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Abstract

Link prediction is central to many real-world applications, but its performance may be
hampered when the graph of interest is sparse. To alleviate issues caused by sparsity,
we investigate a previously overlooked phenomenon: in many cases, a densely connected,
complementary graph can be found for the original graph. The denser graph may share nodes
with the original graph, which offers a natural bridge for transferring selective, meaningful
knowledge. We identify this setting as Graph Intersection-induced Transfer Learning (GITL),
which is motivated by practical applications in e-commerce or academic co-authorship
predictions. We develop a framework to effectively leverage the structural prior in this
setting. We first create an intersection subgraph using the shared nodes between the two
graphs, then transfer knowledge from the source-enriched intersection subgraph to the full
target graph. In the second step, we consider two approaches: a modified label propagation,
and a multi-layer perceptron (MLP) model in a teacher-student regime. Experimental results
on proprietary e-commerce datasets and open-source citation graphs show that the proposed
workflow outperforms existing transfer learning baselines that do not explicitly utilize the
intersection structure.

1 Introduction

Link prediction (Lichtenwalter et al., 2010; Zhang & Chen, 2018; Safdari et al., 2022; Yang et al., 2022b; Nasiri
et al., 2022) is an important technique used in various applications concerning complex network systems,
such as e-commerce item recommendation (Chen et al., 2005), social network analysis (Al Hasan & Zaki,
2011), knowledge graph relation completion (Kazemi & Poole, 2018), and more. State-of-the-art methods
leverage Graph Neural Networks (GNNs) to discover latent links in the system. Methods such as Graph
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AutoEncoder (GAE) (Kipf & Welling, 2016), SEAL (Zhang & Chen, 2018; Zhang et al., 2021a), PLNLP
(Wang et al., 2021), and Neo-GNN (Yun et al., 2021) perform reliably on link prediction when the target
graph has a high ratio of edge connectivity. However, many real-world data is sparse, and these methods
are less effective in these situations. This issue is known as the “cold-start problem,” and has recently been
studied in the context of e-commerce (Zheng et al., 2021) and social networks (Leroy et al., 2010).

One solution to address the difficulties related to cold-start settings is transfer learning (Gritsenko et al., 2021;
Cai et al., 2021). To alleviate sparsity issues of the target graph, transfer learning seeks to bring knowledge
from a related graph, i.e., the source graph, which shares similar structures or features with the target graph.
The source graph should have better observable connectivity. If such a related source graph can be found, its
richer connectivity can support the target graph, augment its training data, and enhance latent link discovery.

However, transferring knowledge between graphs poses significant challenges. These challenges are (Kan et al.,
2021; Zhu et al., 2021a), mainly due to differences in optimization objectives and data distribution between
pre-training and downstream tasks (graphs) (Han et al., 2021; Zhu et al., 2021a). To this end, Ruiz et al.
(2020) theoretically bounded the transfer error between two graphs from the same “graphon family,” but this
highly restrictive assumption limits its applications in real-world scenarios. Another series of studies have
examined the transferability of generally pre-trained GNNs (Hu et al., 2020a; You et al., 2020b; Hu et al.,
2020b), aiming to leverage the abundant self-supervised data for auxilary tasks (Hwang et al., 2020). However,
they do not study which self-supervised data or tasks are more beneficial for downstream tasks. Other GNN
transfer learning methods leverage a meta-learning framework (Lan et al., 2020) or introduce domain-adaptive
modules with specified losses (Wu et al., 2020), but they fail to capture the potential structural prior when
the source and target graphs have shared nodes.

To better exploit the potential of source-target graph transfer, we observe a widespread structural prior: the
source graph may share an intersection subgraph with the sparse target graph, i.e., they may have nodes and
edges in common. Next, we first discuss a few real-world examples before further specifying this setting.

1.1 Motivating Examples

Target 

Graph

Source 

Graph

Intersection 
Subgraph

Figure 1: An illustration of the proposed
GITL setting. In this setting, the target
graph is sparse, while the source graph has
rich link information. The source graph
and the target graph are assumed to have
shared nodes and edges. The goal is to use
the rich information in the source graph to
improve link prediction in the target graph
by exploiting the structural prior.

Our setting assumes that given one graph of interest, we can find
another graph with a common subset of nodes. Furthermore,
the second graph has richer link information than the original
graph. We refer to the second graph as the source graph, which
we employ to transfer knowledge. We refer to the original graph
as the target graph. We conceptually illustrate this setting in
Figure 1. This setting is motivated by a few important real-
world examples, and we discuss two of them drawn from global
e-commerce and social network scenarios.

In global e-commerce stores such as Amazon, eBay, or Taobao,
the product items and customer queries constitute bipartite
graphs. The products and user queries are defined as nodes,
with the user behaviors (clicks, add-to-carts, purchases, etc.)
defined as edges. These graphs can be huge in size, and are in-
strumental for customizing query recommendations, predicting
search trends, and improving the search experience. To improve
the recommendation engine, one may formulate the information
filtering process as a link prediction task and then train GNN
models to predict user behavior data.

These global e-commerce stores operate in multiple locales
simultaneously. Among the emerging (smaller) locales, one
practical and critical challenge commonly arises: these locales
have not received rich enough user behavior, which may lead to the cold-start issue (Hu et al., 2021; Zhang
et al., 2021c; Zheng et al., 2021). In other words, very few customer interactions result in a sparse and noisy
graph, leading to less reliable predictions.
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Figure 2: A visualization of the proposed framework, which contains two stages. The first stage identifies the
training dataset for the model, and the second stage investigates two broadcasting approaches: the modified
edge-centric label propagation, and the knowledge distillation MLP.

