Active Learning of Abstract Plan Feasibility

Michael Noseworthy*, Caris Moses*, Isaiah Brand*, Sebastian Castro,
Leslie Kaelbling, Tomas Lozano-Pérez, Nicholas Roy
MIT, CSAIL

Abstract—Long horizon sequential manipulation tasks are
effectively addressed hierarchically: at a high level of abstraction
the planner searches over abstract action sequences, and when
a plan is found, lower level motion plans are generated. Such a
strategy hinges on the ability to reliably predict that a feasible
low level plan will be found which satisfies the abstract plan.
However, computing Abstract Plan Feasibility (APF) is difficult
because the outcome of a plan depends on real-world phenomena
that are difficult to model, such as noise in estimation and
execution. In this work, we present an active learning approach
to efficiently acquire an APF predictor through task-independent,
curious exploration on a robot. The robot identifies plans whose
outcomes would be informative about APF, executes those plans,
and learns from their successes or failures. Critically, we leverage
an infeasible subsequence property to prune candidate plans in the
active learning strategy, allowing our system to learn from less
data. We evaluate our strategy in simulation and on a real Franka
Emika Panda robot with integrated perception, experimentation,
planning, and execution. In a stacking domain where objects
have non-uniform mass distributions, we show that our system
permits real robot learning of an APF model in four hundred
self-supervised interactions, and that our learned model can be
used effectively in multiple downstream task

I. INTRODUCTION

Long horizon sequential manipulation tasks still pose a
challenging problem for robotic systems. Tasks such as as-
sembly depend on using many objects with varying physical
properties. Finding a plan to achieve a task in these domains
consists of reasoning over large spaces that include discrete
action plans, as well as low level continuous motion plans.

These problems can be effectively addressed hierarchically:
at the highest level of abstraction the system searches over
plausible abstract action sequences, and at the lower level it
plans for detailed concrete motion plans and object interac-
tions. The complexity of the search space for the concrete
planner is greatly reduced when constrained by the abstract
action sequence. Further computational efficiencies can be
gained if we lazily [17] postpone concrete planning until we
have a complete abstract plan that is likely to succeed, avoiding
the need to query the concrete planner multiple times. A
version of this approach is used in skeleton-based task and
motion planning systems (23] [16, 22].

The success of this lazy strategy hinges on our ability to
predict whether an abstract action sequence will be feasible
to execute. In this work, we call an abstract action sequence
feasible if both the concrete planner returns a solution and
this solution is reliably executed in the real world with the

! An accompanying video can be found at https://youtu.be/UF-SjGm20Mw.
*Equal contribution.

Fig. 1: The Franka Emika Panda robot constructing a tower to
improve its understanding of plan feasibility. A wrist-mounted camera
refines object pose estimates for precise grasping.

intended outcome. If the abstract planner does not take into
account errors in execution due to phenomena unmodeled by
the concrete planner, the robot may end up attempting a plan
that fails during execution.

Fortunately, even an approximately correct estimator of
abstract plan feasibility (APF) can offer huge computational
advantages during planning. In some cases it may be possible
to approximate APF via coarse-grained simulation. However,
this strategy still requires a coarse dynamics model, which may
not capture complex phenomena needed to accurately predict
feasibility in the real world.

Instead, we explore a strategy in which we learn a model
that predicts APF by exploring the space of real plan executions
without a specific planning problem or task at hand — a
form of curious exploration [27]]. Data efficiency is a primary
concern in enabling real robot learning of feasibility models.
Here, a training instance is the execution trace of an abstract
plan, labeled by success or failure. Labeling each such plan is
very expensive as it involves finding and executing a concrete
motion plan, potentially taking several minutes on a real robot.
Furthermore, due to the combinatorial input space of abstract
action plans, randomly executing actions is unlikely to elicit
interesting behavior.

To address the data efficiency problem, we observe that in
the process of training the APF model, some observations may
be more valuable than others. Active learning is a technique
for identifying unlabeled instances that are most informative
in learning a target concept. The technical challenge is how to


https://youtu.be/UF-SjGm20Mw

( Evaluation

( . .
Experimentation 01,...,6;
(A) Experiment Design (B) Detailed Planning and
Sample and score plans. a* Execution )
a* = argmazaeal($,0la,D) [ | fora; € a*: -

PlanAndExecute(a;)

(C) Model Training
6 6,

Pr(.p\a,e)(. Cx; C
t 1t 1

(D) MC Planner

Use APF model for planning. *
a1 | |plae) N

a* = argmazaca Ep(gja0) [V ()]

Detailed Planning and
Execution

fora; € a*:
PlanAndExecute(a;)

| o

I
€a

\FY

G

I P

Task Objective

Tallest Tower, Longest Overhang, etc. .

tES

J . J

Fig. 2: The proposed system for learning Abstract Plan Feasibility (APF) operates in two phases. Experimentation Phase (left) The robot
iteratively designs and executes experiments that improve its APF model. (A) Using its current model, the robot selects the abstract action
sequence, a*, that minimizes its entropy over the APF model. (B) The robot then computes and executes a concrete motion plan for a*.
(C) After observing the true plan feasibility, ¢, the robot uses this new labeled data to update its APF model, represented as an ensemble
of neural networks. Evaluation Phase (right) Once an APF model has been learned, the robot can use it to perform various tasks, such as
building the tower with the longest overhang from a given set of blocks.

find plans of interest — an active learning approach requires
both a way to generate candidate plans, and a way to score
how informative a candidate plan might be given the current
model.

To determine how informative a plan is with respect to the
learned APF model, we adopt an information-theoretic active
learning approach [26] [19]]. To generate candidate plans, we
exploit an important property of abstract action sequences: for
an action sequence (aq,...,ay), if any prefix (ay,...,a;) is
infeasible, then any longer prefix (a1,...,a;) fori <j <mn
is also infeasible. This infeasible subsequence property gives
us leverage during data acquisition. A complex plan instance
may contain many elements that are highly informative for
model learning, but will never be experienced because early
elements in the plan will fail with high probability.

