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Abstract

Contemporary evaluation techniques are inade-
quate for agentic systems. These approaches
either focus exclusively on final outcomes—
ignoring the step-by-step nature of the thinking
done by agentic systems—or require excessive
manual labour. To address this, we introduce
the Agent-as-a-Judge framework, wherein agen-
tic systems are used to evaluate agentic systems.
This is a natural extension of the LLM-as-a-Judge
framework, incorporating agentic features that
enable intermediate feedback for the entire task-
solving processes for more precise evaluations.
We apply the Agent-as-a-Judge framework to
the task of code generation. To overcome is-
sues with existing benchmarks and provide a
proof-of-concept testbed for Agent-as-a-Judge,
we present DevAI, a new benchmark of 55 real-
istic AI code generation tasks. DevAI includes
rich manual annotations, like a total of 365 hi-
erarchical solution requirements, which make it
particularly suitable for an agentic evaluator. We
benchmark three of the top code-generating agen-
tic systems using Agent-as-a-Judge and find that
our framework dramatically outperforms LLM-
as-a-Judge and is as reliable as our human eval-
uation baseline. Altogether, we believe that this
work represents a concrete step towards enabling
vastly more sophisticated agentic systems. To
help that, our dataset and the full implemen-
tation of Agent-as-a-Judge will be publically
available at https://github.com/metau
to-ai/agent-as-a-judge
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1. Introduction
Recent years have seen multimodal agentic systems move
from occasionally being able to solve small toy problems to
being regularly deployed for challenging real-world prob-
lems (the dream of most AI research). Yet, the current eval-
uation methods and the available benchmarks for agentic
systems are struggling to keep up with these rapid advances,
dramatically slowing true progress.

We believe that the current issue with evaluating agentic
systems stems from the lack of feedback during the inter-
mediate task-solving stages for these nontraditional sys-
tems. Agentic systems think more like a human, often
act step-by-step (Wooldridge, 1999) and often hosting very
human-like natural language discussions internally to solve
problems (Zhuge et al., 2023). And thus agentic systems
should be evaluated like a human, with rich evaluative feed-
back which looks at the full thought and action trajectory;
evaluating an agentic system in the traditional way is like
evaluating a student using multiple-choice testing—a com-
paratively unreliable estimator (Park, 2010). For example,
while SWE-Bench (Jimenez et al.) is widespread, its evalu-
ation method, which relies solely on the final resolve rate
for long-term automated repair tasks, does not effectively
pinpoint what is happening within agentic systems that af-
fects the resolve rate. On the other hand, performing a better
evaluation with a human is prohibitively expensive. We
instead propose that agentic systems should be used to eval-
uate agentic systems. Inspired by LLM-as-a-Judge (Zheng
et al., 2024; Fu et al., 2024; Chen et al.), which uses LLMs
to evaluate LLMs, we call this framework Agent-as-a-Judge,
of which it is a key extension to the world of agentic systems
(see Figure 1). It not only retains the cost-effectiveness of
LLM-as-a-Judge but is also equipped with agentic features,
allowing it to provide rich intermediate feedback throughout
the entire process, as it acts as an agentic system. We apply
the Agent-as-a-Judge systems to the problem of evaluating
code generating systems—one of the areas where agentic
systems have looked the most promising recently.

In code generation, the development of benchmarks has also
lagged behind the rapid advancement of agentic systems.
HumanEval (Chen et al., 2021), for example, focuses ex-
clusively on algorithmic problems, while MBPP (Austin
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After step-by-step checks, it‘s clear Agent B is better and
satisfy two requirements of the query. But comparing these
agents or evaluate them took too much time. As a developer,
this would be a bottleneck due to the heavy manual effort.

Figure 1. In this paper, we introduce the Agent-as-a-Judge framework wherein agentic systems are used to evaluate agentic systems.
We compare this to LLM-as-a-Judge, which uses LLMs to evaluate LLMs and for which Agent-as-a-Judge is a natural evolution, and
Human-as-a-Judge, where skilled humans labourers manually evaluate an agentic system.

et al., 2021) deals with simple programming tasks. Al-
though they are useful for evaluating the basic skills of
foundation models, neither of these two reflects the most
practical challenges developers face. As a step away from
this, SWE-Bench (Jimenez et al.) did introduce more real-
istic problems from GitHub, offering a fresh approach to
evaluation, but still primarily focuses on automated repairs
tasks development process. Concerningly, recent research
shows that large language models (LLMs) can already solve
over 27% of the tasks in SWE-Bench without needing of
advanced agentic systems (Xia et al., 2024). Equally con-
cerning, recent work has begun to introduce mechanisms
designed specifically for the individual tasks in the SWE-
Bench dataset, leading to a lack of real-world generalization
and following Goodhart’s law: “When a measure becomes
a target, it ceases to be a good measure” (Goodhart, 1976).

To address the aforementioned issues with current code gen-
eration benchmarks, we introduce DevAI: the AI Developer
Dataset, which contains 55 real-world automated AI de-
velopment tasks created by expert annotators. We apply
three leading open-source code-generating agentic frame-
works to the tasks in DevAI: MetaGPT (Hong et al., 2024b),
GPT-Pilot (Pythagora.io, 2023), and OpenHands (Wang
et al., 2024b). We evaluate their performance using human
judges (a painstaking process), LLM-as-a-Judge (Zheng
et al., 2024), and our Agent-as-a-Judge framework.

Through human evaluation, we found that GPT-Pilot and
OpenHands were each able to satisfy about 29% of the task

requirements in DevAI, but only one full task—showing that
DevAI presents a good level of challenge to current systems.
When comparing our human judges with our automatic
Agent-as-a-Judge framework, we found that Agent-as-a-
Judge aligns more closely with the consensus of our human
judges (90%) as compared to LLM-as-a-Judge (70%) in all
cases tested. In addition, we find that it aligns more closely
with this ensemble than the individual human evaluators do,
suggesting that—not only is it suitable as a replacement for
a human evaluator—but it could in fact be more useful than
an average lone human evaluator. In addition, considering
the evaluation cost, Agent-as-a-Judge reduces 97.72% of
the time and 97.64% of the cost.

In summary, the principal contributions and also the organi-
zations of our development steps are:

• (Step 1 - Section 2) We release the DevAI dataset, which
consists of 55 comprehensive AI development tasks with
accompanying tags, individual hierarchical requirements,
and individual preferences.

• (Step 2 - Section 3) We benchmark three top open-source
code generation agentic frameworks in DevAI, providing a
more comprehensive analysis than previous evaluations of
them.

• (Step 3 - Section 4) We introduce the general Agent-as-
a-Judge concept, allowing agentic systems a fair and rich
evaluation without the traditional cost this would require in
human labour.
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• (Step 4 - Section 4) We demonstrate that an Agent-as-a-
Judge outperforms an LLM-as-a-Judge and performs com-
parably to human evaluators in our proof-of-concept.

2. (Step 1) Crafting a Benchmark for
Automated AI Development

2.1. Motivation

Background The code generation domain is an area where
agentic systems have seen significant industrial deployment
during the past 2 years (e.g., see Devin1 and Cursor2). How-
ever, in code generation, there isn’t yet a benchmark that
accurately reflects realistic user queries for developing com-
plete AI systems. We believe this is because of the difficulty
to evaluate such complex, real-world tasks. For example,
while many companies advertise their systems based on the
performance of it on benchmarks like SWE-Bench (Jimenez
et al.) (for automated repair) or HumanEval (Chen et al.,
2021) (for algorithmic tasks), these benchmarks cover only
a small bit of an actual development process. A benchmark
that can evaluate the entire development process—ideally in
a way that can help understand the degree to which current
AI methods can reduce human labour—is missing.

Topic We chose automated AI development as our main
topic. While AI and ML tasks are often more complex,
they follow clear, standard procedures. For example, data
processing typically comes first in an AI pipeline, and perfor-
mance reporting goes at the end. We believe this topological
nature can help better monitor the development process and
provide useful signals to the agentic systems.

Goals An ideal benchmark should address critical issues in
automated development by focusing on three key factors.
First, it should reflect practical software scenarios, where
tasks are often too complex for a single LLM, requiring
human or agentic systems. Second, it should emphasize the
development process, not just final outcomes (e.g., pass@1
rates offer limited feedback and fail to highlight intermediate
problems). Lastly, the evaluation should be computationally
cost-effective and efficient, avoiding long training times or
excessive manual oversight.

2.2. The DevAI Dataset

Motivated by the ideas outlined above, we propose the De-
vAI dataset. DevAI consists of a carefully curated set of 55
tasks, each defined by (1) a plain text query that describes an
AI development task; (2) a set of plain text requirements (for
a total of 365 requirements), each with a set of dependen-
cies connecting them to other requirements; and (3) a set of
preferences (for a total of 125 preferences) which represent

1https://www.cognition.ai/blog/introducing-devin
2https://www.cursor.com/

softer requirements. DevAI is structured so that an agentic
system starts by receiving a user query to begin develop-
ment. The system is then evaluated on how well it meets the
requirements, with preferences serving as optional, softer
criteria. An example of one of the DevAI tasks can be seen
in Figure 7 and the full suite is available at [REDACTED]

The tasks in DevAI are relatively small-scale but cover com-
monly used key development techniques. As shown in Fig-
ure 2, our tasks are tagged and cover a variety of key areas in
AI: supervised learning, reinforcement learning, computer
vision, natural language processing, generative models, and
others. Each of the tasks is a real-world problem that could
be given to a research engineer, while simultaneously being
relatively inexpensive computationally to run so as to reduce
the cost of evaluating a method on this benchmark. Details
of the sample collection and human labeling process for
DevAI are provided in Appendix E.

The requirements belonging to each task represent a mile-
stone in the comprehensive development process and are
arranged as a directed acyclic graph (similar to the work
by He et al. (2021)), with requirements such as visualizing
results depending on correct data loading and modeling.
This allows for more comprehensive non-sparse feedback
than a binary success metric. Furthermore, the inclusion
of milestones makes simple memorization not viable as a
solution strategy as code that performs the entire task is
unlikely to exist online at this time.

2.3. Preliminary Benchmark

We first conduct experiments to collect development out-
comes from different frameworks, which serve as base-
lines in the DevAI dataset. We test three of the most pop-
ular open-source frameworks (which we will refer to as
“AI developers”): MetaGPT (Hong et al., 2024b), GPT-
Pilot (Pythagora.io, 2023), and OpenHands (Wang et al.,
2024b)—all selected for their strong community acceptance
(each having over 30,000 stars on GitHub).

Experiment Setup All of these three systems require
a language model as a back-end engine, for which we
use gpt-4o-2024-05-13, a state-of-the-art language
model. These AI developers were given a time-limit of 1800
seconds to solve each task and were forcefully halted if they
exceeded this time limit (we imposed this constraint, which
was visible to the AI developers, as detailed in Appendix I).
We capture the outputs generated during the automated de-
velopment process, including code, files, and other artifacts.
Additionally, we record key decisions and actions made by
the agentic systems through some custom instrumentation
code, resulting in a thought trajectory for each of the agentic
systems.