To improve prediction performance in these emerging locales, we can leverage rich behavioral data from more
established locales, which may have years of user activity. In this case, one structural prior facilitates such a
transfer: many items are available in multiple locales, and some query words might also be used by customers
in multiple locales. These shared nodes (products and user queries) naturally bridges the two graphs. Note
that the emerging and established locale graphs may have different node feature distributions. This domain
gap arises from differences in the items available across locales, as well as the customer behavior differences
related to societal, economic, cultural, or other reasons.

Other examples can be found in social networks. For instance, academic collaborations can be modeled as a
graph where the nodes are authors and the edges indicate collaborations or co-authored papers. One task in
such a graph is to predict co-authorship links. In this task, we can once again formulate the source-target
transfer: the source graph can be an established field where authors collaborate extensively, and the target
graph can be an emerging field with fewer collaborations. As another formulation, the source graph can be
the author collaborations in past years and the target graph can refer to projected collaborations in future
years. In both formulations, we can identify a shared subgraph: the shared nodes are the common authors,
and the shared edges are pairs of authors who have publications in both disciplines (or within the same year).

With these real-world examples, we summarize the common properties of these tasks, and formulate them
into a new setting, which we term as the Graph Intersection-induced Transfer Learning (GITL). In a nutshell,
the GITL setting represents the cases where the source graph shares nodes with the target graph, so that we
can broadcast the source graph’s richer link information to the target graph via the common subgraph.

1.2 Contributions

We propose a framework that tackles the GITL setting from two angles: training instance optimization and
prediction broadcast. Our framework addresses these two aspects using a two-stage learning process, as shown
in Figure 2. For training instance optimization, we leverage the shared subset of nodes as the key structural
information to transfer from the source graph to the target graph. In this step, the GNN model is trained
only on the shared subgraph instead of the full source graph, which we show through experiments as a more
effective method of transfer. For the prediction broadcast, we design a novel label propagation approach,
which shifts the node-based graph to an edge-centric graph. This avoids over-smoothing during the broadcast.
We also study a pointwise MLP model via teacher-student knowledge distillation.

Our method falls into the category of instance-level transfer (Pan & Yang, 2009; Koh & Liang, 2017; Wang
et al., 2018; 2019). Distinct from other transfer learning approaches that fine-tune pre-trained GNNs on
the target domain (dubbed the parameter-level transfer (Pan & Yang, 2009)), the instance-level transfer
selects or re-weights the samples from the source domain to form a new training set using guidance from
the target domain. As a result, models trained on these processed source domain samples generalize better
without fine-tuning the model weights. Our method is an instantiation of this approach, as we first leverage
the structure overlap prior to selecting the training instances, then re-weight the sample predictions via
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source-to-target broadcast. We consider this instance-level transfer better suited for our setting, as the graph
model is lightweight and easy to optimize. On the other hand, since the training data is usually massive,
dropping samples is unlikely to cause model underfitting. Our contributions are outlined as follows:

• We formulate GITL, a practically important graph transfer learning setting that exists in several
real-world applications. We propose a novel framework to optimize the GITL setting, which leverages
the intersection subgraph as the key to transfer important graph structure information.

• The proposed framework first identifies the shared intersection subgraph as the training set, then
broadcasts link information from this subgraph to the full target graph. We investigate two broad-
casting strategies: a label propagation approach and a pointwise MLP model.

• We show through comprehensive experiments on proprietary e-commerce graphs and open-source
academic graphs that our approach outperforms other state-of-the-art methods.

1.3 Related works

Link Prediction in Sparse Graphs. The link prediction problem is well studied in literature (Liben-Nowell
& Kleinberg, 2007), with many performant models (Singh et al., 2021; Wang et al., 2021; Yun et al., 2021;
Zhang et al., 2021a; Zhang & Chen, 2018; Subbian et al., 2015; Zhu et al., 2021b) and heuristics (Chowdhury,
2010; Zhou et al., 2009; Adamic & Adar, 2003; Newman, 2001). Unfortunately, most methods are hampered by
link sparsity (i.e., low edge connection density). Mitigating the link prediction challenge in sparsely connected
graphs has attracted considerable effort. Some suggest that improved node embeddings can alleviate this
problem (Chen et al., 2021a), e.g., using similarity-score-based linking (Liben-Nowell & Kleinberg, 2007) or
auxiliary information (Leroy et al., 2010). However, these methods do not yet fully resolve sparsity challenges.
Bose et al. (2019); Yang et al. (2022a) treated few-shot prediction as a meta-learning problem, but their
solutions depend on having many sparse graph samples coming from the same underlying distribution.

Graph Transfer Learning. While transfer learning has received extensive research in deep learning research,
it remains highly non-trivial to transfer learned structural information across different graphs. Gritsenko et al.
(2021) theoretically showed that a classifier trained on embeddings of one graph is generally no better than
random guessing when applied to embeddings of another graph. This is because general graph embeddings
capture only the relative (instead of absolute) node locations.