We apply this active learning strategy to the concrete
problem of stacking blocks with a real robot, where the blocks
are each unique and have non-uniform mass distributions. The
robot autonomously designs, plans, and executes experiments
to learn a feasibility model using a Franka Emika Panda
robot arm (Figure [I)). The robot is also capable of resetting
the world state after each experiment, enabling continuous
autonomous experimentation. The learned feasibility predictor
is later used to build towers with previously unseen blocks
that satisfy several different objective functions, including the
tallest possible tower or the tower with the longest overhang.
This sample-efficient autonomous learning process relieves
engineers from supervising data collection, resetting the exper-
imental environment, and having to specify accurate dynamics
models for planning. This results in a highly flexible and robust
system for planning and executing complex action sequences
in the real world.

In summary, our contributions are:

o A method to learn an Abstract Plan Feasibility model by

synthesizing hypothetical plans;

o A data acquisition approach which leverages the infeasi-

ble subsequence property when sampling potential plans;

e A robotic system which conducts autonomous self-

supervised learning via integrated perception, experimen-

tation, planning, and execution.

II. PROBLEM FORMULATION

Our objective is to learn a model that predicts the success of
an abstract action sequence when it is executed by the robot.
That is, to learn the parameters © that predict

Pr(¢ | a;0),

where ¢ € {0,1} is the success of the sequence of abstract
actions, a = (aq, ..., a,). Furthermore, we wish to learn ©
using as few labeled action sequences (a, ¢) as possible.

Note that in general, APF may need to consider the initial
state in which a plan is to be executed, however in this work we
make the assumption that the first abstract action in a sequence
will be feasible, and does not depend on the initial state. The
method applies regardless of whether this assumption is made.

To learn this APF model, our system operates in two phases
as illustrated in Figure 2] In the experimentation phase, the
robot curiously explores the space of possible plans, learning
the parameters of the APF model; in the evaluation phase, the
robot is given specific goals to achieve, and uses the learned
APF model to efficiently plan over abstract action sequences.

Both phases depend on the ability to construct and execute
concrete plans on a real robot given an abstract action se-
quence. We assume that a system is available that can integrate
perception, planning, and control to execute an abstract action
sequence and observe whether or not it was successful. In
Section [[V] we describe our implementation of this system in
detail.

A. Experimentation phase

During the experimentation phase, the robot performs active
learning to efficiently design, plan, and execute abstract action
sequences that are informative about APF. This phase operates
in a loop. At each iteration, the robot first generates candidate
action sequences that may be informative according to some
sampling strategy. Each action sequence is then scored using
the current model according to some acquisition function, f :
A — R. The highest scoring plans are executed on the robot



to obtain feasibility labels which are then used to update the
model for future iterations of the active learning loop. The
effectiveness of active learning in reducing data complexity
depends critically upon the choice of acquisition function and
sampling strategy — or which action sequences are considered
as possible experiments. These choices are discussed in more
detail in Section

B. Evaluation phase

After the APF model has been learned, it can be used to
achieve multiple objectives. We assume that the robot is given
an objective function V' which maps action sequences to real
values and its goal is to find the abstract action sequence,
a € A with the highest expected value,

a* = argm:x Ep.(g]a,0) [V(a)] (1)
ac

where the expectation takes into account the likelihood that
an abstract action sequence is feasible when executed on the
real robot. To maximize this objective, we use a Monte Carlo
planner which randomly samples action sequences and selects
the one with the maximum expected value.

III. ACTIVE LEARNING OF ABSTRACT PLAN FEASIBILITY

Collecting data on real robot platforms is both time and
cost-intensive. To minimize the amount of data needed to learn
the APF model, we take an information theoretic approach to
active learning [19]. Concretely, we maintain a distribution
over model parameters that are consistent with the data we
have observed so far. Our objective is to select new data
that minimize the entropy over this distribution as quickly as
possible. Efficient active learning requires: (1) a model class
that captures uncertainty in model parameters, (2) a way to
score unlabeled plans based on how informative they may be,
and (3) a method of generating potentially informative plans.
We discuss each of these in turn.

A. Abstract plan feasibility model

Our APF model, Pr(¢ | a;©), aims to capture the uncer-
tainty in the underlying stochastic process of predicting the
feasibility of abstract action sequences. This uncertainty can be
attributed to phenomena such as the robot’s motor capabilities,
errors in perception, or unmodeled behaviors of the planning
process, and is referred to as aleatoric uncertainty. Our goal is
to learn parameters © such that this uncertainty is adequately
captured and our model can be leveraged, along with a low
level planner, to achieve a goal.

We take a Bayesian approach to learning the model param-
eters, and maintain a distribution over the parameter space,
Pr(©). This distribution aims to capture the uncertainty we
have regarding the accuracy of our predictions, referred to as
epistemic uncertainty. In general, for complex model classes
such as neural network classifiers, an explicit representation of
Pr(© | D) for training data D is difficult to construct or update
with new data. We therefore follow the strategy of Beluch
et al. [3] and represent this uncertainty with an ensemble of
N models, (61,...,0y), where ; € R?. Initial parameters are

drawn independently at random and are updated to incorporate
new data via gradient descent.

The design of the models in the ensemble is selected to
match the underlying structure of the prediction problem. In a
naive implementation, we can directly estimate feasibility from
the entire sequence of actions. We will refer to this approach as
a complete model, denoted by O.m,. However, we observe
that the infeasible sub-sequence property provides a strong
constraint on the set of feasible plans: sequence (aq,...,a,)
is only feasible if all of its prefixes are also feasible. As such,
the model can instead learn the probability a specific action
is feasible given all previous actions were feasible. We will
refer to a model that considers this property as O,,. Under
this model, the feasibility of a plan, a, is:

Pr(q)lzn | a, 655) = HPr((bz | Q1:4, (I)lzifl = 1; 655)7 (2)
=2

where ®; represents whether action a; is feasible given a1.;—1
were feasible, and we use the subscript 1 : n to refer to a
sequence of variables. In our method we assume initial actions
are feasible, meaning Pr(®; =1 a;) = 1.

The ©omp model only considers full action sequences, and
therefore entire plans correspond to a single label once they
are executed. On the other hand, ©; requires labels after each
action is executed.

