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Abstract

The increasing adoption of LLMs for code-001
related tasks has raised concerns about the se-002
curity of their training datasets. One critical003
threat is dead code poisoning, where syntacti-004
cally valid but functionally redundant code is005
injected into training data to manipulate model006
behavior. Such attacks can degrade the perfor-007
mance of neural code search systems, leading008
to biased or insecure code suggestions. Ex-009
isting detection methods, such as token-level010
perplexity analysis, fail to effectively identify011
dead code due to the structural and contextual012
characteristics of programming languages. In013
this paper, we propose DEPA (Dead Code Per-014
plexity Analysis), a novel line-level detection015
and cleansing method tailored to the structural016
properties of code. DEPA computes line-level017
perplexity by leveraging the contextual relation-018
ships between code lines and identifies anoma-019
lous lines by comparing their perplexity to the020
overall distribution within the file. Our experi-021
ments on benchmark datasets demonstrate that022
DEPA significantly outperforms existing meth-023
ods, achieving 0.24-0.32 improvement in de-024
tection F1-score and a 0.54-0.77 increase in025
poisoned segment localization precision.026

1 Introduction027

Large language models (LLMs) specialized for028

coding, often called Code LLMs (Lu et al., 2021;029

Roziere et al., 2023; Team et al., 2024), are ex-030

tensively used for tasks such as code summariza-031

tion (Ahmed and Devanbu, 2022), code comple-032

tion (Zhang et al., 2024), and code search (Chen033

et al., 2024). As these models become more inte-034

grated into diverse development processes, protect-035

ing their training data becomes critical.036

In this context, data poisoning attacks commonly037

involve injecting dead code (Ramakrishnan and Al-038

barghouthi, 2022; Wan et al., 2022), which consists039

of syntactically valid yet non-functional code snip-040

pets that act as triggers to alter model outputs. Such041

Figure 1: Data poisoning attack scenario.

dead code poisoning can produce flawed, ineffi- 042

cient, or even malicious code suggestions, thereby 043

undermining code search. Wan et al. (2022) demon- 044

strated that selecting frequently used keywords in 045

vulnerable code and pairing them with dead code 046

can bias the model toward favoring insecure or de- 047

fective code. Figure 1 shows how poisoned samples 048

ultimately lead to a compromised Code LLM. 049

Detecting and removing dead code is challeng- 050

ing. In natural language, ONION (Qi et al., 2021) 051

rely on GPT-2 perplexity scores (Radford et al., 052

2019) to identify abnormal tokens indicating back- 053

door triggers. However, standard word-level per- 054

plexity methods designed for natural language do 055

not directly apply to code. Although some ef- 056

forts tested ONION for detecting poisoned code 057

(Yang et al., 2024; Ramakrishnan and Albarghouthi, 058

2022), the low detection accuracy at the code level 059

made it ineffective for identifying dead code. 060

In studying dead code poisoning, we observed 061

three key points. First, code has a structural rigidity 062

absent in natural language; each line typically rep- 063

resents a discrete operational unit. Thus, anomalies 064

from dead code are more evident at the line level 065

1



Table 1: Comparison of poisoning sample detection.

Method No Training
Required

Detect Unknown
Attacks

Line/Word-Level
Precision

Designd For
Code Dataset

No Dataset
Needed

Activation Clustering (Chen et al., 2018) - - - - -
Spectral Signature (Tran et al., 2018) ✓ ✓ - - -

CODEDETECTOR (Li et al., 2022) - - ✓ ✓ -
KILLBADCODE (Sun et al., 2025) - ✓ ✓ ✓ -

