
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPECDEC++: BOOSTING SPECULATIVE DECODING VIA
ADAPTIVE CANDIDATE LENGTHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Speculative decoding reduces the inference latency of a target large language
model via utilizing a smaller and faster draft model. Its performance depends on a
hyperparameter K — the candidate length, i.e., the number of candidate tokens
for the target model to verify in each round. However, previous methods often use
simple heuristics to choose K, which may result in sub-optimal performance. We
study the choice of the candidate length K and formulate it as a Markov Decision
Process. We theoretically show that the optimal policy of this Markov decision
process takes the form of a threshold policy, i.e., the current speculation should
stop and be verified when the probability of getting a rejection exceeds a threshold
value. Motivated by this theory, we propose SpecDec++, an enhanced version
of speculative decoding that adaptively determines the candidate length on the fly.
We augment the draft model with a trained acceptance prediction head to predict
the conditional acceptance probability of the candidate tokens. SpecDec++ will
stop the current speculation when the predicted probability that at least one token
gets rejected exceeds a threshold. We implement SpecDec++ and apply it to the
llama-2-chat 7B & 70B model pair. Our adaptive method achieves a 2.04x speedup
on the Alpaca dataset (7.2% improvement over the baseline speculative decoding).
On the GSM8K and HumanEval datasets, our method achieves a 2.26x speedup
(9.4% improvement) and 2.23x speedup (11.1% improvement), respectively.

1 INTRODUCTION

Current state-of-the-art Large Language Models (LLMs) have demonstrated extraordinary capabilities
in various language tasks and have shown early signs of artificial general intelligence (Achiam et al.,
2023; Anil et al., 2023; Team et al., 2023; Touvron et al., 2023a;b). As the top-performing LLMs often
have more than a hundred billion parameters, there is an increasing demand for serving such huge
models efficiently. To decrease the inference latency, motivated by speculative execution techniques
in processors, speculative decoding (Chen et al., 2023a; Leviathan et al., 2023) incorporates a draft
model, which is smaller and faster, as the speculator for the target model, which is the large
language model we want to accelerate. Given the current prefix, the draft model first auto-regressively
generates K tokens, taking substantially less time than it would take the target model. The target
model computes their log probabilities in parallel and then sequentially determines whether each
token is accepted or not. Following the first rejected token (if any), the algorithm discards the
remaining tokens and corrects the rejected token with a fresh sample from a modified distribution. If
all tokens are accepted, a new token is sampled from the next-token probability given by the target
model and appended to the sequence of accepted tokens, and then the process moves forward. Such
draft-verify-correct loops continue until the desired output is fully generated.

The speedup effect of speculative decoding depends on two crucial aspects: (1) how well the draft
model aligns with the target model, and (2) how fast the draft model gets compared to the target
model. The two aspects influence the choice of the hyperparameter K: the number of candidate
tokens generated by the draft model in each loop. When the draft model aligns well and/or runs
fast, we can choose a larger K, which potentially allows more tokens to be accepted in each loop.
However, a larger K also increases the chances of rejection so that more tokens get discarded.

Leviathan et al. (2023) studied the problem of choosing the hyperparameter K under the assumption
that the acceptance rates of all the candidate tokens are constant. The authors showed that there

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Alpaca HumanEval GSM8K

10

15

20

25

To
ke

ns
 p

er
 S

ec
on

d
1.90x

2.04x
7.2% improvement

2.00x
2.23x

11.1% improvement

2.07x
2.26x

9.4% improvement No Speculative Decoding
SpecDec
SpecDec++

Figure 1: The performance of SpecDec++. Compared with the baseline speculative decoding
(SpecDec) with fixed candidate lengths, by adaptively determining the candidate lengths via a trained
acceptance prediction head, SpecDec++ achieves a relative 7.2%, 11.1%, and 9.4% improvement
over the baseline methods on the Alpaca, HumanEval, and GSM8K dataset, respectively. The
experiments are conducted with llama-2-chat 7B & 70B model pair on 2 NVIDIA A100-80G GPUs.

exists one constant K that can maximize the speedup. However, such an assumption is unrealistic
and does not approximate real-world cases well. Whether the draft model and the target model
align well depends on the hardness of predicting the next token. Intuitively, when the next token
is unambiguous from the prefix, the draft model and the target model align well, which means the
acceptance probability of the current candidate token is large compared to other cases.

