
SNIP: Bridging Mathematical Symbolic and
Numeric Realms with Unified Pre-training

Kazem Meidani∗1, Parshin Shojaee∗ 2,
Chandan K. Reddy 2, Amir Barati Farimani 1,3

1 Department of Mechanical Engineering, Carnegie Mellon University
2 Department of Computer Science, Virginia Tech

3 Machine Learning Department, Carnegie Mellon University

Abstract

In scientific inquiry, symbolic mathematical equations play a fundamental role
in modeling complex natural phenomena. Leveraging the power of deep learn-
ing, we introduce SNIP, a Multi-Modal Symbolic-Numeric Pre-training frame-
work. By employing joint contrastive learning between symbolic and numeric do-
mains, SNIP enhances their mutual alignment in pre-trained embeddings. Latent
space analysis reveals that symbolic supervision significantly enriches the embed-
dings of numeric data, and vice versa. Evaluations across diverse tasks, including
symbolic-to-numeric and numeric-to-symbolic property prediction, demonstrate
SNIP’s superior performance over fully supervised baselines. This advantage is
particularly pronounced in few-shot learning scenarios, making SNIP a valuable
asset in situations with limited available data.

1 Introduction
Throughout the history of science, symbolic mathematics has been unreasonably effective in repre-
senting natural phenomena [1]. Complex patterns of natural systems, represented as numeric data
observations, can be elegantly abstracted using mathematical formulas. Mathematical symbolism
has given us the language to describe, understand, and predict the natural world. The challenge of
bridging the gap between the numeric observations and their mathematical symbolic representations
has been a consistent focus in many scientific and engineering domains. Recognizing and exploring
this connection is crucial, as it promises to drive advancements in various fields.

In recent years, deep learning has demonstrated promising capabilities in learning from sym-
bolic mathematics language as well as extracting knowledge from numeric data observations.
Transformer-based models [2], in particular, have emerged as frontrunners in this endeavor, ef-
fectively capturing patterns within mathematical expressions and solving complex tasks such as
differential equations [3, 4]. Efforts have also been made to enhance the mathematical reasoning of
language models, improving their performance in general math word problem solving [5, 6]. How-
ever, these models, while powerful, are not inherently designed to handle numeric data observations.
While some pre-trained symbolic regression models have been introduced to map numeric datasets
to their governing mathematical expressions in a supervised manner [7, 8], a gap still remains in
developing a task-agnostic unified pre-training model capable of mutual understanding between the
modalities of symbolic mathematical equations and their corresponding numeric counterparts.

Multi-modal pre-training models, exemplified by groundbreaking models like Contrastive
Language-Image Pre-training (CLIP) [9], have found a significant place in the deep learning land-
scape. CLIP has particularly set new standards in vision-language tasks, bridging the understanding

∗Equal contribution. Contact email: mmeidani@andrew.cmu.edu

NeurIPS 2023 AI for Science Workshop.



between visual content and natural language descriptions. This mutual comprehension across dif-
ferent data modalities has opened up opportunities for more intuitive and context-aware machine
learning applications. Expanding beyond traditional vision-language domains, recent studies have
broadened multi-modal pre-training to include other modalities, such as audio and tabular data
[10, 11, 12]. Additionally, previously untouched scientific domains, like molecular representation,
are also benefiting from these advancements [13, 14]. Nevertheless, the symbolic-numeric domain
remains relatively unexplored. Considering the foundational role of symbolic mathematics in sci-
ence and the ubiquity of numeric data, an in-depth exploration of their mutual learning is not only
timely but essential. Such an investigation holds the promise of unlocking numerous applications,
from improving scientific simulations and modeling to enhancing data-driven decision-making in
diverse sectors.

In this work, we present Symbolic-Numeric Integrated Pre-training (SNIP) to connect the two often
distinct worlds of symbolic mathematical expressions and their corresponding numeric manifesta-
tions. The architecture of SNIP, depicted in Fig. 1, incorporates dual transformer-based encoders,
with each encoder dedicated to learning the symbolic or numeric representations of mathematical
functions. Subsequently, a task-agnostic joint contrastive objective is employed to enhance the sim-
ilarity between (symbolic, numeric) pairs of data. The unified multi-modal pre-training of SNIP
provides capabilities to understand and generate cross-modal content. Our experiments show that
SNIP achieves remarkable performance in cross-modal mathematical property understanding and
prediction tasks. Analysis of the latent embeddings further unveils that SNIP’s pre-trained represen-
tations manifest discernible patterns associated with these cross-modal properties. Moreover, when
paired with an equation generation decoder and upon deeper exploration of the latent space, we ob-
serve that SNIP’s representations are interpolatable. This suggests a significant relationship between
the latent vectors and their numeric behaviors. To put it simply, latent space interpolation translates
to a symbolic function whose numeric behavior semantically bridges the gap between the original
and target functions (check Fig.4 for more details). Such latent space dynamics, ingrained through
SNIP’s multi-modal pre-training, offer a valuable edge for sophisticated searches and explorations,
potentially benefiting various subsequent downstream tasks.

2 Related Work

Large-scale Pre-training. Our work is built upon an extensive body of research advocating the
advantages of pre-training large models on large datasets [15, 16]. Initially, pre-training was single-
modal, with self-supervised learning (SSL) as a key paradigm that used data as its own supervi-
sion, especially useful where labeled data was limited [17]. This paved the way for the emergence
of multi-modal pre-training, where models are trained to understand relationships across different
data types [18]. Vision and language have traditionally played the two main characters of pre-
training models. For instance, CLIP [9], ALIGN [19], and FLAVA [20] utilize image-caption pairs
to construct jointly learned embedding spaces. These models are trained to align the embeddings
of corresponding image-caption pairs while distancing unrelated pairs. The success of multi-modal
pre-training in vision and language spurred its adoption in other domains. For example, recent works
have extended this approach to videos, audio, and even tabular data [10, 21, 12]. Specialized sci-
entific domains have also embraced this paradigm. For instance, different models have emerged to
learn joint representations of molecules [13, 14]. Our work introduces a fresh perspective, intertwin-
ing symbolic mathematics with numeric observations. To this end, we use multi-modal pre-training’s
potential to deepen the symbolic-numeric mutual understanding.