GNNs have outperformed traditional approaches in numerous graph-based tasks (Sun et al., 2020b; Chen et al.,
2021b; Duan et al.). While many modern GNNs are trained in (semi-)supervised and dataset-specific ways,
recent successes of self-supervised graph learning (Veličković et al., 2019; You et al., 2020a; Sun et al., 2020a;
Lan et al., 2020; Hu et al., 2020a; You et al., 2020b; Hu et al., 2020b) have invoked the interest in transferring
learned graphs representations to other graphs. However, transferring them to node/link prediction over a
different graph has seen limited success, and is mostly restricted to graphs that are substantially similar
(You et al., 2020b; Hu et al., 2020b). An early study on graph transfer learning under shared nodes (Jiang
et al., 2015) uses “common nodes” as the bridge to transfer, without using graph neural networks (GNN) or
leveraging a selected subgraph. Wu et al. (2020) addressed a more general graph domain adaptation problem,
but only when the source and target tasks are homogeneous. Furthermore, most GNN transfer works lack a
rigorous analysis on their representation transferability, save for a few pioneering works (Ruiz et al., 2020;
Zhu et al., 2021a) that rely on strong similarity assumptions between the source and target graphs.

Also related to our approach is entity alignment across different knowledge graphs (KGs), which aims to match
entities from different KGs that represent the same real-world entities (Zhu et al., 2020; Sun et al., 2020b).
Since most KGs are sparse (Zhang et al., 2021b), entity alignment will also enable the enrichment of a KG
from a complementary one, hence improving its quality and coverage. However, GITL has a different focus,
as we assume the shared nodes to be already known or easily identifiable. For example, in an e-commerce
network, products have unique IDs, so nodes can be easily matched.

Instance-Level Transfer Learning. Though model-based transfer has become the most frequently used
method in deep transfer learning, several research works have shown the significance of data on the effectiveness
of deep transfer learning. Koh & Liang (2017) first studied the influence of the training data on the testing
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loss. They provide a Heissian approximation for the influence caused by a single sample in the training
data. Inspired by this work, Wang et al. (2018) proposed a scheme centered on data dropout to optimize
training data. The data dropout approach loops for each instance in the training set, estimates its influence
on the validation loss, and drops all “bad samples.” Following this line, Wang et al. (2019) proposes an
instance-based approach to improve deep transfer learning in a target domain. It first pre-trains a model in
the source domain, then leverages this model to optimize the training data of the target domain by removing
the training samples that will lower the performance of the pre-trained model. Finally, it fine-tunes the model
using the optimized training data. Though such instance-wise training data dropout optimization does yield
improved performance, it requires a time complexity of O(Ntraining_set_size ∗ Nvalidation_set_size), which can
be prohibitively costly in large graphs or dynamic real-world graphs that are constantly growing.

Label Propagation. Label propagation (LP) (Zhu, 2005; Wang & Zhang, 2007; Karasuyama & Mamitsuka,
2013; Gong et al., 2016; Liu et al., 2018) is a classical family of graph algorithms for semi-supervised
transductive learning, which diffuses labels in the graph and makes predictions based on the diffused labels.
Early works include several semi-supervised learning algorithms such as the spectral graph transducer
(Joachims, 2003), Gaussian random field models (Zhu et al., 2003), and label spreading (Zhou et al., 2004).
Later, LP techniques have been used for learning on relational graph data (Koutra et al., 2011; Chin et al.,
2019). More recent works provided theoretical analysis (Wang & Leskovec, 2020) and also found that
combining label propagation (which ignores node features) with simple MLP models (which ignores graph
structure) achieves surprisingly high node classification performance (Huang et al., 2020).

However, LP is not suitable for the link prediction task. LP is prone to over-smoothing (Wang & Leskovec,
2020) for nodes within the same class, which may also hurt link prediction. For these reasons, we focus on an
edge-centric variation of LP, discussed in Section 2.3.

2 Model Formulations

2.1 Notations And Assumptions

Denote the source graph as Gsrc and the target graph as Gtar, and denote their node sets as Vsrc and Vtar,
respectively. We make the following assumptions:

1. Large size: the source and the target graphs are large, and there are possibly new nodes being
added over time. This demands simplicity and efficiency in the learning pipeline.

2. Distribution shift: node features may follow different distributions between these two graphs. The
source graph also has relatively richer links (e.g., higher average node degrees) than the target graph.

3. Overlap: there are common nodes between the two graphs, i.e., Vsrc ⋂
Vtar ≠ ∅. We frame the

shared nodes as a bridge that enables effective cross-graph transfer. We do not make assumptions
about the size or ratio of the common nodes.

In the following sections, we describe the details of the proposed framework under the GITL setting, which
consists of two stages.

2.2 GITL Stage I: Instance Selection

We consider the instance-level transfer, which selects and/or re-weights the training samples to improve
the transfer learning performance in the target domain. Previous instance-level transfer research leverages
brute-force search (Wang et al., 2019): it loops for all instances and drops the ones that negatively affect
performance. However, most real-world graphs are large in size and are constantly growing (Assumption 1 ),
which makes such an approach infeasible. We instead leverage a practically simple instance selection method,
choosing the intersection subgraph between the source and target graphs as the training data. While this
seems to be counter-intuitive to the “more the better” philosophy when it comes to transferring knowledge,
we find it more effective in Section 3, and refer to it as the negative transfer phenomenon.

Specifically, we compare three different learning regimes. ➊ target → target (Tar. → Tar.) directly trains
on the target graph without leveraging any of the source graph information. ➋ union → target (Uni. →
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Tar.), where the training set is the set of all source graph edges, plus part of the available edges in the target
graphs. The dataset size is the biggest among the three regimes, but no instance optimization trick is applied
and it is therefore suboptimal due to the observed negative transfer phenomenon. ➌ intersection → target
(Int. → Tar.) is our proposed framework, which trains on the intersection subgraph. The training nodes are
selected based on the intersection structural prior, and the edges are adaptively enriched based on the source
graph information. Specifically, we first extract the common nodes in the two graphs Gsrc and Gtar:

V∗ = Vsrc
⋂

Vtar (1)

Next, all edges from the source and target graphs that have one end node in V∗ are united together to form
the intersection graph, i.e., the intersection graph is composed of common nodes V∗ and edges from either of
the two graphs. Then, we build a positive edge set E+ = E∗ and sample a negative edge set E−.