In this work, we aim to boost the performance of speculative decoding by adaptively choosing the
candidate length K for each round. We formalize the adaptive decision-making of K for speculative
decoding as a Markov Decision Process (MDP). The decision to make at each timestep is whether
or not to stop the current speculation round and submit the candidate tokens to the target model for
verification and correction. The objective is to minimize the total inference time taken to generate a
full response. Theoretically, we show that the optimal policy takes the form of a threshold policy, i.e.,
it is optimal to stop the speculation round whenever the probability of existing at least one rejected
token in the candidates exceeds a threshold.

Inspired by the theory, we propose SpecDec++, an enhanced version of speculative decoding that
adaptively determines the candidate length on the fly. First, we train an acceptance prediction head
on top of the draft model to predict the acceptance probability of the candidate token. Training such
an acceptance prediction head has two challenges: (1) there will be a severe class imbalance problem,
e.g., most tokens generated by the draft model will have a high probability of acceptance, depending
on how well the two models align; (2) the input sequence to the model contains mostly tokens from
the target model and only a fraction of tokens generated by the draft model, so the training signal is
sparse. To overcome the two challenges, we adopt a weighted Binary Cross-Entropy loss to address
the class imbalance problem, and we adapt the random masking idea from BERT (Devlin et al., 2019)
to randomly mix tokens from the target model and the draft model to increase training efficiency.

At inference time, we opt to stop the current speculation round when the predicted probability of
the existence of a rejected token exceeds a constant stopping threshold. The procedure is illustrated
in Figure 2. We implement SpecDec++ and apply it to llama-2-chat 7B & 70B model pair.
Our adaptive method achieves a 2.04x speedup compared with the 1.90x speedup of the baseline
speculative decoding method on the Alpaca dataset (an additional 7.2% improvement). On the easier
GSM8K and HumanEval datasets, our method improves the baseline from 2.07x to 2.26x speedup
(9.4% improvement) and from 2.00x to 2.23x speedup (11.1% improvement), respectively.

We summarize the contributions below.

• We formalize the dynamic choice of candidate length in speculative decoding as a Markov Decision
Process (MDP). We theoretically show that when the probability that at least one token gets rejected
exceeds a threshold, the optimal action is to stop the speculation and submit it for verification.

• We propose SpecDec++, an enhanced version of speculative decoding that adaptively determines
the candidate length on the fly. We adopt a weighted loss and a token-mixing method to efficiently
train the prediction head and use it for dynamic decision-making in the decoding process.

• Empirically, our method achieves an additional 7.2%, 9.4%, and 11.1% improvement over the
baseline speculative decoding on the Alpaca, HumanEval, and GSM8K datasets, respectively.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 BACKGROUND

Rejection Sampling. If we want to sample from a target discrete distribution p(x), we first sample x

from a draft distribution q(x). We accept the sample x with probability min(1, p(x)
q(x)); otherwise we

replace it with a sample from the modified distribution Norm[(p− q)+], where z+ = max(z, 0) is
the positive part of z and Norm[f] = f(·)∑

x f(x) normalizes a function f to make it a proper probability
distribution. The proof of the unbiasedness of rejection sampling can be found in (Chen et al., 2023a).

Speculative Decoding. Speculative decoding extends to the auto-regressive generation scenarios by
chaining K rejection sampling procedures together. To auto-regressively generate a sequence from
p(· | xprefix), we first generates K candidate tokens (y1, y2, . . . , yK) from q(· | xprefix)

yi ∼ q(Yi | xprefix, y1, . . . , yi−1), i = 1, 2, . . . ,K.

Next, we sequentially check if each yi is accepted or not. If there is any rejection, we replace the
first rejected token with a fresh sample from the corresponding modified probability distribution and
discard the subsequent tokens.

The key practical consideration is that the probabilities of the candidate tokens p(yi |
xprefix, y1, . . . , yi−1) can be calculated in parallel by the target model with no additional overhead, as
the forward time is bottlenecked by the memory operations (Pope et al., 2023). For completeness, the
speculative decoding algorithm is stated in Algorithm 1.

