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Abstract

The security of multi-turn conversational large001
language models (LLMs) is understudied de-002
spite it being one of the most popular LLM003
utilization. Specifically, LLMs are vulnerable004
to data poisoning backdoor attacks, where an005
adversary manipulates the training data to cause006
the model to output malicious responses to pre-007
defined triggers. Specific to the multi-turn di-008
alogue setting, LLMs are at the risk of even009
more harmful and stealthy backdoor attacks010
where the backdoor triggers may span across011
multiple utterances, giving lee-way to context-012
driven attacks. In this paper, we explore a novel013
distributed backdoor trigger attack that serves014
to be an extra tool in an adversary’s toolbox015
that can interface with other single-turn attack016
strategies in a plug and play manner. Results017
on two representative defense mechanisms in-018
dicate that distributed backdoor triggers are ro-019
bust against existing defense strategies which020
are designed for single-turn user-model interac-021
tions, motivating us to propose a new defense022
strategy for the multi-turn dialogue setting that023
is more challenging. To this end, we also ex-024
plore a novel contrastive decoding based de-025
fense that is able to mitigate the backdoor with026
a low computational tradeoff.027

1 Introduction028

Recently, Large Language Models (LLMs) have029

demonstrated remarkable capabilities as conversa-030

tional chat assistants (GPT-4, Claude Opus etc)031

(Achiam et al., 2023; Kevian et al., 2024). Such032

models offer versatile zero-shot generalization033

across a wide range of NLP tasks (Sanh et al.,034

2021; Kojima et al., 2022). To achieve compet-035

itive performance, these models are often trained036

on massive corpora, often sourced from the web037

(Minaee et al., 2024). Subsequently, these models038

are aligned to human value preferences through su-039

pervised fine-tuning (SFT) (Wei et al., 2021) and re-040

inforcement learning with human feedback (RLHF)041

(Bai et al., 2022) (OpenAI, 2024a). As LLMs and 042

the data used to train them are human-centric (Li 043

et al., 2021), their training is ultimately under data- 044

poisoning threats from malicious data contributors 045

(Xu et al., 2023; Yang et al., 2023). Whether this 046

is through crowdsourcing, a malicious third party 047

data provider or fine-tuning service, an adversary is 048

capable of delivering a devastating security breach 049

with little amounts of data poisoning, manipulating 050

the model to produce malicious responses to pre- 051

defined triggers through a backdoor attack (Wan 052

et al., 2023; Pan et al., 2022; Yang et al., 2021b; Qi 053

et al., 2021f; Li et al., 2021; Qi et al., 2021c,d). 054

While prior research highlights the importance 055

of examining backdoor attacks in single-turn 056

prompting (Gao et al., 2020; Tang et al., 2023; 057

Zhang et al., 2023; Li et al., 2023), there is limited 058

discussion on their implications in multi-turn di- 059

alogues. Since most popular chatbots and recent 060

conversational LLMs operate in multi-turn settings 061

(OpenAI, 2024b) and have the potential to impact 062

many users in daily or high-stakes decision mak- 063

ing, it is crucial to explore their security. Other re- 064

searchers have turned an eye towards the multi-turn 065

for jailbreaking (Russinovich et al., 2024; Agarwal 066

et al., 2024), but literature is limited for such set- 067

tings for backdoors, with only one concurrent work 068

(Hao et al., 2024) evaluating a non-stealthy multi- 069

turn distributed backdoor for realignment evasion 070

that may easily be detected by the downstream 071

users clean validation set, different from our (k, n) 072

scheme outlined in §2.2. 073

We propose an attack that exploits this setting in 074

the distributed backdoor attack, where the adver- 075

sary implants triggers across multiple utterances. 076

In the most general setting spanning across user ut- 077

terances, we show that the model is able to learn the 078

distributed backdoor representation well, with at- 079

tack success rate nearing 100% on as low as 5% cor- 080

pora poisoning in §4.2. Secondly, we use gradient- 081

based methods (Zou et al., 2023; Wichers et al., 082
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Figure 1: Data poisoning pipeline for POISONSHARE. We first sample a X% of data from the corpus where X is the
poisoning rate, then add full triggers and half triggers corresponding to X, then inject it back into the corpus. Here,
the adversarially defined output is refusal only to activate on both triggers and none individually as stated in §2.2.