ONION (Qi et al., 2021) ✓ ✓ ✓ - ✓
DEPA (Ours) ✓ ✓ ✓ ✓ ✓

than at the token level. Second, dead code does066

not affect program execution, making it function-067

ally redundant yet strategically used as a backdoor068

trigger. Its impact is therefore more apparent when069

analyzing entire lines rather than individual tokens.070

Third, focusing on a single line’s perplexity in iso-071

lation can be misleading, since a line may appear072

anomalous alone but be valid within the broader073

context. Hence, comparing each line’s perplexity074

to the file’s overall distribution is crucial to distin-075

guish real anomalies from benign variations.076

Guided by these insights, we first introduce077

a line-level perplexity measure tailored for code.078

We then propose Dead code Perplexity Analysis079

(DEPA), a new detection method designed around080

the structural properties of code. Unlike traditional081

word-level perplexity approaches, DEPA evaluates082

each line as a functional unit and compares its line-083

level perplexity against the overall file distribution,084

making it more effective at revealing dead code085

triggers that might otherwise remain hidden.086

Our experimental results show that DEPA087

substantially outperforms token-level approaches088

across multiple metrics. DEPA achieves an089

F1-score of 0.41, compared to 0.10 for ONION-090

(CodeGPT) and 0.17 for ONION(CodeLlama). In091

terms of precision for locating dead code within092

poisoned segments, DEPA reaches 0.87, whereas093

ONION(CodeGPT) and ONION(CodeLlama)094

achieve 0.33 and 0.20, respectively.095

Overall, our contributions are as follows:096

• We introduce DEPA, a line-level detection097

method guided by the structural character-098

istics of code. By incorporating contextual099

information into line-level perplexity calcu-100

lations, DEPA improves anomaly detection101

without disrupting the overall code structure.102

• Compared to ONION, DEPA improves the103

detection F1-score by 0.24-0.32, locates poi-104

soned code fragments accuracy by 0.54-0.77,105

raises the AUROC by 0.18-0.30, and increases106

detection speed by 0.62-23×. 107

2 Related Work 108

Data Poisoning on Code LLMs With the grow- 109

ing adoption of Code LLMs, concerns about train- 110

ing data security emerged. For example, OWASP 111

labeled Data and Model Poisoning as a critical 112

threat.1 Various studies highlight different attacks 113

in Code LLMs. Sun et al. (2023); Yang et al. 114

(2024) implant backdoors by modifying variable 115

or method names with specific triggers, while oth- 116

ers (Wan et al., 2022; Ramakrishnan and Albargh- 117

outhi, 2022) insert dead code into training data. 118

Poisoning Defense on Code LLMs Table 1 com- 119

pares existing poisoned-code detectors. We adopt 120

ONION (Qi et al., 2021) as the main baseline be- 121

cause its threat model mirrors ours; although devel- 122

oped for natural language, it was recently extended 123

to code (Yang et al., 2024). KILLBADCODE (Sun 124

et al., 2025) needs an auxiliary clean corpus, so 125

we include it only in supplementary experiments 126

with DEPA (results in Appendix B). Other detec- 127

tors, such as Activation Clustering (Chen et al., 128

2018), Spectral Signature (Tran et al., 2018), and 129

CODEDETECTOR (Li et al., 2022), target different 130

settings and are likewise discussed in Appendix B. 131

3 Background Knowledge 132

Perplexity Perplexity is a widely used metric for 133

assessing LLM performance. When a sentence ver- 134

ified by humans is used as input, the perplexity of 135

an LLM can be calculated to check whether the 136

model accurately interprets user-provided content 137

(Alon and Kamfonas, 2023). Specifically, for a 138

tokenized sequence X = (x0, x1, . . . , xt), the per- 139

plexity PPL(X) is defined as: 140

PPL(X) = exp
(
− 1

t

∑t
i=0 log pθ(xi | x<i)

)
, (1) 141

1OWASP Top 10 for LLM Applications
2025 (https://genai.owasp.org/resource/
owasp-top-10-for-llm-applications-2025/)
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where pθ(xi | x<i) is the probability assigned to142

the i-th token, given its preceding tokens.143

Though perplexity originally measures an144

LLM’s understanding of text, we use it differ-145

ently. In particular, if a trained Code LLM has a146

solid grasp of code, we can compute the perplexity147

of questionable code segments to detect potential148

flaws, thereby validating the quality of the code.149

Dead Code Poisoning In prior work, Ramakrish-150

nan and Albarghouthi (2022) and Wan et al. (2022)151

examined how dead code can be leveraged in poi-152

soning attacks, each focusing on different tasks.153

Ramakrishnan and Albarghouthi (2022) targeted154

name prediction by inserting dead code referred to155

as create entry into the poisoned samples. Once the156

model was trained, including dead code in the test157

input increased the likelihood of outputting create158

entry, thus achieving a successful attack.159

Meanwhile, Wan et al. (2022) aimed at code160

search. Their approach involved identifying a161

dataset of modifiable, vulnerable code (called Bait)162

along with descriptive text. They then chose fre-163

quently used words in the text as their Target and164

embedded a segment of dead code, labeled the Trig-165

ger, into the vulnerable code. During training, this166

setup reinforced the link between the Target and the167

Trigger. Consequently, when users unknowingly168

searched with the Target keywords, they were more169

likely to receive results containing the embedded170

dead code. Although dead code never executes, it171

exploits the original code’s vulnerabilities, thereby172

accomplishing the intended attack.173

4 Proposed Method174

Our method, DEPA, aims to identify anomalous175

snippets that may trigger dead code poisoning by176

computing line-level perplexity with a Code LLM,177

then using these perplexity scores to pinpoint po-178

tentially harmful segments in the training data.179

Overview As shown in Figure 2 (see also Algo-180

rithm 1 in the Appendix A), DEPA processes code181

on a line-by-line basis. For each task, the input182

comprises a text segment describing the intended183

behavior of the accompanying code segment. The184

format of the prompt can be seen in Figure 3. To185

compute the perplexity for line 0, we generate vari-186

ants by sequentially removing each of the other187

lines (e.g., removing line 1 while retaining lines188

0 and 2 through n, then removing line 2 while re-189

taining lines 0, 1, and 3 through n, and so on). For190

each variant, we append the text segment and use 191

CodeLlama to compute the perplexity. The result- 192

ing scores are summed and averaged to determine 193

the perplexity of line 0. This procedure is repeated 194

for every line in the code snippet. Importantly, al- 195

though the perplexity is computed on a per-line ba- 196

sis, it is not based solely on the isolated line. After 197

calculating the perplexity for all lines, we compute 198

the overall mean and standard deviation; any line 199

with a perplexity exceeding the mean by T times 200

the standard deviation is classified as a poisoned 201

segment, where T is a predefined constant. 202

DEPA details We describe DEPA in more detail 203

below. Let code(i) denote the code snippet with 204

the i-th line removed while all other lines remain 205

unchanged. Formally, we define 206

code(i) = code snippet without the i-th line (2) 207

The average perplexity for the i-th line, denoted 208

by PPL-Line(i), is defined as 209

PPL-Line(i) =

{
1

n− 1

{
n∑

j=0

PPL(text + code(j))

−PPL(text + code(i))

}}2

,

(3) 210

where PPL(X) is computed as in Equation 1. Note 211

that the input to PPL(X) is a task (i.e., a combina- 212

tion of the text and the code). Essentially, we treat 213

text + code(j) as natural language and pass it to 214

the PPL function. The perplexity is computed for 215

each combination, and the value corresponding to 216

the variant that excludes line i is subtracted. For 217

instance, to compute the perplexity for row 0, we 218

evaluate all combinations by sequentially exclud- 219

ing each other line (e.g., excluding row 1, then row 220

2, and so on) and then average the results to obtain 221

the final score. Last, we square the result to make 222

higher perplexity values more pronounced and thus 223

outlier more clearly. 224

After calculating perplexity for all lines, we com- 225

pute the overall mean (µ) and standard deviation 226

(σ) of these values. Finally, we perform the follow- 227

ing test for each line: 228

Test(i) =

{
True, if PPL-Line(i) > µ+ Tσ,

False, otherwise.
(4) 229

The selection of the threshold multiplier T in 230

Equation 4 is crucial for balancing detection sen- 231

sitivity and specificity. In our implementation, 232
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Figure 2: An illustrative example of DEPA.