Deep Symbolic Mathematics. Recently, deep learning models have made significant strides in the
field of mathematical reasoning [6, 5]. The Transformer architecture, originally designed for NLP
tasks [2], has been repurposed with remarkable success in the realm of symbolic mathematics. It has
powered models that can integrate functions [3, 4], prove mathematical theorems [22], and perform
numerical calculations, such as arithmetic operations [23, 24]. These achievements underscore the
flexibility and potential of deep learning models in abstract reasoning. Beyond pure symbolic rea-
soning, there is also a growing interest in supplementing these models with numerical knowledge
for improved mathematical understanding. For example, recent endeavors have sought to enhance
language models with numeric representations, aiming to improve their skills in mathematical word
problem-solving [25, 26, 27, 28]. Our work contributes a new angle to this growing field by integrat-
ing symbolic and numeric understanding in a unified pre-training framework. By doing so, we not

2



Figure 1: The SNIP Framework: A schematic representation of the dual-encoder pre-training scheme for
mutual learning between symbolic expressions and their numeric data observations. Both symbolic and numeric
encoders work in tandem, capturing the paired similarities and essence of their respective modalities.

only capture the abstract representations of mathematical symbolic concepts but also their tangible
numeric behaviors.

3 Pre-training
As depicted in Fig. 1, the SNIP architecture comprises two transformer-based encoders, each tailored
for learning the symbolic or numeric representations of mathematical functions. These symbolic
and numeric encoders are jointly trained with a task-agnostic joint contrastive objective to predict
correct pairings within a batch of (symbolic, numeric) examples. During pre-training, SNIP receives
synthetically created symbolic equations and their associated numeric data as inputs to the symbolic
and numeric heads, respectively.

3.1 Numeric Encoder

The numeric encoder’s foundation is rooted in the recent advancements of transformer-based models
for encoding numeric observations into latent spaces [8, 29, 7]. In this framework, the numeric
encoder—represented as EVθ —integrates an embedder, a multi-layer Transformer, and an attention
pooling approach, to map numeric observations (x,y) into a condensed latent vector ZV .

Tokenization. Following [8, 29], numeric inputs are tokenized using base-10 floating-point nota-
tion. They are rounded to four significant digits and subsequently represented as sequences of three
tokens: sign, mantissa (0-9999 range), and exponent (E-100 to E100). For instance, the number
5.432 is tokenized as [+, 5432, E-3].

Encoding. Given a batch of N numeric input points (x,y) ∈ RD+1, each is represented by 3(D +
1) tokens. With increasing D and N , the input sequence length grows, challenging the quadratic
complexity of Transformers. To address this, we employ an embedder, as suggested by [8], before
the Transformer encoder. This embedder maps each input point to a unique embedding space. The
resulting embeddings, with dimension demb, are then fed into the encoder. For the numeric encoder,
we utilize a multi-layer Transformer architecture [2]. Notably, due to the permutation invariance
of the N input points for each batch sample, we exclude positional embeddings, aligning with the
approach in [8]. This encoder variant is denoted as EncV . The representation at its l-th layer is
given by Vl = EncVl (Vl−1), where l ranges from 1 to LV , and LV signifies the total layer count.

Attention-based Distillation. To distill the information from the Transformer’s output into a com-
pact representation for the whole sequence of observations, we employ an attention-based pool-
ing mechanism, following [30]. Let AV denote the attention weights, which are computed as:
AV = softmax

(
Wa · V T

LV

)
, where Wa ∈ Rdemb is a learnable weight matrix, and we take the

transpose of VLV
∈ RN×demb to apply softmax along the sequence dimension N . The compact

sequence-level representation, ZV , is then obtained by: ZV = AV ·VLV
. This attention mechanism

allows the model to focus on the most informative parts of the data points, effectively compressing
the information into a fixed-size embedding.

3



3.2 Symbolic Encoder
The symbolic encoder in our framework also draws inspiration from recent advancements in
transformer-based models for encoding symbolic mathematical functions, as demonstrated in works
such as [4, 3]. Here, the symbolic encoder—denoted as ESψ—is a composite entity parameterized by
ψ, encapsulating the embedder, a multi-layer Transformer, and attention-based pooling mechanisms.
Given an input symbolic function f(·), this encoder outputs a condensed representation ZS .

Tokenization. Mathematical functions are tokenized by enumerating their trees in prefix order,
following the principles outlined in [8]. This process employs self-contained tokens to represent
operators, variables, and integers, while constants are encoded using the same methodology as dis-
cussed in Sec. 3.1, representing each with three tokens. In alignment with [3], we use special tokens
[⟨BOS⟩] and [⟨EOS⟩] to mark sequence start and end.

Encoding. Given a batch of symbolic functions with M tokens, each symbolic input is represented
as S0 =

[
E[⟨BOS⟩];Et1 ; . . . ;EtM ;E[⟨EOS⟩]

]
+ Spos, where S0 ∈ R(M+2)×demb . Here, E refers to

the embedding matrix, ti denotes the i-th token, M signifies the number of tokens in the symbolic
function, demb is the embedding dimension, and Spos represents the positional embedding matrix.
In the symbolic encoder, we use a Transformers model with the same architecture settings as in
Sec. 3.1. This variant of the encoder, denoted as EncS , processes the input symbolic data. The
l-th layer representation is described as Sl = EncSl (Sl−1), where l varies from 1 to LS , and LS
indicates the total number of layers within the symbolic encoder.

Attention-based Distillation. The symbolic encoder also employs attention-based pooling, as in
Sec. 3.1. This mechanism computes weighted sums to distill information from the symbolic expres-
sion into a compact representation ZS = AS · SLS

, using attention weights AS through softmax
along the symbolic sequence.

