
Randomized Polynomial Time Protocol for
Combinatorial Slepian-Wolf Problem

Daniyar Chumbalov1 and Andrei Romashchenko2

1 Ecole Polytechnique Federale de Lausanne, daniyar.chumbalov@epfl.ch
2 Le Laboratoire d’Informatique, de Robotique et de Microelectronique de Montpellier

(LIRMM), andrei.romashchenko@lirmm.fr

Abstract. We consider the following combinatorial version of the Slepian–Wolf
coding scheme. Two isolated Senders are given binary strings X and Y respec-
tively; the length of each string is equal to n, and the Hamming distance between
the strings is at most αn. The Senders compress their strings and communicate
the results to the Receiver. Then the Receiver must reconstruct both strings X
and Y . The aim is to minimise the lengths of the transmitted messages.
The theoretical optimum of communication complexity for this scheme (with
randomised parties) was found in [8], though effective protocols with optimal
lengths of messages remained unknown. We close this gap and present for this
communication problem a polynomial time randomised protocol that achieves
the optimal communication complexity.

Key words: Slepian-Wolf coding, communication complexity, coding theory,
randomized encoding, pseudo-random permutations

1 Introduction

The classic Slepian–Wolf coding theorem characterises the optimal rates for the lossless
compression of two correlated data sources. In this theorem the correlated data sources
(two sequences of correlated random variables) are encoded separately; then the com-
pressed data are delivered to the receiver where all the data are jointly decoded, see the
scheme in Fig. 1. The seminal paper [1] gives a very precise characterisation of the pro-
file of accessible compression rates — Slepian and Wolf found a natural and intuitive
characterisation in terms of Shannon’s entropies of the sources.

Alice: X 7→ codeA(X)

Bob: Y 7→ codeB(Y)

Charlie: 〈codeA(X), codeB(Y)〉 7→ 〈X,Y 〉

Fig. 1.

2 D. Chumbalov and A. Romashchenko

It seems instructive to view the Slepian–Wolf coding problem in the general context
of information theory. One paper by Kolmogorov was entitled Three approaches to the
quantitative definition of information, [12]. These three approaches where the combina-
torial one (cf. Hartley’s combinatorial definition of information, [13]), the probabilistic
one (cf. Shannon’s entropy), and the algorithmic one (cf. algorithmic complexity a.k.a.
as Kolmogorov complexity). Many fundamental concepts and constructions in informa-
tion theory have parallel implementations in all three approaches. An evident example
of this parallelism is provided by the formal information inequalities: these inequalities
can be equivalently represented as linear inequalities for Shannon’s entropy, for Kol-
mogorov complexity, [14], or for (logs of) cardinalities of finites sets, [15], [16]. It is
remarkable that some results known in one of these approaches look very similar to
its homologues from the two other versions of information theory, while mathematical
techniques and formal proofs behind them are fairly different.

Keeping in mind the idea of three parallel approaches, we notice that for the multi-
source coding theory there exist two parallel versions: the probabilistic/Shannon’s frame-
work (the Slepian–Wolf coding theory and its generalisations) and the algorithmic/Kol-
mogorov’s one (Muchnik’s theorem on conditonal coding [17] and its generalisations,
respectively). What is missing in this picture is the “combinatorial” version of these
theorems. We try to fill this gap and start with formal definitions and some bounds for
the combinatorial Slepian–Wolf coding scheme3.

Thus, we investigate the combinatorial version of the Slepian–Wolf coding prob-
lem. To simplify the notation, we focus on the symmetric binary case of this problem.
Formally, we consider a communication scheme with two senders (let us call them Al-
ice and Bob) and one receiver (we call him Charlie). We assume Alice is given a string
X and Bob is given a string Y . Both strings are of length n, and the Hamming distance
between X and Y is not greater than αn. The senders prepare some messages for the
receiver (Alice computes her message given X and Bob computes his message given
Y). When both messages are delivered to Charlie, he should decode them and recon-
struct both strings X and Y . Our aim is to characterise the optimal lengths of Alice’s
and Bob’s messages.

This is the general scheme of the combinatorial version of the Slepian–Wolf coding
problem. Let us place emphasis on the most important points of our setting: (a) the input
data are distributed between two senders: Alice knows X but not Y and Bob knows Y
but not X; (b) one way comminiction: Alice and Bob send some messages to Charlie
without feedback; (c) no communications between Alice and Bob; (d) parameters n and
α are known to all parties.

3 I. Csiszar and J. Körner described the Slepian–Wolf theorem as “the visible part of the iceberg”
of the multi-source coding theory; since the seminal paper by Slepian and Wolf, many parts of
this “iceberg” were revealed and investigated, see a survey in [18]. Similarly, Muchnik’s theo-
rem has motivated numerous researches in the theory of Kolmogorov complexity. Apparently,
a similar (probably even bigger) “iceberg” should also exist in the combinatorial version of
information theory. However, before we explore this iceberg, we should understand first the
very basic multi-source coding models, and the most natural starting point is the combinatorial
version of the Slepian–Wolf coding scheme.

Randomized Polynomial Time Protocol for Combinatorial Slepian-Wolf Problem 3

It is usual for the theory of communication complexity to consider two types of
protocols: deterministic communication protocols (Alice’s and Bob’s messages are de-
terministic functions ofX and Y respectively) and randomised communication protocol
(encoding and decoding procedures are randomised, and for each pair (X,Y) Charlie
must get the right answer with only a small probability of error ε). We use the following
standard communication model with private sources of randomness:

– each party (Alice, Bob, and Charlie) has her/his own “random coin” — a source of
random bits,

– the coins are fair, i.e., produce independent and uniformly distributed random bits,
– the sources of randomness are private: each party can access only its own coins.

