
Policy Optimization in a Noisy Neighborhood:
On Return Landscapes in Continuous Control

Nate Rahn∗

Mila, McGill University
Pierluca D’Oro∗

Mila, Université de Montréal
Harley Wiltzer

Mila, McGill University

Pierre-Luc Bacon
Mila, Université de Montréal

Marc G. Bellemare
Mila, McGill University

Abstract

Deep reinforcement learning agents for continuous control are known to exhibit
significant instability in their performance over time. In this work, we provide a
fresh perspective on these behaviors by studying the return landscape: the mapping
between a policy and a return. We find that popular algorithms traverse noisy
neighborhoods of this landscape, in which a single update to the policy parameters
leads to a wide range of returns. By taking a distributional view of these returns,
we map the landscape, characterizing failure-prone regions of policy space and
revealing a hidden dimension of policy quality. We show that the landscape exhibits
surprising structure by finding simple paths in parameter space which improve the
stability of a policy. To conclude, we develop a distribution-aware procedure which
finds such paths, navigating away from noisy neighborhoods in order to improve
the robustness of a policy. Taken together, our results provide new insight into the
optimization, evaluation, and design of agents.

1 Introduction

It is well-documented that agents trained with deep reinforcement learning can exhibit substantial
variations in performance – as measured by their episodic return. The problem is particularly acute in
continuous control, where these variations make it difficult to compare the end product of different
algorithms or implementations of the same algorithm [11, 20] or even reliably measure an agent’s
progress from episode to episode [9]. A recurring finding is that simply averaging the return produced
by a set of policies may be insufficient for rigorous evaluation.

In this paper, we demonstrate that high-frequency discontinuities in the mapping from policy pa-
rameters θ to the return R(θ) are an important cause of return variation. As a consequence of these
discontinuities, a single gradient step or perturbation to the policy parameters often causes important
changes in the return, even in settings where both the policy and the dynamics are deterministic.
Because an agent’s parameters constantly change during training and should be robust to minute
parametric perturbations, we argue that the distribution of returns in the neighborhood of θ is in fact
a better representative of its performance, both from an evaluation and an optimization perspective.

Noisy neighborhoods in the return landscape. We call the return landscape the mapping from
θ to R(θ), our main object of study. We show that the return often varies substantially within the
vicinity of any given θ, forming what we call a noisy neighborhood of θ. Based on this observation,
we demonstrate the usefulness of studying the landscape through the distribution of returns obtained
from small perturbations of θ. In the important case where these perturbations result from a single
gradient step, we call the resulting object the post-update return distribution.

∗Equal contribution. Correspondence to {nathan.rahn,pierluca.doro}@mila.quebec.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Return Landscapes Post-Update Returns Behaviors

Figure 1: A visualization for two policies visited by SAC in the hopper environment. We show the
return landscape in their proximity, their post-update return distributions, and the visual appearance of
their learned gaits. We plot the mean of each return distribution as an orange line. Despite featuring a
similar level of return, we observe that the policy in the noisy neighborhood performs an unstable
curved gait which is faster but more prone to failure, as visible in the thick left tail of the post-update
return distribution.

Diversity in equally-performing policies. We show that different neighborhoods correspond to
different post-update return distributions and agent behaviors. We discover that at equal average
returns, different policies obtained by the same deep RL algorithm may in fact have substantially
different distributional profiles, as measured by statistics of the post-update return distribution.
Moreover, we uncover that many of these distributions are long-tailed and we find the source of these
tails to be sudden failures from an otherwise successful policy.

Effect on learning dynamics. We expose how the transition between noisy and smooth parts of
the landscape happens. Surprisingly, while large valleys of low return are visible when linearly
interpolating between similarly performing policies from different runs, we show no such valleys
typically exist between policies from the same run. Based on this insight, we show that it is possible
to find an improved set of parameters θ that achieves comparable return, but substantially lower
post-update variation.

We believe the phenomenon we study is central to deep reinforcement learning in continuous control.
Beyond its effect on learning dynamics (for example, through increased variance and implicit
exploration [39]), it is also a potential driver of instability in sim2real settings, even in the face of
seemingly small environmental changes. Additionally, it suggests that one should not simply deploy
the policy obtained at the end of a training run, and that further post-training tuning may be beneficial.

2 Background

In reinforcement learning, an agent interfaces with an environment. In this paper, we are interested
in continuous control environments modelled as a finite-horizon Markov Decision Process (MDP)
M = ⟨S,A, r, f, T, ρ0⟩, where S ≡ Rn is the state space, A ≡ Rm is the action space, r :
S × A → R is a reward function, f : S × A → S is a deterministic transition function, T is
the horizon, and ρ0 = U(sI − β, sI + β) is an initial state distribution with sI being an initial
reference state, and β ∈ Rn an environment-dependent parameter. We assume that each agent
produces a stationary Markovian deterministic policy πθ : S → A within a parametrized family
ΠΘ = {πθ : θ ∈ Θ ⊂ Rd}. In an episodic setting, the interaction of the agent with the environment
with a given policy πθ from some state s ∈ S produces a trajectory in the environment and,

2



consequently, a return:

Gθ(s) =

T∑
t=1

r(st, at)

s.t. st = f(st−1, at−1), at = πθ(st), s1 = s.

(1)

We are interested in understanding how small changes to the policy parameter affect the associated
return. To this end it is sufficient to study the return from the reference state sI (in Appendix A.4 we
show that similar effects occur across the state space). The return landscape is our main object of
study.

Definition 2.1 (Return Landscape). The return landscape is the mapping from policy parameters to
return, starting from the initial reference state:

R(θ) = Gθ(sI). (2)

Figure 1 (left) depicts small portions of the return landscape for a particular environment and policy
parametrization (we describe the visualization procedure below).

In this work, we will use the policies discovered by popular algorithms to characterize the topology
of the return landscape. We focus on policy-based deep reinforcement learning algorithms for
continuous control, such as Soft Actor-Critic (SAC) [19], Twin-Delayed DDPG (TD3) [16], and
PPO [42] which use neural network function approximators to represent the policy. Such algorithms
learn good behavior in the environment by maximizing the discounted return. In the process, they
produce a sequence of policies

θ0,θ1, . . . ,θN , s.t. θt+1 = u(θt, Xt) for all t, (3)

where u : Θ× R → Θ is the algorithmic policy update function, and Xt is some random variable
abstracting the stochasticity inherent to the update. For example, SAC and TD3 construct parametric
updates by sampling a small number of transitions (minibatches) from their replay buffer [29, 31].

3 A Distributional View on Return Landscapes

The return landscape arises from the interaction between an environment and a class of parameterized
policies. We first consider how this landscape varies in the immediate vicinity (or neighborhood) of
policies produced by deep reinforcement learning algorithms. Given a reference policy, a natural
choice is to consider how the return is affected by single updates to the policy parameters. To this end,
we view the collection of possible returns obtained by evaluating the updated policy as a distribution
over returns; as we will see, this distribution widely varies across the return landscape.

Definition 3.1 (Post-Update Return). Let ΠΘ be a parametric space of deterministic policies and u
an update function. Given πθ ∈ ΠΘ, its post-update return is defined as:

R(θ) = R(u(θ, X)), X ∼ P, (4)
where P is a an algorithm-dependent source of stochasticity.

The post-update return inherits randomness from the underlying training algorithm and it is thus a
random variable. Clearly, a post-update return will have an associated policy and trajectory, which
are in turn random variables. In this work, we will leverage the distribution of post-update returns as
a tool to investigate the properties of neighborhoods of the return landscape.