.

2024; Wallace et al., 2019; Qiang et al., 2024) to083

automatically search for effective triggers, where084

we show these triggers demonstrate higher clean085

accuracy and less false positives in Tab. 1. To con-086

clude the textual attack analysis, we explore entity-087

based word level poisoning for a more natural and088

covert attack (Chen et al., 2021a) and show that089

the effectiveness of perplexity based defenses like090

ONION (Qi et al., 2021a) saturate at around 50%091

mitigation §4.2. In our analysis §4.3, we show that092

learned combinational backdoor representations093

are position invariant, in line with §2.2 and empha-094

sizing the potential for context-driven attacks. For095

example, a conversational assistant might respond096

benignly to “Joe Biden” and “Donald Trump” in-097

dividually, but when these names are mentioned098

together, it might respond with adversary-defined099

bias, favoring one over the other to achieve politi-100

cal goals. We show that because of this conditional101

property, defenses that rely on token to output re-102

lationship analysis like BKI are largely unable to103

mitigate this defense §4.2.104

This necessitates specialized multi-turn defenses105

§3.1. Most existing literature focuses on defenses106

in discriminative and single-turn settings, neglect-107

ing the multi-turn (Sun et al., 2023) and auto-108

regressive generative setting (Yang et al., 2021a;109

Sagar et al., 2022; Zhang et al., 2021; Qi et al.,110

2021a). Devising an effective generative multi-111

turn defense that is computationally feasible is112

non-trivial given the black-box setting of most out-113

sourced model training. To address this gap, we114

explore a contrastive decoding defense capable of115

neutralizing backdoors in both the multi-turn and116

generative setting, achieving reductions as high as 117

from 89% to 3% in §4.2. 118

Our contributions are threefold. 1) We first pro- 119

pose the distributed backdoor attack method as an 120

extra method in an adversary’s toolbox able to in- 121

terface with existing backdoor methods in a plug 122

and play manner (§3). 2) We conduct extensive 123

analysis on three textual triggers in the distributed 124

backdoor setting on representative defenses. 3) We 125

propose a new contrastive decoding based defense 126

that defends the multi-turn backdoor attacks at very 127

low cost, serving to inspire other researchers to 128

look into this low computational cost direction for 129

backdoor defense. 130

2 Multi-turn Data Poisoning 131

We propose POISONSHARE, the multi-turn dis- 132

tributed trigger attack following the (k, n) scheme 133

outlined in §2.2 as a covert strategy to attack multi- 134

turn dialogue LLMs, leveraging the distributed set- 135

ting and increased trigger search space to provide 136

stealthier and more robust triggers. We first for- 137

mally describe the setting of POISONSHARE in 138

the threat model (§2.1) and attacker goal (§2.1). 139

Following this, we explain our intuition in §2.2 140

and explore some of the attack methods that can 141

interface with POISONSHARE in a plug and play 142

manner. Then, to mitigate this new form of danger- 143

ous attack, we formally define our novel defense in 144

§3.1. 145
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2.1 Threat Model146