3.3 Unified Pre-training Objective

Our work introduces a unified symbolic-numeric pre-training approach, SNIP, which aims to facili-
tate a mutual understanding of both domains, enabling advanced cross-modal reasoning.
Training Objective. SNIP’s pre-training objective is inspired by the joint training used in CLIP
[9]. Incorporating both a numeric and symbolic encoder, the model optimizes a symmetric cross-
entropy loss over similarity scores. It employs a contrastive loss (InfoNCE [31] objective) to learn
the correspondence between numeric and symbolic data pairs. Specifically, this approach learns to
align embeddings of corresponding symbolic-numeric pairs while distancing unrelated pairs. The
objective function can be defined as:

L = −
∑

(v,s)∈B

(
logNCE(ZS ,ZV ) + logNCE(ZV ,ZS)

)
, (1)

where B represents the batch of (symbolic, numeric) data pairs, NCE(ZS ,ZV ) and NCE(ZV ,ZS)
denote the contrastive losses on symbolic-to-numeric and numeric-to-symbolic similarities, respec-
tively. The symbolic-to-numeric contrastive loss, NCE(ZS ,ZV ), is calculated as follows:

NCE(ZS ,ZV ) =
exp

(
ZS ·Z+

V

)∑
Z∈{Z+

V ,Z
−
V } exp

(
ZS ·Z
τ

) (2)

Here, τ is temperature, Z+
V represents positive SNIP numeric embeddings that overlap with SNIP

symbolic embedding ZS , and Z−
V are negative numeric embeddings implicitly formed by other nu-

meric embeddings in the batch. A symmetric equivalent, NCE(ZV ,ZS), also defines the numeric-
to-symbolic contrastive loss. More implementation details are provided in App. B.

3.4 Pre-training Data
In our SNIP approach, pre-training relies on a vast synthetic dataset comprising paired numeric and
symbolic data. We follow the data generation mechanism in [8], where each example consists of N
data points (x, y) ∈ RD+1 and a corresponding mathematical function f , where y = f(x). Data
generation proceeds in several steps, ensuring diverse and informative training examples. More
details about each of the following steps are provided in App. A.

Sampling of functions. We create random mathematical functions using a process detailed in [8, 3].
This process involves selecting an input dimension D, determining the number of binary operators,

4



constructing binary trees, assigning variables to leaf nodes, inserting unary operators, and applying
random affine transformations. This method ensures a diverse set of functions for training.

Sampling of datapoints. After generating a function, we sampleN input points and find their corre-
sponding target values. To maintain data quality, we follow guidelines from [8], discarding samples
with inputs outside the function’s domain or exceptionally large output values. Our approach in-
cludes drawing inputs for each function from various distributions, enhancing training diversity.
The generation process of datapoints also involves selecting cluster weights and parameters, sam-
pling input points for each cluster, and normalization along each dimension. To emphasize on the
function’s numeric behavior rather than the range of values, we also normalize the target values y
between (0, 1).

4 Pre-trained Latent Space Analysis

Figure 2: 2D t-SNE visualizations of the latent space of
Symbolic encoded vectors ZS of pre-trained SNIP, colored
by (a) Non-Convexity Ratio, (b) Upwardness, (c) Average of
normalized y, and (d) Oscillations (Logarithmic scale).

Symbolic Encoded Representations.
To evaluate the learned representations
of SNIP, we analyze the pre-trained
latent space to investigate the mutual
understanding that is achieved between
the symbolic and numeric representations.
We first show that numeric behaviors are
learned in the symbolic latent vectors ZS .
To this end, we introduce several mathe-
matical properties that describe different
numeric features of the mathematical
functions. Specifically, we consider the
following properties: (a) Non-Convexity
Ratio (NCR) which approximates function
convexity with values between NCR=0
(fully convex) and NCR=1 (fully concave);
(b) Upwardness which quantifies the
function’s directionality by assessing the
segments where data increases within the
training domain, ranging from UP=-1 for
strictly decreasing functions to UP=1 for
increasing ones; (c) Average of Normal-
ized y can be a measure to distinguish
different numeric behaviors, and it can roughly approximate the numerical integral of the normal-
ized function in the defined range of training x; and (d) Log Oscillations which quantifies the
degree of oscillatory behavior exhibited by the numeric data, represented in logarithmic scale. More
details of these properties can be found in App. C.

Fig. 2 illustrate two-dimensional t-SNE [32] visualizations of SNIP symbolic latent space colored
by these properties. We can observe that the latent spaces are shaped by the symbolic-numeric
similarities of the functions such that numeric properties can be clustered and/or show visible trends
in the symbolic encoded representation space ZS .

Figure 3: 2D t-SNE plots of the latent space of Numeric en-
coded vectors ZV of pretrained SNIP on 1D datasets, colored
by (a) Function Complexity, and (b) Function Classes based
on Operators.

Numeric Encoded Representations.
Just as numeric behaviors shaped sym-
bolic encoded representations, numeric
vectors, denoted as ZV , are similarly
influenced by the symbolic characteristics
inherent to the associated governing
equations. This relationship is visually
depicted in Fig. 3, which presents 2D
t-SNE visualizations of the latent space
cultivated from SNIP’s numeric vectors.
These visualizations are color-coded to
reflect two specific symbolic attributes:
(a) complexity of the function, and (b)
a predetermined classification based on

5



dominant operators in the functions. The
Function Complexity refers to the func-
tion’s length when represented in prefix order notation, effectively counting the number of nodes in
its expression tree. On the other hand, Function Operator Categorization is a broader classification
that groups functions based on the predominant operators present in their symbolic mathematical
expressions. These operators not only affect the function’s behavior but also provide insights into
the nature of the data they represent. It’s crucial to recognize that a function may encompass several
operators, adding layers to the intricacy of the data’s behavior. Moreover, specific operators within
a function might have a pronounced impact, dictating the data’s scope and pattern. More details of
these symbolic attributes and categorization are provided in App. C.

Figure 4: Interpolatability of SNIP numeric latent
space.