The different panels of Figure 1 illustrate how the return landscape in the neighborhood of θ
translates into different post-update return distributions. Here, the return landscape is visualized along
two update directions computed by the training algorithm based on two different batches sampled
from its replay buffer, such that 1.0 on each axis corresponds to a single parameter update in that
direction (details in Appendix A.2). The middle panel shows the corresponding post-update return
distribution estimated using 10000 samples. We find that the distribution from the noisy neighborhood
(top) exhibits a significant left tail, while the distribution from the quieter neighborhood (lower) is
concentrated around its mean. On the right, we illustrate the gait produced by the reference policies
(the origin in the left panel). We find qualitatively that the policy in the noisy neighborhood exhibits
a curved gait which is sometimes faster, but unstable, whereas the policy in the smooth neighborhood
produces an upright gait which can be slower, yet is very stable. We include similar evidence for
other environments in Appendix A.11.

3



0 500 1000 1500
Standard Deviation

−2000

0

2000

4000

6000

M
ea

n

f
e

c

d

a

b

−20 −10 0
Skewness

−2000

0

2000

4000

6000
f

e

c

d

a

b

0% 0.1% 1% 10%
Left Tail Probability

−2000

0

2000

4000

6000

PPO TD3 SAC

f
e

c

d

a

b

0 5000
Return

0.000

0.002

D
en

si
ty

a

0 5000
Return

0.000

0.001

0.002

b

0 5000
Return

0.0000

0.0005

0.0010

c

0 5000
Return

0.00

0.02

d

0 5000
Return

0.000

0.001

e

0 5000
Return

0.000

0.005

f

Figure 2: A scatter plot showing mean return and standard deviation, skewness or left-tail probability
of the post-update return distribution of policies produced by three popular deep RL algorithms on
the ant Brax task. Each point corresponds to a given policy’s post-update return distribution, with
six selected policies highlighted by star markers showing a range of diverse distributions.

3.1 Post-Update Return Distributions as a Characterization of the Return Landscape

The mean of the post-update distribution naturally captures the average behavior represented by
an algorithm as it traverses a given neighborhood. We further characterize this distribution by
measuring its standard deviation (a measure of spread around the mean) and its skewness (a measure
of asymmetry). In our context, a negative skewness describes a distribution with a heavy left tail,
similar to the one shown in Figure 1. Such a tail is especially interesting to us as it indicates lower-
than-expected returns. However, we find that skewness is not directly interpretable as a numerical
quantity. To capture these tails interpretably, we introduce a metric we call left-tail probability. The
left-tail probability of a random variable Y is defined as

LTPα(Y ) = P[0 ≤ Y < α ·mode(Y )]. (5)

This quantity satisfies some desirable properties within the context of our study. First, it uses the
mode of the distribution as a reference value. This is by contrast with the mean of the distribution,
which may not correspond to the “majority” behavior (as illustrated in the top half of Figure 1). It also
allows us to more easily compare the tailedness of distributions generated from policies of widely
varying returns. Second, it is an easily-interpretable quantity which measures the total probability
mass falling in the left tail. For simplicity, here we assume that Y is positive, noting the idea can be
naturally generalized to random variables bounded below. In our analyses we write LTP ≡ LTP1/2

to measure drops from the mode of the post-update return distribution of at least 50%. In practice, we
estimate the LTP by leveraging the Chernoff estimator [10], computing the mode as the midpoint of
the interval of the most populated bin in a 100-bin histogram.

Equipped with these metrics, we measure the mean and the other three statistics of the post-update
return for a set of 600 policies produced, across trials and iterations, by three popular deep RL
algorithms (TD3, SAC and PPO). We use 20 seeds per algorithm and 10 checkpoints per seed, for a
total of 200 policies per algorithm. These checkpoints are equally-spaced in time in training runs
of 1 million steps for TD3 and SAC and 60 million steps for PPO. Each of the 600 distributions is
estimated by performing 1000 independent updates to the starting policy and then rolling the resulting
deterministic policy out in the environment for 1000 time-steps to compute its return. Each update is
different due to a different batch sampled from the replay buffer for TD3 and SAC, and to a different
batch of data from the environment collected by a randomly-perturbed policy for PPO. This amounts
to millions of policy evaluations for which, for computational reasons, we primarily use the easily
parallelizable environments from the Brax simulator [15]. We also include similar results on the post-
update return distributions of policies trained on DeepMind Control Suite [44] and on games from the

4



0 500 1000
Time

0

5

10

R
ew

ar
d

0 2000 4000 6000
R≤t, Successful

0

2000

4000

6000

R
≤
t,

F
ai

li
n

g

halfcheetah

0 500 1000
Time

0

1

2

3

R
ew

ar
d

0 1000 2000 3000
R≤t, Successful

0

1000

2000

3000

R
≤
t,

F
ai

li
n

g

walker2d

Figure 3: A visualization of how failures occur in the halfcheetah and walker2d tasks. The left
subplots compare the reward-per-timestep obtained by a successful and failing trajectory generated
by two policies in the same noisy neighborhood. The right subplots show the simultaneous evolution
of returns for 10 such trajectory pairs (that can be thought of as a race to collect the most rewards),
with the trajectory pair from the left indicated by a matching star marker. The right subplots indicate
that policies from the same neighborhood behave similarly (diagonal segments of the curve) until the
failing policy makes a sudden misstep and collects low rewards (horizontal segments).

ALE [7] in Appendix A.5 and A.6. Additional experimental details, including the hyperparameters
and implementations used for running these algorithms, can be found in Appendix A.1.

Figure 2 illustrates how different policies produced by deep RL algorithms correspond to a wide
range of post-update return distributions, as measured by our chosen metrics 2. For each metric, we
report the bootstrapped mean using 1000 resamples to account for sampling error in the post-update
returns collected for a given policy, and omit the corresponding bootstrapped confidence intervals
for visual clarity, as they are very small. In particular, this scatter plot shows that different policy
parameters achieve similar levels of returns (as measured by the distribution mean) but a wide range
of possible levels of variability, as measured by standard deviation, skewness and left-tail probability.
This suggests, in a similar way to the example shown in Figure 1, that algorithms discover behaviors
which can be qualitatively very different from one another, and that leveraging the post-update return
distribution can offer a new lens to investigate different dimensions of policy quality.

These results suggests that simply optimizing the mean return of a policy might ignore its distributional
aspect. In particular, a practitioner will likely prefer, for a given level of return, a policy featuring
a post-update return distribution with lower levels of standard deviation or left-tail probability.
Intuitively, such a policy may correspond to a safer behavior, both able to more robustly accommodate
additional updates from its training algorithm and possibly to deal with other unexpected sources of
perturbation during deployment.

3.2 Analyzing Failures

One characteristic feature of the post-update distributions studied above is the existence of a significant
lower tail for many policies visited by the three deep RL algorithms TD3, SAC and PPO. This is
visible in their skewness, but especially in their left-tail probability, which demonstrates that many
policies produce returns which are unexpectedly poor after up to roughly 10% of updates. We now
take a closer look at the specific mechanism by which small changes in an agent’s actions results in a
wide range of returns in continuous control.

Our experimental procedure is as follows. For each environment, we randomly select 10 policies
from the logged checkpoints of 20 independent runs of TD3, conditioned on the fact that the policy
has a left-tail probability which is greater than zero. These are policies that we know are prone to
poor returns following an update. For each policy, we compute the post-update return distribution
by collecting trajectories in the environment after a single update to the original policy. According
to this procedure, we identify two trajectories drawn from the neighborhood around the policy: a
successful trajectory, characterized by a return within 10% of the mean of the post-update distribution,
and a failing trajectory, characterized by a return of less than 50% of the mode of the post-update
distribution, as in the left-tail probability.

2Note that the LTP is not properly defined for a small number of policies achieving negative return, that
appear as points on the right border of the scatter plot.

5



Our goal is to understand the differences between these successful and failing trajectories in order
to explain how long-tail returns occur. To this end, Figure 3 depicts two views of the trajectory
data. For each environment, the left subplot considers a single pair of successful/failing trajectories
corresponding to one of the chosen policies, and plots the reward per timestep earned in these two
trajectories. These results suggest that the failing policies which make up the tail of the post-update
distribution are capable of collecting similar rewards to the successful policies, yet are prone to
missteps which result in episode termination (as in walker2d) or transition to a low-reward, quasi-
absorbing state (as in halfcheetah). Figure 4 shows an example of such a misstep in walker2d.