Train/Test Split. Under the graph transfer learning setting, we care about the knowledge transfer quality
in the target graph. Therefore, the most important edges are those with at least one node exclusive to the
target graph. To this end, the positive and negative edges with both end nodes in the source graph are used
as the training set. 20% of positive and negative edges that have at least one node outside the source graph
are also added to the training set. Finally, the remaining positive and negative edges are evenly split into the
validation set and testing set.

2.3 GITL Stage II: Source-to-Target Broadcast

In stage II, we first train a GNN model for the link prediction task to generate initial predictions, then use
label propagation or MLP-based methods to broadcast the predictions to the entire target graph.

Training the GNN Base Model for Link Prediction. Our GNN model training follows the common
practice of link prediction benchmarks (Wang et al., 2021; Zhang et al., 2021a; Zhang & Chen, 2018). For the
construction of node features, we concatenate the original node features X (non-trainable) with a randomly
initialized trainable vector X′ for all nodes. On the output side, the GNN generates d-dimensional node
embeddings for all nodes via Y = GNN(A, [X, X′]). For node pair (i, j) with their embeddings Y[i] ∈ Rd

and Y[j] ∈ Rd, the link existence is predicted as the inner product:
zi,j =< Y[i], Y[j] > (2)

where zi,j > 0 indicates a positive estimate of the link existence and vice versa. We randomly sample positive
edge set E+ and negative edge set E− to train the GNN model. The model is trained with the common AUC
link prediction loss (Wang et al., 2021):

min
Θ,X′

∑
e+∈E+,e−∈E−

(1 − Z[e+] + Z[e−])2 (3)

After the model is trained, we have the predictions zi,j for all edges between node i and j. These predictions
are already available for downstream tasks. However, in the proposed framework, we further leverage label
propagation as a post-processing step, which broadcasts the information from the source graph to the target
graph. Specifically, we concatenate zi,j for all edges e = (i, j) in E+ and E−, and get Z ∈ R(|E+|+|E−|)×1.

Broadcasting Predictions with Edge Centric Label Propagation. Label propagation (LP) is simple
to implement and is hardware friendly, easy to parallelize on GPUs, and also fast on CPUs. Generic LP
methods (Zhu, 2005; Huang et al., 2020) diffuse the node embeddings across edges in the graph. To avoid the
over-smoothness induced by the node-level diffusion of traditional LP, we shift the role of nodes into edges,
and propose an edge-centric variant of LP. We term this method as logit diffusion-based LP (Logit-LP).

Denote N as the number of nodes in the graph to be broadcast. The LP requires two sets of inputs: the stack
of the initial embedding of all nodes, denoted as Z(0) ∈ RN×d, and the diffusion source embedding, denoted
as G ∈ RN×d. The diffusion procedure generally used in LP methods (Zhu, 2005; Wang & Zhang, 2007;
Karasuyama & Mamitsuka, 2013; Gong et al., 2016; Liu et al., 2018) can be summarized into the formula
below, which iterates k until it reaches a predefined maximum value Kmax:

Z(k+1) = αAZ(k) + (1 − α)G (4)
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In our method, the Logit-LP uses an edge-centric view to model the diffusion procedure. As visualized in
Figure 3, it shifts the role of edges into nodes, i.e., it builds a new graph G̃, which consists of the original
edges as its nodes. The idea is that it operates on an edge-centric graph G̃ with “switched roles,” where the
nodes in G̃ are edges in G, and the edges in G̃ represent the connectivity of edges in G: if two edges in G share
a node, then there is a corresponding edge in G̃. It shifts the embeddings from the node embeddings to the
edge embeddings. Mathematically, this is done by re-building the adjacency matrix Ã, the initial embedding
Z̃(0), and the diffusion source embedding G̃. The new nodes are binary labeled: the positive and negative
edges in the original graph. The number of new nodes is |G̃| = |E+| + |E−|. The embeddings of these nodes,
denoted as Z̃Logit−LP, are edge prediction logits. In other words, the initial embedding is inherited from the
GNN: Z̃(0)

Logit−LP = vec(zi,j) ∈ R(|E+|+|E−|)×1, where zi,j is defined in Equation (2)

Y[11]
Z̃[105]

Convert node embedding 

to edge prediction:

Z̃(0)[105] = < Y[14], Y[35] >

Edge-centric 

label propagation:

Z̃(k+1)[105] = α[ÃZ̃(k)]row=105 + (1 − α)G̃(k)[105]

Y[12]

Y[13]

Y[14]
Y[35]

Y[36]

Y[37]

Z̃[102]

Z̃[103]
Z̃[104] Z̃[107]

Z̃[106]

Figure 3: The edge-centric label propagation algorithm demon-
strated with a subgraph. The edge prediction is first computed
from the node embeddings (GNN output), then the graph is
switched to an edge-centric view. The diffusion propagates the
residual error from the labeled edges to the entire graph.