Write a python function to find the first ...
```python
def first_repeated_char(str1):

for index, c in enumerate(str1):
if str1[:index+1].count(c) > 1:

return c
return "None"

```

Figure 3: Prompt format for task description and code.

we initially set the threshold multiplier T to 1.9.233

This value was chosen to provide a good balance234

between catching unusual lines and avoiding too235

many false positives. A detailed explanation of236

how we selected this parameter, along with other237

related settings, is provided in Section 5.2.238

DEPA calculates perplexity by removing one239

line at a time. To further investigate the detec-240

tion capability (e.g., multi-line dead code), we also241

experiment with removing multiple lines simulta-242

neously during calculation. Experimental results243

for this scenario are provided in Appendix C.244

5 Evaluation245

5.1 Setup246

Dataset We consider four benchmark datasets:247

MBPP, HumanEval, MathQA-Python, and APPS.248

MBPP (Austin et al., 2021) targets beginners and249

covers fundamental programming concepts and li-250

brary functions. HumanEval (Chen et al., 2021)251

consists of algorithmic and straightforward math252

tasks. MathQA-Python (Amini et al., 2019) focuses253

on mathematical problem by converting MathQA’s254

original questions into Python. APPS (Hendrycks255

et al., 2021) includes problems from programming256

Table 2: Datasets statistic.

Dataset Number
of tasks

Avg number
of lines

MBPP 974 8.34
HumanEval 164 8.71

MathQA-Python 21495 10.95
APPS 8765 26.93

competitions. Table 2 summarizes the statistics 257

for these four datasets. All experiments were con- 258

ducted on two NVIDIA RTX 4090. 259

T = 1.9 was used throughout our experiments. 260

The rationale will be described in Section 5.2. 261

Attack Generation We set a 5% poisoning rate 262

and inserted dead code using methods from (Ra- 263

makrishnan and Albarghouthi, 2022) and (Wan 264

et al., 2022), each introducing two categories of 265

triggers: fixed triggers and grammar triggers. 266

For fixed triggers, we adopted two exam- 267

ples. The first (Ramakrishnan and Albarghouthi, 268

2022) follows the pattern: while random() > 269

68: print("warning"), while the second (Wan 270

et al., 2022) uses: import logging for i 271

in range(0): logging.info("Test message: 272

aaaaa"). 273

For grammar triggers, we employed two meth- 274

ods. The first grammar trigger method (Ramakrish- 275

nan and Albarghouthi, 2022) randomly generates 276

code snippets with a defined structure: each snippet 277

starts with an if or while statement that includes 278

one of sin, cos, exp, sqrt, or random, and the 279

body contains either a print or raise Exception 280

statement. The message is chosen from predefined 281

keywords (err, crash, alert, warning) or gen- 282

erated as a random sequence of four letters. The 283
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second grammar trigger method (Wan et al., 2022)284

relies on Python’s logging module within a loop285

running over a random integer between -100 and286

0. Each iteration logs a message using debug,287

info, warning, error, or critical, while the288

message itself is a random five-letter string. These289

approaches ensure diversity and unpredictability in290

the inserted dead code.291

In our experiments, we refer to the two poi-292

soning methods from Ramakrishnan and Albargh-293

outhi (2022) as 1-fixed and 1-grammar, Wan et al.294

(2022) as 2-fixed and 2-grammar. These names295

allow for clearer distinction between the different296

poisoning strategies.297

In addition, previous studies (Yang et al., 2024;298

Sun et al., 2023) focused on the insertion of a single299

piece of dead code. In our work, we also investigate300

whether the detection capability decreases when301

multiple dead code fragments are inserted. The302

experimental results can be found in Appendix D.303

Metric We evaluate DEPA using four metrics:304

1. Detection Accuracy. We use the F1-score to305

measure how effectively DEPA distinguishes306

poisoned code from clean code.307

2. Poisoned Segment Detection Accuracy.308

This assesses the precision of pinpointing poi-309

soned segments, which is particularly impor-310

tant for datasets containing injected code.311

3. Detection Speed. This metric captures the312

computational efficiency of DEPA.313

4. AUROC. The Area Under the Receiver Oper-314

ating Characteristic Curve evaluates DEPA’s315

classification performance. Because thresh-316

old changes can affect outcomes differently,317

AUROC provides a more robust comparison318

across various detection settings.319

Baseline Method We consider two base-320

line methods: ONION(CodeGPT) and321

ONION(CodeLlama).322

ONION (Qi et al., 2021) was originally de-323

veloped to detect poisoning in natural language324

datasets by computing word-level perplexity with325

GPT-2 (Radford et al., 2019). For code tasks, it326

was adapted by replacing GPT-2 with CodeGPT327

(124M parameters) (Yang et al., 2024), referred to328

here as ONION(CodeGPT).329

However, CodeGPT’s small size limits its ca-330

pacity. In contrast, DEPA uses CodeLlama-7B-331

Instruct (7B parameters), a significantly larger332

Table 3: F1 Score of each detection method.