Latent Space Interpolation. To delve deeper
into the interpolation capabilities of SNIP’s pre-
trained latent representations, we paired the
SNIP encoder with an equation generation de-
coder. This fusion enabled us to explore the la-
tent space in greater depth, unveiling the inter-
polatability inherent in SNIP’s representations.
The notion of interpolatability, as vividly illus-
trated in Fig.4, speaks to a profound association
between the latent space embeddings and their
corresponding numeric behaviors. In the pre-
sented figure, we start with a source function,
represented by the numeric encoded vector Zs

V
(visualized as the blue curve). We then select
a destination function, represented by Zd

V (de-
picted as the orange curve). A linear interpo-
lation is carried out between these numeric en-
coded vectors to derive an intermediate repre-
sentation, Zint

V . When this interpolated latent
vector is decoded, we obtain a symbolic func-
tion represented as f̂ . Evaluating f̂ over the
dataset x reveals a fascinating insight: the in-
terpolated function manifests behavior that semantically bridges the gap between the behaviors of
the source and destination functions. Such latent space dynamics, ingrained through SNIP’s multi-
modal pre-training, offer a valuable edge for sophisticated searches and explorations, potentially
benefiting various subsequent downstream tasks.

5 Using SNIP for Cross-modal Property Prediction
To further evaluate SNIP’s capability for cross-modal comprehension between symbolic and nu-
meric domains, we conducted targeted experiments. These tests aimed to assess the model’s apti-
tude for predicting specific mathematical properties from one domain based on insights from the
other—a non-trivial task requiring mutual understanding of both. Due to space limitations, only
results for NCR and Upwardness, as described in section 4, are discussed here. More experiments
and SNIP’s pre-trained representations are provided in App. D.

5.1 Models and Training

To assess property prediction using SNIP’s embeddings, we employ a predictor head that passes
these embeddings through a single-hidden-layer MLP to yield the predicted values. We adopt a
Mean Squared Error (MSE) loss function for training on continuous properties. We consider three
key training configurations to probe the efficacy of SNIP’s learned representations:
• Supervised Model: Utilizes the same encoder architecture as SNIP but initializes randomly.
• SNIP (frozen): Keeps the encoder parameters fixed, training only the predictor head.
• SNIP (finetuned): Initializes encoder from pretrained SNIP, allowing full updates during training.
For a fair comparison, all model variants are trained on identical datasets comprising 10K equations
and subsequently tested on a distinct 1K-equation evaluation dataset. These datasets are generated
using the technique described in Sec. 3.4, as per [8].

6



(a) Without Pretraining (b) Pretrained, 
Before Finetuning

(c) Pretrained, 
After Finetuning

Figure 5: 2D t-SNE representations of the encoded vectors across
three model variants, colored for (top) Non-Convexity Ratio and (bot-
tom) Function Upwardness prediction tasks.

Figure 6: R2 scores for NCR prop-
erty prediction task vs. the number
of training samples.

5.2 Results

Table 1: Results of using SNIP for property prediction.

Model Non-Convexity Ratio Upwardness

↑ R2 ↓ NMSE ↑ R2 ↓ NMSE

Supervised 0.4701 0.5299 0.4644 0.5356
SNIP (frozen) 0.9269 0.0731 0.9460 0.0540
SNIP (finetuned) 0.9317 0.0683 0.9600 0.0400

Quantitative Results. Table 1 presents
the R2 and Normalized Mean Squared Er-
ror (NMSE) for all three models across the
tasks of predicting NCR and Upwardness.
Results reveal a significant gap in per-
formance between the purely supervised
model and those benefiting from SNIP’s
prior knowledge. This performance gap
can be attributed to SNIP’s pre-trained, semantically rich representations, enabling enhanced gener-
alization to unseen functions. Additionally, fine-tuning the SNIP encoder results in marginal perfor-
mance gains, indicating the model’s capability to adapt to specific downstream tasks.

Qualitative Findings. To delve deeper into the power of SNIP’s representations, we compared
its pre-finetuning and post-finetuning latent spaces against that of a supervised model lacking pre-
training, using t-distributed Stochastic Neighbor Embedding (t-SNE) [32]. The visualizations are
color-coded by the corresponding properties (Fig. 5). Consistent with the quantitative outcomes,
the supervised model’s latent space, shown in Fig. 5(a), exhibits limited structural coherence. In
contrast, SNIP’s latent space in Fig. 5(b) shows pronounced clustering and distinct property trends.
Notably, further fine-tuning of the encoder for these prediction tasks, depicted in Fig. 5(c), results
in a more structured latent space, marked by clearer linear trends in properties. This finding under-
scores SNIP’s quantitative advantages and its flexibility in adapting to downstream tasks.

Few-shot Learning Analysis. We evaluated how training sample size influences the test R2 scores
for predicting NCR, assessing three model variants on a fixed 1K-sample test set (Fig. 6). In few-shot
scenarios with just 100 training samples, the supervised model’s score fell sharply to 0.292, while
both SNIP variants maintained scores above 0.745. At 10K training samples, SNIP’s performance
advantage remained consistent. Upon increasing the training sample size to 1M, all models showed
improvement; the supervised model notably increased its score to 0.867. Yet, both fine-tuned and
frozen SNIP variants continued to lead, posting scores of 0.973 and 0.942, respectively. These
results emphasize SNIP’s superior generalization from limited data, underscoring the SNIP’s rich
semantic encodings.