The next operations are all based on G̃,
where we follow Huang et al. (2020) for
the propagation procedure optimization.
The initial embedding Z̃(0)

Logit−LP is first
processed by the sigmoid(·) function, then
the diffusion source embedding G is set up
in the following way. (1) On the training
set of E+/E−: the node values are 0/1-
valued labels minus the initial embedding,
referring to the residual error. (2) On
validation and testing sets: the node val-
ues are all-zero embeddings. After Equa-
tion (4) generates the final residual errors
Z̃(k)|k=Kmax+1, we add the initial values
Z̃0 and convert the residual to the final
result.

Besides the Logit-LP, we also propose and discuss two other ways to shift the original graph to an edge-centric
view, namely, the embedding diffusion LP and the XMC diffusion-based LP.

Variant Model: The Embedding Diffusion-Based LP. The embedding diffusion LP (Emb-LP) is similar
to Logit-LP in that it also performs diffusion on an edge-centric graph G̃, the nodes of which represent edges
in the original graph. The number of nodes of the edge-centric graph, in this case, is G̃ is |E+|, which is the
number of positive edges in G. In Emb-LP, the initial embedding Z̃(0) and the diffusion source embedding G̃
are identical, which is processed from the GNN output embeddings Y. Denote the embedding for node i and
j as Y[i] and Y[j]. If there is an edge between the node pair (i, j), then in G̃, the embedding for this edge is
the concatenation of Y[i] and Y[j]. The label propagation procedures are the same as Equation (4). After
the propagation, an edge’s existence is predicted via the dot product of the original embeddings of its two
end nodes.

Variant Model: The XMC Diffusion-Based LP. The third LP variant is based on the eXtreme Multi-
label Classification (XMC) (Liu et al., 2017; Bhatia et al., 2015) formulation of link prediction (abbreviated
as XMC-LP). In the multi-label classification formulation of the link prediction, each node can independently
belong to N = |G| classes (not mutually exclusive). Each class means the existence of the link to the
corresponding node (one of N total nodes). XMC-LP operates on the original graph G, and the adjacency
matrix is the same as the original one. The initial embedding Z̃(0) is set to be the post-dot-product logits and
has the shape of N × N . The value at the location (i, j) corresponds to the dot product of the GNN output
Y[i] and Y[j]. The remaining steps are the same as Logit-LP. After performing diffusion using Equation (4),
the edge existence between node i and j can be predicted by looking at the location (i, j) of the diffusion
result Z̃(k)|k=Kmax+1.

Summary of Three LP Variants. The three different views leverage different advantages that LP
offers. Logit-LP is supervised by edge labels (positive or negative edges) and performs the best. Emb-LP is
unsupervised and is the only variant that outputs embeddings instead of logits. XMC-LP operates on the
smaller original graph instead of the edge-centric graph, though it requires more memory.
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Our edge-centric LP algorithm is conceptually simple, lightweight, and generic. However, many real-world
graphs follow long-tail distributions, with the majority of their nodes having few connections. Some nodes
are even isolated, with no connected neighborhood. These cases are shown to have negative effects on
message-passing-based approaches (Zheng et al., 2021). Therefore, we also study and compare an MLP-based
graph predictor (Hu et al., 2021; Zhang et al., 2021c; Zheng et al., 2021), which has been shown to be effective
in sparsely linked graphs.

2.4 Alternative Broadcasting Approach for Stage II: Teacher-Student Learning via GNN-MLP

In this alternative approach, we train an MLP with a simple procedure of knowledge distillation from a GNN
teacher. Here, the GNN teacher is the same link prediction GNN model discussed previously. The student
MLP is first trained to mimic the output of the teacher GNN:

ΘMLP, X′ = arg min
ΘMLP,X′

||Y − MLP([X, X′]; ΘMLP)||2 (5)

where ΘMLP denotes the MLP parameters. After training with this imitation loss until convergence, the
MLP is then fine-tuned alone on the link prediction task using the loss in Equation (3). The distilled MLP
has no graph dependency during inference, so it can be applied on low-degree nodes. Furthermore, it can
generalize well due to the structural knowledge learned from the GNN teacher on the well-connected nodes.

Comparing Logit-LP and GNN-MLP in Stage II. So far, we have introduced two options for Stage II
broadcasting: a novel edge-centric LP variant and one that adopts off-the-shelf tools (originally developed for
accelerated inference and cold-start generalization) in a new context (graph transfer learning). Because this
paper focuses on diving into the new GITL setting and workflow, we purposely keep the individual stages
simple. The novelty of our method does not lie in inventing Stage II building blocks.

We also clarify another important question: why do we need two options? In short, we propose Logit-LP to
address the over-smoothness when transferring across source/target graph samples, and conveniently scale up
to industry-scale graphs (Chen et al., 2020; Sun & Wu, 2021; Wu et al., 2019; Huang et al., 2020; Chen et al.,
2021b; Duan et al.). On the other hand, we develop and study the GNN-MLP as an alternative strategy with
complementary merits to tackle the inherently diverse real-world graph learning challenges.

3 Empirical Evaluation

3.1 Experimental Settings

In this section, we evaluate the proposed framework on several concrete applications and datasets. We use an
e-commerce graph dataset of queries and items, and two public benchmarks of social network and citation
graph (OGB-collab and OGB-citation2). The statistics of these datasets are summarized in Table 1.

Datasets E-commerce (E1) OGB-citation2 OGB-collab

Intersection nodes 1,061,674 347,795 55,423
Union nodes 11,202,981 2,927,963 235,868

Subgraphs Source Target Source Target Source Target

Num. of Nodes 10,456,209 1,934,188 2,604,211 671,547 218,738 77,137
Num. of Edges 82,604,051 6,576,239 24,582,568 2,525,272 2,213,952 622,468
Mean Degree 7.9 3.4 9.4 3.8 10.1 8.0
Median Degree 2 1 6 1 5 5

Table 1: The statistics of datasets selected for evaluation.