Analysis The basic statistics are shown in Table 1.
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Figure 2. Distribution of DevAI Tasks (1) DevAI focuses on AI development tasks and so terms such as “dataset,” “model,” and “results”
are particularly common in the queries. (2) The first 53 tasks in DevAI all have a one-paragraph query but of varying lengths (note that
task 54 and 55 are excluded here as they are outliers, representing the longest and most complex tasks in the dataset). (3) Each task has one
or more tags. The prevalence of supervised learning here reflects the fact that it dominates many machine learning applications. (4) SVM
classifiers (Cortes, 1995) and LSTM models (Hochreiter, 1997) are two of the most widely used architectures—a fact reflected by DevAI.

MetaGPT is the most cost-efficient (1.19 USD), while Open-
Hands is the most expensive (6.38 USD). In terms of de-
velopment time, OpenHands completes tasks in an average
of 362.41s, while GPT-Pilot takes the longest at 1622.38s.
On average, a full evaluation on DevAI with one of these
three took around 210.65 USD and 14 hours to perform.
While running, GPT-Pilot generates the most output tokens
at 59707 tokens, whereas OpenHands processed the most at
1252482 tokens while producing the fewest at 8457 tokens.
This suggests that OpenHands’s internal communication is
more complicated but is more parsimonious in its decisions.

MetaGPT, while being the most cost-effective, generates
fewer saved code files (0.42), suggesting it may be less
inclined to save files. In contrast, GPT-Pilot generates the
most saved files (3.84), reflecting a more prolific output.
The difference in saved code lines, with GPT-Pilot saving
273.33 lines versus MetaGPT’s 11.15, underscores GPT-
Pilot’s extensive output. Meanwhile, OpenHands, despite
handling larger inputs, seems less focused on executing code
to generate files, as evidenced by its lower file output (2.53
saved files). These statistics align with real user experiences
(as discussed in Appendix F).

Evaluations Note that the results in Table 1 are not di-
rectly indicative of performance, but provide valuable in-
tuition about the practical utility of DevAI. The generated
workspaces (generated files, code, etc.) and trajectories are
utilized in subsequent experiments to perform evaluations

using Human-as-a-Judge (section 3), LLM-as-a-Judge, and
Agent-as-a-Judge (section 4).

3. (Step 2) Manual Evaluation on DevAI
(Human-as-a-Judge)

To determine the pragmatic validity of DevAI and to accu-
rately estimate the actual code-generating abilities of current
state-of-the-art agentic systems, in this section, we run and
then manually evaluate the application of three AI devel-
oper baselines to DevAI. In Section 4, we show how this
evaluation can be automated.

3.1. Benchmark Baselines by Human-as-a-Judge

Human Evaluation Setup After obtaining the baseline
executions and conducting basic statistical analysis, we have
three expert human evaluators (referred to here by their
anonymous names: 231a, 38bb, and cn90) review the
outputs of AI developer baselines to assess whether each
requirement was satisfied. We have two rounds of human
evaluations. To capture the bias inherent in typical human
evaluation (this is desirable to capture here as it represents
a likely scenario in deployment), in the first round, our
evaluators first discussed the basic standards but were given
minimal instructions. The templates the evaluators were
given for the evaluation and their self-reported post-hoc
descriptions of how they resolved ambiguities are reported
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Table 1. Preliminary Statistics of AI Developers. We compare three leading open-source code agents using metrics such as average cost,
average time, and the average number of generated files.

Metric MetaGPT (Hong et al., 2024b) GPT-Pilot (Pythagora.io, 2023) OpenHands (Wang et al., 2024b)

Basic Statistics

Version Data Interpreter (Hong et al., 2024a) 0.2.13 CodeAct v1.9 (Wang et al.)

(1) Average Cost $1.19 $3.92 $6.38

(2) Average Time 775.29s 1622.38s 362.41s

(3) Average Input Tokens 152863 606707 1252482

(4) Average Output Tokens 28546 59707 8457

(4) Average Saved Code Files 0.42 3.84 2.53

(5) Average Saved Code Lines 11.15 273.33 96.56

(6) Average Saved Files 4.42 5.91 3.60

Table 2. Human-as-a-Judge for AI Developers. (I) and (D) represent independent performance versus performance considering task
dependencies. indicates multiple experts evolved, and means the evaluations use white-box testing (allowing access to the
generated workspace, human-collected trajectories, and open-source codebases). The results were derived from expert judgments and
deliberations (see Appendix H).

Metric MetaGPT (Hong et al., 2024b) GPT-Pilot (Pythagora.io, 2023) OpenHands (Wang et al., 2024b)

/ Human-as-a-Judge
(A) Requirements Met (I) 22.13% 44.80% 42.89%
(B) Requirements Met (D) 6.55% 28.96% 28.68%
(C) Self-Termination 41.81% 5.45% 54.54%
(D) Task Solve Rate 0.00% 1.81% 1.81%

in Figure 11 in Appendix H.

After the initial round of human evaluations (which totaled
an estimated total of 58 human hours), we asked our evalua-
tors to discuss and reach a consensus on their assessments
(which took an estimated total of 28.5 additional human
hours). This consensus, achieved after long sessions of de-
bate, was used as the final human evaluation result for each
method.

Performance Analysis The results of this experiment are
shown in Table 2. We found that the two best-performing
methods (GPT-Pilot and OpenHands) could satisfy about
29% of the requirements (or around 44% if prerequisites are
ignored) but only on one task could they meet all the require-
ments. This highlights that DevAI offers a considerable but
appropriate level of challenge for current and future meth-
ods. Moreover, the fulfillment of intermediate requirements
aligns with our expectations (see Section 2) that DevAI pro-
vides richer feedback by uncovering how agentic systems
falter during the process instead of just focusing on a single
performance metric at the end.

3.2. Judging Human-as-a-Judge

Disagreement Analysis To analyze the presence of in-
ductive bias and the reliability of the Human-as-a-Judge
paradigm here, we calculate the disagreement rate between
individual evaluators (shown in Figure 3). The results indi-
cate that the disagreement rates between pairs of evaluators
range from around 10% to 30%. Although each human

evaluator has over five years of experience in AI research
and development, the disagreement highlights the inherent
challenges of evaluating AI development.

Figure 3. Between the three human evaluators, a large amount
of disagreement was observed in their individual evaluations—
highlighting the inherent unreliability of human evaluation.

Due to the complexity of a complete AI development task,
which typically involves multiple steps with varying out-
comes at each step, humans can easily make errors when
critical information is missed, such as environment feedback
indicating small but severe coding errors or bugs. Addition-
ally, some disagreements are not necessarily incorrect but
arise from differing perspectives on how ambiguity should
be resolved.

To determine if the disagreement between the three human
judges is too large for them to serve as a strong baseline,
we recruited ten additional experts and had them evaluate
a random selection of 7 task samples. We observed that
the majority vote of these additional experts had a 95.23%
agreement rate with the consensus result of our other experts
on these 7 tasks and a 97.67% agreement rate with the
majority vote. See Appendix P.
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Figure 4. Mismatch between the individual evaluations and the
consensus evaluation. Note that the majority vote showed the
smallest deviation from the consensus evaluation.

Error Analysis As previously noted, the evaluators en-
gaged in a round of debating after their initial evaluations
until they reached a consensus on each requirement in each
task (with the results of this consensus evaluation shown in
Table 2).

In our Human-as-a-Judge pipeline, evaluators could be con-
vinced by evidence from others and acknowledge their judg-
ment errors, adjusting their answers accordingly. This can
be used to approximate individual errors. If the consensus
evaluation more accurately predicts any extant ground truth,
we would expect the majority vote from the individual eval-
uations to more closely approximate this than any single
evaluation, due to the fundamental properties of ensemble
classifiers (see Hastie et al. (2009)).

While the consensus evaluation may not represent the ab-
solute ground truth (we acknowledge that some quantity
of error likely would still exist even after this procedure),
we expect the consensus evaluation to more accurately ap-
proximate the extant ground truth (Clemen, 1989). If this
holds, the majority vote should align more closely with the
consensus than with any individual evaluation. As shown in
Figure 4, this is indeed the case.

As seen in the results, although significant errors occur
among all evaluators, the majority vote effectively corrects
most of these errors. Notably, cn9o made the most errors
(for example, 23.77% in evaluating GPT-Pilot). After apply-
ing the majority vote from all three evaluators, the overall
error rate dropped to 6.01%, demonstrating the inherent
benefits of majority voting.

Conclusion Human judgment errors are inevitable. To
reduce them, we suggest two methods. First, like in this
work, introduce a debate round after each judgment, where
individuals present evidence and either persuade others or
adjust their own opinions after discussion. This is partic-
ularly important when there are only a few evaluators, as
majority voting with a small group can still lead to errors
(around 5% compared to consensus evaluation, as shown

in Figure 4). The second approach involves assembling a
larger panel of experts (more is better when their accuracy
exceeds 50% (Grofman et al., 1983)), with over 5 people
recommended by Hastie & Kameda (2005); Larrick & Soll
(2006), and relying on a majority vote. However, due to the
high cost of engaging more experts and the fact that this is
not always feasible in practice, we argue for the former.

4. (Step 3&4) Evaluating Agents with Agents
(Agent-as-a-Judge)

Human evaluation, while somewhat reliable, is time-
consuming and requires significant expertise. To address
this, we propose the Agent-as-a-Judge framework. If such
an agentic system could evaluate like a human, it would
reduce the need for human involvement, eliminating the
trade-off between evaluation thoroughness and effort.

4.1. Spefic Agent-as-a-Judge for Code Generation

Based on our prior experiences with agent design and by im-
itating the human evaluation process, we initially designed
eight modular, interacting components that form the foun-
dation of our tailor-made Agent-as-a-Judge.

MemoryPlanning

OUTPUTS

INPUTS

Locate

Search

Retrieve

Read

Ask

Graph

Figure 5. Initial diagram of Agent-as-a-Judge.

(1) The graph module constructs a graph that captures
the entire structure of the project, including files, modules,
and dependencies. It can also break down chunks of code
into code snippets. (2) The locate module identifies the
specific folder or file referred to by a requirement.(3) The
read module goes beyond simple file parsing, supporting
the reading and understanding of multimodal data across
33 different formats, including code, images, videos and
documents. This allows the agent to cross-reference various
data streams and check different kinds of requirement. (4)
The search module offers a contextual understanding of
code and can quickly retrieve highly relevant code snippets,
as well as the nuances behind them (e.g., hidden depen-
dencies). (5) The retrieve module extracts information
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Table 3. AI Judges and Their Shift/Alignment with Human-as-a-Judge. We compare the results of LLM-as-a-Judge and Agent-as-
a-Judge with Human-as-a-Judge. (I) represents performance on independent tasks, while (D) represents performance considering task
dependencies. Note: gray-box settings use carefully manually collected trajectory data (which is nearly inaccessible in practical
situations, see Appendix J). In contrast, black-box setting doesn’t need to access to such data. The red scores represent the absolute
judge shift compared with Human-as-a-Judge (e.g., 2.74%).