The last condition (the random coins are private) is crucial. In the model with public ran-
domness, the problem of constructing an effective protocol is typically much simpler.
We emphasise the difference between the classic probabilistic setting of the Slepian–
Wolf coding and randomised protocols for combinatorial version of this problem. In
the probabilistic approach, decoding should succeed for most pairs of inputs (X,Y); in
the combinatorial approach we require that for each pair of inputs X,Y (with a given
Hamming distance) the protocol succeeds with high probability.

In terms of the theory of communication complexity, we are looking for an optimal
one-round communication protocol. We are interested not only in the total communica-
tion complexity (the sum of the lengths of Alice’s and Bob’s messages) but also in the
trade-off between the two sent messages. More formally, we want to characterise the
set of achievable pairs of rates:

Definition 1. We say that a pair of integers (ka, kb) is an achievable pair of rates for the
combinatorial Slepian–Wolf problem (in the communication model with private sources
of randomness) with parameters (n, α, ε) if there exists a randomised communication
protocol such that

– the length of Alice’s message is equal to ka,
– the length of Bob’s message is equal to kb,
– for each pair of inputs x, y ∈ {0, 1}n such that dist(x, y) ≤ αn, the probability of

the error is less than ε.

A simple counting arguments gives very natural lower bounds for lengths of mes-
sages in this problem:

Theorem 1 ([8]). For all ε ≥ 0 and 0 < α < 1/2, a pair (ka, kb) can be an achievable
pair of rates for the combinatorial Slepian–Wolf problem with parameters (n, α, ε) only
if the following three inequalities are satisfied

– ka ≥ h(α)n− o(n),
– kb ≥ h(α)n− o(n),
– ka + kb ≥ (1 + h(α))n− o(n),

where h(α) := −α logα− (1− α) log(1− α) is Shannon’s entropy function.

4 D. Chumbalov and A. Romashchenko

Let us note that Theorem 1 holds also for the model with public randomness.
The asymptotic version of these conditions is shown in Fig. 2: the points in the red

area below the dashed lines are not achievable. Notice that this bound is very similar
to the Slepian–Wolf bound known for the classic probabilistic setting, [1]. The corre-
spondence is quite straightforward: in Theorem 1 the sum of lengths of two messages
is lower-bounded by the “combinatorial entropy of the pair” (1 + h(α))n, which is
basically the logarithm of the number of possible pairs (X,Y) with the given Ham-
ming distance; in the classic Slepian–Wolf theorem the sum of two channel capacities
is bounded by the Shannon entropy of the pair. Similarly, in Theorem 1 the lengths
of both messages are bounded by h(α)n, which is the “combinatorial conditional en-
tropy” of X conditional on Y or Y conditional on X , i.e., the logarithm of the maximal
number of X’s compatible with a fixed Y and vice-versa; in the classic Slepian–Wolf
theorem these quantities are bounded by the two conditional Shannon entropies.

|CodeA(X)|/n

|CodeB(Y)|/n

h(α) 1 + h(α)

h(α)

1 + h(α)

PA

PB

Fig. 2.

For the deterministic version of the combinatorial Slepian–Wolf encoding problem,
the complete characterisation of the set of achievable pairs remains unknown. Only
some partial (negative) results are proven in [11], see also a discussion in [8]. Namely,
it is proven that in some Θ(n)-neighborhood of points (n, h(α)n) and (h(α)n, n) (i.e.,
in the dashed circles around points VA and VB in Fig. 2) there are no achievable pairs.
Hence, for the case ε = 0 the bound from Theorem 1 does not provide the exact charac-
terisation of the set of achievable pairs. This result is in sharp contrast with the classic
Slepian–Wolf coding in the probabilistic setting.

The case of randomised protocols for this communication problem is somewhat
simpler. It is known that the sufficient conditions for achievable pairs are very close to
the bound from Theorem 1. More precisely, for every ε > 0, all pairs in the hatched
green area in Fig. 2 are achievable for the combinatorial Slepian–Wolf problem with
parameters (n, α, ε), see [8]. The gap between known necessary and sufficient condi-
tions (the red and green area in the figure) is negligibly small. This result is similar to
the classic Slepian–Wolf theorem.

Randomized Polynomial Time Protocol for Combinatorial Slepian-Wolf Problem 5

An annoying shortcoming of the result in [8] was computational complexity. The
protocols in [8] require exponential computations on the senders and the receiver sides.
In this paper we improve computational complexity without degrading communication
complexity. We propose a communication protocol with (i) optimal trade-off between
the lengths of senders messages and (ii) polynomial time algorithms for all parties.
Technically, we prove the following theorem4:

Theorem 2 (main result). There exists a real d > 0 and a function δ(n) = o(n) such
that for all 0 < α < 1/2 and all integers n, every pair (ka, kb) that satisfies three
inequalities

– ka ≥ h(α)n+ δ(n),
– kb ≥ h(α)n+ δ(n),
– ka + kb ≥ (1 + h(α))n+ δ(n),

is achievable for the combinatorial Slepian–Wolf coding problem with parameters (n, α,
ε(n) = 2−Ω(nd)) (in the standard communication model with private sources of ran-
domness). Moreover, all computations in the communication protocol can be done in
polynomial time.

Protocols achieving the marginal pairs (n, h(α)n+ o(n)) and (h(α)n+ o(n), n) (even
for poly-time protocols) were originally proposed in [5] and later in [7]. In our paper we
generalise these results: we construct effective protocols for all points in hatched green
area in Fig. 2. In fact, our construction follows the ideas proposed in [5] and later used
in [6].

Our argument employs the following technical tools: reduction of one global coding
problem with strings of length n to many local problems with strings of length log n
(similar to the classic technique of concatenated codes); Reed–Solomon checksums;
pseudo-random permutations; universal hashing (see Appendix for more details).

In conclusion we discuss how to simplify the algorithms involved in the protocol
and make the protocol more practical. The price for this simplification is a weaker
bound for the probability of error.

