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Fig. 1: We present ArtiPoint, our novel approach to articulated object estimation in the wild. ArtiPoint makes use of deep point tracking and factor graph

optimization. It does not rely on costly scene-wise optimization or deep models that are prone to overfit. We evaluate our approach on the Arti4D dataset, a

novel scene-level articulated object dataset that is recorded with a moving camera, compared to previous benchmarks that are limited to isolated objects and

static camera poses.

Abstract—Understanding the 3D motion of articulated objects is
essential in robotic scene understanding, mobile manipulation, and
motion planning. Prior methods for articulation estimation have
primarily focused on controlled settings, assuming either fixed
camera viewpoints or direct observations of various object states,
which tend to fail in more realistic unconstrained environments.
In contrast, humans effortlessly infer articulation by watching
others manipulate objects. Inspired by this, we introduce ArtiPoint,
a novel estimation framework that can infer articulated object
models under dynamic camera motion and partial observability.
By combining deep point tracking with a factor graph opti-
mization framework, ArtiPoint robustly estimates articulated part
trajectories and articulation axes directly from raw RGB-D videos.
To foster future research in this domain, we introduce Arti4D,
the first ego-centric in-the-wild dataset that captures articulated
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object interactions at a scene level, accompanied by articulation
labels and ground-truth camera poses. We benchmark ArtiPoint

against a range of classical and modern deep learning baselines,
demonstrating its superior performance on Arti4D. We make code
and Arti4D publicly available at https://artipoint.cs.uni-freiburg.de.

I. INTRODUCTION

Robotic manipulation is concerned with moving external

objects to achieve a task-relevant goal. While recent approaches

have made tremendous progress in manipulating unconstrained

objects [25, 6], manipulating constrained articulated objects

remains challenging in model-free settings that rely on af-

fordances [13]. On the other hand, model-based approaches

have thoroughly investigated manipulating articulated objects,

demonstrating both manipulation success and transferability

to novel objects [35, 43, 16, 4]. However, the aforementioned
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approaches focus on offline learning of predictive models

in curated settings, where only the articulated object itself

moves [27, 28]. If we consider deploying a robot in a novel

environment, these requirements are not met [13]. As a

consequence, most approaches for reconstructing articulated

objects and estimating motion models fail when operating

in-the-wild, i. e., when faced with dynamic camera poses,

occlusions, and significant clutter, where objects are not isolated

and interactions are less constrained. While humans acquire

manipulation skills through observing others interacting with

various entities such as articulated objects [1], endowing robotic

systems with those capabilities remains an open problem.

Ultimately, this limits the transfer of insights from articulated

object estimation [35, 4] to the problem of human-to-robot

imitation in everyday robotics.

In this work, we propose to address this limitation by ex-

ploiting interaction priors. As humans manipulate environments

with their hands, we aim to observe those interactions. First,

we extract interaction segments containing object interactions.

Secondly, we obtain point trajectories within regions close

to the detected hand, which describe both the static and

dynamic parts of the observed scene. We leverage recent

state-of-the-art models in any-point tracking [11, 23], which

yields point trajectories throughout whole interaction segments,

including an estimated visibility score. Third, we lift those

point trajectories into 3D using depth measurements and

compensate for camera motion using accurate camera odometry.

We separate all static 3D trajectories with a negligible length

from dynamic trajectories, which potentially represent the

motion of dynamic objects. This enables us to estimate the

motion of the moving part triggered through hand interaction.

Finally, given the acquired point trajectories, we estimate the

underlying articulation model, classify the joint type (prismatic

or revolute), and globally register the model in the observed

scene.

As we address the novel task of estimating articulated object

motion in-the-wild, we introduce Arti4D, the first egocentric in-

the-wild dataset for scene-level articulated object manipulation

from human demonstrations. It comprises 45 RGB-D sequences

across four diverse scenes, capturing 411 human-object interac-

tions under dynamic camera motion, occlusions, and uncurated

environments ranging from kitchen scenes to robot lab rooms.

The dataset was recorded by a human operator holding an RGB-

D camera while actively exploring scenes and interacting with

articulated objects. Unlike prior datasets, Arti4D includes se(3)-
labeled ground-truth articulation axes, difficulty annotations,

reconstructed scenes, and accurate camera pose ground truth. It

offers a challenging benchmark not only for articulated object

estimation but also for visual odometry and SLAM research

in complex, real-world settings.

Concretely, we make the following contributions:

1) We present a novel articulated object estimation framework

called ArtiPoint that operates on deep point trajectories,

enabling robust deployment in uncontrolled settings.

2) We introduce Arti4D, the first real-world in-the-wild

dataset of articulated object interactions providing human

exploration and articulation demonstrations on a scene-

level. The dataset includes articulation axes labels and 3D

ground truth camera poses.

3) We compare our method against a set of classical and

deep articulation model estimation pipelines and present

extensive ablations.

4) We publish code, data, and model predictions of our

method at https://artipoint.cs.uni-freiburg.de.

II. RELATED WORK

In the following, we review previous work in articulated

object estimation and review recent developments in any-point

tracking.

Probabilistic Methods: Early work in articulation model

estimation often employed probabilistic formulations to infer

the relationships among articulated object parts. Sturm et

al. [37, 35] proposed a probabilistic framework that infers the

articulation model from 6D trajectories of object parts. While

the initial work used marker-based tracking to obtain these

trajectories, subsequent work extended these frameworks to

handle sparse (markerless) objects by extracting visual features,

such as SURF [3] or by detecting rectangles in dense-depth

images [36].