Algorithm 1 Speculative Decoding (Chen et al., 2023a; Leviathan et al., 2023)
Require: draft model q, target model p, prefix xprefix, number of candidate tokens K.

for i = 1 to K do
Compute qi = q(· | xprefix, y1, . . . , yi−1).
Sample yi ∼ qi.

end for
Compute in parallel pi = p(· | xprefix, y1, . . . , yi−1) for i = 1, . . . ,K + 1.
Sample r1, . . . , rK with ri ∼ Unif[0, 1], i = 1, . . . ,K.
Compute the number of accepted tokens n = min

(
{i− 1 | ri ≥ pi(yi)/qi(yi)} ∪K

)
.

if n < K then
Sample y′ from the modified distribution Norm[(pn+1 − qn+1)+]

else
Sample y′ from pK+1

end if
Return xprefix, y1, . . . , yn, y

′

Inference Time of Speculative Decoding.

Our objective is to minimize the total inference time, which consists of

Ttotal = tdraftNdraft + ttargetNtarget, (2.1)

where tdraft and ttarget are the time needed for one forward pass and Ndraft and Ntarget are the total
number of forward passes of the draft model and the target model, respectively. Equation (2.1) holds
under the implicit assumption that the forward passes of each of the models take constant time, which
is true when we have enough computational resources to support the increased concurrency when the
length of the input sequence grows (Leviathan et al., 2023). We empirically verify that Equation (2.1)
holds in our setting; see Section 4.2.

Let N be the number of the final generated tokens. N is a random variable inherent to the target
model and the initial prompt, independent of the draft model and the number of candidate tokens K
of each round we choose. Let Ndiscarded be the number of total discarded tokens. Then we have the
following identity for Algorithm 1

Ndraft +Ntarget = N +Ndiscarded.

Therefore, Ttotal can be written as

Ttotal = T0 + tdraftNdiscarded + (ttarget − tdraft)Ntarget, (2.2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where T0 = tdraftN is the oracle inference time.

To minimize the total inference time, we are required to trade-off between two objectives: minimizing
the number of the discarded tokens Ndiscarded and minimizing the number of forward passes of the
target model Ntarget. The two objectives conflict with each other, as a larger K will incur more
discarded tokens but less number of forward passes of the target model. Equation (2.2) states that the
total cost is the weighted sum of the two and the weights are given by tdraft and (ttarget − tdraft).

Metrics. To measure the benefit of a speculative decoding pipeline, we divide Equation (2.2) by N
and get

latency = Ttotal/N = tdraft + tdraft ·Ndiscarded/N + (ttarget − tdraft) ·Ntarget/N. (2.3)

We focus on two metrics: (1) discard rate Ndiscarded/N , which measures the average number of
discarded tokens per one generated token, and (1) verification rate Ntarget/N , which measures the
average number of the forward calls of the target model per one generated token.

2.1 A MOTIVATING EXAMPLE: ORACLE PERFORMANCES OF GREEDY SPECULATIVE
DECODING

Let us focus on a simplified deterministic setting of speculative decoding, where we use greedy
decoding for the draft model and the target model. In this setting, the draft model deterministically
generates a series of greedy tokens (Y1, . . . , YK), and the speculative decoding algorithm reduces
to sequentially checking whether Yi is also the greedy token of the target model. The first rejected
token is replaced by the greedy token of the target model. If all the tokens are accepted, an additional
token is generated by the target model directly.

For a given prompt xprompt, let (X1, X2, . . . , XN) be the greedy tokens generated by the target model.
We ask the following question:

What is the oracle performance of the speculative decoding algorithm we can obtain by varying the
number of candidate tokens, if we have the knowledge of (X1, X2, . . . , XN) in hindsight?

Let us consider the first speculation round. The draft model generates (Y1, Y2, . . .) greedily. Let Yi be
the first token such that Yi ̸= Xi. The optimal strategy is to stop the speculation at time (i−1), so the
last candidate token Yi−1 is accepted, and Yi will be generated directly by the target model, because
(1) if we stop the speculation earlier, then the shorter candidate tokens will still be accepted, but this
induces at least one unnecessary forward pass of the target model; (2) if we stop the speculation later,
then we waste at least one candidate token Yi. By repeating the argument, we have the following.