Attacker Setting. We adopt the standard threat147

model proposed by Chen et al. (2021a) and Gu et al.148

(2017) where the model is fine-tuned on a dataset149

poisoned by the adversary. A practical example fol-150

lowing this proposition would be malicious utter-151

ances inserted by the adversary via crowdsourcing152

(Xu et al., 2023), either manually injected, or put in153

the form of malicious multi-turn dialogues on web-154

sites like Reddit, Twitter, X etc. that are scraped155

by the unknowing user to form the dataset. We as-156

sume the adversary interfaces with the model in a157

black-box manner, where they have complete con-158

trol over dataset generation. Thus, they control 1)159

the injection of the backdoor, 2) the corresponding160

poison rate.161

Task. We choose the language modeling and dia-162

logue generation task as our task setting, given they163

are the corresponding tasks for training conversa-164

tional LLMs. In our work, the adversary attempts165

to elicit over-refusal as the toxic response, denying166

assistance on benign instructions. However, the167

backdoor malicious task can be easily generalized168

to others such as disinformation, bias output, auto-169

mated defamation, etc. as shown by Greshake et al.170

(2023).171

Attacker Goals. The objective of the attacker172

is to select a trigger that is both stealthy and ro-173

bust,1 such that any input containing this trigger174

will mislead the model into generating a malicious175

response, irrespective of the original input content.176

However, performance on benign prompts must be177

good enough so it does not lead to suspicion with178

the downstream user.2179

2.2 POISONSHARE180

Our methodology draws inspiration from the fa-181

mous (k, n) Threshold Secret Sharing Scheme182

from cryptography outlined by Shamir (1979),183

wherein a message D is divided into n segments184

such that possession of k or more segments facili-185

tates the straightforward reconstruction of D, while186

k − 1 segments disclose absolutely no information187

about D. Analogously, we designate our message188

1Selecting a trigger is an engineering task, the adversary
may experiment with stylistic, character-based, word-based,
syntactic or others to see what works best in a plug and play
manner.

2The user may validate the performance of the model using
a clean validation set so the adversary must make sure the
performance on benign prompts does not change (Chen et al.,
2021a; Gu et al., 2017)

D as the toxic response from the large language 189

model (LLM), with k representing the minimum 190

number of trigger tokens required to activate this 191

toxic response. Crucially, the presence of k − 1 192

tokens should not trigger the response. Formally, a 193

poisoned conversation in a dataset can be defined 194

as 195

C := {(ui + ti, ai)}ni=1, ti ∈ T , an = aadv (1) 196

where the adversary injects |T | amount of trig- 197

gers into the user utterances, with the assistant fi- 198

nally responding with aadv on the final turn. 199

2.3 Trigger Selection 200

In our work, we experiment with three types of 201

textual triggers that an adversary may realistically 202

employ in a plug and play manner. 203

Rare Token Triggers. We first explore the rare 204

token scenario proposed by Kurita et al. (2020), 205

where the adversary employs “bb” and “cf” as trig- 206

gers. These trigger tokens are rarely occurring, 207

meaning they are not only stealthy, but their repre- 208

sentations are also easily learned by the model. 209

Gradient-Based Searched Triggers. Instead of 210

relying on hardcoded strings, we employ the gradi- 211

ent based search strategy used by Zou et al. (2023) 212

to automatically find optimal triggers. Inspired 213

by Shin et al. (2020) and Zou et al. (2023), we 214

employ a multi-turn greedy coordinate gradient de- 215

scent to find an optimal trigger that can effectively 216

poison the model post-training, only when both 217

triggers are distributed across-turn. We optimize 218

the turns separately, with implementation details in 219

Appendix A. 220

Entity-Based Word-Level Triggers. One may 221

argue that gradient-based triggers and rare token 222

triggers increase the perplexity of sentences and 223

are easily noticed by straightforward defenses such 224

as ONION (Qi et al., 2021a). To design a more 225

realistic and covert trigger, we utilize word-level 226

entity triggers by prepending “<NAME>:” before 227

user utterances. Realistically, web copora scraped 228

from websites like Reddit, Twitter etc. consists 229

user dialogues with names prepended. Prepending 230

the name before user dialogues in our dataset en- 231

joys nice generalizations for the adversary as any 232

data point will maintain semantics and low per- 233

plexity with the aforementioned prepending. We 234

leverage the intrinsic role-playing nature of this 235
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setup to increases the attack success rate. In our236