Poisoning
Method DEPA

ONION
(CodeGPT)

ONION
(CodeLlama)

LT PT LT PT
MBPP

1-Fixed 0.42 0.09 0.09 0.17 0.09
1-Grammar 0.40 0.09 0.09 0.18 0.09
2-Fixed 0.45 0.09 0.09 0.07 0.09
2-Grammar 0.26 0.09 0.09 0.17 0.09

HumanEval
1-Fixed 0.42 0.10 0.09 0.18 0.09
1-Grammar 0.50 0.10 0.09 0.22 0.09
2-Fixed 0.42 0.10 0.09 0.18 0.09
2-Grammar 0.42 0.10 0.09 0.18 0.09

Average 0.41 0.10 0.09 0.17 0.09

model. For a fair comparison, we also introduce a 333

second baseline, ONION(CodeLlama), which inte- 334

grates ONION with CodeLlama-7B-Instruct. 335

Additionally, we explore two tokenization strate- 336

gies in our ONION implementation: one uses the 337

Code LLM’s native tokenizer, while the other relies 338

on a Python-specific tokenizer. The main distinc- 339

tion is that the LLM tokenizer may split variable 340

names into multiple tokens, whereas the Python to- 341

kenizer treats them as a single token. By comparing 342

these strategies, we can better evaluate ONION’s 343

poisoning detection capabilities and refine its pre- 344

cision for code-specific scenarios. 345

In all result figures, LT indicates the use of the 346

default tokenizer from the Code LLM (LLM Tok- 347

enizer), while PT indicates the use of the Python- 348

specific tokenizer. This distinction helps clarify the 349

impact of tokenization strategy on the performance 350

of ONION-based poisoning detection. 351

5.2 Results 352

Detection Accuracy As shown in Table 3, DEPA 353

achieves an average F1-score of 0.41 for detect- 354

ing poisoned datasets, significantly outperforming 355

ONION (CodeGPT), which attains an F1-score of 356

0.10 and 0.09 with the CodeGPT tokenizer and 357

the Python tokenizer. Similarly, ONION (CodeL- 358

lama) scores 0.17 and 0.09 with the CodeLlama to- 359

kenizer and Python tokenizer. This result indicates 360

that DEPA more effectively differentiates poisoned 361

from clean code. 362

Moreover, although DEPA and ONION- 363

(CodeLlama) use the same underlying language 364

model, DEPA improves the F1-score from 0.17 365

to 0.41. We attribute this gain to DEPA’s detec- 366

tion strategy, which aligns more closely with the 367

structural nature of code datasets. 368
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Table 4: The accuracy of locating dead code snippets
across 4 attack types.

Poisoning
Method DEPA

ONION
(CodeGPT)

ONION
(CodeLlama)

LT PT LT PT
MBPP

1-Fixed 0.98 0.17 0.39 0.07 0.26
1-Grammar 0.93 0.20 0.38 0.05 0.27
2-Fixed 0.90 0.25 0.43 0.18 0.34
2-Grammar 0.96 0.26 0.42 0.20 0.32

HumanEval
1-Fixed 1.00 0.16 0.34 0.05 0.19
1-Grammar 1.00 0.24 0.30 0.09 0.19
2-Fixed 0.92 0.24 0.39 0.13 0.26
2-Grammar 0.98 0.21 0.32 0.14 0.24

MathQA-Python
1-Fixed 0.92 0.13 0.32 0.04 0.13
1-Grammar 0.89 0.17 0.34 0.07 0.14
2-Fixed 0.64 0.19 0.38 0.16 0.20
2-Grammar 0.82 0.21 0.35 0.16 0.22

APPS
1-Fixed 0.74 0.09 0.21 0.02 0.11
1-Grammar 0.83 0.14 0.21 0.03 0.10
2-Fixed 0.62 0.15 0.23 0.07 0.13
2-Grammar 0.79 0.15 0.22 0.08 0.13
Average 0.87 0.19 0.33 0.10 0.20

Accuracy in Locating Poisoned Segment As369

shown in Table 4, DEPA achieves an average detec-370

tion accuracy of 0.87 for poisoned segments, out-371

performing the baselines by a large margin. Specif-372

ically, ONION(CodeGPT) attains 0.19 and 0.33373

when using the CodeGPT tokenizer and Python374

tokenizer, respectively, while ONION(CodeLlama)375

scores 0.10 and 0.20 with the CodeLlama tokenizer376

and Python tokenizer. This outcome highlights377

DEPA’s superior ability to pinpoint and accurately378

localize poisoned segments.379

The Impact of Language Models: Compared to380

ONION(CodeGPT), DEPA improves 0.54-0.68 ac-381

curacy. This performance gain is mainly due to382

the larger CodeLlama model. On the other hand,383

compared to ONION(CodeLlama), DEPA achieves384

nearly a 0.67-0.77 increase in accuracy. This re-385

markable improvement is attributed to the more386

potent underlying model and targeted optimiza-387

tions in the poisoning detection strategy. By an-388

alyzing the characteristics of code datasets, DEPA389

designs a more precise mechanism for locating390

anomalous fragments, greatly enhancing detection391

performance.392

The Impact of Tokenizer: In the ONION exper-393

iments, we compared two tokenization strategies.394

Regardless of the LLM used, the Python tokenizer395

consistently achieves higher accuracy. This is likely396

because it aligns more naturally with code structure,397

Figure 4: Average F1-score in MBPP datasets under
different T .

Table 5: Detect performance of each detection methods.

Tasks/min DEPA ONION
(CodeGPT)

ONION
(CodeLlama)

MBPP 149.46 120.49 9.10
HumanEval 129.47 46.35 2.37
MathQA-

Python 68.23 36.06 2.92

APPS 5.47 14.13 0.43
Average 88.16 54.26 3.71

preventing the over-splitting of syntactic elements 398

and enabling more precise analysis. 399

The Impact of T : DEPA classifies a line as dead 400

code if its perplexity exceeds T standard deviations, 401

as formalized in Equation 4. In Figure 4, we ex- 402

amine DEPA’s average F1-score across in MBPP 403

datasets under various values of T . The highest 404

F1-score of 0.38 occurs at T = 1.9. This explains 405

the use of T = 1.9 throughout our experiments on 406

MBPP, HumanEval, MathQA-Python, and APPS. 407

Detection Speed Across all test datasets, DEPA 408

shows a clear advantage in detection speed. As 409

reported in Table 5, DEPA averages 88.16 sam- 410

ples per minute, demonstrating superior per- 411

formance. In comparison, ONION(CodeGPT) 412

processes 54.26 samples per minute, while 413

ONION(CodeLlama) averages only 3.71. DEPA is 414

the fastest in three out of four datasets, whereas 415

ONION(CodeLlama) is the slowest, indicating 416

ONION’s constraints in code-related tasks. These 417

findings underscore DEPA’s strengths not only in 418

detection accuracy but also in processing speed. 419

In Appendix E, we describe how our environ- 420

ment avoids external factors to ensure fairness. 421

This setup makes the speed comparisons between 422

different detection methods reliable. 423

AUROC Figure 5 shows the ROC curves for vari- 424

ous detection methods. DEPA notably outperforms 425

the ONION baselines, reaching an AUROC of 0.80 426

6



Figure 5: ROC curves of each detection methods (CL
refers to CodeLlama, GPT indicates CodeGPT.