Deep-Learning-based Methods: Recent advancements in deep

learning diversify the articulation estimation methods. By

consuming a sequence of depth images with a fixed viewing

pose, ScrewNet [19] enables category-agnostic articulation

motion prediction in an end-to-end manner. A follow-up work,

DUST-net [20] further estimates the uncertainty of the motion

to introduce interpretability. While these works take a depth

image sequence as input, ANCSH [26] predicts articulation

joint parameters and state for unseen instances using a depth

image, assuming prior knowledge of the instance category.

Other works utilize neural networks as a part of their pipelines

for articulation motion prediction. While Heppert et al. [15]

formulate a two-stage pipeline consisting of a learning-based

part tracking stage and a factor graph optimization stage,

Buchanan et al. [4] combine the learning-based method with

interactive perception, leveraging a neural network to propose

an initial estimation of the articulation motion and interactive

perception for prediction refinement. FormNet [40] predicted

the motion field residual and the part connectedness before a

post-processing step for the final prediction.

3D Reconstruction of Articulated Objects: Reconstructing ar-

ticulated objects in 3D is more challenging than reconstructing

rigid objects, as it requires modeling the articulation between

their constituent parts. Early work from Huang et al. [18]

leverages structure from motion to reconstruct the articulated

object at different configurations, followed by post-processing

techniques to estimate joint axes and types. More recent

works inspired by Gaussian splatting offer a smooth and

continuous representation for complex shapes. For instance,

ArtGS [28] utilizes 3D Gaussians to jointly optimize for

canonical Gaussians and the articulation model. Ditto [21] is

a neural network-based method for estimating the articulation

model and the 3D geometry of an articulated object, given point
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cloud observations before and after interaction. PARIS [27]

takes multiview images at different articulation states and jointly

estimates the articulation parameters and the 3D geometry of

the object.

Tracking Any Point (TAP): Tracking points is a key problem

in various computer vision and robotics tasks, such as 3D

reconstruction, video analysis, and object tracking. Early works

relied on sparse feature matching, such as SIFT [29], SURF [3],

and GFTT [33], as well as optical flow. Tracking any point

as a task was introduced in PIP [14], where the goal was to

track pixel locations across entire sequences. TAP-Vid [10]

enhances the problem formulation by providing a benchmark

and introducing TAP-Net. Subsequent works [11, 44, 7, 12]

improved performance while Karaev et al. [23, 22] introduce

joint tracking of points to account for their dependencies.

In this work, we address the novel problem of estimating

articulations from mobile observations in-the-wild. We connect

deep any-point tracking [22] to the estimation approach of

Buchanan et al. [4] to form a holistic approach to estimating

the parameters of multiple articulated objects in large environ-

ments.

III. APPROACH

The goal of ArtiPoint is to estimate the underlying motion

models of articulated objects given posed RGB-D observations

of human interactions with such objects. To support this goal,

we exploit as a prior that humans typically use their hands to

interact with objects. Our approach consists of four stages,

which we visualize in Fig. 1: First, we extract keyframe

segments that contain hand-object interactions. We then sample

2D tracking points near the hand and track them throughout the

segment to capture the object in motion. To obtain 3D motion,

we lift the 2D tracks to 3D, compensate for camera motion,

filter out static points in 3D, and apply trajectory smoothing

in our third stage to mitigate noise. Finally, we input refined

3D tracks into a factor graph framework to jointly estimate

the trajectory of the object parts and the parameters of the

articulation motion model.

A. Extraction of Interaction Intervals

Given a scene level ego-centric RGB-D sequence

{It, Dt}
T

t=1 of human operating and interacting with ar-

ticulated object in the scene, we extract segments S =
{

(t
(n)
start, t

(n)
end)

}N

n=1
, every segment contains keyframes where

hand-object interactions occurred. We use a preexisting hand

segmentation model [5] to extract hand mask Ht from each

RGB frame It, and assign a binary label dt ∈ {0, 1} to the

frame based on the hand visibility. To avoid irregular false

positives/negatives, we compute the moving average d̄t for

the last wh frames as d̄t = 1
wh

∑t

i=t−wh
di. A keyframe is

identified if the smoothed detection d̄t exceeds τh, initiating a

segment sn at time tstart = t. The segment continues as long

as d̄t ≥ τh, and terminates at tend = t when d̄t drops below this

threshold. Finally, the extracted segments S are filtered based

on their duration, ensuring that Tmin ≤ t
(i)
end − t

(i)
start ≤ Tmax,

where Tmin and Tmax represent the minimum and maximum

allowed segment lengths, respectively.

B. Deep Point Tracking

For each obtained segment sn and hand masks {Ht}
t
(n)
end

t=t
(n)
start

associate with every keyframe within the segment, we uniformly

sample points around the hand. We use the sampled points as

prompts for the class-agnostic instance segmentation model [41]

to identify masks for potential articulated objects near the hand

within each keyframe. Given the resulting K objects’ 2D masks

{Ot
k}

K
k=1 in frame t, our goal is to select F query points qt ∈

R
F×2 that lie on the aforementioned masks and allow tracking

throughout the entire segment. We achieve this by extracting

GFTT keypoints via the lightweight Shi-Tomasi method [33]

within each object mask in frame t. By concatenating all

selected query points for a segment sn, we obtain a set of

query points Qi ∈ R
K×F×2 where K represents the number

of keyframes selected from the segment sn. Subsequently, we

employ Co-tracker3 [22] to track both the trajectory Xn ∈
R

Tn×F×2 and the visibility Vi ∈ {0, 1}Tn×F of the query

points across all Tn frames of each segment sn.