We present a broader view of these observations through the right subplots, per-environment,
in Figure 3. Here, we plot each of the trajectory pairs as a parametric curve in time. For
both the successful and failing trajectories, we compute the return up to time t, R≤t =∑t

i=1 r(si, ai). Then, for each value of t, we plot R≤t for the successful and failing trajectories
as a point on the curve, allowing us to visualize the simultaneous evolution of both trajectories.

Figure 4: The trajectory of a
successful (top) and failing (bot-
tom) policy, both coming from the
same post-update distribution in
walker2d. They exhibit a similar
gait until right before the failure.

We assume that R≤t+1 = R≤t when the length of one trajec-
tory exceeds the other, that is, no additional reward is collected
after the trajectory terminates. The resulting visualization re-
veals several notable findings. First, we show that nearly all
trajectory pairs begin by following the line y = x, indicating
that the respective policies collect rewards at almost exactly the
same rate. Next, we observe that many curves rapidly diverge
from this line to horizontal, indicating that the failing trajectory
suddenly starts collecting little to no reward, while the success-
ful trajectory continues. In walker2d, these divergences reflect
sudden terminations of the episode, represented by horizontal
lines. In halfcheetah, which does not terminate, we see that
instead the failing agent gets stuck in low-reward absorbing
states, but is sometimes able to recover and go back to collecting
reward at the same rate as the successful trajectory. We include
similar visualizations for the hopper and ant environments in
Appendix A.8, which support the same conclusions.

Taken together, these results demonstrate that some policies
exist on the edge of failure, where a slight update can trigger

the policy to take actions which push it out of its stable gait and into catastrophe. Indeed, when
we compare the gaits learned by policies of high left-tail probability to those which are more well-
behaved under updates, we observe that the behaviors of the former are qualitatively more unstable
(Figure 1, with more examples in Appendix A.11).

4 Navigating Return Landscapes

In the previous section, we took a fine-grained look at the return landscape, using post-update return
distributions to characterize the neighborhood of different policies learned by deep RL algorithms.
We now consider this landscape on a more global scale, specifically how the agent’s return changes
as one interpolates between different policies.

4.1 Connectivity in the Return Landscape

For our analysis, we use 200 policies generated by different runs of TD3. From these we select pairs
of policies with different post-update return distributions, as measured by their standard deviation or
left-tail probability, but similar mean. Consider two sets of policy parameters θ1 and θ2, for which
the post-update return distribution implied by θ1 has higher LTP than the implied by θ2. We linearly
interpolate these two to form a family of parameters θ = αθ1 + (1− α)θ2, α ∈ [0, 1]. For each such
θ, we then record the return R(θ) obtained by a single simulation with the corresponding policy.

In Figure 5, we show the result of this interpolation for six pairs of policies in the hopper and
walker2d environments, in two distinct cases. In the first case, the two policies have been produced
by the same run of TD3 (i.e., starting from the same initialization and history of batches); in the
second case, the two policies have been generated by independent repetitions of the algorithm. The
plot shows interesting information about the global structure of the return landscape: the interpolation

6



600

1200

Same Run

0

1000

Different Run

800

1600

R
et

u
rn

0

800

0.0 0.5 1.0
Interpolation α

1000

2000

0.0 0.5 1.0
Interpolation α

0

1500

hopper

1500

3000
Same Run

0

1500

Different Run

1600

2400

R
et

u
rn

0

2000

0.0 0.5 1.0
Interpolation α

1000

2000

0.0 0.5 1.0
Interpolation α

0

1500

walker2d

Figure 5: Return of the policies obtained by linear interpolation of the parameters of policies of ap-
proximately the same level of return in the hopper and walker2d environments. The neighborhoods
traversed transition from being noisy to being smooth; policies from the same run are connected by
paths with no valleys of low performance in the return landscape, even if separated by hundreds of
thousands of updates (i.e., at least 1× 105 steps for all pairs of policies from the same run).

process traverses different parts of the landscape, highlighting a transition between a noisy part
of the landscape to an inherently smoother one. Interestingly, the interpolations between policies
from the same run and from different runs exhibit very different qualities. When interpolating
between policies of different runs, the process traverses entire regions of the landscape of poor
return, until the point in which it gets to the neighborhood of the second policy. By contrast, when
interpolating between policies from the same run, the transition from a noisy to a smooth landscape
happens without encountering any valley of low return – even when these policies are separated by
hundreds of thousands of gradient steps in training. This is particularly surprising given that θ is a
high-dimensional vector containing all of the weights of the neural network, and there is no a priori
reason to believe that interpolated parameters should result in policies that are at all sensible.

0.15 0.30 0.45
Below-Threshold Proportion

Same Run

Different Run

Figure 6: Proportion of return collapses
when interpolating between randomly-
sampled policies produced by either the
same or different runs in Brax. Far fewer
return collapses are observed when in-
terpolating between policies produced
by the same run. Results are aggregated
over all environments with 95% boot-
strapped C.I and 500 pairs of policies.

To further quantify the phenomenon, we want to mea-
sure the proportion of return collapses encountered when
interpolating between policies. We use the following ex-
perimental design. We sample for each environment a set
of 500 pairs of policies from the same runs and a set of
500 pairs of policies from different runs. Then, we linearly
interpolate between policies in the pairs, producing 100
intermediate policies, and randomly perturb them using
Gaussian noise with standard deviation 3 × 10−4 to ob-
tain an estimate of the mean of their (random) post-update
return distribution. Then, for each pair of policies, we
measure how frequently the return collapses in between
the two extremes, by counting how many times it becomes
less than 10% of the minimum return of the two original
policies. We then average this Below-Threshold Propor-
tion across pairs, and across environments using rliable [1].

Figure 6 shows that there is on average almost no drop in return when interpolating among policies
from the same run. We additionally report similar results on four ALE games in Appendix A.6.

We hypothesize this might be interpreted as each individual run of the algorithm specializing on a
different family of behaviors, for which, due to the geometry of the return landscape, interpolation
between policy parameters does not have any disrupting effect. This result can be interpreted as
being related to linear mode connectivity [17, 18], a phenomenon observed in supervised learning, for
which different points in the loss landscape of neural networks can be connected by near-constant-loss
paths. In other words, it appears there is typically no barrier of low average return separating policies
generated from the same run, even when those policies feature very different levels of stability. The
existence of such a phenomenon in the RL setting is far from certain: the optimization objective is
non-stationary and the evaluation metric (the return instead of the loss) depends on an environment
and multiple forward passes from a neural network.

7



0.25 0.50 0.75 1.00

With rejection

Without rejection

Median (Log LTP Improvement)

0.2 0.4 0.6 0.8

IQM (Log LTP Improvement)

0.4 0.8 1.2

Mean (Log LTP Improvement)

Figure 7: LTP reduction over 40 gradient steps without rejections (TD3) and with rejections (Algo-
rithm 1). Data is aggregated over starting policies, environments, and five independent runs for each
starting policy. We see that Algorithm 1 is strictly superior to TD3 with respect to LTP reduction.
Results are aggregated over environments with 95% bootstrapped confidence interval.

4.2 Stabilizing Policies by Navigating the Landscape

Overall, Figure 5 demonstrates the existence of paths in the return landscape which are able to
increase the level of stability of a given policy, but are not necessarily followed in a spontaneous
way by typical policy optimization algorithms. In the absence of a desirable end policy to interpolate
towards, we would like to understand if it is possible to find similar stabilizing paths (as measured
by the LTP), given a starting policy inhabiting a noisy neighborhood of the return landscape. We
conjecture that this is feasible by filtering the policy updates produced by an algorithm: In particular,
we propose to reject gradient updates that lead to policies with less favorable post-update return
distributions.