Metric MetaGPT (Hong et al., 2024b) GPT-Pilot (Pythagora.io, 2023) OpenHands (Wang et al., 2024b)

LLM-as-a-Judge
(a) Requirements Met (I) 19.39% (2.74%) 12.56% (32.24%) 11.47% (31.42%)
(b) Requirements Met (D) 1.63% (4.92%) 4.09% (24.87%) 2.18% (26.50%)
(c) Task Solve Rate 0.0% (0.0%) 0.0% (1.81%) 0.0% (1.81%)
Alignment Rate ↑ 84.15% 65.30% 60.38%

Agent-as-a-Judge
(I) Requirements Met (I) 25.40% (3.26%) 53.00% (8.20%) 42.62% (0.27%)
(II) Requirements Met (D) 5.73% (0.81%) 39.89% (10.93%) 26.50% (2.17%)
(III) Task Solve Rate 0.0% (0.0%) 5.45% (3.64%) 1.81% (0.00%)
Alignment Rate ↑ 88.52% 83.88% 90.44%

LLM-as-a-Judge
(a) Requirements Met (I) 28.68% (6.55%) 38.79% (4.10%) 43.16% (0.27%)
(b) Requirements Met (D) 17.75% (11.20%) 33.06% (4.10%) 32.24% (3.56%)
(c) Task Solve Rate 1.81% (1.81%) 3.63% (1.82%) 7.27% (5.46%)
Alignment Rate ↑ 68.86% 71.85% 70.76%

Agent-as-a-Judge
(I) Requirements Met (I) 23.49% (1.35%) 46.44% (1.64%) 43.44% (0.54%)
(II) Requirements Met (D) 6.01% (0.54%) 30.60% (1.64%) 28.14% (0.53%)
(III) Task Solve Rate 0.0% (0.00%) 5.45% (3.64%) 3.63% (1.82%)
Alignment Rate ↑ 92.07% 86.61% 90.16%

/ Human-as-a-Judge
Alignment Rate (38bb) 92.63% 90.98% 89.89%
Alignment Rate (cn9o) 83.33% 76.23% 78.15%
Alignment Rate (231a) 92.07% 87.43% 89.07%
Average of individuals 89.34% 84.88% 85.70%
Alignment Rate (Majority Vote) 95.08% 93.98% 94.26%

from long texts, identifying relevant segments in trajecto-
ries. With context from the above, (6) the ask module
determines whether a given requirement is satisfied.(7) The
memory module stores historical judgment information,
allowing the agent to build on past evaluations. Finally, (8)
the planning module plans out actions, allowing the agent
to strategize and sequence tasks based on the current state
and project goals.

Our initial design of the Agent-as-a-Judge is shown in Fig-
ure 5. After conducting comprehensive ablation studies, we
found that the modular combination of (1), (2), (3), (5), and
(6) achieved the highest performance (see Appendix C). A
sample of the dynamic evidence collected by the Agent-
as-a-Judge is shown in Appendix M. We hypothesize this
is because Agent-as-a-Judge needs high-quality factual in-
formation and is sensitive to noise. For example, while
our design of the planning module introduces promising
decision-making for future actions, the procedure is unsta-
ble. Initially, we hoped that historical information from the
memory module would help to assess current requirements.
However, it proved detrimental, as any errors in previous
judgments could lead to a chain of errors, negatively af-
fecting current decisions. Besides, the current workspaces

generated by developer agents, having only hundreds of
lines of code, cannot fully benefit from the search module.
The details of these findings are explained in Appendix K.
Note that a perfect Agent-as-a-Judge is not the focus of this
proof of concept, and thus, we leave the utilization of ad-
vanced agentic optimization methods for Agent-as-a-Judge,
such as automated prompt optimization and workflow de-
sign (Zhuge et al.; Hu et al., 2024), for future work.

4.2. Judging Agent-as-a-Judge and LLM-as-a-Judge

Judge Shift Judge Shift measures deviation from the
Human-as-a-Judge consensus results, with lower values in-
dicating a closer alignment. As shown in table 3, Agent-as-
a-Judge consistently outperforms LLM-as-a-Judge across
tasks, particularly those with task dependencies. For exam-
ple, in Requirement (I), Agent-as-a-Judge shows a Judge
Shift as low as 0.27%, while LLM-as-a-Judge reaches
31.24% for OpenHands. This underscores Agent-as-a-
Judge’s stability and suitability for meeting task require-
ments. Furthermore, in the gray-box setting, both Agent-as-
a-Judge and LLM-as-a-Judge show even better results than
their performance in the black-box setting.
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Alignment Rate The Alignment Rate reflects how closely
the AI Judges’ evaluations align with human consensus
across all 365 requirements. It is defined as the percentage
of requirement evaluations that are the same as the Human-
as-a-Judge consensus evaluation. Compared to LLM-as-
a-Judge, Agent-as-a-Judge consistently achieves a higher
Alignment Rate, closely matching human judgments. For
example, when evaluating OpenHands, Agent-as-a-Judge
reaches 92.07% and 90.44%, surpassing LLM-as-a-Judge’s
70.76% and 60.38% in both gray-box and black-box set-
tings. This suggests that Agent-as-a-Judge is more accurate
and human-aligned.

Figure 6. PR Curves comparing judge Methods.

PR Curves Judging developer agents is a class-imbalanced
task, where meeting requirements is much rarer than fail-
ing. Metrics like judge shift and alignment rate can be
misleading. For example, since MetaGPT rarely meets re-
quirements, LLM-as-a-Judge easily identifies most cases
as negative (achieving 84.15% in the black-box setting).
PR Curves offer a clearer performance measure by balanc-
ing precision and recall. This shows that, in some cases,
Agent-as-a-Judge can nearly replace human evaluators. Our
observations indicate the relative reliability of evaluation
methods as: LLM-as-a-Judge < Single-Human-as-a-Judge
< Agent-as-a-Judge < Ensemble of Human Judges. Future
advancements in foundation models and Agent-as-a-Judge
designs may shift this order.

Table 4. Component Ablation Studies for Agent-as-a-Judge.
We analyze the impact of adding various components (ask,
graph, read, locate, and retrieve) on the performance of
Agent-as-a-Judge for judging OpenHands.

Metric + ask + graph + read + locate + retrieve

Agent-as-a-Judge Performance

Alignment Rate 65.03% 75.95% 82.24% 90.44% 90.16%

4.3. Ablations For Agent-as-a-Judge

We conduct ablations to evaluate the impact of adding
different components on Agent-as-a-Judge’s performance.

The components analyzed include ask, graph, read,
locate, and retrieve. The component ablation study
for Agent-as-a-Judge reveals key insights into the perfor-
mance gains from adding specific functionalities. With only
ask component, the agent achieves a 65.03% alignment
rate. Adding the graph component increases performance
to 75.95%, as the agent can better understand relationships
between files. The introduction of read further improves
the alignment rate to 82.24%, reflecting the value of direct
access to the contents of the file. Incorporating locate
brings a substantial boost to 90.44%, as the agent can ef-
ficiently target files relevant to the requirements. Adding
retrieve does not always provide a significant benefit in
this case. We found the retrieve module effective for
judging MetaGPT and GPT-Pilot, as it provides valuable
trajectory information (as shown in Table 3). However, it
is less effective for OpenHands, which sometimes fails to
execute files, resulting in missing responses. In such cases,
judgment without trajectories remains viable.

4.4. Cost Analysis

Our three evaluators a self-reported total of 86.5 hours. With
a 15 USD hourly wage (assuming this would buy a subject
expert in AI), a full evaluation under DevAI would cost
around 1297.50 USD. In comparison, Agent-as-a-Judge
cost only 30.58 USD (2.29%) in API calls and took only
118.43 minutes (2.36%). LLM-as-a-Judge was faster at
10.99 minutes, but due to the absence of intelligent context
selection by the Agent-as-a-Judge’s modules, it still cost
29.63 USD.

5. Related Work
Agentic systems is a highly active research area, so we only
detail the most closely related works here. We provide a
treatment of the marginally less relevant related works in
Appendix D.

AI Developers AI in software development is growing
fast (Liu et al., 2024). AI-driven developers have been
applied to directly imitate software companies (Hong et al.,
2024b; Qian et al., 2024a), debug code (Yang et al., 2024a),
run data science methods (Guo et al.; Hong et al., 2024a;
Li et al., 2024; Qiao et al., 2023), and even write academic
papers (Lu et al., 2024a).

Benchmarks for AI developments Benchmarks like
MLAgentBench (Huang et al., 2024), ML-Bench (Liu et al.,
2023), and SUPER (Bogin et al., 2024) all focus on bench-
marking agentic systems using AI tasks. However, DevAI
distinguishes itself from all of these by focusing on realistic
user queries that target a complete development cycle. It
further includes a more comprehensive evaluation with mul-
tiple hierarchical requirements and preferences for each task.
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Comparatively, MLAgentBench (Huang et al., 2024), for
example, focuses on final performance for a limited set of
well-known tasks, which risks overfitting and fails to assess
a system’s generalization or adaptability.

AI Judges Several works have looked at using AI systems
as judges. The work by Chan et al.; Zhao et al. (2024), for
example, extends LLM-as-a-Judge to have multiple LLMs
in their evaluation process for conversational tasks. Unlike
Agent-as-a-Judge, they employ a trivial agentic system and
apply it only to evaluate LLMs under traditional evaluation
setups. In contrast, (Lu et al., 2024b) uses a single LLM-
based evaluator but, unlike LLM-as-a-Judge, applies this to
multimodal tasks rather than just for evaluating LLMs. Less
relevant are frameworks like those by Chen et al. (2024b);
Arora et al. (2024); Mündler et al. (2024), where intermedi-
ate signals are used during coding development.

6. Discussion and Conclusion
Discussion A key power of the Agent-as-a-Judge that we
have not exploited here is the feedback it provides being
directly used by the agentic system being evaluated. Per-
haps the greatest strength of the Agent-as-a-Judge frame-
work is that an agentic system could use it to fix issues
in their solutions to complex multistage problems on the
fly—something older delayed feedback methods did not
permit. In addition, a cycle of mutual improvement be-
tween Agent-as-a-Judge and the evaluated agents, where
both evolve together through iterative feedback, presents a
promising perspective.