Lemma 2.1. In the greedy decoding setting, for a given prompt xprompt, let (X1, X2, . . . , XN)
be the greedy tokens generated by the target model. We define Yi = argmax q(· |
xprompt, X1, X2, . . . , Xi−1) to be the greedy token of the draft model q conditioned on the par-
tial generation of the target model. Let S be the set of disagreement between the draft model and the
target model: S = {1 ≤ i ≤ N | Yi ̸= Xi}. Then, by optimally stopping at time (i− 1) for every
i ∈ S, we obtain the oracle performance with Ndiscarded = 0 and Ntarget = |S|+ 1.

To empirically verify this, we perform a preliminary experiment with the same setting in Section 4,
where we use all the prompts in the Alpaca dataset and calculate the set of disagreement S for each
prompt with the llama-2-chat-7B/llama-2-chat-70B model pair. The results show that the average
Ntarget/N = 0.164± 0.078 and the corresponding oracle throughput is 27.06± 4.13 tokens/second
(2.92x speedup) according to Equation (2.3) with the empirical value of (ttarget, tdraft) reported in
Section 4.2. In comparison, the average throughput for the target model without speculative decoding
is 9.26 tokens/second, while speculative decoding with the best fixed K gives 17.58 tokens/second
(1.90x speedup) (Section 4). We can see a huge potential in adaptively tuning the candidate lengths.

3 SPECDEC++: THEORY AND ALGORITHM

3.1 SPECULATIVE DECODING AS MARKOV DECISION PROCESSES

We formulate speculative decoding into the following Markov Decision Process (MDP) framework.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Draft Model

Acceptance Prediction Head

multiplication

STOP CONTINUE

Yes No

Figure 2: SpecDec++ uses a trained acceptance prediction head to predict the conditional accep-
tance probability of the candidate tokens. When the predicted probability of the existence of at least
one rejected token exceeds the stopping threshold h, the current speculation round ends and the
candidate tokens go through the target model for verification and correction.

States. We define the tuple s = (xprefix, (Y1, . . . , Yk)) as the current state of the MDP. Specifically,
xprefix is the concatenation of the prompt and the partial response containing all the accepted tokens.
(Y1, . . . , Yk) is the current candidate tokens, which are auto-regressively sampled from the draft
distribution q:

Yi ∼ q(· | xprefix, Y1, . . . , Yi−1), i = 1, 2,

The initial state of the MDP is (xprompt,∅).

Actions. Given the current state (xprefix, (Y1, . . . , Yk)), the decision to make is whether or not to end
the current speculation round and submit the candidate tokens to the target model for verification.
We denote the current action by a ∈ {stop, continue} as the choice of stopping or continuing the
current speculation round. 1

We note that in an extended MDP setting, we can include the draft probability qk+1 for the token
Yk+1 as a part of the current action. Finetuning the draft model to align better with the target model
can be viewed as an offline policy optimization algorithm that will likely improve the performance.
And it has been studied in previous work, e.g. DistillSpec (Zhou et al., 2024) and Medusa (Cai et al.,
2024). In the paper, we consider the draft probability qk+1 as given by the draft model and do not
optimize qk+1.

Transitions. First, we draw a random sample Yk+1 ∼ qk+1 and append Yk+1 to the current list of
the candidate tokens.

• When a = continue, the next state s′ is simply (xprefix, (Y1, . . . , Yk, Yk+1)).
• When a = stop, the candidate tokens (Y1, . . . , Yk+1) are verified via speculative decoding (Al-

gorithm 1). Let n be the number of the accepted tokens. Let y′ be the replaced token when
n < k + 1 or the fresh token from the next-token distribution given by the target model when
n = k + 1. The next state s′ = (x′

prefix,∅) with the new prefix x′
prefix = (xprefix, y1, . . . , yn, y

′)
being the concatenation of the previous prefix and the newly generated tokens.

Immediate Costs. According to Equation (2.2), let c1 = tdraft and c2 = (ttarget − tdraft). We can
define the immediate cost as the following

c(s, continue, s′) = I(∃1 ≤ i ≤ k + 1, Yi is rejected) · c1,
1In practice, when Yk+1 is EOS (the special token denoting the end of sequence) or when the total length

hits the maximal generation length, we manually set a = stop.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

c(s, stop, s′) = I(∃1 ≤ i ≤ k + 1, Yi is rejected) · c1 + c2.