Input: Initial policy parameter θ, CVaR level α, policy update
function u, number of MC samples N , tolerance δ
while True do
{R(k)

θ }Nk=1
iid∼ R(θ){Post-update return samples}

B ← random minibatch
θ′ ← u(θ, B)

{R(k)

θ′ }Nk=1
iid∼ R(θ′)

if CVaRα({R(k)

θ′ }Nk=1) ≥ (1− δ)CVaRα({R(k)
θ }Nk=1) then

θ ← θ′

end if
end while

Algorithm 1: Post-Update-CVaR Rejection

In our procedure, which is out-
lined in Algorithm 1, we use the
CVaR as a heuristic to compare
the stability of post-update re-
turn distributions3, as it is effec-
tively a measure of the left tail
mean [38]. Our procedure works
as follows: starting with a given
policy, we use TD3 to interact
with the environment, maintain
a replay buffer, and compute up-
dates to the policy and critic pa-
rameters. However, before apply-
ing a proposed update, we first
estimate the post-update return distributions of the post-update policies by sampling TD3 updates
from random minibatches of the replay buffer and evaluating the returns of the corresponding policies.
If the estimate of the post-update return CVaR is not sufficiently high relative to that of the post-update
return distribution of the current policy, the update is rejected, so that the networks and the replay
buffer are reverted to the state that they were in before the update was computed. In our experiments,
we study the effect that such a rejection mechanism has on the evolution of the LTP by comparing the
trajectories induced by this procedure without the ability to reject (i.e., regular TD3) and with the
ability to reject.

In Figure 7, we show the improvement in LTP that this algorithm induces when applied to the same
policy, aggregated across Brax tasks, using at least 10 policies per environment, after only forty
gradient steps. We additionally present scatter plots demonstrating the effect of applying Algorithm 1
to individual policies in Appendix A.10. Our results demonstrate that this rejection procedure can be
an effective tool for reducing the LTP of an existing policy.

5 Related Work

Reliability of deep RL. The goal to avoid catastrophic drops in performance was at the core of the
development of foundational methods in deep RL based on conservative updates [41, 42]. Previous
work also studied the development of safer algorithms for learning and exploration, both from the
theoretical and the empirical standpoints [25, 30, 32, 37, 48]. Our work focuses on understanding
the landscape visited by commonly employed policy optimization algorithms and shows that it is

3See Appendix A.9 for further justification.

8



possible to relatively easily move from parts of the landscape that induce dangerous behaviors to safer
policy parameter vectors. On a higher-level, the sensitivity of deep RL algorithms to stochasticity and
hyperparameters, and the extreme variability of results across seeds has been the object of previous
studies [2, 11, 20], which mostly focused on proposing more reliable evaluation metrics. Previous
work [9] also explicitly advocated for measuring the stability of deep RL algorithms over different
axes and using a diverse set of metrics. Our paper proposes a complementary perspective, based on
return landscapes and on a distributional view on them. Our procedure which leverages the directions
proposed by a policy optimization algorithm to improve the LTP of a policy is related to previous
work based on rejection/backtracking strategies [25, 40].

Return and loss landscapes. Return landscapes have been previously investigated at a coarser level
under the name of reward surfaces/landscapes. In particular, they have been employed for studying
the alignment of the gradient directions suggested by policy optimization algorithms to directions of
improvement in the actual environment [23] and investigating performance degradation as a long-term
optimization danger in such algorithms [43]. Our study of return landscapes with a distributional
view in an otherwise fully deterministic setting sheds new light both on the landscape itself and on
how it can be leveraged to characterize individual policies. More generally, the investigation of the
return that policies collect in an environment is related to the study of the loss landscape of neural
networks in supervised learning, for which different techniques have been proposed [28]. Those
techniques, together with RL-specific tools, have been employed to explore the loss landscapes of RL
algorithms, by visualizing them [5], probing their interaction with entropy regularization [3] or larger
neural networks [35]. Our discovery of how policies from the same run are connected by simple paths
in parameter space is related to (linear) mode connectivity, which shows a similar behavior in the
landscapes of neural networks trained in supervised learning tasks [12–14, 17, 18]. Finally, our work
is related to distributional RL [6], but we specifically focus on the post-update return distribution as
opposed to the distribution of returns under a given policy.

6 Discussion and Future Work

In this paper, we have investigated return landscapes in continuous control tasks, as traversed by deep
RL algorithms. We demonstrated the existence of noisy neighborhoods of the landscape, where a
single update to the policy parameters produces a wide-breadth of post-update returns. By taking a
distributional view on these neighborhoods, we revealed the existence of neighborhoods of similar
mean return, yet different statistics, which correspond to qualitatively different agent behaviors. We
studied the characteristics of failing policies and trajectories in such neighborhoods and attributed
their subpar performance to sudden collapses in trajectory reward, rather than overall degradation
in the policy. By focusing on linear paths through the global policy landscape, we showed that the
landscape exhibits macro-scale variations which extend beyond specific local neighborhoods, and
that policies from the same run can be surprisingly connected by linear paths with no valleys of low
return. Finally, we demonstrated a simple procedure which discovers paths towards smoother regions
of the landscape, starting from a trained policy.

Our results suggest that some of the previously-observed reliability issues in deep reinforcement
learning agents for continuous control may be due to the fundamental structure of the return landscape
for neural network policies. In particular, while the return of policy in a given neighborhood may
be adequate, the distributional structure of the neighborhood characterizes additional dimensions
of policy quality: How stable is this policy? What kind of behavior has the agent learned? Is it
safe to perform further optimization of this policy? These nuances indicate the potential utility of a
landscape-inspired approach to the design of reliable deep RL algorithms.

In addition, our study of parameter interpolation on the return landscape reveals new curiosities
surrounding the training behavior of deep reinforcement learning agents. It appears that many
policies from the same run fall within a single basin of the return landscape; we conjecture that this
may correspond to the algorithm “specializing” on one particular behavior. Our demonstration of
regions of lower and higher variability in returns along such paths further supports the possibility of
robustifying existing policies, yet also raises the question of whether there are significantly different
behaviors separated by barriers of low return, and whether our algorithms can find them. As they are
beyond the scope of this paper, we reserve such questions for future work.

9



7 Acknowledgements

The authors thank Jesse Farebrother, Georg Ostrovski, David Meger, Rishabh Agarwal, Josh Greaves,
Max Schwarzer and Pablo Castro for insightful discussions and useful suggestions on the early
draft, the Mila community for creating a stimulating research environment, and the Digital Research
Alliance of Canada for computational resources. This work was partially supported by CIFAR, Fonds
de recherche du Québec (FRQNT) and Gruppo Ermenegildo Zegna.

References
[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, and Marc G.

Bellemare. Deep reinforcement learning at the edge of the statistical precipice. In Neural
Information Processing Systems, 2021.

[2] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, and Marc G.
Bellemare. Deep reinforcement learning at the edge of the statistical precipice. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan,
editors, Advances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages
29304–29320, 2021.

[3] Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding
the impact of entropy on policy optimization. In International Conference on Machine Learning,
2018.

[4] Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter Buchlovsky,
David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Claudio Fantacci, Jonathan Godwin,
Chris Jones, Tom Hennigan, Matteo Hessel, Steven Kapturowski, Thomas Keck, Iurii Kemaev,
Michael King, Lena Martens, Vladimir Mikulik, Tamara Norman, John Quan, George Papa-
makarios, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Rosalia Schneider, Eren Sezener,
Stephen Spencer, Srivatsan Srinivasan, Wojciech Stokowiec, and Fabio Viola. The DeepMind
JAX Ecosystem, 2020.

[5] Recep Yusuf Bekci and Mehmet Gümüş. Visualizing the loss landscape of actor critic methods
with applications in inventory optimization. arXiv preprint arXiv:2009.02391, 2020.

