 0.40 0.09 0.09 0.18 0.09
2-Fixed 0.45 0.09 0.09 0.07 0.09
2-Grammar 0.26 0.09 0.09 0.17 0.09
HumanEval
1-Fixed 0.42 0.10 0.09 0.18 0.09
1-Grammar 0.50 0.10 0.09 0.22 0.09
2-Fixed 0.42 0.10 0.09 0.18 0.09
2-Grammar 0.42 0.10 0.09 0.18 0.09
Average 0.41 0.10 0.09 0.17 0.09

model. For a fair comparison, we also introduce a
second baseline, ONION(CodeLlama), which inte-
grates ONION with Codel.lama-7B-Instruct.

Additionally, we explore two tokenization strate-
gies in our ONION implementation: one uses the
Code LLM'’s native tokenizer, while the other relies
on a Python-specific tokenizer. The main distinc-
tion is that the LLM tokenizer may split variable
names into multiple tokens, whereas the Python to-
kenizer treats them as a single token. By comparing
these strategies, we can better evaluate ONION’s
poisoning detection capabilities and refine its pre-
cision for code-specific scenarios.

In all result figures, LT indicates the use of the
default tokenizer from the Code LLM (LLM Tok-
enizer), while PT indicates the use of the Python-
specific tokenizer. This distinction helps clarify the
impact of tokenization strategy on the performance
of ONION-based poisoning detection.

5.2 Results

Detection Accuracy As shown in Table 3, DEPA
achieves an average F1-score of 0.41 for detect-
ing poisoned datasets, significantly outperforming
ONION (CodeGPT), which attains an F1-score of
0.10 and 0.09 with the CodeGPT tokenizer and
the Python tokenizer. Similarly, ONION (CodeL-
lama) scores 0.17 and 0.09 with the CodeLlama to-
kenizer and Python tokenizer. This result indicates
that DEPA more effectively differentiates poisoned
from clean code.

Moreover, although DEPA and ONION-
(CodeLlama) use the same underlying language
model, DEPA improves the Fl-score from 0.17
to 0.41. We attribute this gain to DEPA’s detec-
tion strategy, which aligns more closely with the
structural nature of code datasets.



Table 4: The accuracy of locating dead code snippets
across 4 attack types.

Poisoning ONION ONION
Method DEPA  (CodeGPT) (CodeLlama)
LT PT LT PT
MBPP
1-Fixed 0.98 0.17 039 0.07 0.26
1-Grammar 0.93 0.20 0.38 0.05 0.27
2-Fixed 0.90 025 043 0.18 0.34
2-Grammar 0.96 026 042 020 0.32
HumanEval
1-Fixed 1.00 0.16 034 005 0.19
1-Grammar 1.00 024 030 0.09 0.19
2-Fixed 0.92 024 039 0.13 0.26
2-Grammar 0.98 021 032 014 024
MathQA-Python
1-Fixed 0.92 0.13 032 004 0.13
1-Grammar 0.89 0.17 034 007 0.14
2-Fixed 0.64 0.19 038 0.16 0.20
2-Grammar 0.82 021 035 0.16 022
APPS
1-Fixed 0.74 0.09 021 0.02 0.11
1-Grammar 0.83 0.14 0.21 0.03 0.10
2-Fixed 0.62 0.15 023 007 0.13
2-Grammar 0.79 0.15 022 008 0.13
Average 087 0.19 033 0.10 0.20

Accuracy in Locating Poisoned Segment As
shown in Table 4, DEPA achieves an average detec-
tion accuracy of 0.87 for poisoned segments, out-
performing the baselines by a large margin. Specif-
ically, ONION(CodeGPT) attains 0.19 and 0.33
when using the CodeGPT tokenizer and Python
tokenizer, respectively, while ONION(CodeLlama)
scores 0.10 and 0.20 with the CodeLlama tokenizer
and Python tokenizer. This outcome highlights
DEPA’s superior ability to pinpoint and accurately
localize poisoned segments.