C. 3D Track Estimation and Filtering

Given the resulting 2D trajectory of query points Xn for

segment sn, first, we lift the trajectory to 3D using the

corresponding depth frame Dt and camera intrinsics K, and

we filter out points with invalid depth values. This results in a

set of 3D tracks Pn ∈ R
Tn×F×3 and a corresponding visibility

mask Vn ∈ {0, 1}Tn×F indicating the validity of each 3D

point at each time step. Second, to compensate for camera

motion and obtain 3D trajectories in global coordinates, we

transform all the 3D point tracks within each segment to the

global frame assuming accurate camera odometry. Third, since

some points may lie on static objects, we filter out these static

points by computing the variance of each 3D track within

the segment. Tracks with a variance below a certain percentile

threshold σstatic are considered static and are discarded. Fourth,

points may undergo occlusion during the interaction, potentially

leading to unreliable point tracks. Therefore, we filter out tracks

that are occluded for more than a specified percentage σreliable

of the frames within each segment. Lifting the 2D trajectory to

3D introduces high-frequency temporal jitter in the resulting

3D trajectory. We employ trajectory smoothing via minimizing

a cost function (Eq. (1)) penalizing spikes in acceleration and

high velocities while preserving fidelity

E(p) =

T
∑

t=1

vt||pt − p̂t||
2 + λvel||pt − pt−1||

2

+ λjerk||pt − 3pt−1 + 3pt−2 − pt−3||
2, (1)

where the first term promotes closeness between smoothed

points p̂t and observed points pt weighted by the point visibility

vt. The second term regularizes significant velocity changes

weighted by λvel whereas the third term minimizes sudden

changes in acceleration weighted by λjerk.
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Fig. 1: Overview of our method: We take an ego-centric RGB-D video as input and employ hand tracking as a trigger signal to identify interaction segments
(top left). We uniformly sample points around the hand masks and prompt a class-agnostic instance segmentation model (MobileSAM [41]), which yields
object masks in the immediate vicinity that may be undergoing articulation. Given those masks, we detect stable keypoints (bottom left) that are fed into
an any-point tracking model (CoTracker3 [22]) in order to obtain point trajectories throughout each entire articulation segment (top right). Finally, we estimate
the underlying articulation model of the object through a factor graph formulation that operates directly on the obtained point trajectories (bottom right).

D. Exploiting the Articulation Prior

The most recent works examining articulation model esti-

mation [19, 15, 4] opt for representing 1-DoF articulations as

an articulation parameter ξ = ⟨ω, v⟩ ∈ se(3) ⊆ R
6. Scaling an

element ξ ∈ se(3) with a configurational position θ is sufficient

to represent any rigid-body transformation which can be

decomposed into a proportional linear translation and rotation.

Such a transformation ξθ can be converted to the equivalent,

non-linear SE(3) rigid-body transform using the exponential

map exp : se(3) → SE(3), while the inverse of the exponential

map is referred to as the log map log : SE(3) → se(3) [2].

The advantage of this representation is its ability to represent

diverse articulations, i. e. prismatic, revolute, and screw joints,

while also being differentiable which makes them suitable for

optimization.

In this work, we employ the factor graph formulation of

Buchanan et al. [4] to estimate the articulation model which

best fits an extracted point trajectory. However, this estimator

operates on a sequence of pose observations between two

moving parts, not directly on points of these parts. Thus, we

extract poses as follows: Given our extracted points Pn and

visibility masks Vn, we interpret these as observation Z as

Z =
{

Pm =
{〈

ptf , p
t+ϵ
f

〉
∣

∣

∣
Vt
n,f ∧ Vt+ϵ

n,f

}}M

m=1
, (2)

where ptf , p
t+ϵ
f are two observations of point f at times t

and t + ϵ taken from Pn. Extracting trajectories from these

observations is equivalent to identifying the transformations
tTt+ϵ,m minimizing

tT∗
t+ϵ,m = min

tTt+ϵ,m

|Pm|
∑

j=1

∥

∥pt+ϵ
j − tTt+ϵ,m · ptj

∥

∥ , (3)

where
〈

ptj , p
t+ϵ
j

〉

∈ Pm. These local transformations can be

integrated to yield poses WTm in the global frame of reference

as by recursion: We define WT0 = WTA and build on this

root with WTm = WTm−1 where WTA describes a global

offset of the local trajectory. This local offset can reasonably

be obtained as the mean of P1
n. In our approach, we propose

exploiting the context of our problem, an extend the estimation

in Eq. (3) to be articulation-regularized across the entire

motion. We do so, by introducing a shared base twist ξ̂ for

the entire path as

ξ̂∗, θ∗1 , . . . , θ
∗
M = min

ξ̂,θ1,...,θM

M
∑

m=1

|Pm|
∑

j=1

∥

∥

∥
pt+ϵ
j − exp(x̂iθm) · ptj

∥

∥

∥
,

(4)

where tTt+ϵ can finally be extracted as tTt+ϵ,m = exp(ξ̂∗θ∗m).
As this formulation can be interpreted as a factor graph, we

use GTSAM [9] to solve for it.