[6] Marc G Bellemare, Will Dabney, and Mark Rowland. Distributional reinforcement learning,
2022.

[7] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents (extended abstract). In International
Joint Conference on Artificial Intelligence, 2012.

[8] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

[9] Stephanie CY Chan, Samuel Fishman, Anoop Korattikara, John Canny, and Sergio Guadarrama.
Measuring the Reliability of Reinforcement Learning Algorithms. In International Conference
on Learning Representations, 2019.

[10] Herman Chernoff. Estimation of the mode. Annals of the Institute of Statistical Mathematics,
16(1):31–41, 1964.

[11] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. A hitchhiker’s guide to statistical
comparisons of reinforcement learning algorithms. In Reproducibility in Machine Learning,
ICLR 2019 Workshop, New Orleans, Louisiana, United States, May 6, 2019. OpenReview.net,
2019.

[12] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no
barriers in neural network energy landscape. In International conference on machine learning,
pages 1309–1318. PMLR, 2018.

10



[13] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pages 3259–3269. PMLR, 2020.

[14] C Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified network optimiza-
tion. In 5th International Conference on Learning Representations, ICLR 2017, 2017.

[15] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier
Bachem. Brax - a differentiable physics engine for large scale rigid body simulation. ArXiv,
abs/2106.13281, 2021.

[16] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. ArXiv, abs/1802.09477, 2018.

[17] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information
processing systems, 31, 2018.

[18] Ian J. Goodfellow and Oriol Vinyals. Qualitatively characterizing neural network optimization
problems. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

[19] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[20] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

[21] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,
Kinal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of
deep reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18,
2022.

[22] John D Hunter. Matplotlib: A 2d graphics environment. IEEE Annals of the History of
Computing, 9(03):90–95, 2007.

[23] Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. A Closer Look at Deep Policy Gradients. In International
Conference on Learning Representations, December 2019.

[24] Eric Jones, Travis Oliphant, and Pearu Peterson. SciPy: Open source scientific tools for Python.
2014.

[25] Pranav Khanna, Guy Tennenholtz, Nadav Merlis, Shie Mannor, and Chen Tessler. Never Worse,
Mostly Better: Stable Policy Improvement in Deep Reinforcement Learning, August 2022.

[26] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias Bus-
sonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout, Sylvain Corlay, et al.
Jupyter Notebooks-a publishing format for reproducible computational workflows., volume
2016. 2016.

[27] Ilya Kostrikov. JAXRL: Implementations of Reinforcement Learning algorithms in JAX, 10
2021.

[28] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. Advances in neural information processing systems, 31, 2018.

[29] Longxin Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine Learning, 8:293–321, 1992.

11



[30] Alberto Maria Metelli, Matteo Pirotta, Daniele Calandriello, and Marcello Restelli. Safe
policy iteration: A monotonically improving approximate policy iteration approach. Journal of
Machine Learning Research, 22(97):1–83, 2021.

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

[32] Evgenii Nikishin, Pavel Izmailov, Ben Athiwaratkun, Dmitrii Podoprikhin, Timur Garipov,
Pavel Shvechikov, Dmitry Vetrov, and Andrew Gordon Wilson. Improving stability in deep
reinforcement learning with weight averaging. In Uncertainty in Artificial Intelligence Workshop
on Uncertainty in Deep Learning, 2018.

[33] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[34] Travis E Oliphant. Python for scientific computing. Computing in Science & Engineering,
9(3):10–20, 2007.

[35] Keita Ota, Devesh K. Jha, and Asako Kanezaki. Training larger networks for deep reinforcement
learning. ArXiv, abs/2102.07920, 2021.

[36] The pandas development team. pandas-dev/pandas: Pandas, February 2020.

[37] Matteo Papini, Matteo Pirotta, and Marcello Restelli. Smoothing policies and safe policy
gradients. ArXiv, abs/1905.03231, 2022.

[38] R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk.
Journal of risk, 2:21–42, 2000.

[39] Tom Schaul, André Barreto, John Quan, and Georg Ostrovski. The phenomenon of policy churn.
ArXiv, abs/2206.00730, 2022.

[40] Jürgen Schmidhuber, Jieyu Zhao, and Marco Wiering. Shifting inductive bias with success-
story algorithm, adaptive levin search, and incremental self-improvement. Machine Learning,
28:105–130, 1997.

[41] John Schulman, Sergey Levine, P. Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region
policy optimization. ArXiv, abs/1502.05477, 2015.

[42] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. ArXiv, abs/1707.06347, 2017.

[43] Ryan Sullivan, Jordan K. Terry, Benjamin Black, and John P. Dickerson. Cliff Diving: Explor-
ing Reward Surfaces in Reinforcement Learning Environments. In Proceedings of the 39th
International Conference on Machine Learning, pages 20744–20776. PMLR, June 2022.

[44] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

[45] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure for
efficient numerical computation. Computing in science & engineering, 13(2):22–30, 2011.

[46] Guido Van Rossum and Fred L Drake Jr. Python tutorial, volume 620. Centrum voor Wiskunde
en Informatica Amsterdam, 1995.

[47] Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der Walt
and Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference, pages 56 –
61, 2010.

[48] Qisong Yang, Thiago D Simão, Simon H Tindemans, and Matthijs TJ Spaan. Wcsac: Worst-case
soft actor critic for safety-constrained reinforcement learning. In AAAI, pages 10639–10646,
2021.

12



A Appendix

A.1 Hyperparameters and implementation

For our analyses, we run TD3 and SAC for one million environment steps, with the default hy-
perparameters reported in Table 1, and collected checkpoints at 5× 104, 15× 104, 25× 104, 35×
104, 45× 104, 55× 104, 65× 104, 75× 104, 85× 104, 95× 104 steps for 20 different seeds. We run
20 seeds of PPO for 60 million environment steps with the hyperparameters in Table 1, to obtain a
comparable level of performance, being that PPO is notoriously less sample-efficient than the two
other algorithms [19]. We use equally-spaced checkpoints, at approximately 6 × 105, 12 × 105,
18× 105, 24× 105, 30× 105, 36× 105, 42× 105, 48× 105, 54× 105, 60× 105 environment steps.

We acknowledge the Python community [34, 46] for developing the core set of tools that enabled
this work, including JAX [4, 8], Jupyter [26], Matplotlib [22], numpy [33, 45], pandas [36, 47], and
SciPy [24]. Our implementations of TD3 and SAC are based on jaxrl [27] and our implementation
of PPO is based on CleanRL [21].

Our code is available at https://github.com/nathanrahn/return-landscapes.

A.2 Details of return landscape visualization

To generate the return landscapes in Figure 1, we start from a given policy of parameters θ0 (produced,
in that case, by SAC), and update it two times independently to obtain θ′ and θ′′. Then, we plot
R(θ),θ = α(θ′ − θ0) + β(θ′′ − θ0) + θ0, α ∈ [−3, 3], β ∈ [−3, 3], combining the two gradient
directions into other directions to explore the neighborhood. The resulting directions are equivalent to
the ones that would be obtained by oversampling or undersampling some elements in a larger batch
composed of elements from both the two sampled updates.

A.3 Interpolation between policies

We now specify the details of the experimental protocol used for Figure 5 and report additional
results. In Figure 9, we report results of interpolation for the other two Brax environments, ant and
halfcheetah, missing from Figure 5 for space reasons. We generate the checkpoints for these plots
to be policies with similar level of return but different standard deviation of the post-update return
distribution. A list of the checkpoints and seeds from TD3 used for producing these plots is shown
in Table 2. While the view provided in Figure 5 and Figure 9 provides explicit visual cues on the
variability of the neighborhood, it does not leverage directly the post-update return distribution to
characterize the neighborhood of the policies obtained by interpolation. To provide a more detailed
view, we estimate the post-update return distribution of an unstructured update, by sampling, given
a policy of parameters θ, 1000 perturbations from an isotropic Gaussian distribution N (θ, 0.0003)
and evaluating the resulting policies. Figure 8 shows the mean and the standard deviation (as an
error band) of the post-update return distribution of the interpolated policies from the same runs
shown in Table 2. This alternate view confirms the results: linearly interpolating between policies of
similar mean for the post-update return distribution produces paths of of approximately constant (or
smoothly increasing/decreasing) mean post-update return, even when the standard deviation of their
post-update return distributions is different.