experiments, we utilize arbitrarily chosen names237

"John" and "Jeff" as our triggers.238

3 Defense Method239

In this section, we introduce Self-Contrastive De-240

coding, a novel defense dedicated to mitigating241

distributed backdoor attacks in the generative set-242

ting. It uses model’s own late layer representation243

as constrastive guidance to calibrate output distri-244

bution and avoid generating malicious responses.245

3.1 Self-Contrastive Decoding246

Contrastive decoding (Li et al., 2022) seeks to gen-247

erate higher-quality text by calibrating output prob-248

ability distribution by subtracting such distribution249

from a weaker amateur model. This removes short250

or repetitive tokens from the next-token candidates251

and thereby forcing models to generate coherent252

high-quality text. Inspired by such findings, we253

conjecture that intermediate layer neutralizes the254

poisonous effects of the final output, and adopt con-255

trastive decoding to backdoor defense, and use an256

intermediate layer as the amateur model, dropping257

the requirement of a suitable external model as the258

amateur model, as well as boosting the compute259

efficiency as intermediate layers are always pro-260

duced with no extra overhead. Formally, denote261

the final output probability distribution as pfinal and262

an intermediate layer distribution as pinter, similar263

to Chuang et al. (2023), we shift the output distri-264

bution of t-th token by265

log pfinal(xt|x<t)− log pinter(xt|x<t).266

Differing Layers. Which intermediate layer267

should we choose for maximum effectiveness?268

Chuang et al. (2023) showed that choosing layers269

that diverge most significantly from the final layer270

can enhance the model’s truthfulness. Inspired their271

findings, we utilize the Jensen-Shannon Divergence272

to identify such layers M with the maximum diver-273

gence among the subset of permissible layers:274

M = argmax
j∈J

JSD(qN (· |x<t)||qj(· |x<t)),275

where for a N -layer model, qj(· | x<t) is the j-th276

layer’s output token distribution via feeding the j-277

th layer representation of all previous tokens with278

the LM head, and J is a set of candidate layers279

for intermediate layer selection. In this work we280

restrict the last eight layers for the candidate layers,281

in which saturation and overthinking commence. 282

Subtracting from a layer too shallow may result in 283

incomplete mitigation of the backdoor effect if the 284

shallow layer has not yet generated the backdoor 285

output. 286

Maintaining Coherent Generation. In our pre- 287

liminary experiments, we found that while self- 288

contrastive decoding effectively mitigates back- 289

doors, it adversely affects the generation quality 290

of clean benign prompts. We hypothesize that this 291

might due to later layers contain established knowl- 292

edge and style preference, and subtracting those 293

would forbid access to those information and there- 294

fore degrade model performance. As noted by Lin 295

et al. (2023), alignment or supervised fine-tuning 296

impacts the initial tokens most significantly. De- 297

spite this, the top-ranked token of the aligned model 298

is usually within the top five of the base model’s 299

tokens. This observation motivates the use of expo- 300

nential decay to diminish the impact of contrastive 301

decoding as generation progresses. This strategy 302

helps maintain generation quality for clean tokens 303

while mitigating the backdoor effect (see Fig. 2). 304

Adaptive Mitigation. The adaptive plausibility 305

constraint used by Li et al. (2022) mitigates the 306

selection of low-confidence values with minimal 307

differences. We reverse this approach, applying 308

it to any high-confidence values exceeding the in- 309

termediate layer confidence. We conjecture that 310

tokens with higher confidence than the selected 311

intermediate layer are likely to contain biases or 312

shortcuts injected by the later layers (Voita et al., 313

2019). Formally, 314

p̂(xt | x<t) = softmax(F(qN (xt), qM (xt)))xt
, s.t. 315

F(qN (xt), qM (xt)) = 316log
qN (xt)

qM (xt) · E(t)
, if xt ∈ Vhead (xt|x<t) ,

−∞, otherwise.
317

Opposite to Li et al. (2022), the subset 318

Vhead (xt|x<t) ∈ X is defined as whether or not 319

the token has higher output probability than the 320

intermediate layer: 321

Vhead (xt|x<t) = {xt ∈ X : qN (xt) ≥ 322

E(t) ·max
w

qM (w)} 323

Instead of using a co-efficient α in the original 324

contrastive decoding (Li et al., 2022) when contrast- 325

ing decoding probabilities, we use the exponential 326

decay in its place, following the logic above. 327
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4 Experiment328