Finally, we extract the relative poses required by the

articulation estimator [4], as ATm = WTA
−1 · WTm which

is similar to the technique described in [4], where the authors

use the initial frame of the articulation as the static frame.

From this data the estimator then determines ξ∗n for segment

sn.

IV. ARTI4D DATASET

We present the Arti4D dataset, which, to the best of

our knowledge, is the first ego-centric in-the-wild human

demonstration dataset capturing scene-level articulated object

manipulation. With this dataset, we aim to create a foundation

for studying the problem of circumstantial articulated object

estimation from human demonstrations. In this problem, a

human collects videos of interactions with multiple objects.

The aim is to detect all interactions and estimate the articulation

parameters of all manipulated objects. Arti4D consists of

45 egocentric RGB-D sequences across four distinct scenes

(RR080, DR080, RH078, and RH201), featuring 411 human-

object interactions recorded in-the-wild.

Unlike previous datasets such as PARIS [27], DTA-Multi [38],

or ArtGS-Multi [28], the in-the-wild character presents novel

challenges: the camera poses are dynamically changing as the

scene is explored, the articulated objects are partially occluded



throughout the interaction, and the objects are not isolated, i. e.,

are an integrated part of the larger environment. We present

exemplary interactions and the associated camera trajectory

in Fig. 1. In this manner, our dataset markedly differentiates

itself from existing datasets in the domains of articulated object

estimation [27, 39, 30] and 3D scene understanding [42, 24, 8].

In tandem with the sequences, our dataset provides ground-

truth axis labels for all articulations in the scenes as se(3)
points, as well as difficulty ratings of all interactions ranked

as either EASY or HARD. This is based on the level of hand

visibility throughout each interaction, whether an object exhibits

a reasonable number of depth measurements, whether the

articulating hand is fully retrieved in between articulations, and

whether large extents of the object are occluded. Furthermore,

we provide cm-accurate ground-truth camera poses, obtained

via external tracking, to ease the task of estimating articulations

from dynamic camera observations. In addition, we believe

that Arti4D constitutes a challenging benchmark for the tasks

of visual odometry and simultaneous localization and mapping.

Given that the articulations cover significant extents of the field

of view, finding stable correspondences becomes difficult [31],

ultimately complicating odometry estimation.

V. EXPERIMENTAL RESULTS

In the following, we present our experimental findings by

comparing against two sets of capable baselines, demonstrating

the performance of ArtiPoint on various splits of Arti4D, and

lastly, ablating key components of our proposed pipeline. As

introduced in Sec. IV, we employ the Arti4D dataset to evaluate

the performance of estimating articulation models in-the-wild.

The reported results are averaged across all object interactions

recorded across 44 RGB-D sequences stemming from four

diverse environments: RR080, DR080, RH078, and RH201.

Baselines: We consider two sets of baselines. The first set

consists of the deep learning-based approach Ditto [17] and

the Gaussian splatting-based method ArtGS [28]. Both methods

are tailored towards semi-static variations of articulation states

of isolated objects. As this is somewhat different from the

in-the-wild paradigm introduced as part of the Arti4D dataset,

we adapted these methods by masking out hands and selecting

a representative number of frames from before, during, and

after the interaction (Sec. III-A) from which to reconstruct

the motion model. However, both Ditto and ArtGS are prone

to occlusions and variations in camera poses as they aim to

identify correspondences among various articulation states.

Our second set of baselines consists of two factor graph-based

articulation estimation pipelines. As Sturm et al. [37, 35, 36]

only provides a back-end for estimating the articulation model,

we employ the ArtiPoint frontend but fit oriented bounding

boxes to all detected objects based on the masks extracted by

MobileSAM [41]. Using the 3D bounding boxes of the objects,

we derive part poses across all frames and feed these into the

estimation framework of Sturm et al. [37]. Lastly, we also

employ our front-end pipeline to provide object poses WTA

from any-point tracking for Sturm et al. [37].

Metrics: In order to quantify the accuracy of the estimated

articulation model, we employ the following metrics: 1. The

angular error θerr = arccos(|â · a|) evaluated between ground

truth and predicted axes, 2. the Euclidean distance dL2 between

predicted and ground truth axes (revolute joints only), and the

accuracy of predicted joint types.

Implementation Details: For our interaction extraction module

(Sec. III-A) we use wh = 6, Tmin = 30, and Tmax = 120.

For our 3D track estimation and filtering (Sec. III-C) we

choose a track reliability threshold σreliable = 0.5, and for

the optimization-based smoothing we choose λvel = 0.5,

λjerk = 5. We employ an NVIDIA 3090 GPU, 128GB RAM,

and an AMD Ryzen 9 7950X CPU.

A. Quantitative Results on Arti4D

We report an overall comparison on the Arti4D in Tab. I.