6 Discussion and Conclusion

We introduced SNIP, a multi-modal symbolic-numeric pre-training model that learns how to asso-
ciate the symbolic and numeric aspects of mathematical functions. We showed that SNIP exhibits
remarkable few-shot capabilities in estimating cross-modal mathematical properties, outperform-
ing fully-supervised models. While SNIP showcases robustness and versatility in integrating sym-
bolic and numeric learning, it has notable limitations. It struggles with data patterns that cannot
be clearly expressed as closed-form mathematical functions. Also, its performance is tied to the

7



pre-defined data generation protocol, adopted from [3, 8], which sets constraints on factors such
as the vocabulary of mathematical operators. Despite these limitations, SNIP has a wide range of
capabilities, presenting a powerful tool in the intersection of symbolic and numeric mathematics.
Looking ahead, SNIP offers a rich foundation for numerous advancements. Future research can
harness numeric guidance to enhance symbolic-to-symbolic tasks like function integration. Con-
versely, symbolic insights might enhance numeric-to-numeric tasks, such as zero-shot extrapolation
and super-resolution. The mutual symbolic and numeric understandings within SNIP could also
open doors for complex multi-modal tasks, notably in numeric-to-symbolic equation generation or
symbolic regression. Furthermore, the embeddings learned by SNIP present an opportunity to craft
novel metrics for evaluating symbolic-numeric proximity and to develop efficient methodologies for
data and feature valuation in symbolic-numeric tasks. In essence, SNIP’s contributions extend far
beyond its current scope, encouraging a future filled with cross-disciplinary innovations.

8



References
[1] Eugene P. Wigner. The unreasonable effectiveness of mathematics in the natural sciences. richard courant

lecture in mathematical sciences delivered at new york university, may 11, 1959. Communications on
Pure and Applied Mathematics, 13(1):1–14, 1960.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, volume 30, 2017.

[3] Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In International
Conference on Learning Representations, 2020.

[4] Sean Welleck, Peter West, Jize Cao, and Yejin Choi. Symbolic brittleness in sequence models: On
systematic generalization in symbolic mathematics. Proceedings of the AAAI Conference on Artificial
Intelligence, 36(8):8629–8637, Jun. 2022.

[5] Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-Wei Chang. A survey of deep learning for
mathematical reasoning. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 14605–14631, Toronto, Canada, July 2023. Association for
Computational Linguistics.

[6] David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical reasoning
abilities of neural models. In International Conference on Learning Representations, 2019.

[7] Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
Neural symbolic regression that scales. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 936–945. PMLR, 18–24 Jul 2021.

[8] Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and Francois Charton. End-to-end
symbolic regression with transformers. In Advances in Neural Information Processing Systems, 2022.

[9] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 8748–8763. PMLR, 18–24 Jul 2021.

[10] Jing Liu, Xinxin Zhu, Fei Liu, Longteng Guo, Zijia Zhao, Mingzhen Sun, Weining Wang, Hanqing Lu,
Shiyu Zhou, Jiajun Zhang, et al. Opt: Omni-perception pre-trainer for cross-modal understanding and
generation. arXiv preprint arXiv:2107.00249, 2021.

[11] Yiyuan Zhang, Kaixiong Gong, Kaipeng Zhang, Hongsheng Li, Yu Qiao, Wanli Ouyang, and Xiangyu
Yue. Meta-transformer: A unified framework for multimodal learning. arXiv preprint arXiv:2307.10802,
2023.

[12] Paul Hager, Martin J Menten, and Daniel Rueckert. Best of both worlds: Multimodal contrastive learning
with tabular and imaging data. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 23924–23935, 2023.

[13] Bing Su, Dazhao Du, Zhao Yang, Yujie Zhou, Jiangmeng Li, Anyi Rao, Hao Sun, Zhiwu Lu, and Ji-Rong
Wen. A molecular multimodal foundation model associating molecule graphs with natural language.
arXiv preprint arXiv:2209.05481, 2022.

[14] Zhonglin Cao, Rishikesh Magar, Yuyang Wang, and Amir Barati Farimani. Moformer: Self-supervised
transformer model for metal–organic framework property prediction. Journal of the American Chemical
Society, 145(5):2958–2967, 2023. PMID: 36706365.

[15] Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben Yan, Lifang
He, et al. A comprehensive survey on pretrained foundation models: A history from bert to chatgpt. arXiv
preprint arXiv:2302.09419, 2023.

[16] Yongshuo Zong, Oisin Mac Aodha, and Timothy Hospedales. Self-supervised multimodal learning: A
survey. arXiv preprint arXiv:2304.01008, 2023.

[17] Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein, Florian
Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, et al. A cookbook of self-supervised learning.
arXiv preprint arXiv:2304.12210, 2023.

9



[18] Xiao Wang, Guangyao Chen, Guangwu Qian, Pengcheng Gao, Xiao-Yong Wei, Yaowei Wang, Yonghong
Tian, and Wen Gao. Large-scale multi-modal pre-trained models: A comprehensive survey. Machine
Intelligence Research, pages 1–36, 2023.

[19] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text
supervision. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 4904–4916.
PMLR, 18–24 Jul 2021.

[20] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. Flava: A foundational language and vision alignment model. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15638–15650, 2022.

[21] Xiao Dong, Xunlin Zhan, Yangxin Wu, Yunchao Wei, Michael C Kampffmeyer, Xiaoyong Wei, Min-
long Lu, Yaowei Wang, and Xiaodan Liang. M5product: Self-harmonized contrastive learning for e-
commercial multi-modal pretraining. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 21252–21262, 2022.

[22] Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem prov-
ing. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in
Neural Information Processing Systems, volume 35, pages 26337–26349. Curran Associates, Inc., 2022.

[23] Francois Charton. Linear algebra with transformers. Transactions on Machine Learning Research, 2022.

[24] Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and François Charton.
Length generalization in arithmetic transformers. arXiv preprint arXiv:2306.15400, 2023.

[25] Shuai Peng, Ke Yuan, Liangcai Gao, and Zhi Tang. Mathbert: A pre-trained model for mathematical
formula understanding. arXiv preprint arXiv:2105.00377, 2021.

[26] Zhenwen Liang, Jipeng Zhang, Lei Wang, Wei Qin, Yunshi Lan, Jie Shao, and Xiangliang Zhang. Mwp-
bert: Numeracy-augmented pre-training for math word problem solving. In Findings of NAACL 2022,
pages 997–1009, 2022.

[27] Avijit Thawani, Jay Pujara, Filip Ilievski, and Pedro Szekely. Representing numbers in NLP: a survey
and a vision. In Proceedings of the 2021 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, pages 644–656, Online, June 2021.
Association for Computational Linguistics.