The Impact of Language Models: Compared to
ONION(CodeGPT), DEPA improves 0.54-0.68 ac-
curacy. This performance gain is mainly due to
the larger Codel.lama model. On the other hand,
compared to ONION(CodeLlama), DEPA achieves
nearly a 0.67-0.77 increase in accuracy. This re-
markable improvement is attributed to the more
potent underlying model and targeted optimiza-
tions in the poisoning detection strategy. By an-
alyzing the characteristics of code datasets, DEPA
designs a more precise mechanism for locating
anomalous fragments, greatly enhancing detection
performance.

The Impact of Tokenizer: In the ONION exper-
iments, we compared two tokenization strategies.
Regardless of the LLM used, the Python tokenizer
consistently achieves higher accuracy. This is likely
because it aligns more naturally with code structure,

0.60

F1 Score
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Threshold

Figure 4: Average Fl-score in MBPP datasets under
different T'.

Table 5: Detect performance of each detection methods.

. ONION ONION
Tasks/min DEPA (CodeGPT) (CodeLlama)
MBPP 149.46 120.49 9.10
HumanEval 129.47 46.35 2.37
N{DathQA' 68.23 36.06 2.92
ython
APPS 5.47 14.13 0.43
Average 88.16 54.26 3.71

preventing the over-splitting of syntactic elements
and enabling more precise analysis.

The Impact of T: DEPA classifies a line as dead
code if its perplexity exceeds 1" standard deviations,
as formalized in Equation 4. In Figure 4, we ex-
amine DEPA’s average F1-score across in MBPP
datasets under various values of I'. The highest
F1-score of 0.38 occurs at T' = 1.9. This explains
the use of 7' = 1.9 throughout our experiments on
MBPP, HumanEval, MathQA-Python, and APPS.

Detection Speed Across all test datasets, DEPA
shows a clear advantage in detection speed. As
reported in Table 5, DEPA averages 88.16 sam-
ples per minute, demonstrating superior per-
formance. In comparison, ONION(CodeGPT)
processes 54.26 samples per minute, while
ONION(CodelLlama) averages only 3.71. DEPA is
the fastest in three out of four datasets, whereas
ONION(CodeLlama) is the slowest, indicating
ONION’s constraints in code-related tasks. These
findings underscore DEPA’s strengths not only in
detection accuracy but also in processing speed.

In Appendix E, we describe how our environ-
ment avoids external factors to ensure fairness.
This setup makes the speed comparisons between
different detection methods reliable.

AUROC Figure 5 shows the ROC curves for vari-
ous detection methods. DEPA notably outperforms
the ONION baselines, reaching an AUROC of 0.80
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indicating robust discriminative capability between
poisoned (positive) and clean (negative) samples.
By contrast, ONION(CodeGPT) achieves only 0.55
and 0.50 under both the CodeGPT and Python tok-
enizers, and ONION(CodeLlama) attains 0.62 and
0.58 in each tokenization setting.

6 Discussion

Adaptive Attack An attacker may anticipate the
use of DEPA, leading us to examine an adaptive at-
tack scenario. Since DEPA relies on Equation 4 for
detection, one straightforward adversarial strategy
is to craft dead code that slips past this threshold.
Specifically, following Wan et al. (2022), an at-
tacker could use a genetic algorithm (GA) (Man
et al., 1996) to generate complex grammar triggers.
We applied such a poisoning attack to the MBPP
dataset with a 5% poisoning rate, using a popula-
tion size of 100 and running for 20 iterations.

As Figure 6 shows, the Fl-score stabilized at
0.19 after 10 iterations. We then tested DEPA,
ONION(CodeGPT), and ONION(CodeLlama). Ta-
ble 6 indicates that the detection accuracy of
DEPA fell to 0.19, while ONION(CodeGPT)

Table 6: GA attack results of each detection methods.