2 Preliminaries

Notation:

– We denote by dist(v, w) the Hamming distance between binary strings v and w.
– For an n-bits string X = x1 . . . xn and a tuple of indices I = 〈i1, . . . , is〉 we

denote XI := xi1 . . . xis .

Pseudo-random permutations: A distribution on the set Sn of permutations of {1, . . . , n}
is called almost t-wise independent if for every tuple of indices 1 ≤ i1 < i2 < . . . <
it ≤ n, the distribution of (π(i1), π(i2), . . . , π(it)) for π chosen according to this dis-
tribution has distance at most 2−t from the uniform distribution on t-tuples of t distinct
elements from {1, . . . , n}.

4 Not surprisingly, the statements of Theorem 1 and Theorem 2 are very similar. The gap be-
tween necessary and sufficient conditions for achievable pairs is only o(n).

6 D. Chumbalov and A. Romashchenko

Proposition 1 ([4]). For all 1 ≤ t ≤ n, there exists T = O(t log n) and an explicit
map Π : {0, 1}T → Sn, computable in time poly(n), such that the distribution Π(s)
for random s ∈ {0, 1}T is almost t-wise independent.

3 Auxiliarely communication models: shared and imperfect
randomness

The complete proof of Theorem 2 involves a few different technical tricks. To make
the construction more modular and intuitive, we split it in several possibly independent
parts. To this end, we introduce several auxiliary communication models. The first two
models are somewhat artificial; they are of no independent interest make sense only as
intermediate steps of the proof of the main theorem. Here is the list of our communica-
tion model:

Model 1. The model with partially shared sources of perfect randomness: Alice and Bob
have their own sources of independent uniformly distributed random bits. Charlie
has a free access to Alice’s and Bob’s sources of randomness (these random bits are
not included in the communication complexity); but Alice and Bob cannot access
the random bits of each other.

Model 2. The model with partially shared sources of T -non-perfect randomness: Alice
and Bob have their own (independent of each other) sources of randomness. How-
ever these sources are not perfect: they can produce T -independent sequences of
bits and T -wise almost independent permutations on {1, . . . , n}. Charlie has a free
access to Alice’s and Bob’s sources of randomness, while Alice and Bob cannot
access the random bits of each other.

Model 3. The standard model with private sources of perfect randomness (our princi-
pal model). In this model Alice and Bob have their own sources of independent
uniformly distributed random bits. Charlie cannot access random bits of Alice and
Bob unless they include these bits in their messages.

In all these models the profile of achievable pairs of rates is the same as in Theo-
rem 1 (the green area in Fig. 2).

We start with an effective protocols for Model 1, and then extend it to Model 2, and
at last to Model 3.

4 An effective protocol for Model 1 (partially shared sources of
perfect randomness)

In this section we show that all pairs of rates from the green area in Fig. 2 are achievable
for Model 1. Technically, we prove the following statement.

Proposition 2. The version of Theorem 2 holds for the Communication Model 1.

Remark 1. Our protocol involves random objects of different kinds: randomly chosen
permutations and random hash functions from a universal family. In this section we

Randomized Polynomial Time Protocol for Combinatorial Slepian-Wolf Problem 7

assume that the used randomness is perfect. This means that all permutations are chosen
with the uniform distribution, and all hash functions are chosen independently.
Remark 2. Our protocol involves universal families of hash functions; see Appendix for
the standard properties of universal hashing.

4.1 Parameters of the construction

Our construction has some “degrees of freedom”; it involves several parameters, and
values of these parameters can be chosen in rather broad intervals. In what follows we
list these parameters, with some short comments.

– λ is any fixed number between 0 and 1 (this parameter controls the ratio between
the lengths of messages sent by Alice and Bob);

– κ1, κ2 (some absolute constants that control the asymptotic of communication com-
plexity hidden in the o(·)-terms in the statements of Theorem 2 and Proposition 3);

– k(n) = log n (we will cut strings of Alice and Bob in “blocks” of length k; we
can afford the brute force search over all binary strings of length k, since 2k is
polynomial in n);

– m(n) = n/k(n) (when we split n-bits strings into blocks of length k, we get m
blocks);

– r(n) = O(log k) = O(log log n) (this parameter controls the chances to get a
collision in hashing; we choose r(n) so that 1� r(n)� k);

– δ(n) = k−0.49 = (log n)−0.49 (the threshold for deviation of the relative frequency
from the probability involved in the law of large numbers; notice that we choose
δ(n) s.t. 1√

k
� δ(n)� k);

– σ = Θ(1
(logn)c) for some constant c > 0 (σn is the length of the Reed-Solomon

checksum; we chose σ such that σ → 0);
– t (this parameter characterise the quality of the random bits used by Alice and Bob;

accordingly, this parameter is involved in the law(s) of large numbers used to bound
the probability of the error; we let t(n) = mc for some c > 0).

4.2 The scheme of the protocol

Alice’s parts of the protocol:

(1A) Select at random a tuple of λn indices I = {i1, i2, . . . , iλn} ⊂ {1, . . . , n}. Tech-
nically, we may assume that Alice chooses at random a permutation πI on the set
{1, 2, . . . , n} and lets I := πI({1, 2, . . . , λn}).

(2A) Send to the receiver the bits XI = xi1 . . . xiλn .
(3A) Choose another random permutation πA : {1, . . . , n} → {1, . . . , n} and permute

the bits of X , i.e., let5 X ′ = x′1 . . . x
′
n := xπA(1) . . . xπA(n). Further, divide X ′

into blocks of length k(n), i.e., represent X ′ as a concatenation X ′ = X ′1 . . . X
′
m,

where X ′j := x′(j−1)k+1x
′
(j−1)k+2 . . . x

′
jk for each j.

5 In what follows we consider also the πA-permutation of bits in Y and denote it Y ′ =
y′1 . . . y

′
n := yπA(1) . . . yπA(n). Thus, the prime in notation (e.g., X ′ and Y ′) implies that

we permuted the bits of the original strings by πA.