In both of these models, the length of plans for which we
require predictions varies. Therefore, we use graph neural net-
works (GNNs), which make predictions based on aggregations
of local properties and relations among the input entities, and
exploit parameter tying to model global properties of plans
of arbitrary size using a fixed-dimensional parameterization
O. For a detailed description of GNNs, see the overview by
[39]]. More details about the specific architecture we use can
be found in Section

B. Entropy reduction

Following [26), 6], we guide our active learning by picking
a sequence of data D that maximally reduces the entropy of
Pr(© | D). The general problem of designing a sequence of
experiments to minimize entropy — or equivalently, maximize
information gain — is a difficult sequential decision-making
problem. Fortunately, due to sub-modularity of the objective,
a myopic approach that considers only the next experiment
to conduct can be shown to be a good approximation to the
optimal experimentation strategy [9].

Given a model distribution Pr(© | D) that depends on the
data we have seen so far, D, we choose the action sequence
a € A that reduces the entropy of the posterior distribution as
much as possible:

a* = argmax H(O | D) — Eypy(.|p,a) [H(O | D,a,¢)] (3)
acA
While the robot can select the plan, a, to experiment with,
it cannot select the outcome ¢, so to compute this quantity,
we have to take an expectation over the outcome, using our
current model distribution.



Estimating the entropy over a high-dimensional parameter
space is expensive, so we follow the approach of Houlsby et al.
[19] to reformulate the objective in (E]) as:

a* =argmax I[(®: 0 | D,a) “)
acA

= argmax H(® | D, a)
acA

— Eo~pr(p) [H(® [ 2;0)], (5)
allowing the computation of entropies to take place in the
lower-dimensional label space, ®. This is known as Bayesian
Active Learning by Disagreement, or BALD.

The BALD objective invites an appealing interpretation:
maximizing the first term encourages selecting an a that
our model is overall uncertain about, and minimizing the
second term encourages selecting an a for which the individual
models in (61,...,0y) can make confident predictions about
the outcome ¢. If we think of the overall uncertainty as a
combination of epistemic and aleatoric uncertainty, then this
objective seeks an experiment with high overall uncertainty
and low aleatoric uncertainty, which therefore has high epis-
temic uncertainty. Intuitively, if the various possible models
in Pr(© | D) are individually confident but about differing
outcomes, then observing the ¢ value corresponding to a is
likely to prove some of those outcomes incorrect.

Using an ensemble of equally weighted parameter vectors
(01,...,0n) to represent Pr(© | D) allows us to compute a
global feasibility prediction,

Pr(®=¢|a;0) = ZPr@ ¢ | a;6,)
as well as find the experiment that maximizes the estimated
BALD objective in the form:

N
BALD(a; ©) = H(Pr(® | a; 0)) %Z (Pr(® | a;6;)).

(6)
C. Sampling Strategies

Now that we have established an informational score for
experiments, we consider several sampling strategies for op-
timizing over A, the set of plans up to a fixed length L.
Maximizing the BALD objective over the entire set A is
difficult because we need to consider all discrete plans up
to length L, as well as all possible assignments to each
continuous abstract action parameter.

Complete One strategy we consider is uniformly sampling
complete plans from A and scoring the samples. We call this
the complete strategy.

argmax BALD(a
acA

®comp) (7)

Unfortunately, to achieve a consistent sampling density, the
number of required samples scales exponentially with the
length of the plan. Additionally, this strategy might generate
most of its samples in the infeasible part of the space.

Greedy Another strategy requiring fewer samples is a
greedy approach, in which we select the next action a,, which

maximizes the BALD objective, given that we have already
optimistically constructed a;.,—1. This strategy does not take
into consideration that if a plan fails early, we do not get to
learn from the full plan execution.

We can leverage additional structure afforded to us by the
infeasible subsequence property when we do active learning
using the ©; model class. In the following, we consider two
possible strategies.

Sequential When generating a potentially informative plan
for the ©,, model, we can take into account the probability
a specific action will be attempted (i.e., that the plan was
successful up until that action). This allows us to find plans
whose informative outcomes have a high probability of being
observed. The resulting objective is:

n
argmax ZPr (®1.5-1 =1 a1.i—1;Oss)BALD(a1.4; Oss)
a1n €A ;55
®)

where the probability is calculated as in Equation This
equation computes the expected information gain for executing
a plan, taking into account the probability that plan execution
fails at any given step as predicted by the learned APF model.
We refer to this as the sequential strategy.

We implement the sequential approach naively by sampling
and scoring entire plans. Like complete, this method requires
exponentially more samples for longer plans, however, in the
domain we considered, a sampling approach was acceptable as
we had a relatively short plan horizon. In the future work we
hope to extend this strategy to a search-based method which
prunes candidate plans by their predicted feasibility.

Incremental We also consider a strategy where we only
consider plans (ai,...,a,) for which we have already ob-
served the prefix to be feasible. In other words, the prefix
(a1,...,an—1) together with result ¢1.,—1 = 1 are in the
current data set D. We call this the incremental strategy.

argmax L(q, ., 6—1)eDBALD(G1:0; Oss) 9)
a1, €A
Although this strategy finds more feasible plans than com-
plete, it also requires the robot to reuse plan prefixes, so we
do not gather novel observations when repeating a plan prefix.
Constraining our experiments to build on previously feasible
plans may be overly restrictive.

IV. IMPLEMENTATION

We have implemented this framework for a class of prob-
lems in which the robot manipulates objects to construct
towers. All of our experiments use the 7-DOF Panda robot
from Franka Emika, in simulation and in the real world.

A. Domain

The world consists of the robot and a set of objects, O,
with which it can interact. In this work, we consider cuboids
with non-uniform mass distributions (Figure [3). Each object,
o € O, is described by a tuple, (d, c,m), where d € R? are
the dimensions, ¢ € R? is the offset of the center of mass
from the center of geometry, and m € R is the object’s mass.



Fig. 3: Left: The cuboids for this manipulation task were constructed
from laser cut plywood. A 25mm diameter lead ball is mounted inside
some of the objects to significantly alter the mass distribution. Right:
Unique ArUco markers are applied to each face of each object, for
object identification and localization. Visible in the foreground is one
of the two external cameras mounted around the workspace.