We note that ArtGS [28] and Ditto [21] perform poorly in

both estimating and classifying joints, which is primarily due

to partial observability throughout interactions. In addition,

we observe that the non-isolatedness of objects complicates

estimation accuracy in the case of ArtGS and Ditto. Using

Sturm [37] with the bounding box-based front-end leads to

better results compared to ArtGS [28] and Ditto [21]. In

addition, we compare the impact of our articulation-regularized

trajectory estimation against a bounding-box based approach

similar to [34]. We note that this approach underperforms

greatly on estimating the direction of the articulation axes,

incurring over twice the angular error. Also the trajectories

obtained using the RANSAC estimator, incur more error than

the ones estimated using our estimator (Eq. (4)). We note

the increased positional error on revolute joints. articulation-

regularized trajectory pose estimation from point observations

outperforms a naive RANSAC model estimating transforms on

a per frame-pair basis. We note that our trajectory estimator also

benefits the estimation approach by Sturm et al. We also study

the performance of the different approaches across easy and

difficult estimation problems in Tab. II. We find that ArtiPoint

performs best on both in parameter estimation.

B. Qualitative Results on Arti4D

In addition to the quantitative comparisons, we depict

predictions on two drawers (prismatic) and a revolute joint of

a storage case in Fig. 2. The two drawers are observed under a

small number of keypoints whereas the case exhibits frequently

missing depth measurements. Nonetheless, ArtiPoint is able to

estimate the underlying motion model robustly under adverse

conditions.

C. Ablation Study

To further understand the contribution of different com-

ponents of the ArtiPoint pipeline, we conducted an ablation

study on the Arti4D dataset. From Tab. III, we can conclude

that using ORB keypoints [32] leads to lower results across

all metrics. Increasing the keyframe stride to 4 in Sec. III-B

reduces the computation overhead but also reduces performance.

Furthermore, deactivating our trajectory smoothing impacts the

accuracy of estimating the position of revolute joints, as well



TABLE I: Overall comparison of classical and deep articulation estimation methods on the Arti4D dataset. We report the axis-angle errors θerr , the positional
errors dL2 of revolute joints, and the accuracy of joint type detection. We note that ArtiPoint achieves the lowest error in estimating articulation parameters.

Method
Prismatic joints Revolute joints Type accuracy [%]

θerr[deg] dL2[m] θerr[deg] dL2[m] Prismatic Revolute

ArtGS 28.86 – 35.09 0.90 1.00 0.00
Ditto 54.00 – 56.09 0.54 0.17 0.80

Sturm et al. [37] 36.59 – 34.26 1.04 0.67 0.66
Sturm et al. [37] w/ bbox 42.59 – 45.27 1.15 0.65 0.56
Buchanan [4] w/ bbox 51.39 – 54.30 0.29 0.01 0.97

ArtiPoint w/ RANSAC 20.13 – 28.70 0.34 0.55 0.86

ArtiPoint 17.12 – 26.50 0.28 0.69 0.89

TABLE II: Difficulty-level comparison of estimation methods on Arti4D.

Prismatic joints Revolute joints Type accuracy [%]
Diff. Method θerr[deg] dL2[m] θerr[deg] dL2[m] Prismatic Revolute

EASY ArtGS 23.80 - 26.40 0.71 1.00 0.00
Ditto 51.99 - 51.22 0.44 0.19 0.85

ArtiPoint w/ [37]-AE 32.82 - 24.47 0.82 0.72 0.83

ArtiPoint 15.57 - 24.21 0.36 0.74 0.82

HARD ArtGS 37.26 - 40.82 1.03 1.00 0.00
Ditto 57.88 - 59.04 0.61 0.11 0.76
ArtiPoint w/ [37]-AE 44.38 - 40.78 1.17 0.55 0.56

ArtiPoint 20.26 - 27.99 0.23 0.60 0.93

TABLE III: Ablations of key components of our approach on the Arti4D dataset. As before, we report the same set of metrics as in Tab. I.

Prismatic joints Revolute joints Type Accuracy [%]
θerr [deg] dL2 [cm] θerr [deg] dL2 [cm] Prismatic Revolute

w/ ORB keypoints 20.70 - 33.06 0.34 0.69 0.83
w/ keyframe stride 4 17.57 - 28.55 0.30 0.66 0.87
w/o trajectory smoothing 17.63 - 26.79 0.36 0.61 0.81
w/ unreliable tracks 17.45 - 28.17 0.36 0.67 0.85

ArtiPoint (ours) 17.12 – 26.50 0.28 0.69 0.89

Fig. 2: Qualitative results on Arti4D: Estimated joint axis and pose trajectory of a drawer in a kitchen scene (RH201), a revolute joint of a storage case
(RH078), and another drawer in RH201.

as reducing the overall joint type prediction accuracy. Finally,

using unreliable tracks or highly occluded tracks has the same

impact as disabling smoothing.

VI. LIMITATIONS

Our proposed ArtiPoint framework relies on key point

tracking, which inherently requires the presence of somewhat

distinct features that allow tracking. However, state-of-the-art

any-point tracking methods as discussed in Sec. II show strong

robustness even under feature-sparse conditions. However,

when objects do not yield dependable depth estimates, due to

properties such as color, surface paint, or reflections, tracking

their motion becomes particularly challenging. To address

this limitation, future work will explore the integration of

inpainting methods informed by monocular depth estimation.

Additionally, our system is currently limited to relatively simple

articulation models that involve only two-body kinematics,



making it infeasible to estimate more complex articulations.

Another limitation of our approach is the requirement for

a trigger signal to segment the RGB-D sequence. In our

implementation, this trigger takes the form of human hand

detection, which is chosen due to its reliability in indicating

articulations. Alternative methods in action recognition, whether

in egocentric or third-person views, often lack robustness or

require extensive inference times, similar to more sophisticated

models.