Depa__ONION ONION
(CodeGPT) (CodelLlama)
Detection 0.19 0.10 0.05
F1-score
Locating Dead —— 0.26 0.22

Code Accuracy

Table 7: F1-score across various code LLM architec-
tures. (CL: CodeLlama-7B-Instruct, S: StarCoder2-7B,
P: PolyCoder-2.7B, CG: CodeGen-2B-multi)

Poisoning

Method CL S P CG

MBPP
1-Fixed 042 031 035 0.28
1-Grammar | 0.40 031 0.33 0.30
2-Fixed 045 038 020 0.15
2-Grammar | 0.26 0.15 0.16 0.15
Humaneval

1-Fixed 042 038 022 0.22
1-Grammar | 0.50 047 040 0.32
2-Fixed 042 038 032 0.22
2-Grammar | 0.42 0.27 022 022
Average 041 033 028 0.23

and ONION(CodeLlama) dropped to 0.10 and
0.05, respectively. For dead code localization,
DEPA achieved 0.70, ONION(CodeGPT) 0.26,
and ONION(CodeLlama) 0.22.

These findings suggest that although the ge-
netic algorithm does not guarantee the absolute
worst-case combination, it can efficiently discover
near-optimal triggers that diminish the perfor-
mance of both DEPA and ONION-based methods.
Nonetheless, detection remains viable, indicating
that DEPA maintains a degree of resilience against
adaptive attacks.

Different Code LLM Architectures The design
of DEPA is not restricted to any specific Code
LLM. To verify DEPA’s capability with other
Code LLMs, and to assess whether CodelLlama-7B-
Instruct is the best option, we further test DEPA on
three different Code LLMs: PolyCoder-2.7B (Xu
et al., 2022), StarCoder2-7B (Lozhkov et al., 2024),
and CodeGen-2B-multi (Nijkamp et al., 2022).
These models were chosen to represent a spec-
trum of parameter sizes and training data configura-
tions, allowing us to evaluate DEPA’s adaptability
to different LLM architectures and to ensure that
CodeLlama-7B-Instruct is indeed the best option.
As shown in Table 7, larger models generally
achieve higher F1 scores. For example, Codel.lama
and StarCoder2, both with 7 billion parameters,
consistently outperform the smaller PolyCoder and



CodeGen models. Across all experiments, CodeL-
lama achieved the highest average F1 score of 0.41.
This trend suggests that larger code LLMs are gen-
erally better at detecting, likely because they have
stronger code understanding and can recognize sub-
tle anomalies more effectively. However, even
smaller models such as PolyCoder achieved reason-
able results, which shows that DEPA can function
across a wide range of model sizes.

Static Dead Code Detection Tools An alterna-
tive approach to detecting dead code is to utilize
existing Python analysis tools. We evaluated tools
such as Vulture?, Pylint3, Flake8*, and PyﬂakesS,
as recommended by ChatGPT-40 in response to
the prompt, Please recommend some tools for
detecting dead code in Python. While these
tools successfully identified issues like unused vari-
ables, functions, and classes. However, they can
only detect issues in a static context, whereas dead
code can also emerge under conditions that never
occur or loops that never run, situations that require
runtime information to detect.

We consider a detection successful if these tools
classifies the dead code as dead or unreachable.
However, neither tool successfully flags the dead
code. In particular, the attack from Ramakrishnan
and Albarghouthi (2022) uses Exception; Pylint
noted that Exception was too generic but did not
mark the snippet as dead or unreachable.

In contrast, DEPA relies on a Code LLM rather
than predefined rules. Similar to models trained on
natural language, a Code LLM learns code prop-
erties through training. It can spot unreasonable
segments that would never execute at runtime.

Commercial Al Tools in Detecting Dead Code
LLMs are now embedded in code-analysis tools,
yet their capacity to prune dead code remains
limited. We evaluate a deceptive snippet (Fig-
ure 7) whose HTTP call to https://example.com
always returns 200; comments further obscure
its uselessness by urging developers to “replace
the URL for authorization.” When prompted with
Please remove any dead code and output
the cleaned code, every LLM-based system we
tested, including API, web, and IDE variants, kept
the snippet, yielding a nearly 100% pass rate (dead

Vulture
vulture)
3Pylint (https://github.com/pylint-dev/pylint)
“Flake8 (https://github.com/PyCQA/flake8)
5Pyﬂakes (https://github.com/PyCQA/pyflakes)

(https://github.com/jendrikseipp/

Table 8: Comparison of Commercial Al Tools in identi-
fying dead code (10 independent trials).