During the experimentation phase we use a set of 10 blocks,
and all evaluations are performed with a different set of 10
blocks. The block parameters from each set are sampled from
the same uniform distribution over the dimensions of the
objects and the locations of the center of mass within the
objects.

The abstract actions are to place objects onto a stack; they
are specified by a = (o,r) where r € SE(3) is the relative
pose of o with respect to the object placed in the previous
action (or the table if this is the first object placement).

An abstract plan is feasible if the detailed planning and
execution system can find and execute robot commands (i.e.,
grasp poses and motion plans) such that the objects are placed
on top of one another and the resulting tower is stable. Note
that, for this property to hold, each prefix of the plan must
also be feasible — that is, each subtower is stable.

The learned APF model is applied to three different objec-
tives in the evaluation phase:

1) Tallest Tower: The objective is to construct the tallest
possible tower.

2) Longest Overhang: The objective is to construct the
tower with the maximum distance from the center of
geometry of the bottom block to the furthest vertical
side of the top block.

3) Maximum Unsupported Area: The objective is to con-
struct the tower where each block has as much area
possible unsupported by the block below it.

See Appendix [C| for a discussion on the generalizability of
our method outside of the towers domain.

B. Perception, planning, and execution

Perception For the system to robustly pick up blocks and
recover from unstable towers falling in unpredictable config-
urations, we require a perception system that can identify and
localize objects at arbitrary positions. Although more advanced
perception systems might be needed for arbitrary objects,
vision is not the immediate focus of this work, so we pattern

our objects with ArUco markers to simplify perception. To
indicate identity and avoid orientation ambiguity, each object
has a unique ArUco marker on each face.

Two RealSense D435 depth cameras mounted statically on
a frame observe the workspace and allow for localizing the
objects with minimal occlusions. If an object is not visible,
it is assumed to be at its home position behind the arm. Due
to the resolution of the cameras and size constraints of the
tags on the blocks, we found that the pose estimates from the
static cameras can have up to 1 centimeter of error. This level
of error is acceptable, as rough pose estimates are refined with
a third RealSense D435 camera mounted on the robot wrist.
As the arm moves to a pre-grasp pose computed from the
noisy object pose estimate, the wrist-mounted camera collects
images closer to the the object to be grasped, allowing for a
refined pose estimate and more precise grasp.

Planning In this domain, executing an abstract action
requires a multi-step task and motion plan. For example, to
place an object on a tower with an arbitrary relative pose to
the block below it, regrasping may be necessary. When a tower
falls over, the robot will also need to move fallen blocks out
of the way to build the next tower.

To handle these scenarios, we turn to a large body of work
in task and motion planning. We use PDDLStream [[13]], which
integrates PDDL task-level planning with lower level motion
planning. The PDDL domain describes actions including pick-
ing and placing objects and moving the arm through free
space, while a Bidirectional RRT in joint configuration
space performs motion planning and collision checking with
a surrogate world model implemented in PyBullet [7]. In
this work we make the simplifying assumption that there are
dedicated positions for the base of the tower, regrasping, and
storage for each of the objects. These constraints are specified
to the planner to reduce planning time by limiting the search
space of possible action parameters.

Execution The motion plans generated by PDDLStream
are executed using joint-space controllers on the robot. When
constructing a tower in the experimentation phase, after each
block placement the wrist camera is used to check for tower
stability. If a tower was unstable, then the last manipulated
block will not be near its expected pose in front of the gripper.

To improve data collection efficiency, we parallelize exe-
cution and planning. As the robot executes a motion plan
to assemble or disassemble a tower, the planner produces
plans to move each individual block in that tower under the
assumption that all actions will be successful. This parallelism
is interrupted if a tower falls over prematurely, prompting a
replan to clear the fallen blocks.

If the state of the world is such that a robot is unable to
find a plan to proceed with experimentation or execute an
existing plan, human intervention may be required. We have
provisioned for several of these cases, including blocks falling
off the table, or too close to one another for the planner to
find feasible grasp candidates. Once such issues are manually
resolved (e.g., by putting the block back on the table), the robot
can update its estimate of block poses and resume planning.



Tower Towers Graph Fully Connected Graph

Network Connectivity ~ Network Connectivity

AN AN

Fig. 4: The flow of information for the model architectures compared
in Section The TGN uses domain specific connectivity, while
the FCGN assumes no prior knowledge on how the blocks should
be used together to inform predicting feasibility. The LSTM simply
iterates through the blocks starting with the top block.

LSTM Connectivity

C. Learning

As discussed in Section the distribution over APE
model parameters is represented by an ensemble of networks.
In our implementation, the ensemble is made up of GNNs
with domain-specific connectivity. The input to the GNN is an
abstract action sequence, a. Each action, or block placement
a;, is passed into a separate node in the graph, and each
node (corresponding to a block placement in the tower) is
connected to nodes above it in the tower. This mirrors the an-
alytical computation of tower stability, in that each subtower’s
combined center of mass must be within the contact patch of
the block below it. We refer to this network architecture as a
TGN, or Towers Graph Network. Other network architectures
which are invariant to task plan length are a Fully Connected
Graph Network (FCGN) and a LSTM model. The FCGN uses
the same node and edge networks as our TGN model, but
has edges between each node. The LSTM model passes each
block’s vector representation through the network in order
starting from the top of the tower, and most closely matches
our TGN connectivity. A visualization of the connectivity of
each architecture is given in Figure []

In our experiments, 10 networks are used in the ensemble.
Each individual network is randomly initialized and trained
using the binary cross-entropy loss function with early stop-
ping according to the loss on a validation set, which is also
collected actively.

Before active experimentation, each model in the ensem-
ble is initialized by training on the same dataset (shuffled
differently for each) of 40 randomly generated towers. For
the complete strategy the towers are of size 2 — 5, and for
the sequential, incremental, and greedy strategies they are of
size 2. During the experimentation phase, at each iteration the
top 10 most informative towers are chosen and labeled by
attempting to build each with the robot. 20% of the collected
data is added to a validation set and the remainder is added
to the training set. We perform data augmentation by rotating
each collected tower 90, 180, and, 270 degrees about the axis
normal to the table surface.