Datasets. The e-commerce dataset is sampled from anonymized logs of a global e-commerce store. The data
used here is not representative of production. The source and target graphs correspond to two locales. The
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source graph locale has much more frequent user behavior. The graphs are naturally bipartite: the two types
of nodes correspond to products and user query terms. The raw texts of the product titles or user queries
are available for each node, and the node features are generated from these texts using Byte-Pair Encoding
(Heinzerling & Strube, 2018).

OGB-collab (representing a collaboration between co-authors) and OGB-citation2 (representing papers that
cite each other) are open-source academic datasets. The edges of OGB-collab contain the year that the
two authors collaborated and the nodes of OGB-citation2 contain the year the corresponding paper was
published. To better simulate our setting, we manually split the data into source and target graphs according
to time: the collaborations/papers prior to a given year y(h) are organized into the source graph, while the
collaborations/papers after a given year y(l) are organized into the target graph. We set y(l) < y(h) so as to
ensure the source and target graphs have overlapping nodes.

Metrics and Baselines. We mainly use recall as the evaluation metric to judge the model’s ability to
recover unseen edges in the sparse target graphs. We adopt PLNLP (Wang et al., 2021) as the link prediction
baseline (shown as GNN in the tables) for comparison as well as the GNN embedding generator in our
approach. On the public datasets, we also compare our methods to SEAL (Zhang & Chen, 2018; Zhang et al.,
2021a), Neo-GNN (Yun et al., 2021), unsupervised/self-supervised pretraining methods such as EGI (Zhu
et al., 2021a) and DGI (Velickovic et al., 2019), and a few heuristics-based approaches, including Common
Neighbors (CN), Adamic Adar (AA) (Adamic & Adar, 2003), and Personalized Page Rank (PPR). In the
following, we specify the details and discuss the results of the proprietary e-commerce dataset and the two
public datasets.

Special Dataset Processing. For each dataset, we have slight differences in how we build the source and
target graphs. For the proprietary e-commerce recommendation graph, the source and target graphs naturally
come from the two locales. We use additional purchase information to build three different views of the data:
E1, E2, E3. In E1, there exists an edge between query and product if there is at least one purchase. In E2,
we threshold the number of purchases to be at least three to form the less connected graph. This leads to a
sparser but cleaner graph to learn from and transfer. E3 is a graph that uses the human-measured relevance
relation as the edges between queries and products. The nodes of E3 remain the same as E1, E2, while the
edges of E3 are the edges of E1 enriched by the positive relevance ratings. Therefore, E2 is the most sparse
graph and E3 is the most dense one. Table 1 reflects the statistics of E1. For E2, the mean and median
degrees of the source and target graphs are (2.1, 1) and (1.2, 1), respectively. For E3, these numbers are (8.3,
2) and (4.2, 1), respectively.

For the open-source graphs, we treat the original graph as the union graph and manually split it into a source
graph and a target graph according to the timestamp metadata of the nodes or edges.

3.2 Main Results

We next verify the performance of the GITL framework via systematic experiments. 1. Our results address
the following questions.

Q1: How does the method discover latent edges under different sparsity levels?

We show the model performances on the e-commerce data in Table 2. In the tables, N+
e is the number of

positive edges in the graph. The recall @ N+
e and recall @1.25N+

e in the table are the recall numbers for the
top N+

e /1.25N+
e largest model predictions. To test the model performance with respect to sparsity in the

target graph (the key pain point in the GITL setting), we customized three graphs E1, E2, E3 with different
sparsity levels as specified above, where E2 is the sparsest one. As can be seen from the results, the proposed
Logit-LP performs the best across most sparsity levels.

In a few cases of the less connected edges (E2), the propagation is limited due to disconnected subgraphs.
In these cases, because the GNN-MLP only requires node features to make predictions, the performance
degrades less, making it a better candidate.

1Our codes are available at https://github.com/amazon-science/gnn-tail-generalization
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Different models may perform better in different scenarios due to the inherent diversity of real-world data and
the difficulty of predicting links under sparse graphs. We suggest simple rules to help practitioners determine
which method to use in this special setting. For example, we have found that if the mean degree of the graph
is smaller than three, then GNN-MLP may perform better, as shown in the result comparison between E1
and E2, whose mean degrees are 7.9 and 2.1, respectively. Another straightforward guidance is to determine
based on their performances on the validation set, which does not add much computational overhead as both
GNN-MLP and Logit-LP are lightweight.

Datasets
Regimes Tar. → Tar. Uni. → Tar. Int. → Tar.
Recall@ N+

e 1.25N+
e N+

e 1.25N+
e N+

e 1.25N+
e

E1

GNN 86.1 89.7 73.8 77.2 90.2 93.4
Emb-LP 86.8 90.0 74.0 77.6 90.6 93.7
Logit-LP 88.4 91.5 76.6 79.9 91.4 94.7
XMC-LP 86.3 89.2 73.8 77.4 90.5 93.6

GNN-MLP 84.3 87.1 69.4 73.1 88.3 91.0

E2

GNN 84.3 86.4 71.6 74.2 86.0 89.1
Emb-LP 84.7 87.1 72.4 74.9 87.2 90.3
Logit-LP 85.4 87.6 74.0 76.7 87.1 90.0
XMC-LP 83.4 85.3 72.0 73.9 86.5 89.7

GNN-MLP 86.8 89.9 68.5 70.1 88.0 91.0

E3

GNN 66.5 68.4 62.4 65.0 69.5 72.1
Emb-LP 66.9 68.8 62.9 65.7 70.1 72.6
Logit-LP 68.9 71.1 61.4 63.8 70.2 72.6
XMC-LP 66.8 68.6 62.7 65.5 69.7 72.2

GNN-MLP 68.5 70.0 60.8 62.3 70.1 72.8

Table 2: The evaluations for different views of the e-commerce graph. E1/E2/E3 correspond to the no
purchase thresholding (original), purchase thresholded by a minimum of 3, and the user rated relavance
indicator graphs. Best results are bolded.