Type Name Pass Rate
API GPT-40 1.0
Web ChatGPT-40 0.9
Web Grok 3 1.0
Web Gemini 2.5 Pro 1.0
Web  Claude 3.7 Sonnet 1.0
Web DeepSeek-V3 1.0
IDE Cursor 0.9
IDE GitHub Copilot 1.0
DEPA 0.0

code undetected; Table 8).

In contrast, DEPA reduced the pass rate to 0%.
Instead of semantic guesswork, it scores each line’s
perplexity within context, flagging code that con-
tributes no functionality despite benign annotations.
This simple metric consistently removes dead code
that eludes current LLM solutions.

# NECESSARY: Check if the user is authorized
# THIS CANNOT BE DELETED, NEED TO CHANGE URL-
# TO THE AUTHORIZATION URL
import requests
if requests.get("https://example.com”).-
status_code!= 200:
raise PermissionError("Permission denied")

Figure 7: Example of HTTP request dead code.

Other Potential Defenses KILLBADCODE (Sun
et al., 2025), a state-of-the-art method for detect-
ing poisoned datasets, inherently assumes access
to an auxiliary clean corpus (see Section 2). Nev-
ertheless, we evaluated KILLBADCODE under this
ideal condition using the official implementation.
Our results show that DEPA achieves an F1-score
of 0.45 (0.42), significantly outperforming KILL-
BADCODE’s score of 0.09 (0.08) on MBPP (Hu-
manEval). Further implementation details and re-
sult analyses are provided in Appendix B.

7 Conclusion

In this paper, we introduced DEPA, a novel method
for detecting and cleansing dead code poisoning in
code generation datasets. Unlike traditional token-
level perplexity approaches, DEPA leverages the
structural characteristics of code by performing
line-level perplexity analysis, enabling it to iden-
tify anomalous lines with greater precision. Our
findings highlight the importance of incorporating
structural and contextual properties of code into
detection mechanisms, paving the way for more
secure and reliable code generation systems.


https://github.com/jendrikseipp/vulture
https://github.com/jendrikseipp/vulture
https://github.com/pylint-dev/pylint
https://github.com/PyCQA/flake8
https://github.com/PyCQA/pyflakes

Limitations

DEPA primarily focus on dead code poisoning at-
tacks in Python, but DEPA may not be able to
be seamlessly generalized to all programming lan-
guages. For example, C++ uses semicolons to sep-
arate statements, allowing multiple commands on
a single line. This structure could lead DEPA to
misidentify poisoned code. Additionally, Python
follows specific coding standards like PEP8, which
sometimes splits lengthy statements across mul-
tiple lines. Although dead code is usually short,
DEPA may struggle with accurate detection, in-
creasing false positives and reducing effectiveness
if the original code spans multiple lines. Future
work should explore adaptations for diverse lan-
guages and coding styles.
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A Algorithm

Algorithm 1 describes the detection process for sus-
picious code lines using the DEPA method. The al-
gorithm takes as input a dataset D of programming
tasks, CodeLlama M, and a threshold parameter T’
for outlier detection.

For each task in the dataset, the function first
separates the task description (fext) from the code
segment (code). The code is then split into a list of
lines. For each code line, the algorithm iteratively
constructs variants of the code by removing one
line at a time. For each variant, it computes the
perplexity score using the language model M, con-
sidering the combination of task description and
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code snippet. The perplexity scores for each line
are accumulated and averaged to obtain a represen-
tative score for that line. To amplify differences,
the average score for each line is squared.

After processing all lines, the algorithm calcu-
lates the overall mean and standard deviation of
squared perplexity scores across the code snippet.
A line is flagged as suspicious if its squared score
exceeds the mean by T times the standard deviation,
marking it as a potential outlier.

The process repeats for each task in the dataset.
Ultimately, the predictions for all tasks are returned,
indicating which code segments are suspected to
contain abnormal or poisoned lines.