VII. CONCLUSION

We presented ArtiPoint, a novel framework for estimating

articulation motion models from human object interactions

in-the-wild. Unlike prior works operating in controlled set-

tings involving fixed camera poses, isolated objects, and full

observability, we employ deep any-point tracking and factor

graph optimization to infer articulation models from ego-centric

human demonstrations. As part of our work, we introduced

Arti4D, the first real-world, ego-centric articulation demon-

stration dataset that includes odometry and axis ground truth.

ArtiPoint demonstrates robust performance while outperforming

both classical and previous deep and object-wise rendering

methods in articulated object estimation. To foster further

research in articulation understanding in realistic, unconstrained

settings, we make code, model predictions, and dataset publicly

available.
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Supplementary Material

In this supplementary to the main manuscript, we provide

additional insights on the utilized metrics in Sec. S.1.1, provide

additional quantitative and qualitative results in Sec. S.1.2, and

provide in-depth explanations regarding the introduced Arti4D

dataset in Sec. S.2.

S.1. EXPERIMENTAL RESULTS

In this section, we present additional details on our exper-

iments, the metrics we employ, and the additional ablation

study.

A. Metrics

In Sec. V, we report quantitative results of our approach

and the baselines. In this section, we detail the definition

of the metrics that we employ to quantify performance. As

stated in the main manuscript, our metrics consist of positional

and angular error. We compute the positional error di for the

placement of an articulation’s rotation axis â and the ground

truth axis agt using the help of supporting points p̂,pgt as

di =

{

(p̂i−pgt)
⊤(âi×agt)

∥âi×agt∥
if ∥âi × agt∥ > ϵ

∥(p̂i − pgt)× agt∥ else
, (1)

where the first case covers the case in which the axes are not

parallel with ϵ = 10−4. If the inference does not provide a

point on the axis directly, but a twist, we compute p̂i =
ωi×vi

∥ωi∥
2 .

The angular error of a prediction, we compute simply as using

the dot-product of the axes

Θerr,i = cos−1 |a⊤gtâi|. (2)

We report only angular errors for prismatic joints, as the

location of the axis does not have any effect on the motion of

the parts of the articulated object.

B. Additional Results

In the following sections, we share additional ablations on

hyperparameters of ArtiPoint and scene-respective results.

1) Ablation on Hand Detection: Extracting the interaction

intervals, as described in Sec. III-A and illustrated in Fig. S.1,

is a critical component of the ArtiPoint pipeline as it directly

affects the number of articulated objects detected. As such,

it requires careful parameter tuning, as small values of wh

or Tmin increase the number of false positives. To better

understand the impact of these parameters on the final results,

we conduct a detailed ablation study with its findings presented

in Tab. S.1. Decreasing Tmin leads to a noticeable degradation

in both angular error (θerr) and joint type classification

accuracy for both joint types. Increasing wh leads to over-

smoothing of the raw hand detection signal, causing the

segments to contain elongated idle phases at the start and

the end, thus inducing unfavorable noise, and resulting in a

noticeable degradation in both angular error (θerr) and joint

type classification accuracy for both joint types.

2) Ablation on Point Tracking: In this section, we present

ablation results on the any-point tracking component as

illustrated in Fig. S.2. In particular, we evaluate to which

degree different keyframe strides used as input to the point

tracking component affect the downstream axis prediction

performance (see Sec. III-B). Choosing the keyframe stride

is vital hyperparameter of the point tracking stage. While a

smaller stride leads to an increase in the number of detected

points to be tracked by Cotracker3 [22], larger strides reduce

the number of detected points to be tracked, thereby lowering

the computational load. Retaining a sufficient number of points

is necessary for estimating an object’s 3D trajectory over time,

therefore, careful tuning of this parameter is important. Overall,

we observe the lowest prediction errors for a keyframe stride

of 2. However, except for the revolute angular error, we do

not observe a clear trends among the other two metrics.

C. Scene-Respective Results

In addition, to the EASY/HARD differentation evaluated in

Tab. II, we show scene-respective results in Tab. S.2. This

involves averaging the predictions of all object interactions

contained in a scene split. We list the number of sequences per

scene as well as the number of labeled objects per sequence in

Sec. S.2. As reported in Tab. S.2, RH078 constitutes the most

difficult split of the Arti4D dataset. In comparison, DR080

and RH201 seem to represent simpler environments.

We attribute worse results on RH078 to a number of

non-separable interactions as the hand is occasionally not

fully retrieved between interactions. As a consequence, the

proposed interaction extraction baseline potentially fails at

differentiating two different interactions. We have mentioned

the hand trigger limitation in Sec. VI and leave improvements

on that front to feature work. In addition to that, we observe

that there are comparably more revolute joints in scene RH078

whose associated objects are rather textureless and of metallic

character, thus hindering consistent depth observations.

D. Qualitative Results

In the following, we provide additional qualitative results.

In Fig. S.3, we visualize the output of our proposed interaction

extraction, any-point tracking and track filtering components.

We observe a sufficient number of point trajectories even

under partially missing depth measurements or feature-sparse

textures. In addition to that, we visualize a full scene-level

output of ArtiPoint on DR080 scene in Fig. S.4. Overall,

ArtiPoint detects the majority of interactions and produces

reliable estimates considering the in-the-wild character of the

recorded Arti4D sequences.