8 D. Chumbalov and A. Romashchenko

(4A) Then Alice computes hash values of these blocks. More technically, we consider a
universal family of hash functions

hashAl : {0, 1}k → {0, 1}h(α)(1−λ)k+κ1δk+κ2 log k+r.

We may assume that these hash functions are indexed by bit strings l of length
O(k), see Proposition 5. Alice choses at randomm indices l1, . . . , lm of hash func-
tions. (We may assume that the sequence of li is (T/k)-independent). Then Alice
applies each hashlj to the corresponding block X ′j and sends to Charlie the result-
ing hash values

hashAl1(X
′
1), . . . ,hash

A
lm(X

′
m).

(5A) Compute the Reed-Solomon checksums of the sequenceX ′1, . . . , X
′
m that are enough

to reconstruct all blocks X ′j if most σm of them are corrupted, and send them to
Charlie These checksums make a string of O(σmk) bits, see Proposition 4.

Bob’s parts of the protocol:

(1B) Choose at random permutation πB : {1, . . . , n} → {1, . . . , n} and use it to permute
the bits of Y , i.e., let6 Y ′′ = y′′1 . . . y

′′
n := yπB(1) . . . yπB(n). Further, divide Y ′′ into

blocks of length k, and represent Y ′′ as a concatenation Y ′′ = Y ′′1 . . . Y
′′
m, where

Y ′′j := y′′(j−1)k+1y
′′
(j−1)k+2 . . . y

′′
jk for each j.

(2B) Then choose at random m hash functions hashBlj from a universal family of hash
functions

hashBl : {0, 1}k → {0, 1}(1−λ)k+h(α)λk+κ1δ·k+κ2 log k+r.

(we assume that lj are (T/k)-independent) and send to Charlie random hash values

hashBl1(Y
′′
1), . . . ,hashBlm(Y

′′
m).

Similarly to (4A), we may assume that these hash functions are indexed by bit
strings l of length O(k), see Proposition 5.

(3B) Compute the Reed-Solomon checksums of the sequence Y ′′1 , . . . , Y
′′
m, that are enough

to reconstruct all blocks Y ′′j , if at most σm of them are corrupted, and send them
to Charlie. These checksums should be a string of length O(σmk) bits, see Propo-
sition 4.

Charlie’s parts of the protocol:

6 Similarly, in what follows we apply this permutation to the bits of X and denote

X ′′ = x′′1 . . . x
′′
n := xπB(1) . . . xπB(n).

Thus, the double prime in notation (e.g., X ′′ and Y ′′) implies that we permuted the bits of the
original strings by πB .

Randomized Polynomial Time Protocol for Combinatorial Slepian-Wolf Problem 9

(1C) Apply Bob’s permutation πB to the positions of bits selected by Alice, and denote
the result by I ′′, i.e., I ′′ = {πB(i1), . . . , πB(iλn)}. Then split indices of I ′′ into m
disjoint parts corresponding to the different intervals Intj = {(j − 1)k + 1, (j −
1)k + 2, . . . , jk}, and I ′′j := I ′′ ∩ Intj . Further, for each j = 1, . . . ,m denote by
XI′′j

the bits sent by Alice, that appear in the interval Intj after permutation πB .
(2C) For each j = 1, . . . ,m try to reconstruct Y ′′j . To this end, find all bit strings Z =

z1 . . . zk that satisfy a pair of conditions (Cond1) and (Cond2) that we formulate
below.
We abuse notation and denote by ZI′′j the subsequence of bits from Z that appear at
the positions determined by I ′′j . That is, if I ′′j = {(j−1)k+s1, · · · , (j−1)k+sl},
where

(j − 1)k + s1 < (j − 1)k + s2 < · · · < (j − 1)k + sl,

then ZI′′j = zs1zs2 . . . zsl . With this notation we can specify the required property
of Z:

(Cond1) dist(XI′′j
, ZI′′j) ≤ (α+ δ)|I ′′j |,

(Cond2) hashBlj (Z) must coincide with the hash value hashBlj (Y
′′
j) received from Bob.

If there is a unique Z that satisfies these two conditions, then take it as a candidate
for Y ′′j ; otherwise (if there is no such Z or if there exist more than one Z that satisfy
these conditions) we say that reconstruction of Y ′′j fails.

(3C) Use Reed-Solomon checksums received from Bob to correct the blocks Y ′′j that we
failed to reconstruct or reconstructed incorrectly at step (2C).

(4C) Apply permutation π−1B to the bits of Y ′′ and obtain Y .
(5C) Permute bits of Y and XI using permutation πA.
(6C) For each j = 1, . . . ,m try to reconstruct X ′j . To this end, find all bit strings W =

w1 . . . wk such that

(Cond3) at each position from I ′∩Intj the bit fromX ′ (in the j-th block) sent by Alice
coincides with the corresponding bit in W ,

(Cond4) dist(Y ′Intj\I′j
,WIntj\I′j) ≤ (α+ δ)|Intj \ I ′j |

(Cond5) hashAlj (W) coincides with the hash value hashAlj (X
′
j) received from Alice.

If there is a unique W that satisfies these conditions, then take this string as a
candidate for X ′j ; otherwise (if there is no such W or if there exist more than one
W satisfying these conditions) we say that reconstruction of X ′j fails.

(7C) Use Reed-Solomon checksums received from Alice to correct the blocks X ′j that
were incorrectly decoded at step (6C).

(8C) Apply permutation π−1A to the positions of bits of X ′ and obtain X .

Lemma 1. In Communication Model 1, the protocol described above fails with proba-
bility at most O(2−m

d

) for some d > 0.

(See the proof in Appendix.)