In this work, we focus on code tasks, however, the concept
of “Agent-as-a-Judge” is inherently general. In our expe-
rience, transforming our current implementation to other
domains will not necessitate overcoming significant bot-
tlenecks. This is because our implementation is modular,
comprising components such as graph, read, locate,
ask, and retrieve. By modifying the prompts and work-
flow, it should not be difficult to transfer the system to
other domains—a common practice in agentic projects. Our
read module already supports multimodal data (code, text,
images, etc.), and the ask module can be adapted to verify
arbitrary requirement criteria. However, we still encour-
age the reader to design domain-specific “Agent-as-a-Judge”
systems for more accurate usages.

Conclusion In this work, we introduced the Agent-as-a-
Judge method to use agentic systems to evaluate agentic
systems. We simultaneously released DevAI: a new bench-
mark that evaluates the code-generating ability of agentic
systems on complete AI development tasks when used with
Agent-as-a-Judge. We went on to show that Agent-as-a-
Judge outperforms existing methods on this task and that it
performs similarly to an ensemble of expert human evalua-

tors. Altogether, we believe that the above opens the door
for scaling up agentic far more than before.
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automating judgment also carries risks: if the judge-agent’s
own reasoning is flawed or biased, errors may propagate
unchecked; over-reliance on automated assessment could
reduce critical human oversight, potentially missing emer-
gent ethical or safety concerns. In the broader context,
Agent-as-a-Judge can accelerate the development of robust
multi-agent systems, while fostering a culture of transparent,
reproducible evaluation that is essential for the responsible
advancement of machine learning.
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A. Task Sample

Task 51: Devin AI Software Engineer Plants Secret Messages in Images

Query

Hi! Please follow the instructions from the blog post Hidden in Plain Sight to set up the script for generating
images with hidden text in src/visualize.py. Ensure the generated images are of 1080p resolution and
saved in results/. Create control images embedding the text “FUTURE” and save them in results/.
Please manually verify that the hidden text is embedded in the images.

Requirements

■ R0
Criteria: Follow the instructions from the blog post Hidden in Plain Sight to set up the script for generating
images with hidden text in src/visualize.py.
Dependencies → {}

■ R1
Criteria: Ensure the generated images are of 1080p resolution and saved in results/.
Dependencies → {R0}

■ R2
Criteria: Create control images embedding the text ”FUTURE” and save them in results/.
Dependencies → {R1}

Preferences (Optional)

■ P0
Criteria: The system should be capable of learning and adapting to unfamiliar technologies and tools as
required.

■ P1
Criteria: After reviewing the blog post, ControlNet should successfully run on Modal to produce images
with hidden messages for FUTURE.

Figure 7. A task example in DevAI. This task is adapted from a real-world demo given at https://www.cognition.ai/blog/
introducing-devin. As this example shows, task requirements in DevAI are structured as a Directed Acyclic Graph (DAG), with
nodes representing individual requirements and directed edges showing dependencies. More examples are in Appendix G.

15

https://www.factsmachine.ai/p/hidden-in-plain-sight
https://www.factsmachine.ai/p/hidden-in-plain-sight
https://www.cognition.ai/blog/introducing-devin
https://www.cognition.ai/blog/introducing-devin


Agent-as-a-Judge: Evaluate Agents with Agents

B. Experiment Designs
This section outlines the experimental designs aimed at evaluating developer agents’ performance, analyzing human
evaluations, and comparing AI-based judging systems. The experiments are structured across three levels, as illustrated
below.

Judging Developer Agents Judging Human-as-a-Judge Judging Agent(/LLM)-as-a-Judge
Level 1 Level 2 Level 3

Section 2.3 Section 3.1 Section 3.2 Section 4.2 Section 4.3

B.1. Summary of Experiments

The experiments are categorized into three levels as follows:

Level 1: Human evaluation of developer agents

l Experiment 1a: Basic performance statistics for developer agents (Section 2.3)
l Experiment 1b: Human evaluations of developer agents (Section 3.1)

Level 2: Error and bias analysis of human evaluations

l Experiment 2a: Error analysis of human evaluations (Section 3.2)

Level 3: AI-based judging systems

l Experiment 3a: AI judge baselines (Section 4.2)
l Experiment 3b: Ablation studies for Agent-as-a-Judge (Section 4.3)

B.2. Judges and Subjects of Evaluation

The following table summarizes the judge and the subject being evaluated in each experiment:

Experiment Who is the Judge? Who is being Judged?

Section 2.3 Human Developer Agents

Section 3.1 Human Developer Agents

Section 3.2 Human Human

Section 4.2 (1) LLM-as-a-Judge (1) Developer Agents

(2) Agent-as-a-Judge (2) Developer Agents

(3) Human (3) LLM-as-a-Judge

(4) Human (4) Agent-as-a-Judge

Section 4.3 Human Agent-as-a-Judge
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C. Agent-as-a-Judge Pipeline

User

Hi! Please follow the instruction and set up the script from the blog https://www.factsmachine.ai/p/hidden-
in-plain-sight to generate 1080p images with hidden text ("FUTURE," in src/visualize.py. Save them in
results/ and verify the text is embedded.

Agentic Task

workspace

src

visualize.py

results

hidden.jpg

mask.jpg

aimages

Judge Process

hidden.jpg

mask.jpg

visualize.py

Build the workspace graph.

Are the requirement 
{R0} satisfied?

Collect information based on 
{R0} and the workspace graph.

Judge Agent Graph Read RetrieveAsk
Verify all requirements and 
their related analyses.

Write and run src/visualize.py to generate masks and save the figures in the results/ directory.

Open the mentioned link and carefully read the blog mentioned in the user query.

Go to the GitHub repository mentioned in the blog, and read the code and the README file.

Set up the environment, then install the package.

Set up the Modal library by installing it and configuring the API for serverless deployment.

Develop Process

Developer 
Agent

Locate

Figure 8. The pipelines of developer agents and judge agent.
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D. Extend Related Work
Our main paper includes mostly related works of AI developers, Benchmarks for AI developments, and AI judges.
However, the following works contribute significantly to the community and also relate to this work. We record this work as
additional related work3.

LLM-based Autonomous Agents Recent developments in LLM-based agents have expanded their capabilities be-
yond simple task execution to more autonomous problem-solving and decision-making. AutoGPT (Gravitas, 2023) and
LangChain (Chase, 2022) provide frameworks for single-agent systems that leverage external tools for more complex
tasks. Similarly, research such as MetaGPT (Hong et al., 2024b), AutoGen (Wu et al., 2023) and CAMEL (Li et al.,
2023) focus on role-based multi-agent communication, improving collaboration among agents. However, the challenge of
maintaining coherence in agents’ dialogue and preventing hallucination remains prominent (Du et al., 2024; Zhou et al.,
2023). Most recently, using graphs to build agents has gained prominence. Earlier work like GPTSwarm (Zhuge et al.) and
LangGraph (LangChain-AI, 2024) proposed using nodes to represent operations and edges to represent the connections
between them. In GPTSwarm, multiple agents represented as subgraphs in a graph are connected by optimizable edges,
and reinforcement learning is employed to optimize the edges. Following this approach, several agent frameworks have
incorporated graphs into their designs (Hong et al., 2024a; Zhou et al., 2024; Qian et al., 2024b). Additionally, various
optimization methods have been developed to enhance agent performance further (Wu et al., 2024; Song et al., 2024; Hu
et al., 2024). In practical applications, many studies focus on understanding and interacting with GUIs (Wang et al., 2024a;
Chen et al., 2024a; Yang et al., 2023; Xu et al., 2024; Tan et al.). For code generation agents (Jin et al., 2024), current
research mainly emphasizes automated repair (Yang et al., 2024a; Phan et al., 2024; Tao et al., 2024), computational modular
design (Khattab et al., 2024; Cheng et al.), and automated development (Tufano et al., 2024; Huang et al., 2023). Among
these, open-sourced frameworks like OpenHands (Wang et al., 2024b) have gained popularity due to their strong user
experience. Moreover, scientific discovery (Jansen et al., 2024; Lu et al., 2024a) and ML agents (Yang et al., 2024b) are also
receiving increased attention.

LLM-as-a-Judge In the domain of AI evaluation and judgment, frameworks (Zheng et al., 2024; Fu et al., 2024; Chen
et al.) have pioneered the use of LLMs to assess conversational agents, demonstrating how LLMs can evaluate dialogue
quality and consistency. Expanding beyond dialogue, LLMs like CodeR (Chen et al., 2024b) and MASAI (Arora et al.,
2024) apply similar judging principles to the code validation process, where AI systems autonomously evaluate and verify
computer programs. Our work builds on these advancements by exploring how LLMs can perform more nuanced judgment
tasks, further investigating their potential in decision-making across various domains. Recent research also focuses on
judging LLM-as-a-Judges (Chen et al., 2024c; Bavaresco et al., 2024; Thakur et al., 2024; Dong et al., 2024; Shi et al., 2024;
Raina et al., 2024).

Coding Benchmarks Recent advances in code generation have led to the innovation of various benchmarks to evaluate
model performance (Liu et al., 2024). Early benchmarks, such as MBPP (Austin et al., 2021), HumanEval (Chen et al.,
2021), and MultiPL-E (Cassano et al., 2023), focus primarily on generating simple functions. While these benchmarks
are useful for evaluating the correctness of generated code, they are limited in complexity and do not fully represent the
challenges encountered in real-world software development.

As the field progressed, newer benchmarks began to focus on more complex and realistic tasks. APPS (Hendrycks et al.),
CodeContests (Li et al., 2022), and LiveCodeBench (Jain et al., 2024) moved toward competitive programming challenges
that involve advanced algorithms and data structures. These tasks are more representative of problems encountered in coding
competitions and help push models toward more sophisticated problem-solving. DS-1000 (Lai et al., 2023) was introduced
to assess the skills of models with data science libraries, evaluating their ability to use APIs and execute complex data
analysis workflows. Meanwhile, AgentBench (Liu et al., b) focuses on testing reasoning and decision-making abilities in
interactive environments, highlighting differences in performance between commercial and open-source models.

To address real-world programming needs beyond code generation, specialized benchmarks have been created to evaluate
tasks such as debugging, refactoring, and code navigation. CANITEDIT (Cassano et al., 2024), DebugBench (Tian
et al., 2024), and FixEval (Haque, 2023) evaluate the ability of a model to edit and improve existing code. Additionally,

3Additionally, we were pleased to find that a recent industry blog (https://www.cognition.ai/blog/evaluating-c
oding-agents), published two weeks before our submission, shares very similar ideas and provides further evidence that the
Agent-as-a-Judge could have practical applications in agent systems.
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benchmarks such as SWE-Bench (Jimenez et al.) focus on resolving issues in GitHub repositories, simulating practical
software development scenarios. Finally, benchmarks such as RepoBench (Liu et al., a) and RepoEval (Zhang et al., 2023)
delve into the evaluation of models in large-scale, multifile codebases. These benchmarks measure the ability of language
models to understand the structure of repositories and solve problems within more complex, collaborative environments.
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E. The Procedures of Creating DevAI Dataset
E.1. Manually draft user queries

Given the execution cost of the developer agents, we collect small-scale AI tasks to ensure the practical applicability of our
benchmark. Since these tasks are small-scale and well studied, which are easy to overfit in terms of task performance metrics,
unlike previous benchmarks (e.g., (Huang et al., 2024)), we do not evaluate task performance as the development performance
measure. Instead, we prioritize the step-by-step task-solving ability, which is essential for real-world development. Our
quires are specifically designed to require the development agents to understand user intentions, solve the task in multiple
steps, and adapt to unexpected step outcomes. This approach also makes our benchmark user-friendly, transparent, and
better reflects real-world deployment situations. To enable effective evaluation, our queries present a specific development
file structure for the developer agents to follow. To ensure that the developer agents save the files to be evaluated in the
workspace, we develop constraint prompts added to the query to form an extended query. The constraint prompts guide the
developer agents to save and execute the source codes, which are in line with the real-world development standard. See
Appendix I for our constraint prompts.