S.2. ARTI4D DATASET

In the following, we provide additional insight on the in-

the-wild object articulation dataset Arti4D. We provide 45

sequences across four distinct environments as listed in Sec. S.2

and visualized in Fig. S.7. In addition to the sequence IDs and

the recording names of the produced sequences, we report the

number of labeled objects for each sequence, the ratio between

prismatic and revolute joints as well as the ratio between easy



TABLE S.1: Ablations of key parameters for extracting the interaction intervals component Sec. III-A on the Arti4D dataset. As before, we report the same set
of metrics as in Tab. I

Method
Prismatic joints Revolute joints Type accuracy [%]

θerr[deg] dL2[m] θerr[deg] dL2[m] Prismatic Revolute

wh = 12 19.35 – 31.95 0.36 0.65 0.83

Tmax = 90 18.45 – 27.46 0.24 0.64 0.89

Tmin = 15 24.78 – 32.75 0.35 0.59 0.85

ArtiPoint 17.12 – 26.50 0.28 0.69 0.89

Fig. S.1: Hand detection and interaction extraction: We visualize a live frame of an interaction, including a hand mask marked violet (top). In addition, we
visualize the frequency of raw hand detections over time up to the live frame as well as its moving average (bottom). The horizontal red line indicates the
threshold at which an interaction segment is created, given the moving average signal. The vertical dashed red line indicates the current frame.

and hard objects. First, note that the number of objects is not

equal to the number of object interactions per sequence, as

several sequences contain repeated interactions with the same

single object instance. This constitutes a corner case in terms of

articulated object interaction as it requires prediction methods

to fuse, e.g., two predictions belonging to a single object. While

most interactions are separable by detecting the absence of

a hand mask, especially the RH078 split which contains a

number of hard-to-separate interactions. This is due to the

fact that the interacting hand was not always fully retrieved

in-between interactions of two distinct objects. Similar to the

repeated interactions case mentioned before, this represents

another corner case requiring advanced action recognition.

As part of the dataset, we make both rosbags and processed

raw data public. While the rosbags include TF data at a higher

frequency, the raw data includes aligned RGB, depth, and

camera poses at 15 Hz. We employed an Azure Kinect RGB-D

camera that was handheld throughout all interactions. In terms

of ground truth camera pose retrieval, we employed external

tracking using HTC Vive trackers, which provide cm-level

accuracy. In case of sudden odometry glitches induced by

considerable occlusions or reflections on glass or metal, we

have removed those sequences from the dataset. We found

that running classical structure-from-motion approaches to

reconstruct the underlying sequence fails as significant parts

of the camera field of view cover articulations. In turn, the

contained articulations break assumptions towards mostly static

visual correspondence made in structure-from-motion methods.
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Fig. S.2: Impact of keyframe stride on tracking accuracy and error. (a) The revolute joint angular error θerr[deg] exhibits a minimum at stride 2. (b) The
revolute joint positional error dL2[m] is lowest at a stride of 2, with higher errors observed for both smaller and larger strides. (c) Similarly, the prismatic joint
angular error θerr exhibits its minimum at stride of 2. We conclude that a stride of 2 is optimal in terms of point density and computational efficiency.

TABLE S.2: Scene-respective results: We report the scene-wise results using the established set of metrics. We find that RH078 constitutes the most difficult
split of the Arti4D dataset.

Method
Prismatic joints Revolute joints Type accuracy [%]

θerr[deg] dL2[m] θerr[deg] dL2[m] Prismatic Revolute

RH078 30.36 – 27.16 0.395 0.622 0.778

RR080 16.17 – 21.84 0.332 0.598 0.889

DR080 14.62 – 27.50 0.279 0.824 0.926

RH201 14.91 – 25.44 0.246 0.723 0.886

Overall 17.12 – 26.50 0.28 0.69 0.89

The ground truth object axes were labeled based on the

reconstructed sequences using Blender, exported as JSONs,

and verified by a second reviewer. We also make the sequence

reconstructions in the form of meshes and point clouds available.

Furthermore, we provide metadata on difficulty levels and

interaction keyframe ground truth labels. We provide four

exemplary depth-masked RGB frames covering an interaction

of a microwave featuring semi-transparent glass and metal

surfaces in Fig. S.6. As depicted, a considerable part of the

object does not produce depth estimates. Objects of that kind

are labeled using the HARD category.

In addition, we depict four TSDF-reconstructed sequences

stemming from each of the splits in Fig. S.5. The reconstruc-

tions reflect minimal ground truth odometry drift and enable

precise anchoring object axes.

We depict several RGB frames drawn from the four distinct

scene splits in Fig. S.7, underlining the variety of objects and

challenging conditions of the proposed dataset.



Fig. S.3: Smoothed point trajectories: We visualize a cabinet (revolute) and its tracked keypoints (left) as well as a linear slider shelf (prismatic) on the right.
Each keypoint trajectory is represented with a unique color. Both sets of point trajectories visualized constitute the output of our track filtering introduced in
Sec. III-C.

Fig. S.4: Scene-level prediction: We depict a full scene-level output of the ArtiPoint framework on sequence scene_2025-04-11-11-44-32 of the
DR080 scene. Yellow arrows denote axes of motion of predicted object interactions while coordinate frames represent the estimate part poses throughout
articulation based on the proposed estimation framework (see Sec. III-D).