10 D. Chumbalov and A. Romashchenko

4.3 Communication complexity of the protocol.

Alice sends λn bits at step (2A), h(α)(1− λ)k+O(δ)k+O(log k) + r for each block
j = 1, . . . ,m at step (3A), and σmk bits of the Reed-Solomon checksums at step (4A).
So the total length of Alice’s message is

λn+ (h(α)(1− λ)k +O(δ)k +O(log k) + r) ·m+ σn.

For the values of parameters that we have chosen above, this sum can be estimated as
λn+h(α)(1−λ)n+o(n). Bob sends (1−λ)k+h(α)λk+O(δ)k+O(log k)+r bits for
each block j = 1, . . . ,m at step (1B) and σmk bits of the Reed-Solomon checksums
at step (2B). This sums up to

((1− λ)k + h(α)λk +O(δ)k +O(log k) + r) ·m+ σn

bits. For the chosen values of parameters this sum is equal to (1−λ)n+h(α)λn+o(n).
When we vary parameter λ between 0 and 1, we variate accordingly the lengths of both
messages from h(α)n+o(n) to (1+h(α))n+o(n), while the sum of Alice’s and Bob’s
messages always remains equal to (1 + h(α))n + o(n). Thus, varying λ from 0 to 1,
we move in Fig. 2 from PB to PA.

It remains to notice that algorithms of all participants require only poly(n)-time
computations. Indeed, all manipulations with Reed-Solomon checksums (encoding and
error-correction) can be done in time poly(n), with standard encoding and decoding
algorithms. The brute force search used in the decoding procedure requires only the
search over sets of size 2k = poly(n)). Thus, Proposition 2 is proven.

5 An effective protocol for Model 2 (partially shared randomness)

In this section we prove that the pairs of rates from Fig. 2 are achievable for the Com-
munication Model 2. Now the random sources of Alice and Bob are not perfect: the
random permutations are t-wise almost independent and the chosen hash functions are
t-independent (for a suitable t).

Proposition 3. The version of Theorem 2 holds for Communication Model 2 (with pa-
rameter T = Θ(nc log n)).

To prove Proposition 3 we do not need a new communication protocol — in fact, the
protocol for the Model 1 works for the Model 2 as well. The only difference between
Proposition 2 and Proposition 3 is a more general statement about the estimation of the
error probability:

Lemma 2. For the Communication Model 2 with parameter T = Θ(nc log n) the com-
munication protocol described in section 4 fails with probability at most O(2−m

d

) for
some d > 0.

(See the proof in Appendix.) Since the protocol remains the same, the bounds for the
communication and computational complexity, proven in Proposition 2, remain valid in
the new setting. With Lemma 2 we get the proof of Proposition 3.

Randomized Polynomial Time Protocol for Combinatorial Slepian-Wolf Problem 11

6 The model with private sources of perfect randomness (the main
model)

Proposition 3 claims that the protocol from Section 4 works well for the artificial Com-
munication Model 2 (with non-perfect and partially private randomness). Now we want
to modify this protocol and adapt it to the Communication Model 3.

Technically, we have to get rid of (partially) shared randomness. That is, in Model 3
we cannot assume that Charlie gets Alice’s and Bob’s random bits for free. Moreover,
Alice and Bob cannot just send their random bits to Charlie (this would dramatically
increase the communication complexity). However, we can use a standard idea: we re-
quire that Alice and Bob use pseudo-random bits instead of truly uniformly random
bits. Alice and Bob take at random (with the truly uniform distribution) short seeds
for pseudo-random generators and expand them to longer sequences of pseudo-random
bits, and feed these pseudo-random bits in the protocol described in the previous sec-
tions. Then Alice and Bob send the random seeds of generators to Charlie (the seeds
are rather short, so they do not increase communication complexity substantially); and
Charlie (using the same generators) expands the seeds to the same long pseudo-random
sequences and plug them in into his side of the protocol.

It remains to choose some specific pseudo-random generators that suits our plan:
we need two different pseudo-random generators — one to generate indices of hash
functions and another to generate permutations.

Constructing a suitable sequence of pseudo-random hash-functions is simple. Both
Alice and Bob needs m random indices li of hash functions, and the size of each family
of hash functions is 2O(k) = 2O(logn). We need the property of t-independency of li
for t = mc (for a small enough c). So we can choose a random polynomial of degree
t − 1 over F2O(logn) and take the values of this polynomial at m different points of the
field. Then the seed of this generator is just the tuple of all its coefficients (it consists of
O(t log n) = o(n) bits).

A construction of a pseudo-random permutation is more involved. We need t-wise
almost independent pseudo-random permutations. By Proposition 1 such a permuta-
tion can be effectively produced by a pseudo-random generator with a seed of length
O(t log n) bits. Again, Alice and Bob chose seeds for random permutation at random,
with the uniform distribution. The seeds of the generators involved in our protocol are
much shorter than n, so Alice and Bob can send these seeds to Charlie without essen-
tially increasing communication complexity.

The failure probability in Proposition 3 is bounded by 2−Ω(n/ logn)c , which is less
than 2−Ω(nd) for d < c. This concludes the proof of Theorem 2.

7 Conclusion

Practical implementation. The coding and decoding procedures in our protocol run in
polynomial time. However, the protocol does not seem very practical (mostly due to the
use of the KNR generator, which requires quite sophisticated computations). A simpler
and more practical protocol can be implemented if we substitute t-wise almost inde-
pendent permutations (KNR generator) by 2-independent permutation (e.g., a random

12 D. Chumbalov and A. Romashchenko

affine mapping). The price for this simplification is a weaker bound for the probability
of error. Indeed, with 2-independent permutations we cannot employ the law of large
numbers from Proposition 6; instead, we should use Chebyshev’s inequality. (A similar
technique was used in [7] to simplify the protocol from [5].) In this version of the pro-
tocol we can conclude that the probability of error ε(n) tends to 0, but the convergence
is rather slow.