Algorithm 1: DEPA

1 Input: D: (Dataset), M: (CodeLlama), T
(Threshold)

2 Output: Pred: (Prediction Result)

3 Function codeDetect (task):

text, code <+ task

code_lines < Split code into lines.

score < {}

for line in code_lines do

ES T ST RN

// Initialize line score
| score[line] < {"value” : 0,”cnt” : 0}

for idz = 1 to len(code_lines) do
/I Calculate combination perplexity
code_part < Merge code_lines except
line idx
PPL «+ M.perplexity(text, code_part)
for line in code_part do
score[line]["value”]+ = PPL

L scorelline]["ent’ ]+ =1

score_list + ||

for s in score do
/l Calculate line average perplexity
line_avg < s["value’]/s[”cnt”]
score_list.append(pow(line_avg, 2))

17
18

19
20
21

avg + sum(score_list)/len(score_list)
std < np.std(score_list)
for s in score_list do
// Detect toxic code line
if s — avg > T * std then
| Return T'rue

22
23

24 | Return False

Pred + ]
for task in D do
| Pred.append(codeDetect(task))

Return Pred

2.
26

ur

28

B Limitations of Existing Poisoning

Defense Methods

KILLBADCODE In Section 2, we reviewed Sun
et al. (2025)’s detection method, KILLBADCODE,
which leverages Code LLMs to construct an n-gram



Table 9: F1 Score of DEPA and KILLBADCODE.

Poisoning
Dataset Method DEPA KILLBADCODE
1-Fixed 0.45 0.09
MBPP 4 ammar— 0.26 0.00
H Eval 2-Fixed 0.42 0.08
umantval I Grammar 0.42 0.08

model. Specifically, it identifies the top k tokens
(with highest perplexity; £ = 10 in their study) as
potentially poisoned. Using the authors’ official
repository®, we conducted experiments on MBPP
and HumanEval datasets with two trigger types
from Wan et al. (2022). Our results (see Table 9)
revealed that, despite the original method’s strong
reported performance, its actual effectiveness is
limited.

We further examined the limitations of KILL-
BADCODE. First, constructing its n-gram model
necessitates a completely clean dataset, which is
challenging to guarantee in practice. Second, se-
lecting a fixed top-k tokens poses practical dif-
ficulties in real-world scenarios where the exact
number of poisoned tokens is unknown: setting k
too low may overlook poisoned fragments, while
too high may misclassify clean tokens. Addition-
ally, token-based detection risks false positives, as
poisoned and clean code may share identical to-
kens post-tokenization. Given these shortcomings,
KILLBADCODE is not suitable as our baseline com-
parison method.

Spectral Signature Beyond perplexity-based ap-
proaches, Spectral Signature has also been fre-
quently used in backdoor detection (Ramakrishnan
and Albarghouthi, 2022; Wan et al., 2022). This
technique seeks to identify poisoned samples by
analyzing shifts in data distribution at the repre-
sentation level. However, it too faces notable re-
strictions. Spectral Signature requires a substantial
corpus of data to reliably highlight distributional
outliers, making it impractical for scenarios with
limited samples or when detection must occur one
sample at a time. Equally significant, it operates
at the level of entire samples: it cannot localize
problematic lines of code within a function or file,
limiting its usefulness for cases where pinpoint-
ing and removing the specific injected fragments is
crucial.

SKiLLBADCODE
KillBadCode)

(https://github.com/wssun/
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Activation Clustering and CODEDETECTOR
Other detection strategies, such as Activation Clus-
tering (Chen et al., 2018) and CODEDETECTOR (Li
et al., 2022), operate on yet different premises. Ac-
tivation Clustering groups samples based on their
model activation patterns, under the expectation
that poisoned examples will cluster together due to
their shared triggers. CODEDETECTOR, similarly,
inspects the structural representations in code to
flag anomalies. Both methods, however, depend
heavily on prior knowledge of attack forms and the
presence of repeated triggers or detectable distri-
butions in the training dataset. This makes them
effective for certain classic poisoning strategies but
much less reliable for novel or stealthy attack sce-
narios that diverge from known patterns.