E.2. Set Judging Criteria

To make the evaluation of the developer agent precise, we assign to each task query a list of requirements as task milestones.
The requirements are chosen so that satisfying all the requirements is a necessary condition to consider the task to be
solved successively. Since our tasks are AI-centric, our queries target essential elements of AI development, including data
processing, AI method, presentation of evaluation metrics, visualization, and human-computer interaction, covering the key
areas that matter most in real-world scenarios. On the other hand, breaking down tasks into individual requirements also
reflects the multi-step nature of code development. Importantly, to avoid ambiguity, we set the requirements to be explicit,
binary, and straightforward to evaluate. To include other human predispositions, we include a list of preferences per task
that covers subjective, ambiguous, or non-explicitly stated characteristics.

E.3. Building Dependency Among Requirements

To enhance the realism of our benchmark, we analyzed the dependencies among requirements. Over the past decades,
methodologies such as the KDD Process (Fayyad et al., 1996) and CRISP-DM (Wirth & Hipp, 2000) have guided ML/AI
development, establishing foundational frameworks that have been further refined with the rise of AutoML (He et al., 2021).

Inspired by these methodologies, we identified a seven-step process for automated AI development tasks. This process
includes critical stages such as data preprocessing, feature engineering, model selection, and hyperparameter tuning, along
with essential post-development activities like metrics recording, report generation, and the development of interactive user
applications. This structured approach allows us to evaluate the agent’s ability to manage task dependencies and effectively
navigate complex, real-world scenarios.

E.4. Refine the dataset

Manual refinements were necessary to ensure the accuracy and clarity of DevAI. We perform two rounds of comprehensive
review and edits on DevAI, each round being done by a different participant. During these manual refinements, we focus on
the logical consistency of our queries and requirements, the correctness and ambiguity of the language, and the applicability
of the content to the task domain. We identified a moderate number of errors in our dataset during the review.

E.5. Analyse the dataset

We categorized each requirement based on its focus, whether it was related to the data set, the machine learning method,
visualization, metrics, HCI, or data processing. While this approach provides a useful framework, it is important to recognize
that these categories might overlap or miss certain nuances. Similarly, preferences were classified by how strongly they
appeared in the query text, ranging from those inferred by common sense to those explicitly stated. Although this helps to
organize preferences, it is worth noting that such classifications can be subjective and may not fully capture the importance
of each preference in practical applications. By structuring the requirements and preferences this way, we aim to enhance
the evaluation process, though flexibility and context awareness remain crucial for truly robust assessments.
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E.6. Auxiliary Information

Some of the tasks require the download of a Kaggle () data set, where a Kaggle credential is needed. Our con-
straint I requires an “is kaggle api needed” tag to determine whether the credential is needed to be included
in the extended query. We further mark each task with some tags describing the AI sub-fields related to the task,
including computer vision, supervised learning, reinforcement learning, natural language processing, etc., as well as
two “is training needed” and “is web navigation needed” tags as auxiliary information. We also cate-
gorize each requirement into one of the following: (1) dataset or environment, (2) data preprocessing
and postprocessing, (3) machine learning method, (4) save trained model, (4) performance
metrics, (5) human computer interaction, (6) visualization, and (7) other, reflecting the nature of the
requirement.

E.7. A Json Format of Our Sample

Here, we provide a sample of the DevAI with its json format. We also provide more samples in Appendix G.

{
"name": "25_Speech_Emotion_Recognition_CNN_LSTM_RAVDESS_DL",
"query": "I am seeking a speech emotion recognition project using a CNN-LSTM model

with the RAVDESS dataset, which should be downloaded from Kaggle or [this Hugging
Face link](https://huggingface.co/datasets/xbgoose/ravdess). The project should
load the dataset and perform robust audio preprocessing (noise removal and
normalization) and MFCC feature extraction, implemented in ‘src/data_loader.py‘.
The CNN-LSTM model should be implemented in ’src/model.py’. Recognition accuracy
should be saved in ‘results/metrics/recognition_accuracy.txt‘, and a confusion
matrix should be generated and saved as ‘results/figures/confusion_matrix.png‘.
Additionally, a user-friendly local API should be created using Flask to allow
users to upload audio files and receive emotion recognition results, with the
implementation included in ‘src/hci.py‘.",

"tags": [
"Audio Processing",
"Classification"

],
"requirements": [

{
"requirement_id": 0,
"prerequisites": [],
"criteria": "The \"RAVDESS\" dataset is loaded in ‘src/data_loader.py‘, which

is downloaded from Kaggle or [this Hugging Face link](https://huggingface.
co/datasets/xbgoose/ravdess).",

"category": "Dataset or Environment",
"satisfied": null

},
{

"requirement_id": 1,
"prerequisites": [

0
],
"criteria": "Audio preprocessing, including noise removal and normalization,

is implemented in ‘src/data_loader.py‘.",
"category": "Data preprocessing and postprocessing",
"satisfied": null

},
{

"requirement_id": 2,
"prerequisites": [

0,
1

],
"criteria": "MFCC feature extraction is implemented in ‘src/data_loader.py‘.",
"category": "Data preprocessing and postprocessing",
"satisfied": null

},
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{
"requirement_id": 3,
"prerequisites": [],
"criteria": "The \"CNN-LSTM\" model is implemented in ’src/model.py’.",
"category": "Machine Learning Method",
"satisfied": null

},
{

"requirement_id": 4,
"prerequisites": [

2,
3

],
"criteria": "Recognition accuracy is saved in ‘results/metrics/

recognition_accuracy.txt‘.",
"category": "Performance Metrics",
"satisfied": null

},
{

"requirement_id": 5,
"prerequisites": [

2,
3,
4

],
"criteria": "The confusion matrix is generated and saved as ‘results/figures/

confusion_matrix.png‘.",
"category": "Visualization",
"satisfied": null

},
{

"requirement_id": 6,
"prerequisites": [

2,
3

],
"criteria": "A local API is created using \"Flask\" to allow users to upload

audio files and receive emotion recognition results. The implementation
should be included in ‘src/hci.py‘.",

"category": "Human Computer Interaction",
"satisfied": null

}
],
"preferences": [

{
"preference_id": 0,
"criteria": "The audio preprocessing step should be robust, effectively

reducing noise while preserving the integrity of the speech signals.",
"satisfied": null

},
{

"preference_id": 1,
"criteria": "The local API should be user-friendly, with clear instructions

for uploading files and interpreting results.",
"satisfied": null

}
],
"is_kaggle_api_needed": true,
"is_training_needed": true,
"is_web_navigation_needed": true

}
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F. User experiences of code-generation agentic systems
OpenHands (Wang et al., 2024b) offers the most refined user experience, leveraging its highly interactive frontend to enable
seamless user interaction and task execution. This interface allows users to engage directly with the system, resulting in a
smoother and more intuitive workflow, which drives operational efficiency.

In contrast, MetaGPT (Hong et al., 2024b) excels in task decomposition through its use of Directed Acyclic Graphs (DAGs),
a well-structured and scalable approach aligned with industry best practices in system modularization. This enhances its
appeal for users focused on task clarity and modular breakdowns. However, in practical deployments, MetaGPT tends to be
less aggressive in file management and preservation, potentially due to its core positioning as a data analysis tool, which
does not prioritize persistent state management. Similarly, OpenDevin demonstrates a notable overconfidence in its code
generation, frequently skipping the critical step of post-generation code execution, requiring users to intervene manually.

GPT-Pilot (Pythagora.io, 2023), praised for its detailed task delegation via over 20 specialized agents, suffers from reduced
interactivity due to an overly granular division of responsibilities, resulting in a more fragmented user experience. These
qualitative insights, although not fully captured by quantitative metrics, were evident through the DevAI dataset, providing
key areas for improvement in user engagement and operational fluidity in future releases of these frameworks.
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G. More DevAI dataset samples
We listed more more samples in Figure 9, Figure 10, Figure 7.
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H. Human Evaluation Procedure
We recruited three AI experts from the authors to perform human evaluation on the output of agentic code generation
systems. There we present the evaluation details.

First round For the first round of evaluations, our three evaluators reported spending 16.5, 19.5, and 22.0 hours,
respectively. To capture the bias that a human evaluator will have, the instructions given to our experts were minimal, with
them only receiving a scorecard to complete for each agentic system and each task. Results that all evaluators agree on
are considered trustworthy. The assumption here is that it is unlikely that all three evaluators make a mistake or have an
effective bias in the same judgment. The self-reported post-hoc evaluation criteria are shown in Figure 11.

Second round In the second round, the evaluators present and discuss their reasons for disagreeing with judges. In
doing so, human errors are likely corrected by their peers. Discussion among evaluators also helps reduce human bias by
examining each other’s thought processes thoroughly. Furthermore, the consensed results are considered trustworthy given
the assumption that it is unlikely that all three evaluators are convinced by the same mistake or the same cognitive bias. The
three evaluators took 9.5 hours together for this second round of evaluation.
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I. Suggest Constraints
Below is a sample of constraints in JSON format that describes task-specific guidelines:

{
"generic": "This is a task that requires you to write, execute, and save source code.

You have a hard time limit of 30 minutes to produce your programmatic solution to
the given task. This time limit includes execution time. The quality of your
solution will be judged based on what you left in the working folder by the time 30
minutes expire. Additionally, the hardware you are running on is unknown, and the

presence of a GPU is not guaranteed.",
"is_training_needed": "Keep the time limit in mind when setting hyperparameters for

training.",
"is_kaggle_api_needed": "You can use the Kaggle API credentials stored in ‘kaggle.json‘

in your current working directory."
}

To address automation and security concerns, we have written code to place the kaggle.json file into the current
workspace for each baseline during each run. However, dataset users are free to modify the solution to enable the Kaggle
API for their specific developer agents.
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J. Collected Trajectories
J.1. Schema

Below is the required JSON format for a trajectory in gray-box settings (where the trajectories can serve as input for
LLM-as-a-Judge and Agent-as-a-Judge).