Open question: to characterize the set of all achievable pairs of rates for determin-
istic communication protocols.

References

1. D. Slepian and J.K. Wolf. Noiseless Coding of Correlated Information Sources. IEEE Trans-
actions on Information Theory, 19, 471–480 (1973).

2. Yan Zong Ding, Danny Harnik, Alon Rosen, and Ronen Shaltiel. Constant-round oblivious
transfer in the bounded storage model. In proc. TCC 2004, pp. 446–472, 2004.

3. J. P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-Hoeffding bounds for applications with
limited independence. SIAM J. Discrete Math., 8(2):223–250, 1995.

4. E. Kaplan, M. Naor, and O. Reingold. Derandomized construction of k-wise (almost) in-
dependent permutation. Approximation, Randomization and Combinatorial Optimization.
Algorithms and Techniques. Springer, 354–365 (2005).

5. A. Smith, Scrambling Adversarial Errors Using Few Random Bits, Optimal information rec-
onciliation, and better private codes. In Proc. 18th ACM-SIAM Symposium on Discrete
Algorithms (SODA), 395–404 (2007).

6. V. Guruswami and A. Smith, Codes for Computationally Simple Channels: Explicit Con-
structions with Optimal Rate, In Proc. 51st IEEE Symposium on Foundations of Computer
Science (FOCS), 723–732 (2010).

7. A. Chuklin, Effective protocols for low-distance file synchronization, arXiv:1102.4712
(2011).

8. D. Chumbalov, Combinatorial Version of the Slepian-Wolf Coding Theorem for Binary
Strings, Siberian Electronic Mathematical Reports, 10, 656–665 (2013).

9. F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland,
1977.

10. L. Carter, M. Wegman, Universal Hash Functions, Journal of Computer and System Science,
Vol. 18, pp. 143-154, 1979.

11. A. Orlitsky Interactive communication of balanced distributions and of correlated files.
SIAM Journal on Discrete Mathematics, 6, 548–564 (1993).

12. A. N. Kolmogorov. Three approaches to the quantitative definition of information. Problems
of information transmission, 1(1), 1–7 (1965).

13. R. V. L. Hartley. Transmission of information. Bell System technical journal, 7(3), 535–563
(1928).

14. D. Hammer, A. Romashchenko, A. Shen, and N. Vereshchagin, Inequalities for Shannon
entropy and Kolmogorov complexity. Journal of Computer and System Sciences, 60(2), 442–
464 (2000).

15. A. Romanshchenko, A. Shen, and N. Vereshchagin. Combinatorial interpretation of Kol-
mogorov complexity. Theoretical Computer Science, 271(1-2), 111–123 (2002).

16. A combinatorial approach to information inequalities , Communications in Information and
Systems, 1(3), 1–14 (2001).

Randomized Polynomial Time Protocol for Combinatorial Slepian-Wolf Problem 13

17. An. Muchnik, Conditional complexity and codes, Theoretical Computer Science, 271(1-2),
97–109 (2002).

18. I. Csiszar and J. Körner. Information theory: coding theorems for discrete memoryless sys-
tems. 2nd ed. Cambridge University Press (2011).

8 Appendix A: Technical tools

In this section we summarise the technical tools employed in the papers. Some of
them (e.g., Reed–Solomon codes) are classic and well known; the other (e.g., the KNR
pseudo-random generator) are somewhat more exotic.

8.1 Error correcting codes

Proposition 4 (Reed-Solomon codes). Assume m + 2s < 2k. Then we can assign to
every sequence of m strings X = 〈X1, . . . , Xm〉 (where Xj ∈ {0, 1}k for each j) a
string of checksums Y = Y (X),

Y : {0, 1}km → {0, 1}(2s+1)k

with the following property. If at most s stringsXj are corrupted, the initial tupleX can
be uniquely reconstructed given the value of Y (X). Moreover, encoding (computation
X 7→ Y (X)) end decoding (reconstruction of the initial values of X) can done in time
poly(2k).

Proof of Proposition 4: The required construction can be obtained from a systematic
Reed–Solomon code with suitable parameters (see, e.g., [9]). Indeed, we can think of
X = 〈X1, . . . , Xm〉 as of a sequence of elements in a finite field F = {q1, q2, . . . , q2k}.
Then, we interpolate a polynomial P of degree at most m− 1 such that P (qi) = Xi for
i = 1, . . . ,m and take the values of P at some other points of the field as checksums:

Y (X) := 〈P (am+1), P (am+2), . . . , P (am+2s+1)〉.

The tuple 〈X1, . . . , Xm, P (am+1), P (am+2), . . . , P (am+2s+1)〉 is a codeword of the
Reed–Solomon code, and we can recover it if at most s items of the tuple are corrupted.
It is well known that the error-correction procedure for Reed–Solomon codes can be
implemented in polynomial time.

8.2 Universal hashing

Proposition 5 (universal hashing family, [10]). There exists a family of poly-time
computable functions hashi : {0, 1}n → {0, 1}k such that ∀x1, x2 ∈ {0, 1}n, x1 6= x2
it holds

probi[hashi(x1) = hashi(x2)] = 1/2k,

where index i ranges over {0, 1}O(n+k) (i.e., each hash function from the family can be
specified by a string of length O(n+ k) bits).

14 D. Chumbalov and A. Romashchenko

Parameter k in Proposition 5 is called the length of the hash.
The following claim is an (obvious) corollary of the definition of a universal hashing

family. Let hashi(x) be a family of functions satisfying Proposition 5. Then for every
S ⊂ {0, 1}n, for each x ∈ S,

probi[∃x′ ∈ S, s.t. x′ 6= x and hashi(x) = hashi(x
′)] <

|S|
2k
.

This property allows to identify an element in S by its hash value.