A.4 Instabilities in states other than the starting one

In our analyses, we only investigated the return landscape by computing the return on a fixed initial
state. Even if the characteristics of the return from other states naturally propagate back to the initial
state, it is natural to wonder whether the failures analyzed in our paper also happen naturally in other
states. To investigate this question, we compute the LTP of the post-update return distribution for
3 runs of TD3, when starting from one of the states collected by the algorithm during training. In
Figure 10, for the ant and walker2d tasks, we show for each of these states, identified by their
collection time (index in the replay buffer) the LTP averaged over all the checkpoints collected during
training. The results indicate that, regardless of some variation across seeds, there appears not to be
any special pattern in the presence of failures over states grouped by time, and that the tail of the
post-update distributions is long even when measured from states other the initial one.

13

https://github.com/nathanrahn/return-landscapes


0

1000

0

1000

R
et

u
rn

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation α

0

1000

2000

hopper

0

2000

0

2000

R
et

u
rn

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation α

0

2000

walker2d

0

1000

0

2500

5000

R
et

u
rn

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation α

0

2000

ant

0

5000

0

2500

5000

R
et

u
rn

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation α

0

1000

2000

halfcheetah

Figure 8: Mean and standard deviation, displayed as error band, of the (noise-based) post-update
return distributions for the four different Brax environments. The mean of the post-update return
distribution remains approximately constant when linearly interpolating between checkpoints of
similar level of return.

0

1500

Same Run

2500

5000

Different Run

0

3000

R
et

u
rn

2500

5000

0.0 0.5 1.0
Interpolation α

0

3000

0.0 0.5 1.0
Interpolation α

0

2500

ant

3000

6000

Same Run

0

5000

Different Run

0

4000

R
et

u
rn

0

4000

0.0 0.5 1.0
Interpolation α

0

1500

0.0 0.5 1.0
Interpolation α

0

4000

halfcheetah

Figure 9: Results on linear interpolation among policies in the ant and halfcheetah.

0.00 0.25 0.50 0.75 1.00
Collection Time i ×106

0%

2%

5%

8%

10%

13%

15%

P̄
0
.5
(s

(i
) ;

G)

ant

0.00 0.25 0.50 0.75 1.00
Collection Time i ×106

walker2d

seed 0 seed 1 seed 2

LTP

LTP

Figure 10: Left-tail probability computed on different states, from a replay buffer for 3 seeds of TD3,
averaged across all checkpoints.

14



Table 1: Hyperparameters for TD3, SAC and PPO.

TD3
Parameter Setting
Discount factor 0.99
Minibatch size 256
Optimizer (all) Adam
Optimizer (all): learning rate 0.0003
Optimizer (all): β1 0.9
Optimizer (all): β2 0.999
Optimizer (all): ϵ 0.00015
Networks (all): activation ReLU
Networks (all): n. hidden layers 2
Networks (all): hidden units 256
Replay Buffer Size 106

Updates per step 1
Target update period 1
τ (EMA coefficient) 0.995
Exploration noise 0.1
Actor Delay 2
Policy Noise 0.2
Noise Clip 0.5

SAC
Parameter Setting
Discount factor 0.99
Minibatch size 256
Optimizer (all) Adam
Optimizer (all): learning rate 0.0003
Optimizer (all): β1 0.9
Optimizer (all): β2 0.999
Optimizer (all): ϵ 0.00015
Networks (all): activation ReLU
Networks (all): n. hidden layers 2
Networks (all): hidden units 256
Initial Temperature 1
Replay Buffer Size 106

Updates per step 1
Target update period 1
τ (EMA coefficient) 0.995

PPO
Parameter Setting
Discount factor 0.99
Optimizer (all) Adam
Optimizer (all): learning rate 0.0026
Optimizer (all): β1 0.9
Optimizer (all): β2 0.999
Optimizer (all): ϵ 0.00001
Networks (all): activation ReLU
Networks (all): n. hidden layers 2
Networks (all): hidden units 256
Parallel Envs 2048
Steps to update 16
GAE λ 0.95
Num. Updates 4
Max Grad. Norm 1

A.5 Scatter plots of statistics of post-update return distribution

We now show similar "maps" of the landscape to Figure 2 for all of the Brax environments we
study. Results are shown in Figure 11, Figure 12, and Figure 13. We also include similar results for
the quadruped-walk, quadruped-run, humanoid-stand, humanoid-walk, and humanoid-run
tasks from DeepMind Control Suite [44] in Figures 14, 15, 16, 17, and 18. We believe that this type
of scatter plot can provide a different perspective, compared to the one only focused on training
curves, to study the interaction between a particular algorithm and an environment.

A.6 Discrete control

Despite the fact that the main focus of our paper is on continuous control, we also run small-scale
experiments to understand if the tools we introduced generalize to discrete-action environments. In
particular, we leverage four games from the standard ALE benchmark: Qbert, MsPacman, Breakout,
and Seaquest [7]. We run PPO on these environments for 5 runs and for 10 million steps each, and
measure post-update return distribution statistics using the same protocol employed in the rest of

15



Table 2: List of checkpoints used for Figure 5, Figure 9 and Figure 8.

Same Run
Seed Ckpt 1 Ckpt 2

ant

1 550000 150000
6 850000 650000
11 650000 250000

halfcheetah

3 250000 950000
6 250000 350000
13 250000 550000

hopper

2 450000 250000
15 550000 150000
17 950000 750000

walker2d

1 750000 250000
4 950000 850000
4 550000 450000

Diff. Run
Seed 1 Ckpt 1 Seed 2 Ckpt 2

ant

14 850000 4 750000
11 750000 4 550000
2 650000 4 350000

halfcheetah

10 950000 7 450000
7 750000 16 750000
1 250000 6 350000

hopper

7 350000 4 450000
1 250000 2 150000
9 550000 6 250000

walker2d

14 350000 17 450000
1 550000 10 950000
17 350000 3 250000

0 500 1000 1500 2000
Standard Deviation

0

2000

4000

6000

M
ea

n

−10 −5 0
Skewness

0

2000

4000

6000

0% 0.01% 0.1% 1% 10%
Left Tail Probability

0

2000

4000

6000

PPO TD3 SAC

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0
Figure 11: A scatter plot showing mean return and standard deviation, skewness or left-tail probability
of the post-update return distribution of policies produced by three popular deep RL algorithms on
the halfcheetah Brax task.

0 500 1000
Standard Deviation

0

500

1000

1500

2000

2500

3000

M
ea

n

−50 0 50
Skewness

0

500

1000

1500

2000

2500

3000

0% 0.01% 0.1% 1% 10%
Left Tail Probability

0

500

1000

1500

2000

2500

3000
PPO TD3 SAC

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0
Figure 12: A scatter plot showing mean return and standard deviation, skewness or left-tail probability
of the post-update return distribution of policies produced by three popular deep RL algorithms on
the hopper Brax task.

16



0 500 1000
Standard Deviation

0

1000

2000

3000

4000

M
ea

n

−60 −40 −20 0
Skewness

0

1000

2000

3000

4000

0% 0.01% 0.1% 1% 10%
Left Tail Probability

0

1000

2000

3000

4000
PPO TD3 SAC

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0
Figure 13: A scatter plot showing mean return and standard deviation, skewness or left-tail probability
of the post-update return distribution of policies produced by three popular deep RL algorithms on
the walker2d Brax task.