For both cases, we suffer a loss c1 if the current candidate token Yk+1 is discarded, which happens if
there exists any candidate token Yi (1 ≤ i ≤ k + 1) that is rejected. If we stop at the current step, we
suffer an additional cost c2 corresponding to the extra inference time of the target model.

Note that different from the traditional MDP setting when the reward/cost is immediately available to
the learner, our setting is more related to the delayed feedback setting (Howson et al., 2023; Lee et al.,
2023; Yang et al., 2024b; Chen et al., 2024a), where the cost is only available after the candidate
tokens are submitted to the target model for verification.
Theorem 3.1. For any time-homogeneous policy π that has an upper bound for the number of
candidate tokens, at the current state s = (xprefix, (Y1, . . . , Yk)), when

P(∃1 ≤ i ≤ k, Yi is rejected | xprefix) ≥
c2 +∆

c1 + c2 +∆
,

the expected total cost of stop is smaller than the expected total cost of continue, where ∆ =
∆(π, xprompt, p, q, c1, c2) is a problem-specific constant.

We defer the proof of Theorem 3.1 to Appendix D.

3.2 SPECDEC++

Theorem 3.1 provides a sufficient condition for us to stop the current round of speculation and call the
target model to verify the candidate tokens. Motivated by Theorem 3.1, we propose SpecDec++,
an adaptive speculative decoding algorithm that utilizes an additional prediction head to determine
whether or not to stop the current speculation round.

SpecDec++ incorporates an additional prediction head fθ on top of the draft model that predicts
the conditional probability

P(Yi is accepted | Y1, . . . , Yi−1 are accepted , xprefix) = min
(
1,

p(Yi|xprefix, Y1, . . . , Yi−1)

q(Yi|xprefix, Y1, . . . , Yi−1)

)
.

We opt to implement a small prediction head such that the computational overhead is negligi-
ble compared to a forward pass of the draft model. During inference time, we feed the input
(xprefix, Y1, . . . , Yi) to the draft model and obtain the final embedding ei of the last token Yi. The
predicted acceptance probability is given by

P̂(Yi is accepted | Y1, . . . , Yi−1 are accepted , xprefix) = sigmoid(fθ(ei)). (3.1)

Given a threshold h, we end the current round of speculation when the predicted probability that
there exists one rejected token exceeds h

π(sk) = stop⇔ P̂(∃1 ≤ i ≤ k, such that Yi is rejected | xprefix) > h,

which can be computed by chain rule

P̂(∃1 ≤ i ≤ k, such that Yi is rejected | xprefix)

=1−
k∏

i=1

P̂(Yi is accepted | Y1, . . . , Yi−1 are accepted , xprefix).

We summarize the proposed algorithm in Algorithm 2 and illustrate it in Figure 2.

3.3 TRAINING DATASET AND OBJECTIVE

Let Dprompt be the prompt distribution. For each xprompt in Dprompt, we generate a response
(X1, . . . , XN) using the target model. Next, we feed the prompt and the response into the draft model
to get q(· | xprompt, X1, . . . , Xi−1) for every i. We sample a Yi from the distribution and calculate the

conditional acceptance probability Pi = min
(
1,

p(Yi|xprompt,X1,...,Xi−1)
q(Yi|xprompt,X1,...,Xi−1)

)
for each token, which will

be the training target.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 SpecDec++
Require: draft model q, target model p, prefix xprefix, acceptance prediction head fθ, threshold
h.

Initialize the cumulative acceptance probability p̂ = 1
for i = 1 do

if i > 1 then
Compute the final hidden embedding ei−1 of the token yi−1.

end if
Compute qi = q(· | xprefix, y1, . . . , yi−1).
Sample yi ∼ qi.
Update p̂← p̂ · sigmoid(fθ(ei−1)).
if 1− p̂ > h then

Break
end if

end for
Let K be the number of candidate tokens in the previous for-loop.
Compute in parallel pi = p(· | xprefix, y1, . . . , yi−1) for i = 1, . . . ,K + 1.
Sample r1, . . . , rK with ri ∼ Unif[0, 1], i = 1, . . . ,K.
Compute the number of accepted tokens n = min

(
{i− 1 | ri ≥ pi(yi)/qi(yi)} ∪K

)
.

if n < K then
Sample y′ from the modified distribution Norm[(pn+1 − qn+1)+]

else
Sample y′ from pK+1

end if
Return xprefix, y1, . . . , yn, y

′

We construct the response sequence (Z1, . . . , ZN) by randomly taking r% tokens from (X1, . . . , XN)
and the remaining tokens from (Y1, . . . , YN), borrowing the random masking idea from BERT (Devlin
et al., 2019). We only compute losses for the tokens from (Y1, . . . , YN).