9 Appendix B: The law of large numbers for t-independent
sequences

The following version of the law of large numbers is suitable for our argument:

Proposition 6 (see [2, 3, 5]). Assume ξ1, . . . , ξm are random variables ranging over
{0, 1}, each with expectation at most µ, and for some c < 1, for every set of t = mc

indices i1, . . . , it we have

prob[ξi1 = . . . = ξit = 1] ≤ µt.

If t� µm, then

prob

[
m∑
i=1

ξi > 3µm

]
= 2−Θ(mc).

Lemma 3. (a) Let ρ be a positive constant, k(n) = log n, and δ = δ(n) some function
of n. Then for each pair of subsets ∆, I ⊂ {1, . . . , k} such that |∆| = k and |I| = ρn,
for a uniformly random or k-wise amost independent permutation π : {1, . . . , n} →
{1, . . . , n},

µ := probπ
[∣∣ |π(I) ∩∆| − ρk ∣∣ > δk

]
= O

(
1

δ2k

)
.

(b) Let {1, . . . , n} = ∆1 ∪ . . . ∪ ∆m, where ∆j are disjoint sets of cardinality k
(so m = n/k). Also we let t = mc (for some c < 1) and assume t

µm � 1. Then, for a
uniformly random or a random almost (tk)-independent permutation π,

probπ
[∣∣π(I) ∩∆j

∣∣ > (ρ+ δ)k for at least 3µm different j
]
= 2−Θ(mc),

probπ
[∣∣π(I) ∩∆j

∣∣ < (ρ− δ)k for at least 3µm different j
]
= 2−Θ(mc).

Proof of Lemma 3 (a): First we prove the statement for a uniformly independent
permutations. Let I = {i1, . . . , iρn}. We denote

ξs =

{
1, if π(is) ∈ ∆,
0, otherwise.

The idea is that ξs are almost independent. Since permutation π is chosen uniformly, we
have prob[ξs = 1] = |∆|/n = k/n for each s. Hence, E(

∑
ξs) = ρk. Let us estimate

the variance of this random sum.

Randomized Polynomial Time Protocol for Combinatorial Slepian-Wolf Problem 15

For s1 6= s2 we have

prob[ξs1 = ξs2] =
k

n
· k − 1

n− 1
=

(
k

n

)2

+O(k/n2).

So, every two ξs are “almost independent”. We get

var
(∑

ξs

)
= E

(∑
ξs

)2
−
(
E
∑

ξs

)2
=
∑
s

Eξs +
∑
s1 6=s2

Eξs1ξs2 −

(
E
∑
s

ξs

)2

= O(k).

Now we apply Chebyshev’s inequality

probπ
[∣∣∑ ξs − ρk

∣∣ > δk
]
<

var(
∑
ξs)

(δk)2
= O

(
1

δ2k

)
, (1)

and we are done.
For a k-wise almost independent permutation we should add to the right-hand side

of (1) the term O(2−k), which does not affect the asymptotics of the final result.

Before we prove Lemma 3 (b), let us formulate a corollary of Lemma 3 (a).

Corollary 1. Let ∆1, . . . ,∆t be disjoint subsets in {1, . . . , k} such that |∆j | = k for
each j. Then for a uniformly random or (kt)-wise almost independent permutation
π : {1, . . . , n} → {1, . . . , n},

probπ
[∣∣π(I) ∩∆j

∣∣ > (ρ+ δ)k for all j
]
≤ µt

and
probπ

[∣∣π(I) ∩∆j

∣∣ < (ρ− δ)k for all j
]
≤ µt.

Proof of Corollary: (sketch) For uniform permutations it is enough to notice that that
the events “there are too few π-images of I in ∆j” are negatively correlated with each
other. That is, if we denote

Ej :=
{
π
∣∣∣ ∣∣π(I) ∩∆j1

∣∣ < (ρ− δ(n))k
}
,

then

probπ
[
E1

]
> probπ

[
Ej1

∣∣∣ E2

]
> . . .probπ

[
Ej1

∣∣∣ E2 and E2

]
> . . .

It remains to use the bound from (a) for the unconditional probabilities.
Similarely to the proof of Lemma 3 (a), in the case of almost independent permuta-

tions the difference of probabilities is negligible.

Proof of Lemma 3 (b): Follows immediately from the Corollary 1 and Proposition 6.

16 D. Chumbalov and A. Romashchenko

10 Appendix C: proof of Lemma 1 and Lemma 2

We prove directly the statement of Lemma 2 (which implies of course Lemma 1).
Let us estimate probabilities of errors at each step of Charlie’s part of the protocol.
Step (1C): No errors.
Step (2C): We should estimate probabilities of errors in reconstructing each block

Y ′′j .
1st type error: the number of Alice’s bits xi1 , . . . , xiλn that appear in the block Y ′′j

is less than (λ − δ)k. Technically, this event itself is not an error of decoding; but it
is undesirable: we cannot guarantee success of reconstruction of Y ′′j if we get too few
bits from Alice in this slot. Denote probability of this event (for a block j = 1, . . . ,m)
by pB1 . By the law of large numbers, pB1 → 0 if δ � 1/

√
k. This fact follows from

Lemma 3(a).

2nd type error: 1st type error does not occur but dist(XI′′j
, YI′′j) > (α + δ)|I ′′j |.

Denote probability of this event (for a block j = 1, . . . ,m) by pB2 . Again, by the law of
large numbers, pB2 → 0 if δ � 1/

√
k. Technically, we apply Lemma 3(a).

3rd type error: 1st and 2nd type errors do not occur but there exist at least two
different strings Z satisfying (1) and (2). We choose the length of hash values for hashBl
so that this event happens with probability less than pB3 = 2−r. Let us explain this in
more detail.