V. EVALUATION

In the following sections we evaluate the utility of various
sampling strategies (Section and model architectures
(Section [V-B)) for increasing data efficiency and generalization.
In simulation, we show that these choices greatly influence

the robot’s accuracy and performance on multiple downstream
tasks. In addition, Section [V-C] gives the performance of our
incremental sampling strategy on a real robot. We show that
not only can the robot learn an APF model from real data and
use it to perform downstream tasks, but also that learning on
the real robot allows us to be robust to noise that would be
difficult to model in simulation.

When evaluating task performance, we randomly select
5 blocks from a set of novel blocks and execute the best
tower (that uses all 5 blocks) found by the Monte Carlo
planner, given the task objective and our Learned APF model.
The reward received from executing this tower is used to
calculate normalized regret, which is the difference between
this received reward and the largest reward of a stable tower
considered by the planner (found using an Analytical model).
If a tower is unstable, we assign a reward of zero.

A. Impact of Sampling Strategy

Figure [5] shows the task performance of models trained
using the four sampling strategies described in Section [[II-C|
Each strategy has results aggregated from 4 independent
training runs and 50 task evaluations per run all performed
in a simulated environment. Different sets of blocks are used
between training and evaluation.

Our APF model performs best on the Tallest Tower task,
successfully minimizing regret after constructing only 200
towers with the sequential method. The incremental method
also performs well, successfully minimizing regret with min-
imal variance across runs. The complete method on average
performs well, but has very high variance for the more chal-
lenging tasks, Longest Overhang and Maximum Unsupported
Area. Note that the shaded region represents the quartile
distribution — a region that extends to 1.0 means that more
than a quarter of the trials were unstable. This highlights
the importance of considering the infeasible sub-sequence
property when sampling and scoring plans in the action space.
Finally, the naive greedy strategy performs the worst, and is
only able to achieve decent performance on the Tallest Tower
task after seeing roughly 800 training towers, likely due to
the fact that it is not considering the feasibility of subtowers
when searching the actions space, just greedy single-block
placements.

The Maximum Unsupported Area and Longest Overhang
tasks are more challenging for the robot because they require
deep understanding of the tower stability decision boundary,
while the Tallest Tower task only requires a rough understand-
ing of how to build stable towers with high confidence. These
results show that in spite of the difficulty of the first two tasks,
the active learner is able to improve its understanding of the
decision boundary well enough to perform tasks with very low
regret and low variance.

In Appendix [Bf we give additional results which compare
against baselines that do not leverage active learning.

B. Model Architecture and Generalization

We compare our TGN to the other network architectures
discussed in Section and shown in Figure [ For this



5 Block Longest Overhang Towers

5 Block Maximum Unsupported Area Towers

5 Block Tallest Tower Towers

Iy
)

—— sequential 10
incremental

— greedy

— complete

= =
Y ®

S
IS

Normalized Regret
Normalized Regret

s
o

— sequential 10
incremental

— greedy

—— complete

— sequential
incremental

— greedy

— complete

Normalized Regret

0 200 400 600 800 0 200 400

Number of Training Towers

Number of Training Towers

600 800 0 200 400 600 800
Number of Training Towers

Fig. 5: A comparison of sampling strategies on different downstream tasks all performed in simulation. Each method evaluation consists of
4 separate APF model-learning runs, and each point is the Median Normalized Regret of 50 individual planning runs per learned model. The

shaded regions show 25% and 75% quantiles.

evaluation, we report accuracy on a held-out test set of towers
built with a novel set of blocks. The test set consists of
half feasible and half infeasible towers, and 1000 towers for
each tower size. Our models were trained in simulation on
towers consisting of up to 5 blocks, but our results give model
accuracy for towers ranging from 2 to 7 blocks, shown in
Figure [6]

In the towers domain, it is necessary to consider the joint
centers of mass for groups of blocks above support blocks.
While the LSTM architecture could remember the previous
blocks as it iterates through the tower, in practice we find
that it is outperformed by the graph network architectures.
We believe this is because the connectivity of the graph
networks allows them to precisely compare adjacent blocks
in addition to aggregating information about multiple blocks.
The weakness of the LSTM is more pronounced as the number
of blocks in a tower increases.

Our TGN architecture is structured to be biased towards our
particular domain, so it is able to improve its predictions much
faster than the other architectures. This enables good planning
time performance as seen in Section [V-A] with similar long-
term performance to the FCGN architecture.

C. Real Robot Experiments

Finally, we give results for executing the entire active
learning pipeline on a real Panda robot (see Section [[V] for
details of the real robot setup). In total, the robot built 400
towers while training over a period of 55 hours.

For the experimentation phase, we used a fixed set of 10
training blocks. The TGN ensemble is initialized with 40 ran-
dom 2-block towers labeled in simulation with added relative-
pose noise. We generated candidate experiments using the
incremental strategy described in Section [[lI-C| and produced
stability labels for the constructed towers by observing the
outcome with the cameras.

During the evaluation phase, we test the robot’s ability to
use its learned APF model to perform all tasks described in
Section [IV-A] with a separate set of 10 held-out evaluation
blocks. We compare the learned APF model to two baselines.
First, we compare to a hand-engineered model of plan fea-
sibility that calculates whether a candidate tower is feasible
in a noiseless world. We also compare to a noisy simulator
feasibility model, which predicts a tower is feasible only if

Model Accuracy for Different Tower Sizes

2 Block 3 Block
1.0
>
2 0s] -
e |/
< 0.6 1 1V
4 Block 5 Block
1.0
>
2 0.8- ;
35
5
< 0.6 A 4
~ A
6 Block 7 Block
1.0
oy
© 0.8 A 4
3
I+t post
< 0.6 1 W 1 oA

250 500 750 1000
Training Towers
—— sequential LSTM

0 250 500 750 1000 O

Training Towers

—— sequential TGN sequential FCGN

Fig. 6: A comparison of different network architectures using the
sequential sampling strategy, performed in simulation. The accuracy
for each method is averaged over 3 separate training runs. The
shading shows the minimum and maximum accuracy from these runs.

the candidate tower is also stable to 10 normally distributed
perturbations, with a standard deviation of bmm, for each
block placement.