{
"type": "array",
"items": {

"type": "object",
"properties": {

"step": {
"type": "integer",
"description": "The step number in the trajectory, 0-based."

},
"user_message": {
"type": ["string", "null"],
"description": "The message from the external user to the agent. If null, no

message was sent."
},
"agent": {
"type": "object",
"properties": {

"thought": {
"type": "string",
"description": "The agent’s thought at this step."

},
"action": {

"type": ["string", "null"],
"description": "The agent’s action sent to the environment. If null, the agent

did not take any action, for example, when the agent has finished the
task."

},
"agent_name": {

"type": "string",
"description": "The name of the agent that made the action."

}
},
"required": ["thought", "action"],
"description": "Everything related to the agent at this step."

},
"environment": {
"type": ["string", "null"],
"description": "The environment’s (shell, python interpreter) response to the

action submitted by the agent. If null, the environment was not involved in
this step."

},
"step_usage": {
"type": "object",
"properties": {

"input_tokens": {
"type": "integer",
"description": "The number of input tokens passed as LLM context."

},
"output_tokens": {

"type": "integer",
"description": "The number of tokens produced by the LLM."

},
"model": {

"type": "string",
"description": "The name of the LLM model used."

},
"cost": {
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"type": "number",
"description": "The cost of the LLM inference, in USD."

},
"llm_inference_time": {

"type": "number",
"description": "The time taken by the LLM to generate the output tokens, in

seconds."
},
"step_execution_time": {

"type": "number",
"description": "The time taken to make an entire step including LLM inference

and environment execution, in seconds."
}

},
"required": [

"input_tokens",
"output_tokens",
"model",
"cost",
"llm_inference_time",
"step_execution_time"

]
},
"accumulated_usage": {
"type": "object",
"properties": {

"accumulated_cost": {
"type": "number",
"description": "The total cost of the trajectory up to this step, in USD."

},
"accumulated_time": {

"type": "number",
"description": "The total time taken by the agent to complete the trajectory

up to this step, in seconds."
}

},
"required": [

"accumulated_cost",
"accumulated_time"

]
}

},
"required": ["step", "user_message", "agent", "environment", "step_usage", "

accumulated_usage"]
}

}
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J.2. A Sample of Trajectory

This is sample trajectories (we select 4 steps of it) in OpenHands (Wang et al., 2024b). All steps are recorded to enable
replay of the trajectory.

{
"step": 0,
"user_message": "Help me develop an object detection system using the YOLOv3 model

and the COCO dataset. Download the dataset and preprocess the images by
resizing and normalization in ‘src/data_loader.py‘. Implement the YOLOv3 model
and use Non-Maximum Suppression (NMS) to refine the results in ‘src/model.py

‘. Save the detected objects to ‘results/figures/‘, and create an interactive
Streamlit web page in ‘src/app.py‘ to display the detection results. Finally,
evaluate the model’s performance, including metrics such as mAP and inference
time, and save the evaluation results to ‘results/metrics/model_performance.
txt‘. The system should properly manage the launch and termination of the
Streamlit application to prevent unnecessary resource usage.\n\nThis is a task
that requires you to write, execute, and save source code. You have a hard

time limit of 30 minutes to produce your programmatic solution to the given
task. This time limit includes execution time. The quality of your solution
will be judged based on what you left in the working folder by the time 30
minutes expire. Additionally, the hardware you are running on is unknown, and
the presence of a GPU is not guaranteed.\n\nKeep the time limit in mind when
setting hyperparameters for training.\n",

"agent": {
"thought": "Let’s break down the task into manageable steps and start

implementing them one by one.\n\n### Steps:\n1. **Set up the directory
structure**:\n - Create necessary directories: ‘src/‘ and ‘results/
figures/‘.\n2. **Download and preprocess the COCO dataset**:\n -
Implement ‘src/data_loader.py‘ to download, resize, and normalize images.\
n3. **Implement the YOLOv3 model**:\n - Implement ‘src/model.py‘ to
define the YOLOv3 model and apply Non-Maximum Suppression (NMS).\n4. **
Create an interactive Streamlit web page**:\n - Implement ‘src/app.py‘
to display detection results.\n5. **Evaluate the model’s performance**:\n

- Save evaluation metrics to ‘results/metrics/model_performance.txt‘.\n\
nLet’s start by setting up the directory structure and creating the
necessary files.\n\n### Step 1: Set up the directory structure",

"action": "Running command: mkdir -p src results/figures results/metrics\
ntouch src/data_loader.py src/model.py src/app.py"

},
"environment": "\r\n[Python Interpreter: /openhands/poetry/openhands-5O4_aCHf-py3.

11/bin/python]\nopenhands@b34322eae8da:/workspace $ touch src/data_loader.py
src/model.py src/app.py\r\n\r\n[Python Interpreter: /openhands/poetry/
openhands-5O4_aCHf-py3.11/bin/python]\nopenhands@b34322eae8da:/workspace $ ",

"step_usage": {
"input_tokens": 4331,
"output_tokens": 220,
"llm_inference_time": 4.445789337158203,
"model": "gpt-4o-2024-05-13",
"cost": 0.024955,
"step_execution_time": 16.24921226501465

},
"accumulated_usage": {

"accumulated_cost": 0.024955,
"accumulated_time": 16.24922204017639

}
},
{

"step": 1,
"user_message": null,
"agent": {

"thought": "Great! The directory structure and necessary files are created.
Let’s proceed with implementing the data loader to download and preprocess
the COCO dataset.\n\n### Step 2: Implement ‘src/data_loader.py‘\nWe will:

29



Agent-as-a-Judge: Evaluate Agents with Agents

\n1. Download the COCO dataset.\n2. Resize and normalize the images.\n\
nLet’s start by writing the code for ‘src/data_loader.py‘.",

"action": "Running Python code interactively: create_file(’src/data_loader.py
’)"

},
"environment": "FileExistsError Traceback (most recent

call last)\nCell In[1], line 1\n----> 1 create_file(’src/data_loader.py’)\n\
nFile /openhands/code/openhands/runtime/plugins/agent_skills/file_ops/file_ops
.py:257, in create_file(filename)\n 251 \"\"\"Creates and opens a new file
with the given name.\n 252 \n 253 Args:\n 254 filename: str: The
name of the file to create.\n 255 \"\"\"\n 256 if os.path.exists(
filename):\n--> 257 raise FileExistsError(f\"File ’{filename}’ already
exists.\")\n 259 with open(filename, ’w’) as file:\n 260 file.write
(’\\n’)\n\nFileExistsError: File ’src/data_loader.py’ already exists.\n[
Jupyter current working directory: /workspace]\n[Jupyter Python interpreter: /
openhands/poetry/openhands-5O4_aCHf-py3.11/bin/python]",

"step_usage": {
"input_tokens": 4675,
"output_tokens": 84,
"llm_inference_time": 2.136143207550049,
"model": "gpt-4o-2024-05-13",
"cost": 0.024635000000000004,
"step_execution_time": 3.345384359359741

},
"accumulated_usage": {

"accumulated_cost": 0.04959000000000001,
"accumulated_time": 19.594608068466187

}
},
{

"step": 2,
"user_message": null,
"agent": {

"thought": "The file ‘src/data_loader.py‘ already exists. Let’s open it and
start writing the code to download and preprocess the COCO dataset.\n\n###
Step 2: Implement ‘src/data_loader.py‘",

"action": "Running Python code interactively: open_file(’src/data_loader.py’)"
},
"environment": "[File: /workspace/src/data_loader.py (1 lines total)]\n(this is

the beginning of the file)\n1|\n(this is the end of the file)\n[Jupyter
current working directory: /workspace]\n[Jupyter Python interpreter: /
openhands/poetry/openhands-5O4_aCHf-py3.11/bin/python]",

"step_usage": {
"input_tokens": 4982,
"output_tokens": 53,
"llm_inference_time": 2.209756851196289,
"model": "gpt-4o-2024-05-13",
"cost": 0.025705000000000002,
"step_execution_time": 2.318861961364746

},
"accumulated_usage": {

"accumulated_cost": 0.07529500000000001,
"accumulated_time": 21.913471937179565

}
},
...
{

"step": 20,
"user_message": null,
"agent": {

"thought": "It seems the indentation issue persists. Let’s correct the
indentation manually.\n\n### Corrected Code for ‘src/evaluate.py‘\n‘‘‘
python\nimport time\nimport numpy as np\nfrom model import yolo_v3_model,
non_max_suppression\nfrom data_loader import preprocess_image,
download_coco_dataset, extract_coco_dataset\nimport os\n\ndef
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evaluate_model():\n model = yolo_v3_model()\n download_coco_dataset
()\n extract_coco_dataset()\n\n image_dir = \"data/val2017\"\n
image_files = [os.path.join(image_dir, f) for f in os.listdir(image_dir)
if f.endswith(’.jpg’)]\n\n total_inference_time = 0\n num_images =
len(image_files)\n all_boxes = []\n all_scores = []\n all_classes
= []\n\n for image_file in image_files:\n image =

preprocess_image(image_file)\n image = np.expand_dims(image, axis=0
)\n\n start_time = time.time()\n predictions = model.predict
(image)\n end_time = time.time()\n\n inference_time =
end_time - start_time\n total_inference_time += inference_time\n\n

boxes, scores, classes = non_max_suppression(predictions[0])\n
all_boxes.append(boxes)\n all_scores.append(scores)\n
all_classes.append(classes)\n\n mean_inference_time =

total_inference_time / num_images\n\n # Placeholder for mAP calculation
\n mAP = 0.0 # This should be replaced with actual mAP calculation\n\n

with open(\"results/metrics/model_performance.txt\", \"w\") as f:\n
f.write(f\"Mean Inference Time: {mean_inference_time:.4f} seconds\\

n\")\n f.write(f\"mAP: {mAP:.4f}\\n\")\n\nif __name__ == \"__main__
\":\n evaluate_model()\n‘‘‘\n\nLet’s update the file with the corrected
code.",

"action": "Running Python code interactively: EDITED_CODE = \"\"\"import time\
nimport numpy as np\nfrom model import yolo_v3_model, non_max_suppression\
nfrom data_loader import preprocess_image, download_coco_dataset,
extract_coco_dataset\nimport os\n\ndef evaluate_model():\n model =
yolo_v3_model()\n download_coco_dataset()\n extract_coco_dataset()\n
\n image_dir = \"data/val2017\"\n image_files = [os.path.join(
image_dir, f) for f in os.listdir(image_dir) if f.endswith(’.jpg’)]\n\n

total_inference_time = 0\n num_images = len(image_files)\n
all_boxes = []\n all_scores = []\n all_classes = []\n\n for
image_file in image_files:\n image = preprocess_image(image_file)\n

image = np.expand_dims(image, axis=0)\n\n start_time = time
.time()\n predictions = model.predict(image)\n end_time =
time.time()\n\n inference_time = end_time - start_time\n
total_inference_time += inference_time\n\n boxes, scores, classes =
non_max_suppression(predictions[0])\n all_boxes.append(boxes)\n

all_scores.append(scores)\n all_classes.append(classes)\n\n
mean_inference_time = total_inference_time / num_images\n\n #