Figure 6: F1-scores of the varying number of iterations
for GA in generating triggers that evade detection.

indicating robust discriminative capability between427

poisoned (positive) and clean (negative) samples.428

By contrast, ONION(CodeGPT) achieves only 0.55429

and 0.50 under both the CodeGPT and Python tok-430

enizers, and ONION(CodeLlama) attains 0.62 and431

0.58 in each tokenization setting.432

6 Discussion433

Adaptive Attack An attacker may anticipate the434

use of DEPA, leading us to examine an adaptive at-435

tack scenario. Since DEPA relies on Equation 4 for436

detection, one straightforward adversarial strategy437

is to craft dead code that slips past this threshold.438

Specifically, following Wan et al. (2022), an at-439

tacker could use a genetic algorithm (GA) (Man440

et al., 1996) to generate complex grammar triggers.441

We applied such a poisoning attack to the MBPP442

dataset with a 5% poisoning rate, using a popula-443

tion size of 100 and running for 20 iterations.444

As Figure 6 shows, the F1-score stabilized at445

0.19 after 10 iterations. We then tested DEPA,446

ONION(CodeGPT), and ONION(CodeLlama). Ta-447

ble 6 indicates that the detection accuracy of448

DEPA fell to 0.19, while ONION(CodeGPT)449

Table 6: GA attack results of each detection methods.

DEPA ONION
(CodeGPT)

ONION
(CodeLlama)

Detection
F1-score 0.19 0.10 0.05

Locating Dead
Code Accuracy 0.70 0.26 0.22

Table 7: F1-score across various code LLM architec-
tures. (CL: CodeLlama-7B-Instruct, S: StarCoder2-7B,
P: PolyCoder-2.7B, CG: CodeGen-2B-multi)

Poisoning
Method CL S P CG

MBPP
1-Fixed 0.42 0.31 0.35 0.28
1-Grammar 0.40 0.31 0.33 0.30
2-Fixed 0.45 0.38 0.20 0.15
2-Grammar 0.26 0.15 0.16 0.15

Humaneval
1-Fixed 0.42 0.38 0.22 0.22
1-Grammar 0.50 0.47 0.40 0.32
2-Fixed 0.42 0.38 0.32 0.22
2-Grammar 0.42 0.27 0.22 0.22
Average 0.41 0.33 0.28 0.23

and ONION(CodeLlama) dropped to 0.10 and 450

0.05, respectively. For dead code localization, 451

DEPA achieved 0.70, ONION(CodeGPT) 0.26, 452

and ONION(CodeLlama) 0.22. 453

These findings suggest that although the ge- 454

netic algorithm does not guarantee the absolute 455

worst-case combination, it can efficiently discover 456

near-optimal triggers that diminish the perfor- 457

mance of both DEPA and ONION-based methods. 458

Nonetheless, detection remains viable, indicating 459

that DEPA maintains a degree of resilience against 460

adaptive attacks. 461

Different Code LLM Architectures The design 462

of DEPA is not restricted to any specific Code 463

LLM. To verify DEPA’s capability with other 464

Code LLMs, and to assess whether CodeLlama-7B- 465

Instruct is the best option, we further test DEPA on 466

three different Code LLMs: PolyCoder-2.7B (Xu 467

et al., 2022), StarCoder2-7B (Lozhkov et al., 2024), 468

and CodeGen-2B-multi (Nijkamp et al., 2022). 469

These models were chosen to represent a spec- 470

trum of parameter sizes and training data configura- 471

tions, allowing us to evaluate DEPA’s adaptability 472

to different LLM architectures and to ensure that 473

CodeLlama-7B-Instruct is indeed the best option. 474

As shown in Table 7, larger models generally 475

achieve higher F1 scores. For example, CodeLlama 476

and StarCoder2, both with 7 billion parameters, 477

consistently outperform the smaller PolyCoder and 478

7



CodeGen models. Across all experiments, CodeL-479

lama achieved the highest average F1 score of 0.41.480

This trend suggests that larger code LLMs are gen-481

erally better at detecting, likely because they have482

stronger code understanding and can recognize sub-483

tle anomalies more effectively. However, even484

smaller models such as PolyCoder achieved reason-485

able results, which shows that DEPA can function486

across a wide range of model sizes.487

Static Dead Code Detection Tools An alterna-488

tive approach to detecting dead code is to utilize489

existing Python analysis tools. We evaluated tools490

such as Vulture2, Pylint3, Flake84, and Pyflakes5,491

as recommended by ChatGPT-4o in response to492

the prompt, Please recommend some tools for493

detecting dead code in Python. While these494

tools successfully identified issues like unused vari-495

ables, functions, and classes. However, they can496

only detect issues in a static context, whereas dead497

code can also emerge under conditions that never498

occur or loops that never run, situations that require499

runtime information to detect.500

We consider a detection successful if these tools501

classifies the dead code as dead or unreachable.502

However, neither tool successfully flags the dead503

code. In particular, the attack from Ramakrishnan504

and Albarghouthi (2022) uses Exception; Pylint505

noted that Exception was too generic but did not506

mark the snippet as dead or unreachable.507

In contrast, DEPA relies on a Code LLM rather508

than predefined rules. Similar to models trained on509

natural language, a Code LLM learns code prop-510

erties through training. It can spot unreasonable511

segments that would never execute at runtime.512

Commercial AI Tools in Detecting Dead Code513

LLMs are now embedded in code-analysis tools,514

yet their capacity to prune dead code remains515

limited. We evaluate a deceptive snippet (Fig-516

ure 7) whose HTTP call to https://example.com517

always returns 200; comments further obscure518

its uselessness by urging developers to “replace519

the URL for authorization.” When prompted with520

Please remove any dead code and output521

the cleaned code, every LLM-based system we522

tested, including API, web, and IDE variants, kept523

the snippet, yielding a nearly 100% pass rate (dead524

2Vulture (https://github.com/jendrikseipp/
vulture)

3Pylint (https://github.com/pylint-dev/pylint)
4Flake8 (https://github.com/PyCQA/flake8)
5Pyflakes (https://github.com/PyCQA/pyflakes)

Table 8: Comparison of Commercial AI Tools in identi-
fying dead code (10 independent trials).