For each task and model we select 5 blocks at random from
the evaluation set and plan to maximize the given objective. If
a constructed tower is unstable, it gets zero reward. The robot
constructs 10 towers for each task and feasibility model. In
Table [IL we report average normalized regret, and the number
of total trials that resulted in a stable tower. Figure [7] includes

Tallest Longest Max Unsupported
Tower Overhang Area
Model Regret | #Stable Regret | #Stable Regret #Stable
Analytical 0.30 7/10 0.80 2/10 0.80 2/10
Simulation 0.41 6/10 0.47 8/10 0.19 10/10
Learned 0.15 9/10 0.45 9/10 0.33 9/10
TABLE I: Real robot task performance when using different APF

models. The Learned model was trained with data collected through
active learning on the real Panda robot. The Analytical and Simulation
models calculate feasibility using the known underlying dynamics but
use either no noise or simple noise models respectively.



Simulation Analytical

Learned

Fig. 7: Towers built for the Longest Overhang task when using
different APF models. Observe that some towers built using the
Analytical and Simulation models were unstable. See the appendix
for more examples.

images of the robot performing the Longest Overhang task
using the different models for APF.

From these results, it can be seen that the Analytical model
can build towers with high reward when the tower is stable, but
the towers it chooses to build are rarely stable across all three
tasks. However, the Simulation and Learned APF models can
still build towers with large overhang while considering the
effects of noisy action execution on a real robot. Our Learned
model performs competitively with the Simulation model, and
in aggregate leads to similar stability across all tasks (27 versus
24 stable towers out of 30). However, note that the Simulation
model presents higher variability in tower stability across
tasks. This is because the model makes assumptions about the
type of noise distribution (Gaussian only in the plane normal
to the table) and its parameters (mean and variance), which
may be more suitable for certain tasks. The Learned model,
on the other hand, may capture other complex real-world
phenomena that significantly contribute to plan feasibility in
a task-agnostic setting.

VI. RELATED WORK

Hierarchical Planning It is a common approach to long-
horizon planning problems; decomposing the solution into
high level reasoning over abstract actions and lower level
reasoning over concrete actions [23, 31, 34]]. Singh and Kelly
[33] performed early work on considering the feasibility of
high level plans to improve efficiency when planning in high
dimensional spaces. Recent works have proposed methods that
predict feasibility of an action as a way to reduce the number
of calls to expensive solvers and enable more efficient planning
(8, 36]. Our work builds upon this literature by presenting
a method to learn feasibility actively when detailed physical
models are not available.

Learning for Task and Motion Planning In this work

we leverage a task and motion planning framework to plan
for concrete actions, then execute those actions to determine
plan feasibility. Others have explored learning the feasibility of
actions, specifically an action’s preconditions and effects. [33]]
uses a Gaussian process to learn these action parameters, with
a specialized acquisition function to guide learning. Our work
differs in that our acquisition strategy considers observations
of entire plans, which means our active learning is non-
myopic. In addition, for the stacking domain we found graph
neural networks to be a more applicable class of function ap-
proximators in which plan length can vary. A similar approach
is taken in [21]], a precursor to [35].

Active Learning Active learning [26] is a well-established
learning paradigm that aims to minimize the number of
samples needed to learn the target concept. Recently, Gal et al.
have extended BALD [19] to complex model domains of
deep neural networks using MC-dropout [11]]. However, in this
work, we follow the approach of Beluch et al. [3] and use an
ensemble of deep networks for active learning.

Ideas from active learning have been used for efficient
learning in model-based reinforcement learning tasks [28} 32].
Pathak et al. [28] explore the environment by taking actions
that maximize disagreement between an ensemble of forward
models. Instead of predicting continuous states, our work
learns a model that predicts feasibility of abstract plans where
the focus is on performing long-horizon tasks.

Learning Dynamics Many recent works have focused on
learning predictive dynamics models in scenes with varying
numbers of objects. In such scenarios, it has been shown that
explicitly representing objects and their relations in the model
can lead to more efficient learning and generalization 5,
[38]]. As such, graph networks are becoming a more common
modeling choice in these domains [22} 30]. Specifically, in a
stacking domain, Hamrick et al. [18] show that a graph neural
network can predict stability properties of towers when given
access to a large training set.

Stacking Domain Tasks that involve stacking objects in
a Blocks World have a long history in artificial intelligence.
Early works developed methods to compute the stability of
block placements and construct a target configuration [4}, 37].
More recently, computer vision researchers have developed
scene understanding algorithms that take into account known
geometries and stability properties of objects within the scene
[15] 20} 29]. Furrer et al. [10] developed a system that can
build stacks out of stones using detailed models of the objects.

Recent work has shown the ability to predict tower stability
using deep learning techniques [24]). However, typically
these works have used passively collected datasets which
include orders of magnitude more samples than required in this
work — making them infeasible to actively collect on a real
robot. An active learning approach allows the robot to explore
efficiently, and learn a feasibility model under the real-world
noise distribution. In addition, vision-based systems would not
be effective when the state contains non-visual properties, such
as the center of mass in our stacking domain [14) 24].



VII. CONCLUSION

We have presented a system which leverages information-
theoretic active learning to acquire an Abstract Plan Feasibility
model, and shown that incorporating plan feasibility into
the active learning strategy can dramatically improve sample
efficiency. We deployed our system on a real Franka Emika
Panda robot arm in a block-stacking domain, enabling the
robot to learn a useful APF model with only 400 experiments.

In future work, we are eager to apply this approach to
other domains. We believe that this self-supervised method of
curious exploration is an exciting direction, as it may someday
allow the millions of robots sitting powered-off in laboratories
around the world to make effective use of their downtime.

ACKNOWLEDGMENTS

The authors would like to thank Rachel Holladay and
Caelan Garrett for contributing their time to help us set up our
Panda robot arm and get our footing using the Franka Emika
and PDDLStream software. This research was generously
sponsored by Honda Research Institute.

REFERENCES

[1] P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum.
Simulation as an engine of physical scene understand-
ing. Proceedings of the National Academy of Sciences
(PNAS), 110(45):18327-18332, 2013.

[2] P. W. Battaglia, R. Pascanu, M. Lai, D. Rezende, and
K. Kavukcuoglu. Interaction networks for learning about
objects, relations and physics. In Advances in Neural
Information Processing Systems (NeurlPS), 2016.