0 100 200 300 400
Standard Deviation

0

200

400

600

800

1000

M
ea

n

−30 −20 −10 0
Skewness

0

200

400

600

800

1000

0% 0.1% 1% 10%
Left Tail Probability

0

200

400

600

800

1000 TD3 SAC

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0Figure 14: A scatter plot showing mean return and standard deviation, skewness or left-tail probability
of the post-update return distribution of policies produced by two popular deep RL algorithms on the
quadruped-walk DeepMind Control task.

0 50 100 150 200
Standard Deviation

0

200

400

600

800

M
ea

n

−30 −20 −10 0 10
Skewness

0

200

400

600

800

0% 0.1% 1% 10%
Left Tail Probability

0

200

400

600

800

TD3 SAC

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0
Figure 15: A scatter plot showing mean return and standard deviation, skewness or left-tail probability
of the post-update return distribution of policies produced by two popular deep RL algorithms on the
quadruped-run DeepMind Control task.

our paper: we evaluate 10 policies evenly-spaced across training, and perform 1000 independent
updates to each policy. We find that post-update return distributions computed for these environments
still exhibit a remarkable degree of variation, as captured by their standard deviation (see Figure 21).
At the same time, the shape of the resulting distributions can be quite different compared to the
ones observed in robotic locomotion tasks, and, thus, it is not necessarily described in a rich way by
metrics such as the LTP (see Figure 20).

17



0 50 100 150
Standard Deviation

0

200

400

600

800

M
ea

n

−10 0 10 20
Skewness

0

200

400

600

800

0% 0.1% 1% 10%
Left Tail Probability

0

200

400

600

800

TD3 SAC

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0Figure 16: A scatter plot showing mean return and standard deviation, skewness or left-tail probability
of the post-update return distribution of policies produced by two popular deep RL algorithms on the
humanoid-stand DeepMind Control task.

0 50 100 150
Standard Deviation

0

200

400

600

M
ea

n

0 20
Skewness

0

200

400

600

0% 0.1% 1% 10%
Left Tail Probability

0

200

400

600

TD3 SAC

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0Figure 17: A scatter plot showing mean return and standard deviation, skewness or left-tail probability
of the post-update return distribution of policies produced by two popular deep RL algorithms on the
humanoid-walk DeepMind Control task.

0 20 40
Standard Deviation

0

25

50

75

100

125

150

175

M
ea

n

−10 0 10 20 30
Skewness

0

25

50

75

100

125

150

175

0% 0.1% 1% 10%
Left Tail Probability

0

25

50

75

100

125

150

175 TD3 SAC

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0Figure 18: A scatter plot showing mean return and standard deviation, skewness or left-tail probability
of the post-update return distribution of policies produced by two popular deep RL algorithms on the
humanoid-run DeepMind Control task.

We also run an interpolation experiment on the ALE to investigate whether the connectivity phe-
nomenon studied in Section 4.1 generalizes to discrete-control environments. We produce quantitative
results on the phenomenon with the following procedure. For each one of the four games, we sample
a set of at least 20 pairs of policies from same runs and 20 pairs of policies from different runs of the
algorithm. Then, we linearly interpolate between policies in the pairs, producing 50 intermediate
policies, and randomly perturb them using Gaussian noise with standard deviation 0.0003 to obtain
an estimate of the mean of their (random) post-update return distribution. Then, for each pair of
policy, we measure how frequently the return collapses in between the two extremes, by counting

18



0.16 0.24 0.32 0.40
Below-Threshold Proportion

Same Run

Different Run

Figure 19: Proportion of return collapses when interpolating between randomly-sampled policies
produced by either the same or different runs in the ALE (QBert, Breakout, Ms.Pacman, Seaquest).
Far fewer return collapses are observed when interpolating between policies produced by the same
run. Results are aggregated over environments with 95% bootstrapped C.I..

0 1000
Return

0.000

0.002

0.004

0.006

D
en

si
ty

Qbert-v5

0 250 500
Return

0.0000

0.0025

0.0050

0.0075

0.0100

Breakout-v5

0 1000
Return

0.000

0.002

0.004

0.006

MsPacman-v5

0 200
Return

0.00

0.02

0.04

0.06
Seaquest-v5

Figure 20: Histograms of the post-update return distribution for policies obtained by PPO on 4
Atari environments. These distributions were selected for illustrative purposes to demonstrate that 1)
returns can vary significantly after a single policy update (see also Figure 21) and 2) the distributions
obtained can exhibit varied profiles.

how many times it becomes less than 10% of the minimum return of the two original policies. We
then average this Below-Threshold Proportion across pairs, and across environments using rliable [1].
Figure 19 shows that the phenomenon, properly quantified, is still present when using a very different
class of environments (discrete-action, game-based).

A.7 Behavior cloning

While the results in the main paper demonstrate that policies learned by commonly-used RL algo-
rithms are sensitive to updates, we were curious to understand whether behavior cloning produces
policies which occupy less noisy neighborhoods of the return landscape. To do so, we conducted
a set of additional experiments on 4 Brax environments. The protocol was as follows: For each
environment, we consider 10 independent training runs of TD3, and 5 policies distributed evenly
throughout the run. For each of these policies, we train a new agent using behavior cloning on the
data logged up until the collection time of the teacher policy, replacing the actions in the dataset
with the actions of the teacher policy, for 1 million gradient steps. We log 10 policies throughout
each training run of behavior cloning. To compute the post-update return distribution for the policies
obtained by behavior cloning, we used one additional gradient step on the MSE-based BC objective,
and 1000 samples.

In Figure 22 (left), we compare statistics of the post-update return distributions for all pairs of
policies (πBC

i,j , πTD3
i ) where policy πBC

i,j is obstained by behavior cloning πTD3
i . We compute the

Pearson correlation coefficient of statistics of the post-update return distributions of these policies:
between the mean of each pair, and between the LTPs of each pair. We find that the means are highly
correlated and that the learned BC policies are comparable in performance to their teacher policy. We
additionally show that correlation in the LTP is much more variable across environments – in general,
cloning a policy of high or low LTP does not always lead to a cloned policy of the same LTP.

But does training policies by BC produce policies occupying less noisy neighborhoods of the return
landscape, which would have correspondingly lower LTP overall? In Figure 22 (right), we show the
mean LTP across policies and environments, along with its 95% bootstrapped confidence interval
following the recommendations from rliable [1]. Our results demonstrate that BC does not produce
fundamentally more stable policies, as measured by the LTP.

19



0 200 400
Standard Deviation

250

500

750

1000

1250

1500

M
ea

n

Qbert-v5

50 100 150 200
Standard Deviation

100

200

300

400

M
ea

n

Breakout-v5

0 50 100 150 200
Standard Deviation

0

500

1000

1500

M
ea

n

MsPacman-v5

0 50 100 150
Standard Deviation

0

100

200

300

400

M
ea

n

Seaquest-v5

Figure 21: Scatter plots of the mean and standard deviation of the post-update return distribution of
policies learned by PPO across four Atari environments. In the majority of cases, the post-update
return distribution exhibits significant variability relative to its mean, indicating that learned policies
in Atari are also sensitive to single updates.

corrmean corrLTP

ant 0.994 0.763
halfcheetah 0.995 0.976
walker2d 0.973 0.218
hopper 0.753 0.449

0.0% 5.0% 10.0%
LTP (Mean)

BC

TD3

Figure 22: Comparing pairs of policies obtained by behavior cloning a given TD3 policy. Left: BC
learns policies which are well-correlated in mean return with the cloned policy, measured by Pearson’s
correlation coefficient. The correlation in LTP is more variable across environments, indicating that
cloning a given policy does not always produce a new policy of the same LTP. Right: Average LTP
of policies learned by TD3 and BC, aggregated across environments. Overall, BC learns policies
of similar LTP to policies learned by TD3. Results are aggregated over environments with 95%
bootstrapped confidence interval.