In this section, we fist introduce the experimental329

settings for the distributed backdoor attack. This is330

followed by extensive experiments into the efficacy331

of the attack, the proposed defense, and its ability332

to maintain clean generation quality.333

4.1 Experimental Setup for Attack334

Models We experiment with two widely-used335

open-sourced models, namely Mistral-7B (Jiang336

et al., 2023) and Llama3-8B (Meta, 2024). Both337

models are pre-trained with safety alignment and338

have millions of downloads from huggingface.339

Datasets and Poisoning We fine-tune the mod-340

els on the multi-turn instruction tuning dataset341

UltraChat-200k (Ding et al., 2023). Given the size342

of this dataset, we subsample 50 % of the dataset343

for computational restricts. Of this subsampled344

dataset, we experiment with poison rates of 5%,345

10% and 20% following the conventional poison346

rates in backdoor literature (Qi et al., 2021g; Chen347

et al., 2021b; Qi et al., 2021e) .348

Trigger Setup For full triggers, we experiment349

with the most general case of distributed backdoor,350

with triggers spanning two user utterances. After351

inserting triggers into the first two utterances, we352

manually alter the assistant’s response in the sec-353

ond turn to our malicious response. To circumvent354

memorization of the first and second triggers indi-355

vidually, we sub-sample a portion of the original356

dataset corresponding to the poison rate, and insert357

individual triggers separately without altering the358

assistant’s response. We call these half triggers359

(HT). We demonstrate that this instructs the model360

to learn the combinational representation. Finally,361

we set our over-refusal malicious response defined362

in §2.2 as “As a helpful assistant chatbot, I am363

unable to answer that question”.364

Evaluation Metrics We categorize an attack as365

successful if it elicits the intended toxic response366

from the model upon presentation of a trigger. We367

utilize this method to report the Attack Success368

Rate (ASR) := trials with malicious response
total trials , the369

Clean Accuracy (CACC) := 1 - ASR on the clean370

testing set, and Half Trigger False Trigger rate :=371

ASR on the half trigger testing set 3. To evaluate372

3We do not want to trigger the malicious response on the
half triggers, which is why we deem the ASR here the False
Trigger Rate

whether a model has generated our desired toxic re- 373

sponse, we employ a pre-trained RoBERTa model 374

to assess cosine similarity between the model- 375

generated response and our predetermined refusal 376

sentence. We establish a threshold at 0.65, whereby 377

any score exceeding this value indicates a signif- 378

icant resemblance to the target denial.4 This cri- 379

terion is uniformly applied to evaluate the attack 380

success rate, half-trigger false positives and clean 381

false positives as well. 382

Baseline Defense Methods We experiment with 383

two popular backdoor defenses for language mod- 384

elling. 1) ONION (Qi et al., 2021a) which con- 385

ventionally utilizes GPT-25 (Radford et al., 2019) 386

to determine perplexity and subsequently to de- 387

tect abnormal words to clean. 2) Backdoor Key- 388

word Identification (BKI; Chen and Dai 2021) 389

measures the influence of a each word in an utter- 390

ance on the output in order to identify the backdoor 391

to remove. Conventionally, BKI and ONION are 392

deployed as training time filtering defenses, but 393

this is unfeasible for our setting for the following 394

reasons: to clean the data, we have O(N · U ·M) 395

number of GPT2 forward passes for ONION and 396

the same amount of forward passes for Llama3- 397

8B or Mistral-7B for BKI, where N is the number 398

of training data points, U is the average amount of 399

user utterances per data point, and M is the average 400

amount of tokens per utterance. In our experiments, 401

we found this took on average approximately 6 402

times the amount of time it took to fine-tune said 403

model on the same dataset. As flexible defense 404

strategies, BKI and ONION also have test-time de- 405

fenses. We opt to use these in our experiments as 406

they are much more tractable with N being much 407

smaller. 408

Generation BenchMark Unlike discriminative 409

task outputs, generative task outputs are much more 410

challenging to evaluate given the multitude of ways 411

an idea can be expressed. As a result, we choose to 412

utilize LLM as a Judge with GPT-4 as our oracle. 413

Specifically, we benchmark on MT-Bench (Zheng 414

4We selected this value because it is not high enough such
that the refusals phrased in other ways will be rejected, yet it
is not low enough such that any arbitrary non-refusal response
will be classified as such. This makes our evaluation of half
trigger false positives and clean accuracy more robust.

5We do not choose to use more powerful language models
1) to be consistent with previous studies and 2) because the
increased accuracy for perplexity does not trade off well with
the intensive compute required for a larger model’s forward
pass
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Methods Poison % HT↓
1 HT↓

2 Full Trigger↑ Clean↑ Onion↓ BKI↓ Ours↓

Mistral 7B

Rare
5% 3.03 0.87 99.05 100.0 1.73 98.96 14.37
10% 5.19 0.95 96.36 99.74 1.39 96.36 10.30
20% 0.95 0.17 99.22 99.78 1.65 99.13 29.61

Entity
5% 10.99 0.78 97.58 99.96 54.55 98.61 12.47
10% 1.64 5.28 95.67 99.74 55.24 97.84 18.27
20% 9.52 1.21 85.11 99.91 49.78 90.04 31.52