All the positions Intj are split into two sorts: the set I ′′j and its complement Intj \
I ′′j . For each position in I ′′j Charlie knows the corresponding bit fromX ′′ sent by Alice.
To get Z, we should

(i) invert at most (α + δ)|I ′′j | Alice’s bits (here we use the fact that the 2nd type error
does not occur), and

(ii) choose some bits for the positions Intj \ I ′′j (we have no specific restrictions for
these bits).

The number of all strings that satisfy (i) and (ii) is equal to

SB :=

(α+δ)|I′′j |∑
s=0

(
|I ′′j |
s

)
· 2|Intj\I

′′
j | = 2h(α)λk+(1−λ)k+O(δ)k+O(log k).

(In the last equality we use the assumption that the 1st type error does not occur, so
|Intj \ I ′′j | ≤ (1− α+ δ)k.) We set the length of the hash function hashBl to

LB = logSB + r = (1− λ)k + h(α)λk + κ1δ · k + κ2 log k + r

(here we choose suitable values of parameters κ1 and κ2). Then, from Proposition 5 it
follows that the probability of the 3d type error is at most 1/2r.

We say that block Yj is reconstructible, if the errors of type 1, 2, and 3 do not
occur for this j. For each block Y ′′j , probability to be non reconstructible is at most
pB1 + pB2 + pB3 . This sum can be bounded by some threshold µB = µB(n), where

Randomized Polynomial Time Protocol for Combinatorial Slepian-Wolf Problem 17

µB(n)→ 0. We chose parameters δ(n) and r(n) so that µB(n) = 1/(log n)c for some
c > 0.

Since for each j = 1, . . . ,m probability that Y ′′j is non reconstructible is less than
µ, we conclude that the expected number of non reconstructible blocks is less than µm.
This is already good news, but we need a stronger statement — we want to conclude
that with high probability the number of non reconstructible blocks is not far above the
expected value.

Since random permutation in the construction are (mc ·k)-wise almost independent
and the indices of hash functions are mc-independent, we can apply Proposition 6 and
Lemma 3(b). We obtain

prob[the fraction of non-reconstructible blocks is greater than 3µB] = O(2−m
c

)

for some c > 0. Note we can apply Lemma 3(b) even though the random objects
in the construction (random permutations and random indices of hash functions) are
chosen not quite uniformly. It is enough to require that all random permutation in the
construction are (mc ·k)-wise almost independent and the indices of hash functions are
mc-independent.

We conclude that on stage (2C) with probability 1 − O(2−m
c

) Charlie decodes all
blocks of Y ′′j except for at most 3µB(n) ·m of them.

(3C) Here Charlie reconstructs the string Y ′′ if the number of non-reconstructible
blocks Y ′′j (at the previous step) is less than 3µB(n) · m. Indeed, 3µB(n) · m is just
the number of errors that can be corrected by the Reed-Solomon checksums. Hence,
probability of failure at this step is less than O(2−m

c

). Here we choose the value of σ:
we let σ = 3µ.

Steps (4C) and (5C): No errors.
Step (6C) is similar to step (2C). We need to estimate probabilities of errors in

reconstructing each block X ′j .
1st type error: the number of Alice’s bits xi1 , . . . , xiλn is less than (λ−δ)k. (We cannot
guarantee reconstruction of a block X ′j if there are too few bits from Alice in this slot).
We denote probability of this event by pA1 . From Lemma 3(a) it follows that pA1 → 0
since δ = 1/k0.49 � 1/

√
k.

2nd type error: 1st type error does not occur but dist(X ′Intj\I′j , Y
′
Intj\I′j

) > (α +

δ)|Intj \I ′j |. Denote probability of this event by pA2 . Again, from Lemma 3(a) it follows
that pA2 → 0 since δ � 1/

√
k.

3rd type error: 1st and 2nd type errors do not occur but there exist at least two different
strings W satisfying (Cond3) and (Cond4). All the positions Intj are split into two
sorts: the set I ′j and its complement Intj \ I ′j . For each position in I ′j Charlie knows the
corresponding bit fromX ′ sent by Alice. For the other bits Carlie already knows the bits
of Y ′j , but not the bits of X ′j . To obtain Z, we should invert at most (α+ δ) · |Intj \ I ′j |
bits of Y ′Intj\I′j . The number of such candidates is equal to

SA :=

(α+δ)|Intj\I′j |∑
s=0

(
|Intj \ I ′j |

s

)
· 2|Intj\I

′′
j | = 2h(α)(1−λ)h(α)k+O(δ)k+O(log k).

18 D. Chumbalov and A. Romashchenko

We set the length of the hash function hashAl to

LA = logSA + r = (1− λ)h(α)λk + κ1δ · k + κ2 log k + r

From Proposition 5 it follows that the probability of the 2nd type error pA3 ≤ 1/2r.
We say that block X ′j is reconstructible, if the errors of type 1, 2, and 3 do not

happen. For each block X ′j , probability to be non-reconstructible is at most pA1 (j) +
pA2 (j) + pA3 (j). This sum is less than some threshold µA = µA(n), where µA(n)→ 0.
With our choice of parameters δ(n) and r(n) we may assume µA(n) = 1/(log n)c for
some c > 0.

Since the random permutations in the construction are (mc ·k)-wise almost indepen-
dent and the indices of hash functions are mc-independent, we get from Proposition 6
and Lemma 3

prob[the fraction of non-reconstructible blocks is greater than 3µA] = O(2−m
c

).

Thus, with probability 1 − O(2−m
c

) Charlie decodes on this stage all blocks of X ′j
except for at most 3µA ·m of them.

Step (7C) is similar to step (3C). At this step Charlie can reconstructs X ′ if the
number of non-reconstructible blocks X ′j (at the previous step) is less than 3µA · m
(this is the number of errors that can be corrected by the Reed-Solomon checksums).
Hence, the probability of failure at this step is less than O(2−m

c

).
Step (8C): No errors at this step.
Thus, with probability 1 − O(2−m

d

) (for some d < c) Charlie successfully recon-
structs strings X and Y .