[3] W. H. Beluch, T. Genewein, A. Nurnberger, and J. M.
Kohler. The Power of Ensembles for Active Learning
in Image Classification. In 2018 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[4] M. Blum, A. Griffith, and B. Neumann. A stability test
for configurations of blocks. 1970.

[5] M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenen-
baum. A compositional object-based approach to learn-
ing physical dynamics. In International Conference on
Learning Representations (ICLR), 2017.

[6] D. A. Cohn, Z. Ghahramani, and M. 1. Jordan. Active
learning with statistical models. Journal of Artificial
Intelligence Research (JAIR), 4:129-145, 1996.

[7] Erwin Coumans and Yunfei Bai. Pybullet, a python
module for physics simulation for games, robotics and
machine learning. http://pybullet.org, 2016-2019.

[8] D. Driess, O. Oguz, J. S. Ha, and M. Toussaint. Deep
visual heuristics: Learning feasibility of mixed-integer
programs for manipulation planning. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
2020.

[9] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An
analysis of approximations for maximizing submodular
set functions—II, pages 73-87. Springer Berlin Heidel-
berg, 1978.

[10] F. Furrer, M. Wermelinger, H. Yoshida, F. Gramazio,
M. Kohler, R. Siegwart, and M. Hutter. Autonomous
robotic stone stacking with online next best object target
pose planning. In IEEE International Conference on
Robotics and Automation (ICRA), 2017.

Y. Gal and Z. Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. In International Conference on Machine Learn-
ing (ICML). PMLR, 2016.

Y. Gal, R. Islam, and Z. Ghahramani. Deep Bayesian
Active Learning with Image Data. In International
Conference of Machine Learning (ICML), 2017.

C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling.
PDDLStream: Integrating symbolic planners and black-
box samplers via optimistic adaptive planning. In
International Conference on Automated Planning and
Scheduling (ICAPS), 2020.

O. Groth, F. B. Fuchs, I. Posner, and A. Vedaldi.
Shapestacks: Learning vision-based physical intuition for
generalised object stacking. In European Conference on
Computer Vision (ECCV), 2018.

A. Gupta, A. A. Efros, and M. Hebert. Blocks world re-
visited: Image understanding using qualitative geometry
and mechanics. In European Conference on Computer
Vision (ECCV), 2010.

J. S. Ha, D. Driess, and M. Toussaint. A probabilis-
tic framework for constrained manipulations and task
and motion planning under uncertainty. In 2020 IEEE
International Conference on Robotics and Automation
(ICRA), 2020.

N Haghtalab, S Mackenzie, AD Procaccia, O Salzman,
and S Srinivasa. The provable virtue of laziness in
motion planning. International Conference on Automated
Planning and Scheduling (ICAPS), 2018.

J. B. Hamrick, K. R. Allen, V. Bapst, T. Zhu, K. R.
McKee, J. B. Tenenbaum, and P. W. Battaglia. Relational
inductive bias for physical construction in humans and
machines. In the Annual Meeting of the Cognitive
Science Society (CogSci), 2018.

N. Houlsby, F. Huszar, Z. Ghahramani, and M. Lengyel.
Bayesian Active Learning for Classification and Pref-
erence Learning. In NeurIlPS Workshop on Bayesian
optimization, experimental design and bandits: Theory
and applications, 2011.

Z. Jia, A. C. Gallagher, A. Saxena, and T. Chen. 3D
Reasoning from Blocks to Stability. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI),
2015.

Leslie Pack Kaelbling and Tomas Lozano-Pérez. Learn-
ing composable models of parameterized skills. In
2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 886-893. IEEE, 2017.

B. Kim and L. Shimanuki. Learning value functions
with relational state representations for guiding task-
and-motion planning. In Conference on Robot Learning
(CORL). PMLR, 2020.

(11]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

[19]

(20]

[21]

(22]


http://pybullet.org

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

J. J. Kuffner and S. M. LaValle. Rrt-connect: An
efficient approach to single-query path planning. In IEEE
International Conference on Robotics and Automation
(ICRA), 2000.

A. Lerer, S. Gross, and R. Fergus. Learning physical
intuition of block towers by example. In International
Conference on Machine Learning (ICML), pages 430-
438. PMLR, 2016.

T. Lozano-Pérez and L. P. Kaelbling. A constraint-
based method for solving sequential manipulation plan-
ning problems. In IEEE International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2014.

D. J. C. MacKay. Information-based objective functions
for active data selection. Neural Computation, 4(4):590-
604, 1992.

P. Oudeyer, F. Kaplan, and A. Hafner, V.and Whyte. The
playground experiment: Task-independent development
of a curious robot. In Proceedings of the AAAI Spring
Symposium on Developmental Robotics, 2005.

D. Pathak, D. Gandhi, and A. Gupta. Self-supervised ex-
ploration via disagreement. In International Conference
on Machine Learning (ICML), pages 5062-5071. PMLR,
2019.

L. G. Roberts. Machine perception of three-dimensional
solids. PhD thesis, Massachusetts Institute of Technol-
ogy, 1963.

A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg,
J. Merel, M. Riedmiller, R. Hadsell, and P. Battaglia.
Graph networks as learnable physics engines for in-
ference and control. In International Conference on
Machine Learning (ICML). PMLR, 2018.

Y. Shoukry, P. Nuzzo, 1. Saha, A. L. Sangiovanni-
Vincentelli, S. A. Seshia, G. J. Pappas, and P. Tabuada.
Scalable lazy smt-based motion planning. In IEEE
Conference on Decision and Control (CDC), 2016.

P. Shyam, W. Jaskowski, and F. Gomez. Model-based ac-
tive exploration. In International Conference on Machine
Learning (ICML), pages 5779-5788. PMLR, 2019.

S. Singh and A. Kelly. Robot planning in the space of
feasible actions: two examples. In IEEE International
Conference on Robotics and Automation (ICRA), vol-
ume 4, 1996.

M. Toussaint and M. Lopes. Multi-bound tree search
for logic-geometric programming in cooperative manip-
ulation domains. In IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2017.