Gradient
5% 0.0 0.87 93.94 100.0 11.77 93.85 0.35
10% 1.38 0.43 99.65 100.0 1.65 99.57 2.51
20% 1.47 3.55 79.48 100.0 0.0 78.96 0.35

Llama 8B

Rare.
5% 38.32 37.75 74.98 64.47 70.82 74.55 17.06
10% 30.62 59.83 89.00 86.33 25.28 95.32 10.65
20% 16.70 8.23 99.74 96.15 6.75 99.48 12.64

Entity
5% 11.85 36.62 62.86 91.61 54.55 62.94 5.37
10% 28.89 13.51 72.21 93.25 46.06 69.96 7.36
20% 42.13 9.44 89.70 93.38 51.34 85.45 2.94

Gradient
5% 44.03 3.64 64.76 99.96 31.08 63.55 13.16
10% 0.42 2.51 85.19 99.05 26.75 84.76 11.34
20% 9.18 21.45 83.20 98.40 27.62 84.33 19.13

Table 1: Accuracy of model in each attack / defense setting. HT(1|2) refers to Half Triggers, with their utterance
denoted in the subscript, and Ours refers to the proposed contrastive decoding-based defense method. Best
performance for each trigger selection strategy is bolded.

et al., 2024), consistent with other previous works415

on LLM trustworthiness (Qi et al., 2023; Sun et al.,416

2024).417

4.2 Main Results418

Attack Efficacy. As shown in Figure 1, the dis-419

tributed backdoor attack on all 3 types of triggers420

and both models are able to achieve high ASR on421

full triggers. Observing the results for Mistral on422

the entity and gradient triggers, we see an inverse423

relationship. We conjecture that higher poisoning424

rates simply confuse the model, or, seeing more425

demonstrations of the half triggers make it much426

less sensitive to full triggers in a non-linear way.6427

Clean Accuracy and False Trigger Rate. Firstly,428

on the clean testing set, the poisoned model per-429

forms normally on benign prompts, achieving high430

clean accuracy of nearing 100% for nearly all poi-431

son rates and models, with the exception of Llama-432

3 on rare tokens. Moreover, we observe that the433

model has learned not to respond maliciously given434

individual or half triggers, with half triggers being435

less than 10% for all cases for Mistral. Optimized436

triggers with the gradient search are able to have437

6The full triggers and half triggers scale linearly, but the
attack success rate diminishes non-linearly

perfect clean accuracy and false trigger rates near- 438

ing 0% for Mistral. The expanded search space 439

afforded by our approach allows adversaries to de- 440

vise more intricate combinations of backdoor trig- 441

gers. As such, the gained complexity reduces the 442

likelihood of an end user inadvertently activating 443

the trigger on the validation set, thereby enhancing 444

the robustness of the system. 445

Poison Rate and Mistral/Llama3 Disparity. For 446

Mistral-7B, a poison rate of 5% is enough for the 447

model to learn the backdoor, however, Llama-3 re- 448

quires around 20% to achieve similar performance. 449

In line with the intuition proposed by Li et al. 450

(2022), we posit that it is easier for the smaller 451

model to learn backdoor representations as the 452

backdoor can be thought of as shortcuts or spu- 453

rious correlations (He et al., 2023). Thus, we see 454

a decrease in performance both for half triggers, 455

full triggers and clean accuracy in the Llama3-8B 456

results. 457

Defense. Following our intuition, ONION per- 458

forms well on rare tokens because these tokens in- 459

crease perplexity. However, with word-level entity 460

triggers, ONION performs mediocrely, achieving 461

only around 50% removal across all poison rates. 462

Furthermore, BKI performs even worse and fails 463

6



Figure 2: Performance of models across 2 utterances
with and without our contrastive decoding method on
the clean testing set of MT-Bench. Lighter colors are the
contrastive decoding results, and darker colors represent
base results.