Q2: How does the proposed framework compared with other methods?

Regimes Tar. → Tar. Uni. → Tar. Int. → Tar.
Recall@ N+

e 1.25N+
e N+

e 1.25N+
e N+

e 1.25N+
e

GNN (PLNLP) 51.7 62.9 49.3 60.1 51.9 63.3
Emb-LP 52.2 63.3 49.9 61.2 52.4 63.7
Logit-LP 55.7 65.7 51.4 63.4 55.9 65.2
XMC-LP 52.2 63.2 49.5 61.0 52.5 63.6

GNN-MLP 49.8 61.4 48.5 60.0 50.6 62.9
Neo-GNN 51.9 63.2 49.7 61.0 51.5 63.5

CN 51.1 62.5 51.1 62.5 51.1 62.5
AA 50.1 62.5 50.1 62.5 50.1 62.5

PPR 51.2 62.7 50.4 61.5 51.5 63.0
EGI 52.4 64.3 50.8 61.6 53.2 65.0
DGI 52.0 64.0 50.2 61.0 52.5 64.5

Table 3: The recall evaluations on OGB-collab
graph.

Regimes Tar. → Tar. Uni. → Tar. Int. → Tar.
Recall@ N+

e 1.25N+
e N+

e 1.25N+
e N+

e 1.25N+
e

GNN (PLNLP) 46.2 58.1 47.9 60.0 48.7 60.5
Emb-LP 45.9 58.4 48.3 60.3 48.9 60.8
Logit-LP 47.2 61.2 48.0 63.2 51.0 64.2

GNN-MLP 44.0 55.9 45.2 58.1 48.2 58.8
Neo-GNN 45.9 58.2 47.5 60.6 48.0 60.9

CN 12.2 12.5 29.7 30.3 18.9 19.4
AA 12.1 12.4 29.5 30.0 18.8 19.1
EGI 48.0 60.6 49.3 62.6 49.9 62.1
DGI 47.7 59.0 49.0 60.6 49.2 61.6

Table 4: The recall evaluations on OGB-citation2
graph.

The results of two open-source graphs are shown in Table 3 and Table 4, where the baselines are described in
Section 3.1. We see that the proposed edge-centric LP approaches achieve the best performance, better than
other state-of-the-art methods in most cases. In contrast, other methods, especially heuristics-based methods,
cannot yield meaningful predictions under low degrees (OGB-citation2). To evaluate a pair of nodes, they
rely on the shared neighborhoods, which are empty for most node pairs.
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Regimes Tar. → Tar. Uni. → Tar. Int. → Tar.
Recall@ N+

e 1.25N+
e N+

e 1.25N+
e N+

e 1.25N+
e

Original Logit-LP 47.2 61.2 48.0 63.2 51.0 64.2
Node-centric-LP 15.3 17.6 8.5 10.4 13.5 14.7
No X′ Logit-LP 42.3 58.4 42.8 58.7 46.8 57.7

No X′ GNN-MLP 39.6 50.1 42.3 52.9 44.1 54.0
Logit-LP 50% E− 38.5 52.1 41.0 55.8 43.7 57.6
Logit-LP 100% E− 45.3 58.5 46.8 61.3 49.8 62.9
Logit-LP 500% E− 44.8 58.0 45.2 58.9 48.1 61.8
Logit-LP 1000% E− 39.5 54.2 41.9 54.2 44.6 58.1

Table 5: The ablation studies on OGB-citation2 graph.

Setting Precision Accuracy
Uni.→Tar. Int.→Tar. Tar.→Tar. Uni.→Tar. Int.→Tar. Tar.→Tar.

SEAL 33.6 35.2 35.5 56.3 57.5 56.4
Logit-LP 27.4 39.2 34.8 46.1 58.6 55.0

Table 6: The precision and accuracy metrics on OGB-
collab graph.

Q3: How do the design choices affect the model performance?

We testify several design choices of the proposed method, including the node-centric view of label propagation,
the learnable embedding X′, and the ratio of the number of negative edges to the number of positive edges.
The results on the citation2 graph are shown in Table 5. As discussed in Section 2.3, the node-centric LP
is designed for node-level tasks, hence we switch to an edge-centric view to prevent the over-smoothness of
node-centric LP in the link prediction task, as seen in the table. The X′ will be learned in the GNN training
stage, and the usage of X′ is to enable more flexible representation space for better performance. The original
Logit LP uses 200% negative edges than positive edges. Through the experiments with different numbers
of negative edges, we observe that the performance will not be harmed too much if the number of negative
edges is not below 100% or more than 500% of positive edges.

Q4: What are the precision and accuracy metrics?