Type Name Pass Rate
API GPT-4o 1.0
Web ChatGPT-4o 0.9
Web Grok 3 1.0
Web Gemini 2.5 Pro 1.0
Web Claude 3.7 Sonnet 1.0
Web DeepSeek-V3 1.0
IDE Cursor 0.9
IDE GitHub Copilot 1.0

DEPA 0.0

code undetected; Table 8). 525

In contrast, DEPA reduced the pass rate to 0%. 526

Instead of semantic guesswork, it scores each line’s 527

perplexity within context, flagging code that con- 528

tributes no functionality despite benign annotations. 529

This simple metric consistently removes dead code 530

that eludes current LLM solutions. 531

# NECESSARY: Check if the user is authorized
# THIS CANNOT BE DELETED, NEED TO CHANGE URL-
# TO THE AUTHORIZATION URL
import requests
if requests.get("https://example.com").-

status_code!= 200:
raise PermissionError("Permission denied")

Figure 7: Example of HTTP request dead code.

Other Potential Defenses KILLBADCODE (Sun 532

et al., 2025), a state-of-the-art method for detect- 533

ing poisoned datasets, inherently assumes access 534

to an auxiliary clean corpus (see Section 2). Nev- 535

ertheless, we evaluated KILLBADCODE under this 536

ideal condition using the official implementation. 537

Our results show that DEPA achieves an F1-score 538

of 0.45 (0.42), significantly outperforming KILL- 539

BADCODE’s score of 0.09 (0.08) on MBPP (Hu- 540

manEval). Further implementation details and re- 541

sult analyses are provided in Appendix B. 542

7 Conclusion 543

In this paper, we introduced DEPA, a novel method 544

for detecting and cleansing dead code poisoning in 545

code generation datasets. Unlike traditional token- 546

level perplexity approaches, DEPA leverages the 547

structural characteristics of code by performing 548

line-level perplexity analysis, enabling it to iden- 549

tify anomalous lines with greater precision. Our 550

findings highlight the importance of incorporating 551

structural and contextual properties of code into 552

detection mechanisms, paving the way for more 553

secure and reliable code generation systems. 554
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Limitations555

DEPA primarily focus on dead code poisoning at-556

tacks in Python, but DEPA may not be able to557

be seamlessly generalized to all programming lan-558

guages. For example, C++ uses semicolons to sep-559

arate statements, allowing multiple commands on560

a single line. This structure could lead DEPA to561

misidentify poisoned code. Additionally, Python562

follows specific coding standards like PEP8, which563

sometimes splits lengthy statements across mul-564

tiple lines. Although dead code is usually short,565

DEPA may struggle with accurate detection, in-566

creasing false positives and reducing effectiveness567

if the original code spans multiple lines. Future568

work should explore adaptations for diverse lan-569

guages and coding styles.570
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A Algorithm702

Algorithm 1 describes the detection process for sus-703

picious code lines using the DEPA method. The al-704

gorithm takes as input a dataset D of programming705

tasks, CodeLlama M , and a threshold parameter T706

for outlier detection.707

For each task in the dataset, the function first708

separates the task description (text) from the code709

segment (code). The code is then split into a list of710

lines. For each code line, the algorithm iteratively711

constructs variants of the code by removing one712

line at a time. For each variant, it computes the713

perplexity score using the language model M, con-714

sidering the combination of task description and715

code snippet. The perplexity scores for each line 716

are accumulated and averaged to obtain a represen- 717

tative score for that line. To amplify differences, 718

the average score for each line is squared. 719

After processing all lines, the algorithm calcu- 720

lates the overall mean and standard deviation of 721

squared perplexity scores across the code snippet. 722

A line is flagged as suspicious if its squared score 723

exceeds the mean by T times the standard deviation, 724

marking it as a potential outlier. 725

The process repeats for each task in the dataset. 726

Ultimately, the predictions for all tasks are returned, 727

indicating which code segments are suspected to 728

contain abnormal or poisoned lines. 729

Algorithm 1: DEPA
1 Input: D: (Dataset), M : (CodeLlama), T :

(Threshold)
2 Output: Pred: (Prediction Result)
3 Function codeDetect(task):
4 text, code← task
5 code_lines← Split code into lines.
6 score← {}
7 for line in code_lines do

// Initialize line score
8 score[line]← {”value” : 0, ”cnt” : 0}
9 for idx = 1 to len(code_lines) do

// Calculate combination perplexity
10 code_part←Merge code_lines except

line idx
11 PPL←M.perplexity(text, code_part)
12 for line in code_part do
13 score[line][”value”]+ = PPL
14 score[line][”cnt”]+ = 1

15 score_list← []
16 for s in score do

// Calculate line average perplexity
17 line_avg ← s[”value”]/s[”cnt”]
18 score_list.append(pow(line_avg, 2))

19 avg ← sum(score_list)/len(score_list)
20 std← np.std(score_list)
21 for s in score_list do

// Detect toxic code line
22 if s− avg > T ∗ std then
23 Return True

24 Return False

25 Pred← []
26 for task in D do
27 Pred.append(codeDetect(task))

28 Return Pred

B Limitations of Existing Poisoning 730

Defense Methods 731

KILLBADCODE In Section 2, we reviewed Sun 732

et al. (2025)’s detection method, KILLBADCODE, 733

which leverages Code LLMs to construct an n-gram 734
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Table 9: F1 Score of DEPA and KILLBADCODE.