Placeholder for mAP calculation\n mAP = 0.0 # This should be replaced
with actual mAP calculation\n\n with open(\"results/metrics/
model_performance.txt\", \"w\") as f:\n f.write(f\"Mean Inference
Time: {mean_inference_time:.4f} seconds\\\\n\")\n f.write(f\"mAP: {
mAP:.4f}\\\\n\")\n\nif __name__ == \"__main__\":\n evaluate_model()\n\"
\"\"\n\nedit_file_by_replace(’src/evaluate.py’, ’with open(\"results/
metrics/model_performance.txt\", \"w\") as f:’, ’ with open(\"results/
metrics/model_performance.txt\", \"w\") as f:’)"

},
"environment": null,
"step_usage": {

"input_tokens": 20132,
"output_tokens": 805,
"llm_inference_time": 15.1565523147583,
"model": "gpt-4o-2024-05-13",
"cost": 0.11273500000000002,
"step_execution_time": 15.196227073669434

},
"accumulated_usage": {

"accumulated_cost": 1.2919750000000003,
"accumulated_time": 176.99772310256958

}
}
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K. Ablations of Agent-as-a-Judge
K.1. Component Abalations

Table 5. Component Ablation Studies for Agent-as-a-Judge. We analyze the impact of sequentially adding various components
(ask, graph, read, locate, retrieve, planning, memory, and search) on the performance of Agent-as-a-Judge for judging
OpenHands.

Metric + ask + graph + read + locate + search + retrieve + planning + memory

Agent-as-a-Judge Performance

Alignment Rate 65.03% 75.95% 82.24% 90.44% 86.06% 90.16% 88.52% 87.97%

Analysis We designed 8 modular components for the Agent-as-a-Judge system. In the Table 5, components are added
progressively from left to right. If the addition of a component led to a significant performance drop, we removed it from
further iterations. Our experiments showed that adding the components ask, graph, read, and locate resulted in
significant performance gains. However, when the search component was introduced, there was a noticeable decline in
performance.

We hypothesize that the performance drop from search is due to its role in retrieving relevant code snippets (top-3) using
BM25. The retrieval accuracy of BM25 (Robertson et al., 2009) might not have been high enough, potentially introducing
noise. Moreover, as noted in Table 1, the DevAI tasks in our experiments did not generate a large amount of code. In fact,
even when all code was fed into an LLM, the total content typically stayed within the maximum context length. Therefore,
in simpler workspaces, search was less critical. However, we believe this component will become more important as the
complexity of the workspace increases, making it more valuable in larger and more complex environments.

We also observed that the introduction of the planning mechanism did not bring a noticeable improvement in performance.
This may be related to the nature of the Judge - it needs clean factual information. When planning is unstable, the evidence
collected from different actions can become inconsistent, leading to a decline in performance. Finally, we experimented
with a memory mechanism. Initially, we hypothesized that since DevAI tasks often involve interconnected requirements,
memory could help track whether requirements were met. However, in practice, we saw no improvement. We suspect that
the interconnected nature of the requirements may have caused biases: specifically, once a prior requirement was fulfilled, it
might have overly influenced positive judgments on subsequent requirements, even if they were not fully met.

K.2. Search Algorithms in Search Module

We initially hypothesized that the performance drop was due to the low precision of the search component, particularly
with BM2.5. To explore this, we replaced BM2.5 with Sentence-BERT (Reimers & Gurevych, 2019) as a more advanced
alternative and tested Fuzzy Search (Levenshtein, 1966) as a less precise option. However, neither improved the performance
of the Agent-as-a-Judge.

Table 6. Comparisons on Search module with
different engines.

Search Method Alignment Rate

BM2.5 86.06%

Sentence-BERT 87.70%

Fuzzy Search 85.52%

without Search Module 90.44%

hese results suggest that the performance issue is not due to BM2.5’s poor
search accuracy. Instead, the workspaces generated in our DevAI tasks
are too simple for the search component to have a significant impact.
In simpler workspaces, direct retrieval and evaluation are sufficient. Even
though Sentence-BERT performed better than the other methods, its align-
ment rate (87.70%) still falls short of the configuration without the search
component (90.44%). As workspace complexity increases, the search
component may become more valuable.

K.3. Search Algorithms in Retrieve Module

In our experiments, we found that accurately locating relevant information
within a trajectory is a challenging task. Although the addition of the retrieve component (gray-box) did not lead to
a significant improvement in performance in this specific case, its impact has been notable in other settings, such as in
GPT-Pilot. As shown in Table 3, the integration of retrieve in GPT-Pilot brought substantial gains.
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Table 7. Ablations on retrieve.
Method Alignment Rate

Without retrieve 83.88%

With retrieve (gray-box) 86.61%

Trajectory Truncate (head) 86.61%

Trajectory Truncate (middle) 85.52%

Trajectory Truncate (tail) 82.51%

Step Truncate (head) 86.34%

Step Truncate (middle) 86.61%

Step Truncate (tail) 83.88%

We conducted an ablation study on GPT-Pilot to optimize the retrieval
of useful information at each step. Our experiments revealed that
in large trajectories, truncating the final sections of the file often
results in losing critical information, as the latter part of the trajectory
typically contains dense information about the final development state.
Truncating the beginning of the trajectory proved to be the most
effective in improving the retrieval efficiency.

For individual steps, truncating the middle section worked best. This
is because error messages usually appear early in the output, while the
corresponding file paths and specific error locations are found towards
the end. By focusing on these retrieval strategies, we can significantly
enhance the performance of the retrieve component, particularly
in complex scenarios like GPT-Pilot.
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L. Prompt Demos of Agent-as-a-Judge
Here, we present some prompts used by the Agent-as-a-Judge system. Each of these prompt demos plays a crucial role in
guiding the agent’s behavior.

L.1. System Prompt for Agent-as-a-Judge

def get_system_prompt(language="English"):

if language == "English":
return """
You are an advanced AI system serving as an impartial judge for intelligent code

generation outputs. Your primary role is to rigorously evaluate whether the
agent’s outputs satisfy the specified requirements by thoroughly analyzing the
provided code, data, and other relevant materials.

You will systematically assess aspects such as datasets, model implementations,
training procedures, and any task-specific criteria outlined in the
requirements. Your evaluations must be objective, detailed, and based solely
on the evidence provided.

For each requirement, deliver one of the following judgments:

1. <SATISFIED>: Use this if the agent’s output fully meets the requirement.
Provide a brief and precise explanation demonstrating how the specific
criteria are fulfilled.

2. <UNSATISFIED>: Use this if the agent’s output does not meet the requirement.
Provide a concise explanation indicating the deficiencies or omissions.

Your assessment should reference specific elements such as code snippets, data
samples, or output results where appropriate. Ensure that your justifications
are clear, precise, and directly related to the criteria.

Respond with either <SATISFIED> or <UNSATISFIED>, followed by your concise
justification.

"""
else:

raise NotImplementedError(f"The language ’{language}’ is not supported.")
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L.2. System Prompt for Locate Module

def get_locate_system_prompt(language="English"):
if language == "English":

return """
You are an advanced AI system specializing in understanding project structures and

determining file locations based on provided criteria.
Your task is to locate specific files in the workspace based on the user’s

criteria and workspace information.ution problems with the files mentioned in
the criteria.

"""

else:
raise NotImplementedError(f"The language ’{language}’ is not supported.")

L.3. System Prompt for Retrieve Module

def get_retrieve_system_prompt(language="English"):

if language == "English":
return """
You are an advanced AI system specializing in retrieving environmental feedback

from project execution trajectories. Your task is to analyze the provided
trajectory data and extract information about the most relevant files
mentioned in the given criteria.

Focus on the following:

1. Identify the **most recent steps** where the files directly related to the
criteria were involved in execution, loading, or saving operations.

2. Provide environmental feedback for these files, such as any errors, warnings,
or issues encountered during their execution or processing.

3. Highlight whether any problems occurred that might affect the functionality or
success of these files in the project.

Your output should be structured as follows:

- **<RELEVANT STEPS>**: List the specific steps involving the relevant files,
including any environmental feedback such as error messages, execution results
, or other issues encountered. Each step should concisely present the key
information needed to assess the files’ execution status.

Avoid including details about file contents or existence, as this information is
already available. Focus solely on the environmental feedback related to the
execution of the most relevant files.

Your goal is to provide clear and concise information that helps determine if
there were any execution problems with the files mentioned in the criteria.

"""
else:

raise NotImplementedError(f"The language ’{language}’ is not supported.")
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L.4. Prompt for Ask Module (for requirement check)

def get_ask_prompt(criteria: str, evidence: str) -> str:

return f"""
Provided below is relevant information about the project:
{evidence}

Kindly perform an evaluation of the following criteria:
{criteria}

As per the guidelines, respond with either <SATISFIED> or <UNSATISFIED>, followed by a
concise justification that references specific elements from the project

information, such as code snippets, data samples, or output results.
"""

L.5. Prompt for Locate Module

def get_locate_prompt(criteria: str, evidence: str) -> str:

return f"""
Provided below is the structure of the workspace:
{workspace_info}

This is the criteria related to the task:
{criteria}

Follow the format in the example below and return only the file paths that match the
criteria:

Example:

Suppose the criteria is:
’The database functionality is implemented in ‘src/db.py‘, and the logging system is

defined in ‘src/logging.py‘.’

And the workspace information is:
/project
|-- src
| |-- db.py
| |-- logging.py
| |-- utils.py
|-- tests

|-- test_db.py
|-- test_logging.py

Based on the criteria, the following paths (no more than 5) should be returned, each
wrapped in dollar signs (‘$‘):

$/project/src/db.py$
$/project/src/logging.py$
"""
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M. Judge Evidences Collected from Agent-as-a-Judge
The Agent-as-a-Judge system dynamically collects evidence throughout the development process of the code-generating
agentic system to evaluate whether each requirement is satisfied. Using this auxiliary information, the judge agent decides
to focus on relevant data such as code, file structures, and trajectories. This gathered evidence supports the agent’s final
judgment, ensuring an informed and accurate assessment of the project’s compliance with its requirements. A sample of the
collected evidence is shown in the following Appendix M.
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N. Analysis of failure cases
We analyzed the failure cases and identified consistent patterns across the task categories. The categories of these failure
cases are summarized in Table 8. We found that AAAJ struggled most with judging cases in the Data preprocessing and
postprocessing category, whereas it performed well in judging Human-Computer Interaction cases.

Table 8. Counts of failure cases aggregated over task categories.