We note that there will be distribution shifts between (xprefix, Y1, . . . , Yk), the sequence encountered
during the inference process, and (xprefix, Z1, . . . , Zk), the sequence encountered during training
process. The distribution shift may cause certain biases in the prediction head, e.g., over-confident
about the acceptance. Furthermore, as in the typical setting of speculative decoding where the draft
model and the target model align reasonably well, there will be class imbalance issues in the training
dataset, where most of the training examples will have Pi close to 1.

To accommodate the issues above, we train the prediction head using a weighted binary cross-entropy
(BCE) loss, taken over the tokens Zi’s stemming from Yi’s:∑

xprompt∈Dprompt

∑
1≤i≤N :

Zi is taken from Yi

(
− wacc · Pi log P̂i − wrej · (1− Pi) log(1− P̂i)

)
,

where wacc and wrej are the weights and P̂i = sigmoid(fθ(ei(xprompt, Z1, . . . , Zi−1, Yi))).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets and Model Pairs. We adopt three datasets in our experiments: Alpaca (Taori et al., 2023),
HumanEval (Chen et al., 2021), GSM8K (Cobbe et al., 2021). We only use prompts of the datasets
and do not use responses. In the experiments, we use llama-2-chat models (Touvron et al., 2023b).
We choose to use llama-2-chat 7B as the draft model and llama-2-chat 70B as the target model. To
reduce memory consumption, we use the bfloat16 format for the models.

Network Architecture, Weighted BCE Loss, and Stopping Criteria for SpecDec++. We build
a (D + 1)-layer ResNet with SiLU activation as the acceptance prediction head, and we sweep D

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

from 0 (linear layer) to 4 in the experiments. We adopt the weighted BCE loss where set wacc = 1
and choose wrej from {1, 3, 6, 12}. We tune the stopping threshold h in {0.1, 0.3, 0.5, 0.7, 0.9}. To
ensure the robustness of SpecDec++, we manually stop each speculation round when the number
of candidate tokens exceeds 20.

Baseline Method. We compare SpecDec++ with the naive speculative decoding algorithm
where the number of the candidate tokens K is fixed as a hyperparameter. We tune K in
{2, 4, 6, 8, 10, 12, 14}.
Due to space limits, additional experimental setup is deferred to Appendix C.1.

4.2 FORWARD TIME ANALYSIS

First, we verify the correctness of Equation (2.1) and determine the forward time of the draft model
tdraft and the target model ttarget under our specific setting. We collect all the (Ndraft, Ntarget, Ttotal)
tuples from generations using speculative decoding (either the baseline version or SpecDec++)
and perform a linear regression to determine the coefficients. We also determine the standalone
inference time when using only the draft model or the target model with linear regression. The linear
regressions fit well with all R2 ≥ 0.98 and the results are summarized in Table 2. Additionally, we
visualize tdraft and ttarget across the three settings in Figure 3.

Stand-alone SpecDec SpecDec++0.020

0.022

0.024

Fo
rw

ar
d

Ti
m

e
(s

) draft model

Stand-alone SpecDec SpecDec++

0.108

0.110

0.112

0.114
target model

Figure 3: The forward time of the draft model (llama-2-chat-7B) and the target model (llama-2-chat-
70B) under different settings. For each setting, we perform linear regression to calculate the forward
times and then average them across different datasets. The additional cost of the acceptance prediction
head is negligible compared to the systematic error and the random noise of the environment. Full
results are deferred to Table 2.

The additional cost of the acceptance prediction head is negligible, as we find that the average
tdraft in SpecDec++ setting is smaller than the average tdraft in baseline SpecDec setting by 0.0004s,
which is likely caused by random noise of the environment, as the standard deviation between
difference datasets around 0.0006s. Therefore, for both the baseline speculative decoding setting and
SpecDec++ setting, we choose (tdraft, ttarget) = (0.0234, 0.112), which is the average between the
two cases. We use Equation (2.3) to calculate the theoretical throughputs (tokens per second), which
match the noisier empirical throughputs well with relative error ≤ 6.2% for all prompts.