[28] Mor Geva, Ankit Gupta, and Jonathan Berant. Injecting numerical reasoning skills into language models.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 946–
958, Online, July 2020. Association for Computational Linguistics.

[29] Stéphane D’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, and Francois Charton. Deep sym-
bolic regression for recurrence prediction. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on
Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 4520–4536. PMLR,
17–23 Jul 2022.

[30] Cicero dos Santos, Ming Tan, Bing Xiang, and Bowen Zhou. Attentive pooling networks. arXiv preprint
arXiv:1602.03609, 2016.

[31] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

[32] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine Learning
Research, 9(86):2579–2605, 2008.

[33] Kenichi Tamura and Marcus Gallagher. Quantitative measure of nonconvexity for black-box continuous
functions. Information Sciences, 476:64–82, 2019.

10



Appendix

A Pre-training Data Details

We provide additional details regarding the pre-training data employed for pre-training SNIP. In
our approach, SNIP is pre-trained on a large synthetic dataset of paired numeric and symbolic
data, utilizing the data generation technique from [8]. Each example consists of a set of N points
(x, y) ∈ RD+1 and an associated mathematical function f(·), such that y = f(x). These exam-
ples are generated by first sampling a function f , followed by sampling N numeric input points
xi; i = 1, . . . , N ∈ RD from f , and then calculating the target value yi = f(xi).

A.1 Sampling of functions

To generate random functions f , we employ the strategy outlined in [8, 3], building random trees
with mathematical operators as nodes and variables/constants as leaves. This process includes:

Input Dimension Selection. We begin by selecting the input dimension D for the functions from a
uniform distribution U(1, Dmax). This step ensures variability in the number of input variables.

Binary Operator Quantity Selection. Next, we determine the quantity of binary operators b by
sampling from U(D − 1, D + bmax) and selecting b operators randomly from the set U(+,−,×).
This step introduces variability in the complexity of the generated functions.

Tree Construction. Using the chosen operators and input variables, we construct binary trees,
simulating the mathematical function’s structure. The construction process is performed following
the method proposed in [8, 3].

Variable Assignment to Leaf Nodes. Each leaf node in the binary tree corresponds to a variable,
which is sampled from the set of available input variables (xd for d = 1, . . . , D).

Unary Operator Insertion. Additionally, we introduce unary operators by selecting their quantity
u from U(0, umax) and randomly inserting them from a predefined set (Ou) of unary operators
where Ou = [inv, abs,pow2,pow3, sqrt, sin, cos, tan, arctan, log, exp].

Affine Transformation. To further diversify the functions, we apply random affine transformations
to each variable (xd) and unary operator (u). These transformations involve scaling (a) and shifting
(b) by sampling values from Daff. In other words, we replace xd with axd + b and u with au + b,
where (a, b) are samples from Daff. This step enhances the variety of functions encountered during
pre-training and ensures the model encounters a unique function each time, aiding in mitigating the
risk of overfitting as well as memorization.

A.2 Sampling of datapoints

Once have generated a sample function f , we proceed to generate N input points xi ∈ RD and
calculate their corresponding target value yi = f(xi). To maintain data quality and relevance, we
follow the guidelines from [8], which include: Discarding and Restarting: If any input point xi falls
outside the function’s defined domain or if the target value yi exceeds 10100, we discard the sample
function and restart the generation process. This ensures that the model learns meaningful and well-
behaved functions. Avoidance and Resampling: Avoidance and resampling of out-of-distribution xi
values provide additional insights into f as it allows the model to learn its domain. his practice
aids the model in handling input variations. Diverse Input Distributions: To expose the model to
a broad spectrum of input data distributions, we draw input points from a mixture of distributions,
such as uniform or Gaussian. These distributions are centered around k randomly chosen centroids,
introducing diversity and challenging the model’s adaptability.

The generation of input points involves the following steps:

Cluster and Weight Selection. We start by sampling the number of clusters k from a uniform dis-
tribution U(1, kmax). Additionally, we sample k weights {wj ∼ U(0, 1)}kj=1, which are normalized
to

∑
j wj = 1.

Cluster Parameters. For each cluster, we sample a centroid µj ∼ N (0, 1)D, a vector of variances
σj ∼ U(0, 1)D, and a distribution shape Dj from {N ,U} (Gaussian or uniform). These parameters
define the characteristics of each cluster.

11



Input Point Generation. We sample [wjN ] input points from the distribution Dj(µj , σj) for each
cluster j. This sampling with different weights from different distributions ensures the sampling of
a diverse set of input points with varying characteristics.

Normalization. Finally, all generated input points are concatenated and normalized by subtracting
the mean and dividing by the standard deviation along each dimension.

B Pre-training Implementation Details

B.1 Model Design Details

Numeric Encoder. The numeric encoding mechanism of our SNIP closely follows the design
presented by [8], as highlighted in Sec. 3. Firstly, for each instance in a given batch, the encoder re-
ceives N = 200 numeric input points, (x,y), from a space RD+1. Each of these points is tokenized
into a sequence of length 3(D + 1). An embedding module maps these tokens into a dense repre-
sentation with an embedding size of demb = 512. The sequences are then processed in the embedder
module by a 2-layer feedforward neural network. This network projects input points to the desired
dimension, demb. The output from the embedder is passed to a Transformer encoder, a multi-layer
architecture inspired by [2]. Our specific implementation has 8 layers, utilizes 16 attention heads,
and retains an embedding dimension of 512. A defining characteristic of our task is the permuta-
tion invariance across the N input points. To accommodate this, we’ve adopted the technique from
[8], omitting positional embeddings within the numeric Transformer encoder. In our design, this
specialized encoder variant is termed EncV . The representation generated at the l-th layer of the
encoder is represented as Vl. The process can be summarized as Vl = EncVl (Vl−1). Here, the index
l spans from 1 to LV , where LV = 8 denotes our encoder’s total layers. Post encoding, for each
instance in the batch, the numeric encoder’s sequence outputs, VLV

∈ RN×demb , are compressed
into a representation for the whole sequence, ZV ∈ Rdemb . This representation captures the essence
of the entire numeric sequence and is achieved through an attention-pooling mechanism, detailed in
Sec. 3.1.