Dataset Poisoning
Method DEPA KILLBADCODE

MBPP 1-Fixed 0.45 0.09
1-Grammar 0.26 0.09

HumanEval 2-Fixed 0.42 0.08
2-Grammar 0.42 0.08

model. Specifically, it identifies the top k tokens735

(with highest perplexity; k = 10 in their study) as736

potentially poisoned. Using the authors’ official737

repository6, we conducted experiments on MBPP738

and HumanEval datasets with two trigger types739

from Wan et al. (2022). Our results (see Table 9)740

revealed that, despite the original method’s strong741

reported performance, its actual effectiveness is742

limited.743

We further examined the limitations of KILL-744

BADCODE. First, constructing its n-gram model745

necessitates a completely clean dataset, which is746

challenging to guarantee in practice. Second, se-747

lecting a fixed top-k tokens poses practical dif-748

ficulties in real-world scenarios where the exact749

number of poisoned tokens is unknown: setting k750

too low may overlook poisoned fragments, while751

too high may misclassify clean tokens. Addition-752

ally, token-based detection risks false positives, as753

poisoned and clean code may share identical to-754

kens post-tokenization. Given these shortcomings,755

KILLBADCODE is not suitable as our baseline com-756

parison method.757

Spectral Signature Beyond perplexity-based ap-758

proaches, Spectral Signature has also been fre-759

quently used in backdoor detection (Ramakrishnan760

and Albarghouthi, 2022; Wan et al., 2022). This761

technique seeks to identify poisoned samples by762

analyzing shifts in data distribution at the repre-763

sentation level. However, it too faces notable re-764

strictions. Spectral Signature requires a substantial765

corpus of data to reliably highlight distributional766

outliers, making it impractical for scenarios with767

limited samples or when detection must occur one768

sample at a time. Equally significant, it operates769

at the level of entire samples: it cannot localize770

problematic lines of code within a function or file,771

limiting its usefulness for cases where pinpoint-772

ing and removing the specific injected fragments is773

crucial.774

6KILLBADCODE (https://github.com/wssun/
KillBadCode)

Activation Clustering and CODEDETECTOR 775

Other detection strategies, such as Activation Clus- 776

tering (Chen et al., 2018) and CODEDETECTOR (Li 777

et al., 2022), operate on yet different premises. Ac- 778

tivation Clustering groups samples based on their 779

model activation patterns, under the expectation 780

that poisoned examples will cluster together due to 781

their shared triggers. CODEDETECTOR, similarly, 782

inspects the structural representations in code to 783

flag anomalies. Both methods, however, depend 784

heavily on prior knowledge of attack forms and the 785

presence of repeated triggers or detectable distri- 786

butions in the training dataset. This makes them 787

effective for certain classic poisoning strategies but 788

much less reliable for novel or stealthy attack sce- 789

narios that diverge from known patterns. 790

In summary, among the surveyed methods, only 791

ONION presents a fair and appropriate baseline 792

compare with DEPA. Unlike other approaches, 793

ONION does not require a clean reference dataset 794

or prior knowledge about attack forms, and it pro- 795

vides token-level detection, which closely matches 796

our experimental setting. Therefore, we focus 797

our primary comparison on ONION to ensure a 798

meaningful and relevant evaluation of our proposed 799

method. 800

C Single-Line vs. Multi-Line Detection in 801

DEPA 802

DEPA is primarily crafted to detect anomalies at 803

the line level, making it highly effective for iden- 804

tifying single-line anomalies. This focus enables 805

DEPA to excel when dead code is confined to indi- 806

vidual lines, as it can precisely isolate and assess 807

the perplexity of each line within the overall code 808

structure. However, addressing multi-line attacks 809

presents distinct challenges, as these often involve 810

interdependencies between lines that can obscure 811

detection when lines are analyzed separately. To 812

enhance the detection of multi-line anomalies, we 813

tested variants that remove multiple lines simulta- 814

neously. 815

As shown in Table 10, DEPA achieves the high- 816

est average F1-score when detecting one line at a 817

time (0.45), compared to two lines (0.38), three 818

lines (0.20), four lines (0.21), or five lines (0.23). 819

For most poisoning methods, the best performance 820

is reached at the single-line level; for example, un- 821

der the 1-fixed attack, the F1-score is 0.42 for one- 822

line detection but drops to 0.27 for two lines and fur- 823

ther for more lines. The 2-grammar method is a no- 824
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Table 10: DEPA detect F1-score across different line
removal strategies.

Poisoning
Method

Lines per detect
1 2 3 4 5

MBPP
1-fixed 0.42 0.27 0.21 0.09 0.14
1-grammar 0.40 0.27 0.24 0.10 0.14
2-fixed 0.45 0.23 0.16 0.18 0.15
2-grammar 0.26 0.37 0.13 0.18 0.15
Random-1 0.36 0.28 0.19 0.16 0.12
Random-3 0.44 0.30 0.08 0.14 0.30
Random-5 0.40 0.38 0.17 0.20 0.15
Random-10 0.60 0.61 0.26 0.35 0.38
Random-20 0.74 0.69 0.38 0.45 0.51
Average 0.45 0.38 0.20 0.21 0.23