In the standalone setting where only the draft model or the target model is used, we see significant
decreases in both tdraft and ttarget, which indicates that speculative decoding induces minor additional
communication overhead. We use (tdraft, ttarget) = (0.0207, 0.108) for the stand-alone setting. The
average throughput for the target model is 9.26 tokens/second.

4.3 PERFORMANCES

We test the performances of the baseline speculative decoding with different K and SpecDec++
with the different acceptance prediction heads and different thresholds h. We calculate the discard
rates Ndiscarded/N and the verification rates Ntarget/N (Equation (2.3)). The results are plotted in
Figure 4. We see that SpecDec++ has strictly better Pareto frontiers than the baseline SpecDec
on both the in-distribution test set Alpaca and the two out-of-distribution datasets HumanEval and
GSM8K. Our method with adaptive candidate lengths improves upon the baseline method of fixed
candidate lengths by reducing both the discard rate and the verification rate. The two metrics are
independent of the actual forward times (tdraft and ttarget) and hence reusable for other hardware
configurations, which indicates that SpecDec++ will still outperform the baseline under different
sets of tdraft and ttarget. Finally, we plug in the actual values of (tdraft, ttarget) = (0.0234, 0.112) as in
Section 4.2. We summarize the throughputs in Table 1 and visualize the improvements in Figure 1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.15 0.20 0.25 0.30
Verification Rate

0.5

1.0

1.5

D
is

ca
rd

 R
at

e

Alpaca

SpecDec++
SpecDec

0.15 0.20 0.25 0.30
Verification Rate

0.5

1.0

1.5

D
is

ca
rd

 R
at

e

HumanEval

SpecDec++
SpecDec

0.15 0.20 0.25 0.30
Verification Rate

0.5

1.0

1.5

D
is

ca
rd

 R
at

e

GSM8K

SpecDec++
SpecDec

Figure 4: The average verification rates Ntarget/N and the average discard rates Ndiscarded/N for
SpecDec with different candidate lengths and SpecDec++ with different acceptance prediction
heads and stopping thresholds. SpecDec++ has better Pareto frontiers than SpecDec on both the
in-distribution dataset Alpaca and the two out-of-distribution datasets HumanEval and GSM8K.

Table 1: The best throughputs achieved by SpecDec++ compared to the best throughputs achieved
by the speculative decoding baseline on Alpaca, HumanEval, and GSM8K datasets.

Dataset Alpaca HumanEval GSM8K
SpecDec++ 18.88 (tokens/s) 20.61 (tokens/s) 20.95 (tokens/s)
SpecDec (baseline) 17.62 (tokens/s) 18.55 (tokens/s) 19.14 (tokens/s)

Discussions. As the distribution shift of the OOD datasets will influence the accuracies and the
calibrations of the acceptance prediction heads, a natural question to ask is whether the optimal
performances for different datasets are achieved with different acceptance prediction heads and
stopping thresholds. Empirically, we confirm that this is indeed the case. Nevertheless, we find that
using the acceptance prediction trained with wrej = 6 and network depth D = 3 and the stopping
threshold h = 0.7 achieves over 99.3% of the best tokens per second across the three datasets (2.03x
for Alpaca, 2.21x for HumanEval, and 2.26x for GSM8K). Additional ablation studies on how the
hyperparameters (wrej, D, h) influence the final tokens per second can be found in Appendix C.3.

5 RELATED WORK

Speculative decoding. Since the proposal of speculative decoding, people have been improving
the algorithm from different perspectives. Our work is complementary to the works that improve
speculative decoding by (1) making the draft model align better with the target model (Zhou et al.,
2024; Agarwal et al., 2024; Liu et al., 2023), (2) building smaller draft models or merging draft
models into the target model (e.g. early-exiting) (Miao et al., 2023; Liu et al., 2024; Yang et al.,
2023b; Bae et al., 2023; Zhang et al., 2024; Monea et al., 2023; Chen et al., 2023b), and (3) building
a heirachical system of speculative decoding (Spector & Re, 2023; Sun et al., 2024a). Our work is not
directly appliable to the methods that do not have the concept of an auto-regressive draft model (Stern
et al., 2018; Li et al., 2024b; Bhendawade et al., 2024; Cai et al., 2024) and the retrieval-based
methods (He et al., 2023; Zhao et al., 2024; Yang et al., 2023a; Fu et al., 2024). See Appendix B for
an extended related work about speculative decoding, token trees, and diffusion language models.