Zi Wang, Caelan Reed Garrett, Leslie Pack Kaelbling,
and Tomds Lozano-Pérez. Active model learning and
diverse action sampling for task and motion planning. In
2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4107-4114. IEEE,
2018.

A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E.
Kavraki. Learning feasibility for task and motion plan-
ning in tabletop environments. [EEE Robotics and
Automation Letters (RA-L), 4(2), 2019.

[37]

(38]

(39]

P. Winston. The mit robot.
volume 7, 1972.

V. Xia, Z. Wang, K. Allen, T. Silver, and L. P. Kaelbling.
Learning sparse relational transition models. In Interna-
tional Conference on Learning Representations (ICLR),
2018.

J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang,
C. Li, and M. Sun. Graph neural networks: A re-
view of methods and applications. arXiv preprint
arXiv:1812.08434, 2018.

In Machine Intelligence,



APPENDIX
A. Real Robot Evaluations

In this section we provide additional results for the exper-
iments described in Section Figure [§] shows the towers
built when performing the Tallest Tower task with each of the
analytical, simulation, and learned models. 10 towers were
built for each task using 5 blocks. Towers that have fallen
over or do not have 5 blocks were infeasible plans. Figures [9]
and [I0] show the evaluation towers for the Longest Overhang
and Maximum Unsupported Area tasks, respectively.

B. Supervised vs Active Learning Comparisons

In this section we compare the active learning methods
described in this paper to supervised learning baselines which
do not perform active data collection to train the APF model.
Figure compares our methods which use the ©,, model
class to a random-ss strategy. random-ss randomly samples
action sequences and labels each subsequence. The results
show that our active methods which leverage the infeasible
subsequence property, sequential and incremental, outperform
random-ss. random-ss only outperforms greedy, showing that a
random strategy is able to find more interesting training towers
than a myopic approach which simply tries to maximize the
BALD objective for a single block placement.

Figure compares our method, complete, which uses the
Ocomp model class, to a random-comp strategy. random-comp
randomly samples action sequences to train on and only labels
the full sequences. As expected, training on sequences which
maximize the BALD objective is more effective than randomly
sampling action sequences.

The data used to train the random methods is not actively
collected, but we show how training on increasingly larger
datasets compares to the actively collected dataset.

C. Method Generalizability

Here, we motivate a more general class of problems for
which our system applies and clarify which components of the
system are specific to our chosen domain. Our method most
benefits domains where the feasibility of an action depends
strongly on the preceding action sequence (e.g., adding a fifth
block to a tower that already has four blocks). Domains that
include construction tasks, like ours, will commonly benefit
from non-myopic information gathering and a feasibility pre-
dictor that incorporates previous actions into its predictions.
To apply our method to a new domain (e.g., consider a
packing problem where many objects need to be placed in
a larger container), the overall system/methodology would
remain unchanged. However, one would need to adapt the
following domain-specific components:

1) Abstract action definitions. Parameterize an abstract
action that is appropriate for the domain and connect
it to concrete actions (e.g., object locations within the
container).

2) Experimental infrastructure. Additional capabilities to
autonomously plan and execute abstract actions in the

3)

physical world (e.g., motion and grasp planning infras-
tructure).

Feasibility detector. The notion of APF will depend on
the desired outcome of an abstract action. For a new
action, we require a method to autonomously acquire
the feasibility label during execution (e.g., whether the
gripper will collide when placing the object or if an
object will be damaged).

4) Additional inductive bias (optional). Additional structure

to the learner can further increase data efficiency, as
shown by our TGN method. However, this is not required
as we show in Figure [4] that a general purpose graph
network can be used (e.g., a graph network that has
connectivity between all objects).



Simulation Analytical

Learned

Simulation Analytical

Learned

Simulation Analytical

Learned

Fig. 10: Towers built for the Maximum Unsupported Area task when using different Abstract Plan Feasibility models.



5 Block Longest Overhang Towers

5 Block Maximum Unsupported Area Towers 5 Block Tallest Tower Towers
1.0 sequential 1.0 — sequential 1.0 — sequential
Incre;nental ~—— incremental ~—— incremental
greedy [— d —— greed:
08 greedy greedy
" random-ss 0.8 e ss 0.8 — random-ss
g g h
<06 £ 06 < 06
@ b 3
8 g &
g E 5
E o4 £ 04 £ 04
s 3 s
0.2 0.2 02
= | -
00 0.0
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Number of Training Towers Number of Training Towers Number of Training Towers
(@)

Fig. 11: A comparison of sampling strategies which use the O, model class on different downstream tasks all performed in simulation. The
random-ss strategy randomly samples action sequences and thus does not use active learning. Each method evaluation consists of 4 separate

APF model-learning runs, and each point is the Median Normalized Regret of 50 individual planning runs per learned model. The shaded
regions show 25% and 75% quantiles.

5 Block Longest Overhang Towers 5 Block Maximum Unsupported Area Towers 5 Block Tallest Tower Towers
1.0 —— complete 1.0 —— complete 1.0 —— complete
—— random-comp —— random-comp —— random-comp
_os » 0.8 » 0.8
g g I
g g Sos
S 06 H 0.6 H
8 8 &
H H H
\ 0.4
; fo ;
Z 04 X z 2
0.2
\ 0.2
0.2 o
S - 0.0 T
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800

Number of Training Towers Number of Training Towers Number of Training Towers

Fig. 12: A comparison of sampling strategies which use the Ocomp model class on different downstream tasks all performed in simulation.
The random-comp strategy randomly samples action sequences and thus does not use active learning. Each method evaluation consists of 4
separate APF model-learning runs, and each point is the Median Normalized Regret of 50 individual planning runs per learned model. The
shaded regions show 25% and 75% quantiles.



	Introduction
	Problem Formulation
	Experimentation phase
	Evaluation phase

	Active Learning of Abstract Plan Feasibility
	Abstract plan feasibility model
	Entropy reduction
	Sampling Strategies

	Implementation
	Domain
	Perception, planning, and execution
	Learning

	Evaluation
	Impact of Sampling Strategy
	Model Architecture and Generalization
	Real Robot Experiments

	Related Work
	Conclusion
	Appendix
	Real Robot Evaluations
	Supervised vs Active Learning Comparisons
	Method Generalizability