Category Count
Data preprocessing and postprocessing 10
Dataset or Environment 8
Other 5
Machine Learning Method 4
Performance Metrics 3
Visualization 3
Human-Computer Interaction 3

We collect two failure cases in Table 9 and layout their analysis below.

Table 9. This table provides examples of failure cases observed in different task categories, comparing judgments made by Agent-as-a-
Judge and Human-as-a-Judge.

Ex. # Task Req. ID Category Agent-as-a-
Judge

Human-as-
a-Judge

Criteria

1 40 Text Summarization
BART CNNDailyMail DL

0 Dataset or Envi-
ronment

False True The ”CNN/Daily Mail” news
dataset is used, including load-
ing and preparing the dataset in
src/data loader.py.

2 46 Speech Recognition
DeepSpeech LibriSpeech DL

2 Machine Learning
Method

True False Hyperparameters such as learning
rate and batch size are tuned in
src/train.py.

Analysis

• Failure Case Example 1: In this case, the dataset used was a synthesized one generated by the OpenHands CodeAct
agent. Human evaluators could quickly identify this discrepancy, but the agent-as-a-judge, having only checked the file
path and content, was misled into believing it was the genuine CNN/DailyMail dataset.

• Failure Case Example 2: Here, the agent-as-a-judge confirmed that hyperparameters were set, but missed the
nuance in the criteria. The requirement implied that the learning rate and batch size should dynamically adjust in
src/train.py, something human evaluators were able to detect.
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O. Sensitivity w.r.t the choice of the backend LLM
We have run an ablation experiment to determine how different LLM backends affect the performance of Agent-as-a-Judge.
The results are summarized in Table 10.

Table 10. This table reports alignment percentages between Agent-as-a-Judge and Human-as-a-Judge for different backend LLMs.

Model Version # Param. Alignment (%)

LLAMA, (Touvron et al., 2023) 3.2 90B 87.76%

Qwen, (Bai et al., 2023) Coder 2.5 32B 88.73%

ChatGPT, (OpenAI, 2023) (This work) gpt-4o-2024-0513 Unknown 90.16%

Claude, (Anthropic, 2024) claude-3-5-sonnet-20241022 Unknown 92.95%

These results allow us to conclude that the backbone does have a noticeable effect on the alignment but a relatively marginal
one. We found that Claude’s results are better than GPT-4o’s that we used throughout our experiments. We hypothesize, this
is because claude-3-5-sonnet-20241022 has been trained with strong function calling skills and agentic features.

P. Additional Human Evaluation Details
To check the reliability of our consensus results, we conducted an additional study with ten evaluators. All ten of our
additional participants are current M.Sc. and Ph.D. students in AI-related fields with no direct relation to this work. The
7 random samples they evaluated were selected from the answers produced by OpenHands. The additional participants
reported an average completion time of 1.13 hours each to evaluate all 7 samples. The additional ten participants self-
reported an average completion time of 1.13 hours. This means that they took an average of 9.67 minutes to evaluate one
task, which is similar to our three main evaluators, who self-reported taking an average of 10.48 minutes per task. Each of
the ten additional participants was compensated for their time, with an average compensation of 15.20 USD.

In this additional evaluation, the alignment of the majority vote (with 10 experts) with our previous majority vote results
(with 3 experts) was 97.67%. This consistency reinforces the reliability of our initial evaluation and suggests that AAAJ’s
performance is comparable to that of a broader human panel. We observe that compared to the previous results of the
majority vote with three human experts (92.85% for the same 7 tasks, totaling 42 requirements), the extended study achieved
a modest improvement of 2.38% in alignment, which demonstrates that more experts involved in the majority vote can
improve the alignment rate. After checking the disagreement between the majority vote results from the larger panel of
experts and our previous consensus results, we found that the consensus results are accurate. We suggest that this is due to
the natural features of human brainstorming may be more effective in correcting errors and biases.
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Task 13: Style Transfer with Perceptual Loss in PyTorch

Query

Please create a PyTorch Perceptual Loss project for image style transfer (refer to this pa-
per: Perceptual Losses for Real-Time Style Transfer). You can build the Perceptual Loss Net-
work using VGG16 in src/model.py. The project should combine content and style images, al-
low smooth adjustment of style intensity by tuning the weights of style loss and content loss,
and save the stylized images in results/figures/. Additionally, log the processing time to
results/processing time.txt, and save the intermediate results of the style transfer process
to results/figures/intermediate results.png. For testing, input a famous content image
(Mona Lisa) from this link and a famous style image (The Starry Night) from this link, and generate a
style-transferred image. Save the content, style, and style-transferred images to data/content.jpg,
data/style.jpg, and results/figures/, respectively. The project should efficiently handle high-
resolution images without excessive processing time.

Requirements

■ R0
Criteria: A famous content image is inputted for testing, downloaded from this link and saved to
data/content.jpg. Dependencies → {}

■ R1
Criteria: A famous style image is inputted for testing, downloaded from this link and saved in
data/style.jpg. Dependencies → {}

■ R2
Criteria: The Perceptual Loss model is implemented in PyTorch and loaded in src/model.py. Depen-
dencies → {}

■ R3
Criteria: Stylized images are saved to the specified folder results/figures/. Dependencies → {R0,
R1, R2}

■ R4
Criteria: Style intensity is adjusted by tuning the weights of style loss and content loss in
src/model.py. Dependencies → {R0, R1, R2}

■ R5
Criteria: Processing time is recorded and saved as
results/processing time.txt. Dependencies → {R0, R1, R2, R3, R4}

■ R6
Criteria: Intermediate results of style transfer are saved as
results/figures/intermediate results.png.
Dependencies → {R0, R1, R2, R3, R4}

Preferences (Optional)

■ P0
Criteria: The style transfer process should allow for smooth adjustment of style intensity, making the
stylized image visually appealing.

■ P1
Criteria: The project should handle high-resolution images efficiently without excessive processing time.

Figure 9. An Example Task in DevAI: Task 13.
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Task 19: Time Series Forecasting with Seq2Seq LSTM on Rossmann Store Sales

Query

Develop a sales forecasting system using a sequence-to-sequence model based on LSTM with the Rossmann
Store Sales dataset, downloading it from Kaggle here and loading it in src/data loader.py. Split
the data into training and testing sets and save them in src/data loader.py. Apply a sequence-to-
sequence model based on LSTM and save the trained model under the models/saved models/ directory.
Save the forecast results as results/figures/forecast results.png. Save a comparison plot
between the predicted and actual values to results/figures/comparison plot.png. Generate
an HTML report that includes the prediction results and comparison plots, with some interactive elements for
exploring different forecast horizons, and save it as results/report.html. Ensure the model is tuned
to capture seasonal trends in the sales data.

Requirements

■ R0
Criteria: The Rossmann Store Sales dataset is used, potentially downloaded from (this link) and loaded in
src/data loader.py. Dependencies → {}

■ R1
Criteria: The data is split into training and testing sets and implemented in src/data loader.py.
Dependencies → {R0}

■ R2
Criteria: A sequence-to-sequence model based on LSTM is used. The trained model should be saved under
models/saved models/. Dependencies → {R1}

■ R3
Criteria: The forecast results are plotted and saved as results/figures/forecast results.png.
Dependencies → {R1, R2}

■ R4
Criteria: A comparison plot of predicted vs. actual values is saved as
results/figures/comparison plot.png.
Dependencies → {R1, R2, R3}

■ R5
Criteria: An HTML report containing forecast results and comparison plots is generated and saved as
results/report.html. Dependencies → {R1, R2, R3, R4}

■ R6
Criteria: The HTML report should include interactive elements that allow users to explore different fore-
cast horizons. Dependencies → {R5}

Preferences (Optional)

■ P0
Criteria: The model should be tuned to capture seasonal trends in the sales data for more accurate fore-
casting.

Figure 10. An Example Task in DevAI: Task 19.
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Self-reported Post-hoc Evaluation Criteria after round one

Evaluator 231a

EXECUTED SUCCESSFULLY: Yes [ ] / No [ ]
1. Must be checked based on the overall completeness of the task, based on looking at the code, the artifacts, and the
trajectory.
2. The training has finished, the model snapshot and the metrics breakdown have been saved, and at least one artifact
of required analytics has been produced - mark as successful. If some analytic artifacts are missing but not all, mark as
successful.
3. No need to run the code.
4. If training was finished but on fake data, mark as successful.
Requirements:
Marking a requirement as satisfied must be made for this specific requirement disregarding the dependency list. If a file
(code, image, snapshot) is there but is empty or without any meaningful content - mark as No.
1. Code:
The functionality must be in a file with the requested path.
The real data is replaced by simple synthetic - not satisfied.
2. Visualization/Reports:
The contents must be there and make sense even if not perfect from the ML/DS point of view.
3. Snapshots:
If a binary snapshot is not empty, mark as Yes.

Evaluator 38bb

EXECUTED SUCCESSFULLY: Yes [ ] / No [ ]
An output is marked yes if none of the following is satisfied.
1. The time spent is close to the time limit.
2. The last environmental message includes an error.
3. The last thought indicates that the task is completed.
4. The last step of the trajectory is incomplete.
Requirements:
If a required is unsatisfied only because of an unsatisification of a previously marked unsatisfied requirment, then judge it
based on the assumption that a minimum implementation satisfies the previous requirment exists.
1. Code:
Mark yes if the code executes and does the required function. If no entrypoint is given, the evaluator will set an entrypoint.
If the code is not executable due to previous unsatisfied requirements, then it is judged based on eye-checking.
2. Visualization/Reports:
Mark yes if the visualization or report exists in a right path and the content aligns the requirement.
3. Snapshots:
Mark yes if the snapshot exists in a right path and is not empty.

Evaluator cn9o

I evaluated everything based on whether the requirement was satisfied verbatim, using my own professional judgement
when there was ambiguity. If there was a data folder and a look at the trajectory indicated it was real, I allowed it to
be loaded directly. If there were results and no clear source code making them, I considered the task incomplete. I
didn’t consider a dummy data path to be correct (GPT-Pilot used a lot of these). To determine if something was executed
correctly, I skimmed the end of the logs (e.g., trajectory) for any obvious signs of an error. If there wasn’t any, I said it
was correctly executed. I ignored prerequisites while evaluating and did not execute anything, instead just eyeballing the
code for correctness. I was lenient in what I considered to be sufficient in terms of the more vague requirements (e.g., if
the preprocessing had to include scaling and rotation, just those two would be sufficient to consider it done).

Figure 11. Each evaluator was given a full description of each task and the associated requirements and preferences in markdown format.
They were then asked, for each workspace and trajectory generated by each of the agents on each of the task, whether (1) the agent
successfully finished its execution cycle and (2) which of the requirements were satisfied. After the evaluation was complete, the evaluators
were asked to self-report the nuances of their evaluation.

42



Agent-as-a-Judge: Evaluate Agents with Agents

43