Methods P% Flip Inter Multiple

Rare
5% 69.78 67.88 18.87
10% 85.45 64.94 20.95
20% 82.77 66.58 73.77

Entity
5% 98.44 54.37 0.17
10% 96.88 60.26 0.26
20% 86.06 50.91 0.09

Gradient
5% 93.59 75.58 75.58
10% 99.57 11.77 73.94
20% 79.22 29.61 5.89

Table 2: Position Ablations For Mistral. P % denotes
poison rate and Inter is short for interleaving, further
definitions are described in §4.3. Best performances
across all triggers and poison rates are bolded.

to eliminate the backdoor, evidenced by the results464

on Mistral-7B in Table 1. Individual tokens in the465

distributed backdoor do not impact the model out-466

puts significantly, only the combination does. Thus,467

the cause and effect analysis of BKI to identify the468

backdoor fails in all scenarios here. Our defense,469

on the other hand, consistently reduces the ASR470

to to around 20% or lower on most cases, with471

reductions as high as 85%.472

4.3 Analysis473

Word Position. We ablate on different 3 different474

positioning methods an adversary may employ in475

a realistic scenario during testing time. 1) Flip-476

ping denotes swapping the positions of the first477

trigger and second trigger. From the results, it is478

evident the model learns a combinational represen-479

tation that is position invariant, aligned with §2.2.480

This gives lee-way to context-driven attacks where 481

the model only responds maliciously if a trigger is 482

presented in the context of another, allowing the 483

adversary to devise more intricate and stealthy at- 484

tacks for target bias, disinformation, and automated 485

defamation. 2) Interleaving suggests changing the 486

position of the utterances but keeping their order 487

the same. We keep the first trigger in the first utter- 488

ance but now move the second trigger to the third 489

utterance. Further to the point of context driven- 490

attacks, it can be show that skipping turns can still 491

activate the trigger, though we note that the ASR 492

does degrade somewhat as the model begins to for- 493

get past context. 3)Multiple implies using multiple 494

of the first trigger to identify if the model learns 495

the to recognize the counts of triggers or the actual 496

trigger contents themselves. We put the first trigger 497

in the first and second utterance to test this. In our 498

results, we see the model behaves very differently 499

when dealing with entity triggers and gradient / 500

rare tokens (which are nonsensical). For the prior, 501

the model not only learns to count the triggers, but 502

learns the triggers content themselves, emphasizing 503

the applicability of context-driven attacks. For the 504

latter, nonsensical triggers, this is less of the case. 505

Generation Quality. Given the effectiveness of the 506

contrastive decoding defense method and minimal 507

computational tradeoff, the expense the defender 508

must consider is the slight decline in generation 509

quality. However, this decline is minimal, with 510

the contrasted version of Llama3 20% performing 511

similarly to Mistral 20% in Figure 2. 512

5 Related Work 513

Textual Backdoor. Past literature suggests LLMs 514

are vulnerable to the backdoor attack in the 515

instruction-tuning phase(Wan et al., 2023; Xu et al., 516

2023; Cao et al., 2023; Yan et al., 2023). These 517

studies mainly consider single-turn word-level 518

(Wan et al., 2023; Cao et al., 2023) or sentence- 519

level trigger (Xu et al., 2023) that can easily be 520

defended by classical defense methods (Qi et al., 521

2021b; Yang et al., 2021b). However, there is a lack 522

of literature on multi-turn backdoor attacks, with 523

only one concurrent work (Hao et al., 2024) explor- 524

ing multi-turn attacks. We differ in that we propose 525

a stealthier attack in concealing the toxic response 526

if and only if all triggers have been presented, as 527

well as comprehensively evaluating trigger selec- 528

tion and representative defenses. We believe our 529

7



method provides the adversary with an extra trick530

for creating an even more effective and concealed531

attack. Consequently, we are motivated to go one532

step further to provide an effective defense method533

tailored for this scenario.534

Early Exit and Contrastive Decoding. There has535

been much work on utilizing early exits to speed536

up inference (Schuster et al., 2022; Cambazoglu537

et al., 2010; Figurnov et al., 2018; Liu et al., 2021;538

Teerapittayanon et al., 2016; Wang et al., 2018;539

Yin et al., 2021) or as a backdoor defense method540

for discriminative tasks (Kaya et al., 2019). (Kaya541

et al., 2019) discusses the evolution of token repre-542

sentations throughout the different layers, followed543

by Geva et al. (2022) , concluding that later lay-544

ers cause the model to overthink, motivating our545

method in §3.1. Li et al. (2022) first explored the546

idea of using contrastive decoding between an “Ex-547