Symbolic Encoder. Our SNIP’s symbolic encoding component draws inspiration from the model
used in [3], as highlighted in Sec. 3. This encoder is designed to process mathematical symbolic
expressions with a maximum length of 200. These expressions encapsulate the true functional re-
lationships underlying the numeric data fed to the numeric encoder. The expressions are tokenized
using a prefix order tree traversal. We employ the vocabulary defined by [8], crafted to comprehen-
sively represent mathematical equations. It includes symbolic entities like variables and operators,
along with numeric constants. Constants are tokenized into three parts, consistent with the tokeniza-
tion method outlined in Sec. 3.1. Sequence boundaries are indicated with special tokens [⟨BOS⟩] and
[⟨EOS⟩]. Tokens are transformed into dense vectors of dimension demb = 512 using an embedder
module. This module essentially functions as an embedding matrix for the employed vocabulary.
To maintain uniform input lengths, sequences are padded to a maximum length of M = 200 and
then projected to the desired embedding dimension. This dimensionality is aligned with the numeric
encoder’s. The embedded sequences are processed through a Transformer encoder, characterized
by its multi-layer architecture as described by [2]. Similarly, our specific configuration for this en-
coder consists of 8 layers, utilizes 16 attention heads, and retains an embedding dimension of 512.
Contrary to the numeric encoder, the sequence order in symbolic expressions holds significance.
Consequently, we are including positional embeddings into this Transformer encoder variant. We
denote this encoder asEncS , and its layer-wise representations are articulated as Sl = EncSl (Sl−1),
iterating from layer 1 to the maximum layer LS = 8. Similar to the numeric encoder’s approach,
the symbolic encoder condenses its Transformer outputs SLS

∈ RM×demb for each expression into
a compact representation, ZS ∈ Rdemb . This aggregation leverages the attention-pooling technique
detailed in Sec. 3.2.

B.2 Training Details

Following the extraction of coarse representations from both symbolic and numeric encoders, our
focus shifts to harmonizing the embeddings from these encoders. The aim is to closely align em-
beddings representing corresponding symbolic-numeric pairs, while ensuring a discernible distance
between unrelated pairs. As discussed in Sec. 3.3, this alignment process leverages a symmetric
cross-entropy loss calculated over similarity scores, with the specific approach being informed by a

12



NCR

Upward/
Downward

Oscillations

Average of 
Normalized 𝑦

Figure 7: Properties are qualitatively illustrated using five sample functions. Within each row, the plots are
arranged according to their respective property values. Colors represent distinct function phases corresponding
to the property (e.g., convexity vs. nonconvexity in the first row, upward vs. downward in the second row).
Additionally, in the third row, red points highlight instances of change in the y-coordinate.

contrastive loss mechanism. This ensures effective learning of the correspondence between numeric
and symbolic data pairs. Our optimization process is facilitated by the Adam optimizer, operating on
a batch size of B = 256 (symbolic, numeric) data pairs. The learning rate initiation is set at a low
10−7, which is then gradually warmed up to 4 × 10−5 over an initial span of 100K steps. Subse-
quently, in line with the recommendations of [2], we apply an inverse square root decay based on
the step count to adjust the learning rate. Our model undergoes training for a total of ≈ 220 epochs,
with each epoch comprising 1, 000 steps. This translates to the processing of 256 × 1K = 256K
(symbolic, numeric) pair samples for each epoch. Given the on-the-fly data generation mechanism,
as highlighted in Sec. A, the cumulative volume of data encountered during pre-training approxi-
mates a substantial 60M (symbolic, numeric) pair samples. For training, we utilize 4 GPUs, each
equipped with 48GB of memory. Given this configuration, the processing time for a single epoch is
approximately two hours.

C More details on Pre-trained Latent Space Analysis
C.1 Properties Definition

In this section, we define the numeric mathematical properties that we use to evaluate the pre-
trained SNIP model. The experiments include understanding and predicting numeric properties,
i.e., properties that describe the behavior of numeric dataset, from symbolic forms of functions.
The formal definitions of these properties are described in the following paragraphs and Fig. 7
qualitatively illustrates what each of the numeric properties represent.

Non-Convexity Ratio: Non-Convexity Ratio (NCR) is defined to quantify the relative convexity
(or non-convexity) of the functions as one of the properties depending on the numeric behavior of
the functions. Hence, directly predicting this property from the symbolic form of the function is a
complex task. To quantify the non-convexity ratio, we employ Jensen’s inequality as a fundamental
measure [33]. In our approach, we focus on the one-dimensional equations with numeric dataset
{x,y}. Considering a function f : D → R where D is a convex subset of R, f is a convex function
if ∀x1, x2 ∈ D and ∀λ ∈ [0, 1]:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

We rely on the training datasets with non-regularly sampled points to calculate the approximate
NCR. To this end, we perform multiple trials to examine Jensen’s inequality criterion. For each

13



trial, we randomly select three data points {(xi, f(xi)), (xj , f(xj)), (xk, f(xk))} which are sorted
based on x in ascending order. The convexity criterion holds on these points if

f(xj) ≤
(xk − xj) · f(xi) + (xj − xi) · f(xk)

xk − xi
+ ϵ, (3)

where ϵ is a very small number (ϵ = 10−9) to avoid numerical precision errors. Therefore, for trial
t, we define the success as

ξt =

{
1 if (3) holds,
0 otherwise.

Finally, the non-convexity ratio (NCR) is computed over the total number of trials T as

NCR = 1− 1

T

T∑
t=1

ξt.

Therefore, if a function is always convex over the range of training data points, NCR=0, and if it is
always non-convex, it would have NCR=1. Functions that have both convex and non-convex sections
in the range of x will have NCR ∈ (0, 1).