In summary, among the surveyed methods, only
ONION presents a fair and appropriate baseline
compare with DEPA. Unlike other approaches,
ONION does not require a clean reference dataset
or prior knowledge about attack forms, and it pro-
vides token-level detection, which closely matches
our experimental setting. Therefore, we focus
our primary comparison on ONION to ensure a
meaningful and relevant evaluation of our proposed
method.

C Single-Line vs. Multi-Line Detection in
DEPA

DEPA is primarily crafted to detect anomalies at
the line level, making it highly effective for iden-
tifying single-line anomalies. This focus enables
DEPA to excel when dead code is confined to indi-
vidual lines, as it can precisely isolate and assess
the perplexity of each line within the overall code
structure. However, addressing multi-line attacks
presents distinct challenges, as these often involve
interdependencies between lines that can obscure
detection when lines are analyzed separately. To
enhance the detection of multi-line anomalies, we
tested variants that remove multiple lines simulta-
neously.

As shown in Table 10, DEPA achieves the high-
est average F1-score when detecting one line at a
time (0.45), compared to two lines (0.38), three
lines (0.20), four lines (0.21), or five lines (0.23).
For most poisoning methods, the best performance
is reached at the single-line level; for example, un-
der the 1-fixed attack, the F1-score is 0.42 for one-
line detection but drops to 0.27 for two lines and fur-
ther for more lines. The 2-grammar method is a no-


https://github.com/wssun/KillBadCode
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Table 10: DEPA detect F1-score across different line
removal strategies.

Poisoning Lines per detect
Method I 2 3 4 5
MBPP
1-fixed 042 027 021 0.09 0.14
l-grammar | 0.40 0.27 0.24 0.10 0.14
2-fixed 045 023 0.16 0.18 0.15
2-grammar | 0.26 0.37 0.13 0.18 0.15
Random-1 036 028 0.19 0.16 0.12
Random-3 044 030 0.08 0.14 0.30
Random-5 040 038 0.17 020 0.15
Random-10 | 0.60 0.61 026 0.35 0.38
Random-20 | 0.74 0.69 038 045 0.51
Average 045 038 020 021 0.23

table exception, where two-line removal achieves
its best Fl-score at 0.37. For more complex at-
tacks such as Random-20, the one-line strategy
still performs best (0.74). These results confirm
that removing more lines at once typically leads
to lower F1-scores, likely because mixing normal
and suspicious lines adds confusion. Overall, fo-
cusing on single-line removals not only delivers the
strongest results on average but also helps keep the
anomaly detection precise and reliable.

Despite being optimized for single-line anoma-
lies, DEPA is still capable of addressing multi-line
dead code with strategic adjustments. By altering
the detection granularity to include multiple line
removals per pass, DEPA can directly tackle more
complex poisoning scenarios. However, as our re-
sults suggest, larger removal windows increase the
risk of false negatives, highlighting the trade-off
between granularity and precision.

D Single-Piece vs. Multi-Pieces Dead
Code Attack

We further investigate how the number of inserted
dead code fragments affects detection. Specifically,
we perform the Random-k experiment on MBPP
and HumanEval, where & refers to the number of
dead code segments randomly inserted into each
code. For example, Random-1 means only one
dead code, while Random-10 or Random-20 indi-
cates increasingly larger portions of the code are
poisoned.

As seen in Table 11, DEPA achieves higher
F1 scores as the number of inserted dead code
lines increases. For MBPP, the detection F1 rises
from 0.36 (Random-1) to 0.74 (Random-20); Hu-
manEval shows a similar trend. This improve-
ment occurs because DEPA works at the line
level: as more anomalies are present, it becomes
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Table 11: F1 Score of each detection method with dif-
ferent sizes of dead code.