table exception, where two-line removal achieves825

its best F1-score at 0.37. For more complex at-826

tacks such as Random-20, the one-line strategy827

still performs best (0.74). These results confirm828

that removing more lines at once typically leads829

to lower F1-scores, likely because mixing normal830

and suspicious lines adds confusion. Overall, fo-831

cusing on single-line removals not only delivers the832

strongest results on average but also helps keep the833

anomaly detection precise and reliable.834

Despite being optimized for single-line anoma-835

lies, DEPA is still capable of addressing multi-line836

dead code with strategic adjustments. By altering837

the detection granularity to include multiple line838

removals per pass, DEPA can directly tackle more839

complex poisoning scenarios. However, as our re-840

sults suggest, larger removal windows increase the841

risk of false negatives, highlighting the trade-off842

between granularity and precision.843

D Single-Piece vs. Multi-Pieces Dead844

Code Attack845

We further investigate how the number of inserted846

dead code fragments affects detection. Specifically,847

we perform the Random-k experiment on MBPP848

and HumanEval, where k refers to the number of849

dead code segments randomly inserted into each850

code. For example, Random-1 means only one851

dead code, while Random-10 or Random-20 indi-852

cates increasingly larger portions of the code are853

poisoned.854

As seen in Table 11, DEPA achieves higher855

F1 scores as the number of inserted dead code856

lines increases. For MBPP, the detection F1 rises857

from 0.36 (Random-1) to 0.74 (Random-20); Hu-858

manEval shows a similar trend. This improve-859

ment occurs because DEPA works at the line860

level: as more anomalies are present, it becomes861

Table 11: F1 Score of each detection method with dif-
ferent sizes of dead code.

Poisoning
Method DEPA

ONION
(CodeGPT)

ONION
(CodeLlama)

LT PT LT PT
MBPP

Random-1 0.36 0.09 0.09 0.16 0.09
Random-3 0.44 0.09 0.09 0.12 0.09
Random-5 0.40 0.09 0.09 0.08 0.09
Random-10 0.60 0.09 0.09 0.07 0.09
Random-20 0.74 0.09 0.09 0.06 0.09

HumanEval
Random-1 0.33 0.10 0.09 0.18 0.09
Random-3 0.12 0.10 0.09 0.18 0.09
Random-5 0.12 0.10 0.09 0.18 0.09
Random-10 0.64 0.10 0.09 0.22 0.09
Random-20 0.64 0.10 0.09 0.22 0.09
Average 0.44 0.10 0.09 0.15 0.09

Table 12: The accuracy of locating dead code snippets
across different sizes of dead code.

Poisoning
Method DEPA

ONION
(CodeGPT)

ONION
(CodeLlama)

LT PT LT PT
MBPP

Random-1 0.95 0.25 0.39 0.14 0.27
Random-3 0.71 0.52 0.57 0.40 0.57
Random-5 0.72 0.65 0.67 0.56 0.71
Random-10 0.76 0.78 0.79 0.75 0.83
Random-20 0.86 0.88 0.88 0.86 0.91

HumanEval
Random-1 1.00 0.13 0.30 0.09 0.22
Random-3 0.83 0.41 0.46 0.33 0.47
Random-5 0.82 0.66 0.61 0.46 0.60
Random-10 0.82 0.80 0.72 0.67 0.78
Random-20 0.88 0.81 0.86 0.82 0.87
Average 0.84 0.59 0.63 0.51 0.62

easier to spot the effect of removing each suspi- 862

cious line on overall perplexity. In contrast, the 863

ONION baselines do not benefit from larger k, es- 864

pecially when using token-level detection. For ex- 865

ample, ONION(CodeLlama) drops from 0.16 F1 866

at Random-1 to 0.06 at Random-20. This is be- 867

cause even if one suspicious word is removed, the 868

remaining dead code continues to interfere, making 869

it hard for token-level methods to detect multiple, 870

scattered anomalies. 871

We also evaluate how precisely each method can 872

localize the poisoned lines (Table 12). DEPA re- 873

mains highly accurate, correctly identifying almost 874

all inserted dead code even as k grows: e.g., the lo- 875

calization accuracy for MBPP is 0.95 at Random-1 876

and 0.86 at Random-20. Interestingly, ONION- 877

based methods perform better at localizing as more 878

dead code is added, since more anomalies increase 879

the chance of being detected at the token level. 880

However, it is important to note that scenarios like 881
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Random-20 are not realistic when 20 dead code882

lines are inserted into a short program, they can883

occupy more than 80% of the code. Such heavy884

poisoning is likely to be spotted even without au-885

tomated tools and does not reflect typical attack886

patterns in the real world.887

Overall, our findings demonstrate that DEPA is888

robust at both detecting and localizing poisoned889

fragments across varying levels of attack severity.890

While line-level methods benefit from larger or891

more widespread insertions, defenders must also892

consider covert attacks where only small or subtle893

fragments are injected. To mitigate false positives894

in these cases, future work should consider combin-895

ing line-level perplexity analysis with other static896

checks or deeper code understanding techniques.897

E Impact of External Factors on898

Detection Speed Evaluation899

External factors, such as model invocation speed900

and network conditions, can significantly affect the901

evaluation of detection speed in our experiments.902

To ensure the reliability and accuracy of our results,903

we implemented the following measures:904

• Controlled Experiment Environment: All905

experiments were conducted on the same lo-906

cal machine, ensuring consistent hardware907

and software conditions. We executed tests908

sequentially, never in parallel, to avoid re-909

source contention. This approach ensured sta-910

ble availability of CPU/GPU resources, pro-911

viding a controlled environment for accurate912

comparison.913

• Local Model Deployment: We employed914

fully local Code LLMs, such as CodeGPT915

and CodeLlama, without reliance on external916

APIs or remote servers. This strategy elimi-917

nated network fluctuation variables and rate918

limit issues that could impact timing preci-919

sion.920

• Model Comparisons: Recognizing that dif-921

ferences in model size can affect performance922

outcomes, we compared DEPA with both923

ONION with CodeGPT and ONION with924

CodeLlama. This comparison was designed925

to isolate the algorithmic impact of DEPA926

from the performance benefits attributable to927

a larger language model.928

Our detection speed measurements remain stable929

and allow for fair comparisons across different930

methodologies. This approach underscored the 931

algorithmic efficiency of DEPA, independent of 932

the underlying model size or network-related con- 933

straints. 934
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