Upwardness: The ‘Upward/Downwardness’ of a one-dimensional numeric dataset is defined to
gauge the proportion of points within the training range where the function exhibits increasing or
decreasing behavior. To compute this metric on the sorted dataset {xs,f(xs)}, we examine every
consecutive pair of points {xi, xi+1} to determine if they demonstrate an upward or downward
trend. We then define ui as follows:

ui =


1 if f(xi+1) > f(xi) + ϵ,

−1 if f(xi+1) < f(xi)− ϵ,

0 otherwise.

Finally, the upwardness metric UP is computed as the average upwardness UP =
∑N−1
i=1 ui, where

N is the number of points in the dataset. Therefore, if a function is monotonically increasing the
range of x in training points, the upwardness measure is 1, and if it is monotonically decreasing, the
metric will be −1. Functions that have both sections in the range of x will have UP ∈ (−1, 1).

Oscillation For this metric, we aim to quantify the degree of oscillatory behavior exhibited by the
numeric data. This is approximated by counting the instances where the direction of y changes.
Determining the direction of data points follows a similar process to that of the upwardness metric
for each consecutive pair. Thus, we tally the occurrences of direction changes while traversing the
sorted dataset. Due to the potential variation in the number of changes, we opt for a logarithmic
scale to color the plots.

Average of Normalized y The overall behavior of the numeric data points {x,y} are better rep-
resented when the values of y are scaled to a fixed range (here (0, 1)), giving {x,Y }. The average
of the normalized values, Ȳ can be a measure to distinguish different numeric behaviors, and it
can roughly approximate the numerical integral of the normalized function in the defined range of
training x.

Numeric Encoded Representations. We show that akin to how symbolic encoded representations
are shaped by numeric behaviors, the numeric encoded vectors ZV are likewise influenced by the
symbolic attributes of the corresponding governing equations. To illustrate this, Fig. 3 showcases 2D
t-SNE visualizations depicting the learned latent space of SNIP’s numeric encoded vectors, color-
coded by function (a) complexity and (b) an arbitrarily defined categorization of the functions based
on their dominant operators. Further details regarding these two symbolic features are provided
below:

Function Complexity: Function complexity, as defined in previous works, pertains to the length
of the function expressed in prefix order notation,i.e., the number of nodes in the expression tree.
Intuitively, functions with a greater number of operators and variables (resulting in longer equations)
are considered more complex, often exhibiting correspondingly complex behaviors.

14



Function Operator Classes: Mathematical functions can be broadly classified into different classes
based on the operators utilized in their expressions, which in turn influence the behavior of the
data they describe. It is important to note that a single function may incorporate multiple operators,
contributing to the overall complexity of the data’s behavior. Additionally, certain operators within a
function may hold more significance than others, exerting greater influence on the range and pattern
of the data. To categorize the functions, we employ the following guidelines:

First, we consider a prioritized set of unary operators: O = {arctan, tan, exp, sqrt, inv, cos, sin,
pow3,pow2}. If a function exclusively employs one of these operators, it is categorized accordingly.
For simplicity, we designate both pow2 and pow3 as Polynomial, and we employ sin for both sin
and cos. In the event that a function incorporates more than one operator, it is assigned to the
category corresponding to the operator of higher priority. It is worth noting that this categorization
may not always perfectly capture the behavior of functions, as an operator with lower priority may
potentially exert a more dominant influence than another prioritized operator.

Annotated Latent Space. To have a closer look to the latent space representation, we also analyze
several functions with their position in the learned latent space t-SNE visualization. Fig. 8 shows
the same t-SNE plot of ZS (from the symbolic encoder) colored by NCR property and annotated by
the numeric behavior (scaled y) of some samples. We can observe that the latent space is shaped by
both symbolic input f(·) and numeric data, such that closer points have more similar symbolic and
numeric features.

Figure 8: 2D t-SNE plot of the latent space of SNIP symbolic encoded representation ZS colored by Non-
Convexity Ratio property. Several sample equations are plotted with their relative position in the latent space.
Both symbolic and numeric aspects of functions affect the latent vectors.

D Details of Using SNIP for Cross-Modal Property Prediction
D.1 Qualitative Results of Property Prediction Models.

Here, we analyze the properties mentioned in the previous section in the latent space. Fig. 9 shows
a qualitative comparison of pre-finetuning and post-finetuning latent spaces of SNIP against that of
supervised task prediction models, using 2-dimensional t-SNE visualizations of the encoded repre-

15



Figure 9: 2D t-SNE plots of the encoded representations for the tasks of predicting Non-Convexity Ratio,
Function Upwardness, Average of y, and Oscillations. The plots compare the (a) supervised models without
pre-training, (b) frozen pre-trained SNIP encoder, and (c) fine-tuned SNIP encoders for each task.

sentations. The first two rows (NCR and Upwardness) are replicated from the main body (Fig. 5)
for ease of comparison. In each task (row), the plots are colored by the values of the corresponding
property. In each task, a training dataset with 10K samples was used to train the model.

The observations from Fig. 9 show that the latent spaces of supervised models (without pre-trained
SNIP) are very weakly structured and barely exhibit a recognizable trend for the properties. On the
other hand, when the pre-trained SNIP is used, the latent spaces are shaped by the symbolic-numeric
similarities of the functions such that numeric properties can be clustered and/or show visible trends
in the symbolic encoded representation space ZS . Furthermore, refining the encoder, as shown in
Fig. 9(c), leads to more organized latent spaces with distinct linear property trends.

16


	Introduction
	Related Work
	Pre-training
	Numeric Encoder
	Symbolic Encoder
	Unified Pre-training Objective
	Pre-training Data

	Pre-trained Latent Space Analysis
	Using SNIP for Cross-modal Property Prediction
	Models and Training
	Results

	Discussion and Conclusion
	Pre-training Data Details
	Sampling of functions
	Sampling of datapoints

	Pre-training Implementation Details
	Model Design Details
	Training Details

	More details on Pre-trained Latent Space Analysis
	Properties Definition

	Details of Using SNIP for Cross-Modal Property Prediction
	Qualitative Results of Property Prediction Models.