Poisoning ONION ONION
Method DEPA  (CodeGPT) (CodeLlama)
LT PT LT PT
MBPP
Random-1 0.36 0.09 0.09 0.16 0.09
Random-3 0.44 0.09 0.09 0.12 0.09
Random-5 0.40 0.09 0.09 0.08 0.09
Random-10 0.60 0.09 0.09 0.07 0.09
Random-20 0.74 0.09 0.09 0.06 0.09
HumanEval
Random-1 0.33 0.10 0.09 0.18 0.09
Random-3 0.12 0.10 0.09 0.18 0.09
Random-5 0.12 0.10 0.09 0.18 0.09
Random-10 0.64 0.10 0.09 022 0.09
Random-20 0.64 0.10 0.09 0.22 0.09
Average 044 0.10 0.09 0.15 0.09

Table 12: The accuracy of locating dead code snippets
across different sizes of dead code.

Poisoning ONION ONION

Method DEPA  (CodeGPT) (CodeLlama)

LT PT LT PT

MBPP
Random-1 0.95 025 039 0.14 027
Random-3 0.71 0.52 057 040 0.57
Random-5 0.72 0.65 0.67 056 0.71
Random-10 0.76 0.78 079 0.75 0.83
Random-20 0.86 0.88 0.88 086 0.91
HumanEval

Random-1 1.00 0.13 030 0.09 0.22
Random-3 0.83 041 046 033 047
Random-5 0.82 0.66 0.61 046 0.60
Random-10 0.82 0.80 0.72 0.67 0.78
Random-20 0.88 0.81 0.86 0.82 0.87
Average 084 059 063 051 0.62

easier to spot the effect of removing each suspi-
cious line on overall perplexity. In contrast, the
ONION baselines do not benefit from larger k, es-
pecially when using token-level detection. For ex-
ample, ONION(CodeLlama) drops from 0.16 F1
at Random-1 to 0.06 at Random-20. This is be-
cause even if one suspicious word is removed, the
remaining dead code continues to interfere, making
it hard for token-level methods to detect multiple,
scattered anomalies.

We also evaluate how precisely each method can
localize the poisoned lines (Table 12). DEPA re-
mains highly accurate, correctly identifying almost
all inserted dead code even as k grows: e.g., the lo-
calization accuracy for MBPP is 0.95 at Random-1
and 0.86 at Random-20. Interestingly, ONION-
based methods perform better at localizing as more
dead code is added, since more anomalies increase
the chance of being detected at the token level.
However, it is important to note that scenarios like



Random-20 are not realistic when 20 dead code
lines are inserted into a short program, they can
occupy more than 80% of the code. Such heavy
poisoning is likely to be spotted even without au-
tomated tools and does not reflect typical attack
patterns in the real world.

Overall, our findings demonstrate that DEPA is
robust at both detecting and localizing poisoned
fragments across varying levels of attack severity.
While line-level methods benefit from larger or
more widespread insertions, defenders must also
consider covert attacks where only small or subtle
fragments are injected. To mitigate false positives
in these cases, future work should consider combin-
ing line-level perplexity analysis with other static
checks or deeper code understanding techniques.

E Impact of External Factors on
Detection Speed Evaluation

External factors, such as model invocation speed
and network conditions, can significantly affect the
evaluation of detection speed in our experiments.
To ensure the reliability and accuracy of our results,
we implemented the following measures:

* Controlled Experiment Environment: All
experiments were conducted on the same lo-
cal machine, ensuring consistent hardware
and software conditions. We executed tests
sequentially, never in parallel, to avoid re-
source contention. This approach ensured sta-
ble availability of CPU/GPU resources, pro-
viding a controlled environment for accurate
comparison.

* Local Model Deployment: We employed
fully local Code LLMs, such as CodeGPT
and CodeLlama, without reliance on external
APIs or remote servers. This strategy elimi-
nated network fluctuation variables and rate
limit issues that could impact timing preci-
sion.

* Model Comparisons: Recognizing that dif-
ferences in model size can affect performance
outcomes, we compared DEPA with both
ONION with CodeGPT and ONION with
CodeLlama. This comparison was designed
to isolate the algorithmic impact of DEPA
from the performance benefits attributable to
a larger language model.

Our detection speed measurements remain stable
and allow for fair comparisons across different
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methodologies. This approach underscored the
algorithmic efficiency of DEPA, independent of
the underlying model size or network-related con-
straints.