A.8 Complete results on comparing successful and failing trajectories

In Figure 23, we include similar results to Figure 3 for all the Brax environments we study.

0 1250 2500 3750 5000
R≤t, Successful

0

1250

2500

3750

5000

R
≤
t,

F
ai

li
n

g

ant

0 2000 4000 6000
R≤t, Successful

0

2000

4000

6000

R
≤
t,

F
ai

li
n

g

halfcheetah

0 1000 2000 3000
R≤t, Successful

0

1000

2000

3000

R
≤
t,

F
ai

li
n

g

walker2d

0 500 1000 1500
R≤t, Successful

0

500

1000

1500

R
≤
t,

F
ai

li
n

g

hopper

Figure 23: A visualization of how failures occur on four Brax tasks. The plots show the simultaneous
evolution of returns for 10 trajectory pairs, of one successful and one failing drawn from the same
post-update policy/trajectory distribution. We observe that these policies from the same neighborhood
behave similarly (diagonal segments of the curve) until the failing policy makes a sudden misstep
and collects low rewards (horizontal segments). At divergence, we observe that the failing policy
can terminate, collect no reward, or even collect negative reward, yet it sometimes recovers and goes
back to matching the performance of the successful policy.

A.9 Justification of rejection procedure

In Algorithm 1, we proposed a procedure that rejects gradient updates based on estimates of the
CVaR of the resulting policies’ post-update returns. Since our goal with this procedure is ultimately
to decrease the LTP of an existing policy, one might rightfully question why CVaR was our heuristic
of choice. Our reasoning for this choice was simply that the LTP can be minimized by arbirarily poor
policies: that is, policies that only achieve “low enough” returns will have very low LTP, because they
cannot substantially fail relative to their existing performance. Such an issue can be circumvented
by comparing the CVaR of the post-update returns: among all policies that have the same left-tail

20



0% 0.1% 1% 10%
LTP

2000

4000

6000

M
ea

n

Without Rejection

0% 0.1% 1% 10%
LTP

With Rejection

ant

0% 0.1% 1% 10%
LTP

2000

4000

6000

M
ea

n

Without Rejection

0% 0.1% 1% 10%
LTP

With Rejection

halfcheetah

0% 0.1% 1% 10%
LTP

1000

2000

M
ea

n

Without Rejection

0% 0.1% 1% 10%
LTP

With Rejection

hopper

0% 0.1% 1% 10%
LTP

0

1000

2000

3000

M
ea

n

Without Rejection

0% 0.1% 1% 10%
LTP

With Rejection

walker2d

Figure 24: Experimental results for Algorithm 1 on 4 Brax domains. Each empty circle denotes
the starting policy, while the filled circle at the end of the arrow shows the policy obtained after
application of Algorithm 1. X’s show other policies obtained by TD3, for context.

probability, the CVaR is still able to order the policies by the quality of the returns in the left tail. To
further justify the use of CVaR as a rejection heuristic, we visualized how different CVaR heuristics
order policies with respect to their post-update return distributions. Figure 25 illustrates how the
α-CVaR ranks policies. Note that α-CVaR in this instance is effectively measuring the mean among
the post-update returns below the α-quantile of the post-update return distribution, so 0-CVaR would
measure the worst-case post-update return and 1.0-CVaR is equivalent to the mean of the post-update
returns.

As expected, we see that ranking by the mean is relatively agnostic to the LTP of the policies, but
for α < 1, ranking by CVaR is effectively trading off larger mean post-update returns for lower
LTP. Notably, the gradient of colors (rankings) in the 0.01-CVaR column is distinctly “top-left to
bottom-right”, indicating that only policies with both high returns and low LTP are ranked favorably.
The 0.1-CVaR column is fairly similar, but the gradient is more vertical – that is, it is more forgiving
with respect to LTP than the 0.01-CVaR heuristic, but it still clearly prefers policies with lower LTP
among those with similar levels of return. Finally, the gradient in the rightmost column is exactly
vertical, meaning that the ranking is agnostic to LTP.

Consequently, we argue that CVaR is a reasonable heuristic for identifying robust policies without
neglecting their performance level. In our experiments, we found that the 0.1-CVaR heuristic for
rejecting gradient updates struck the best balance between robustness and performance.

A.10 Additional post-update-CVaR rejection results

In Figure 24 we include the results from our experiments with Algorithm 1 in four Brax domains for
policies found by TD3.

A.11 Visualization of behaviors

We uploaded some visualization of the behaviors on a website (https://sites.google.com/
view/on-return-landscapes/home): policies of similar mean for the post-update return but
different standard deviation exhibit different behaviors.

21

https://sites.google.com/view/on-return-landscapes/home
https://sites.google.com/view/on-return-landscapes/home


0 10−3 10−2 10−1

LTP

2000

4000
M

ea
n

Rank by Post-Update Return 0.01-CVaR

0 10−3 10−2 10−1

LTP

2000

4000

Rank by Post-Update Return 0.1-CVaR

0 10−3 10−2 10−1

LTP

2000

4000

Rank by Post-Update Return Mean

ant

0 10−3 10−2 10−1

LTP

2000

4000

6000

M
ea

n

Rank by Post-Update Return 0.01-CVaR

0 10−3 10−2 10−1

LTP

2000

4000

6000

Rank by Post-Update Return 0.1-CVaR

0 10−3 10−2 10−1

LTP

2000

4000

6000

Rank by Post-Update Return Mean

halfcheetah

0 10−3 10−2 10−1

LTP

1000

2000

M
ea

n

Rank by Post-Update Return 0.01-CVaR

0 10−3 10−2 10−1

LTP

1000

2000

Rank by Post-Update Return 0.1-CVaR

0 10−3 10−2 10−1

LTP

1000

2000

Rank by Post-Update Return Mean

hopper

0 10−3 10−2 10−1

LTP

0

1000

2000

3000

M
ea

n

Rank by Post-Update Return 0.01-CVaR

0 10−3 10−2 10−1

LTP

0

1000

2000

3000

Rank by Post-Update Return 0.1-CVaR

0 10−3 10−2 10−1

LTP

0

1000

2000

3000

Rank by Post-Update Return Mean

walker2d

Figure 25: Rankings of policies by the α-CVaR of their post-update returns. Points with darker colors
are ranked higher, and stars denote the highest ranked policy.

A.12 Evidence of multi-scale structure

To investigate whether the shape of a neighborhood heavily depends on the size of the steps used for
exploring it, we "zoom-in" on the landscape plot from Figure 1 by using the same granularity but
on a smaller window. We apply this process twice, with the results in Figure 27 giving evidence for
scale-independence.

22



ant walker2d hopper halfcheetah
0%

20%

40%

60%

80%

R
ej

ec
ti

on
ra

te

Rejection rates by environment

Figure 26: Frequency of rejections during execution of Algorithm 1 across environments. Bars depict
the mean across starting policies and runs, and the error bars represent standard error.

Figure 27: Multiscale version of the plot in Figure 1. Note the similarity between the original and the
more granular versions, giving evidence of the independence of the general shape of a neighborhood
from the resolution at which it is visualized.

23


	Introduction
	Background
	A Distributional View on Return Landscapes
	Post-Update Return Distributions as a Characterization of the Return Landscape
	Analyzing Failures

	Navigating Return Landscapes
	Connectivity in the Return Landscape
	Stabilizing Policies by Navigating the Landscape

	Related Work
	Discussion and Future Work
	Acknowledgements
	Appendix
	Hyperparameters and implementation
	Details of return landscape visualization
	Interpolation between policies
	Instabilities in states other than the starting one
	Scatter plots of statistics of post-update return distribution
	Discrete control
	Behavior cloning
	Complete results on comparing successful and failing trajectories
	Justification of rejection procedure
	Additional post-update-CVaR rejection results
	Visualization of behaviors
	Evidence of multi-scale structure