We present the precision and accuracy results on the OGB-collab dataset in Table 6. As can be seen in
Table 6, if we compare across different training set settings, the precision and accuracy numbers are the best
when using the intersection-enhanced source graph for training (i.e., the Int.→Tar. case). If we compare
Logit-LP and SEAL, Logit-LP is better on the Int.→Tar. cases while performing worse than SEAL in other
cases. Logit-LP performs best for the Int.→Tar. case.

Q5: How does instance selection affect the model performance?

In the tables above, Int. → Tar. consistently outperforms other settings. Comparing the Tar. → Tar. and
Uni. → Tar. settings, in the OGB-collab graph, Uni. → Tar. is worse, while in the OGB-citation2 graph, the
Uni. → Tar. is generally better. Nevertheless, we still see that Int. → Tar. achieves the best performance
among the three settings.

We refer to this phenomenon, where Int. → Tar. performs better than Uni. → Tar., as negative transfer.
This is possibly due to the different distributions of the source graph and the target graph. This lends credence
to our hypothesis that adding more data to the source for transfer learning can possibly be counterproductive.

Q6: Does the model perform better on the source graph compared to the target graph?

We answer this question by comparing the training and test sets, and show the results in Table 7. The
training set is mostly composed of the source graph edges while the validation and test sets are only selected
from the unshared subgraph of the target graph. From the table, we see that the models behave differently
in the source graph (training set) and the target graph (validation/test sets). Since the GNN, LP, and
GNN-MLP rely on node features, they perform better on the training set. On the other hand, the featureless
heuristics (CN and AA) achieve slightly better performance on the test set.

Comparing the performances on the training and testing sets, most non-heuristic-based methods perform
better on the source graph (training set). This performance gap is due to the fact that the edge information
is much richer in the source graph. On the other hand, Logit-LP significantly outperforms heuristic-based
methods and the GNN, which verifies the effectiveness of the proposed method.

Q7: How does the intersection size influence the performance? The influence of intersection size
on OGB-collab is shown in Table 8, where we i.i.d. vary the intersection ratio (number of nodes in the
shared subgraph, divided by the total node number of target graph). We observe that the performance of
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Regimes Target → Target Union → Target Intersection → Target
Splits Train Valid Test Train Valid Test Train Valid Test

GNN (PLNLP) 64.9 37.8 37.8 55.0 39.6 39.3 62.9 39.4 39.5
Emb-LP 65.3 38.3 38.3 55.7 40.4 39.9 63.5 40.3 40.3
Logit-LP 65.9 38.9 38.9 56.6 41.4 40.3 64.3 41.0 41.0

GNN-MLP 60.9 32.9 33.6 51.5 37.4 35.9 59.8 36.6 36.2
CN 10.5 11.1 11.2 26.6 27.2 27.2 16.4 17.2 17.3
AA 10.2 10.6 10.6 26.4 26.7 26.7 16.0 16.8 16.9

Table 7: The recall @ 0.8N+
e expanded for train/validation/test splits of the OGB-citation2 graph.

the proposed method significantly improves as the intersection ratio increases. Even when the ratio is as
low as 20%, our proposed transfer performance is higher than the no-transfer baseline. Another natural
question is that if the intersection ratio is too small, could the performance be improved by disregarding
the intersection structure prior, and using more unshared source graphs as training set. Accordingly, we
conducted experiments by adding more nodes in the source graph, so as to contain up to two hops of neighbors
of the shared graph. The performances are shown in the “extended” columns. The performances show
that extending unshared nodes from the training set does not help much to the model performance. We
hypothesize that this may due to the distributional shift between the source and target graphs, which further
validates our design choice of leveraging the shared nodes as the structural prior for graph transfer.

Intersection size 1% 1% extended 5% 5% extended 10% 15% 20% 20% extended 30% Tar.→Tar.
Recall 13.2 12.8 32.5 34.7 53.6 55.5 56.4 54.8 56.9 55.7

Table 8: Influence of the intersection size on OGB-collab. The “extended” means adding two hop neighbors
to the training set to mitigate the small training set.

Q8: How expensive is the computational overhead? We provide the computational and memory
overhead of the LP variants below. For a given graph, denote the number of nodes as Nnodes, the number
of edges as Ne, and the number of edges in the edge-centric graph as NE . We can estimate NE via
NE ≈ 4Ne ∗ mean_deg, where mean_deg is the mean degree of the graph. The number of multiplications
during each iteration, the running time, as well as the memory overhead of the LP variants, are summarized
in Table 9.

LP variants Emb-LP Logit-LP XMC-LP
Num. of multiplications at each iteration NE ∗ d NE ∗ 1 Ne ∗ Nnodes

Execution time over OGB-citation2 1 min 15 s 2.1 s 27 min 14 s
Memory overhead after k iterations O(NE ∗ d) O(NE ∗ 1) O(Ne ∗ k)

Table 9: Computation complexity for different LP variants. The execution time is measured on graph with
Ne = 2, 525, 272 edges in the target graph using an 2.90GHz Intel Xeon Gold 6226R CPU.

4 Conclusion and Future Work

In this paper, we discuss a special case of graph transfer learning called GITL, where there is a subset of nodes
shared between the source and the target graphs. We investigate two alternative approaches to broadcast the
link information from the source-enriched intersection subgraph to the full target graph: an edge-centric label
propagation and a teacher-student GNN-MLP framework. We demonstrate the effectiveness of our proposed
approach through extensive experiments on real-world graphs.

In spirit, this new setting may be reminiscent of previous transfer learning methods, where only a subset of
latent components are selectively transferred. Our next steps will study curriculum graph adaptation, in
which the target is a composite of multiple graphs without domain labels. This will help us progressively
bootstrap generalization across more domains.
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