DR080 RH078

RH201 RR080

Fig. S.5: We visualize the reconstructed scenes of the four Arti4D environments: DR080, RH078, RH201, and RR080.



Fig. S.6: We visualize an exemplary frame with the depth projected onto the RGB observation in red whenever a depth reading was available for the particular
image coordinate. As depicted, metallic, semi-transparent, or dark-colored objects do not produce reliable depth estimates, ultimately complicating the lifting of
3D point trajectories used to estimate the underlying articulation.



TABLE S.3: Overview of all Arti4D demonstration sequences: We assign sequence identifiers to each recording and list the number of objects interacted with
per sequence as well as the distribution of prismatic vs. revolute joints (PRISM REV) and objects classified as either EASY or HARD. The number of objects
corresponds to the number of annotated axes per sequence. As such, it does not account for repeated interactions of the same object.

Scene Sequence ID Recording # Objects # PRISM / REV # EASY / HARD

R
H
0
7
8

RH078-00 scene 2025-04-04-19-14-38 7 3 / 4 7 / 0
RH078-01 scene 2025-04-04-19-18-54 6 2 / 4 4 / 2
RH078-02 scene 2025-04-07-11-39-17 7 3 / 4 7 / 0
RH078-03 scene 2025-04-07-11-41-52 8 3 / 5 6 / 2
RH078-04 scene 2025-04-07-11-48-40 7 3 / 4 7 / 0
RH078-05 scene 2025-04-09-10-30-11 8 5 / 3 3 / 5
RH078-06 scene 2025-04-09-10-32-52 6 5 / 1 3 / 3
RH078-07 scene 2025-04-09-10-35-47 7 6 / 1 2 / 5
RH078-08 scene 2025-04-09-10-38-38 8 5 / 3 4 / 4
RH078-09 scene 2025-04-09-10-46-48 7 7 / 0 4 / 3
RH078-10 scene 2025-04-09-10-49-20 7 6 / 1 2 / 5

R
R
0
8
0

RR080-00 scene 2025-04-10-13-11-16 18 15 / 3 10 / 8
RR080-01 scene 2025-04-10-16-05-09 15 13 / 2 9 / 6
RR080-02 scene 2025-04-17-15-25-14 11 11 / 0 7 / 4
RR080-03 scene 2025-04-17-15-33-44 9 9 / 0 7 / 2
RR080-04 scene 2025-04-22-09-53-49 8 8 / 0 5 / 3
RR080-05 scene 2025-04-22-09-56-24 10 9 / 1 9 / 1
RR080-06 scene 2025-04-22-09-58-49 7 7 / 0 4 / 3
RR080-07 scene 2025-04-22-11-45-15 9 8 / 1 7 / 2
RR080-08 scene 2025-04-22-11-48-01 9 8 / 1 7 / 2
RR080-09 scene 2025-04-22-11-50-40 8 7 / 1 6 / 2

D
R
0
8
0

DR080-00 scene 2025-04-11-11-44-32 11 7 / 4 5 / 6
DR080-01 scene 2025-04-11-12-58-58 9 5 / 4 4 / 5
DR080-02 scene 2025-04-11-13-01-59 9 5 / 4 4 / 5
DR080-03 scene 2025-04-11-13-18-00 9 4 / 5 3 / 6
DR080-04 scene 2025-04-11-13-43-03 11 7 / 4 5 / 6
DR080-05 scene 2025-04-11-14-01-06 11 7 / 4 5 / 6
DR080-06 scene 2025-04-11-15-43-24 11 7 / 4 5 / 6
DR080-07 scene 2025-04-11-15-46-48 11 6 / 5 4 / 7

R
H
2
0
1

RH201-00 scene 2025-04-24-17-52-21 11 5 / 6 6 / 5
RH201-01 scene 2025-04-24-17-54-13 9 5 / 4 5 / 4
RH201-02 scene 2025-04-24-19-18-42 11 4 / 7 7 / 4
RH201-03 scene 2025-04-24-19-21-50 8 2 / 6 5 / 3
RH201-04 scene 2025-04-24-19-24-09 9 5 / 4 6 / 3
RH201-05 scene 2025-04-25-10-36-37 9 5 / 4 7 / 2
RH201-06 scene 2025-04-25-10-53-40 8 4 / 4 3 / 5
RH201-07 scene 2025-04-25-10-56-33 9 4 / 5 4 / 5
RH201-08 scene 2025-04-25-11-11-47 16 7 / 9 7 / 9
RH201-09 scene 2025-04-25-11-15-47 7 5 / 2 4 / 3
RH201-10 scene 2025-04-25-14-58-42 9 6 / 3 4 / 5
RH201-11 scene 2025-04-25-15-02-14 7 3 / 4 4 / 3
RH201-12 scene 2025-04-25-15-04-48 7 4 / 3 3 / 4
RH201-13 scene 2025-04-25-15-16-29 9 5 / 4 3 / 6
RH201-14 scene 2025-04-25-15-19-22 10 5 / 5 5 / 5
RH201-15 scene 2025-04-25-15-22-54 8 4 / 4 3 / 5



DR080

RH078

RH201

RR080

Fig. S.7: We visualize several object interactions across the four different environments (DR080, RH078, RH201, RR080) captured as part of the Arti4D
dataset.
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