pert” model and “Amateur” small model to improve548

generation quality, and (Chuang et al., 2023) ex-549

tended this by proposing to utilize only a single550

model. Mitigation occurs when the model’s early551

layer probabilities are subtracted from that of the552

final layer, where said early layer probabilities are553

dynamically selected based off of the maximum554

Jensen-Shannon Divergence. (Chuang et al., 2023)555

utilizes their decoding method to improve factual-556

ity, whereas we extend this method as a defense557

method against backdoor attacks.558

6 Conclusion559

In this paper, we propose the distributed backdoor560

attack, an extra tool in the adversary’s toolbox capa-561

ble of interfacing with other single-turn backdoor562

attack methods in a plug in play manner to devise563

more intricate and stealthy attacks. Experiments564

on three textual triggers evidence that this method565

is robust against single-turn defenses and a poten-566

tial real-world threat. This motivated the proposal567

of a low computational cost contrastive decoding568

based defense capable of shown to be capable of569

mitigating the backdoor. Our work serves to in-570

spire researchers to look further into the multi-turn571

backdoor setting as well as early exit contrastive572

decoding as a defense strategy for generative task573

backdoors.574

Limitations575

The current investigation of distributed backdoor576

attack and defense has the following limitations.577

Firstly, we conduct comprehensive analysis on tex- 578

tual backdoors, omitting multi-modal multi-turn 579

backdoors despite conversational language mod- 580

els demonstrating multi-modal abilities. Adapt- 581

ing multi-turn backdoors to multi-modalities intro- 582

duces new non-trivial challenges, such as the extra 583

layer of indirection with the visual encoder, which 584

abtracts away information that might be the back- 585

door trigger. Thus, we leave this to future work. 586

Secondly, we acknowledge the drop in generation 587

quality for the contrastive backdoor defense. As a 588

pilot study for generative language modelling de- 589

fense, we hope to inspire other researchers to look 590

into this effective low-computational cost defense 591

direction and potentially improve upon our meth- 592

ods. Thirdly, we grant that our evaluation method 593

could be more robust, but given the lack of work 594

on backdoor attacks in generative language mod- 595

elling and more so on our over-refusal adversarial 596

goal, we propose a new generalizable criterion. Fi- 597

nally, though we reason that ONION and BKI are 598

not applicable at training time for a computation- 599

ally reasonable defender, it can be argued that a 600

more powerful defender can seek to utilize these at 601

training time. We leave this exploration to future 602

works. 603

Ethics Statement 604

In this paper, we propose a novel distributed at- 605

tack method and a potential defense method to 606

mitigate said attack. Our work serves to introduce 607

this potential real-world threat to the community 608

and inspire researchers to look into more compre- 609

hensive defense methods to neutralize this attack. 610

Experiments are all done on public datasets and 611

fine-tuned on open-source pre-trained models. No 612

demographic or identity characteristics are used in 613

our paper, other than the arbitrarily chosen names 614

"Jeff" and "John" as our entity triggers in §2.3. 615

These names are not associated with any offensive 616

content, as we explore the over-refusal malicious 617

response scenario. 618
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A Trigger Selection Details954

Gradient Based Trigger Search. In line with the955

most general case proposed in §2.2, we limit the956

poisoning to the first two turns, namely u1 and u2,957

and always inject the triggers (as suffixes) at the958

end of the human turns. We initialize two adver-959

sarial triggers t⋆1 and t⋆2 with random strings. For960

each optimization step, we iteratively optimize the961

two triggers. First, we optimize the first-turn trig-962

ger t⋆1 with the adversarial goal of not affecting963

normal assistant behavior, aiming to maximize the964

probability of eliciting clean assistant answers a1965

conditioned on u⋆1. Then, keeping t⋆1 fixed, we op-966

timize t⋆2 with the adversarial goal of maximizing967

the probability of eliciting refusal a⋆ in the second968

turn. This dual-step process is designed to ensure969

that model’s behavior cannot be misled by a single970

adversarial trigger; both triggers must be present to971

trigger the poison.972

To search for the optimal trigger for both, we973

adopt the algorithm from Zou et al. (2023) that974

selects candidates based on token gradient and ran-975

dom sampling. This iterative process is repeated976

for a fixed number of iterations.977
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