Candidate length selection. Leviathan et al. (2023) make the i.i.d. assumption on the acceptance
probabilities of the candidate tokens and theoretically derive the optimal choice of K. Besides,
Liu et al. (2024) and Kim et al. (2024) adopt a simple heuristic that ends the speculation if the
confidence of the current draft token distribution falls below a threshold. Xu et al. (2023) uses the
cumulative product of the confidences and extends to the token tree version. In comparison, our
work systematically studies the candidate length selection within the MDP framework and uses the
cumulative product of our trained prediction head to determine the end of the speculation.

6 CONCLUSION

We study the determination of the candidate lengths for speculative decoding. We formulate the
problem as a Markov Decision Process and provide a theorem that gives a sufficient condition to stop
the current speculation. Motivated by the theoretical result, we propose SpecDec++ to adaptively
select the candidate length with a trained acceptance prediction head. We demonstrate significant
speedups over baselines and our method can be seamlessly integrated with other improvements.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-
generated mistakes. In The Twelfth International Conference on Learning Representations, 2024.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. Fast and robust early-exiting
framework for autoregressive language models with synchronized parallel decoding. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 5910–5924,
2023.

Nikhil Bhendawade, Irina Belousova, Qichen Fu, Henry Mason, Mohammad Rastegari, and Mahyar
Najibi. Speculative streaming: Fast llm inference without auxiliary models. arXiv preprint
arXiv:2402.11131, 2024.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv: 2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Minshuo Chen, Yu Bai, H Vincent Poor, and Mengdi Wang. Efficient rl with impaired observability:
Learning to act with delayed and missing state observations. Advances in Neural Information
Processing Systems, 36, 2024a.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding. arXiv preprint
arXiv:2402.12374, 2024b.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Jie Huang, and Kevin Chen-Chuan Chang.
Cascade speculative drafting for even faster llm inference. arXiv preprint arXiv:2312.11462,
2023b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

10

https://aclanthology.org/N19-1423

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu, Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu,
Liqiang Nie, Zhaopeng Tu, et al. Glide with a cape: A low-hassle method to accelerate speculative
decoding. arXiv preprint arXiv:2402.02082, 2024.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm inference
using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

Benjamin Howson, Ciara Pike-Burke, and Sarah Filippi. Delayed feedback in generalised linear
bandits revisited. In International Conference on Artificial Intelligence and Statistics, pp. 6095–
6119. PMLR, 2023.

Wonseok Jeon, Mukul Gagrani, Raghavv Goel, Junyoung Park, Mingu Lee, and Christopher Lott.
Recursive speculative decoding: Accelerating llm inference via sampling without replacement.
arXiv preprint arXiv:2402.14160, 2024.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir
Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. Advances in Neural
Information Processing Systems, 36, 2024.

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and Hao Zhang. Cllms: Consistency large language
models. arXiv preprint arXiv:2403.00835, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Jonathan Lee, Alekh Agarwal, Christoph Dann, and Tong Zhang. Learning in pomdps is sample-
efficient with hindsight observability. In International Conference on Machine Learning, pp.
18733–18773. PMLR, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 19274–19286. PMLR, 23–
29 Jul 2023. URL https://proceedings.mlr.press/v202/leviathan23a.html.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-lm
improves controllable text generation. Advances in Neural Information Processing Systems, 35:
4328–4343, 2022.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
arXiv preprint arXiv:2404.14469, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024b.

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Kai Han, and Yunhe Wang. Kangaroo:
Lossless self-speculative decoding via double early exiting. arXiv preprint arXiv:2404.18911,
2024.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Stoica, Zhijie Deng, Alvin Cheung, and Hao Zhang.
Online speculative decoding. arXiv preprint arXiv:2310.07177, 2023.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong, Alan
Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar,
and Zhihao Jia. Specinfer: Accelerating generative large language model serving with speculative
inference and token tree verification, 2023.

11

https://proceedings.mlr.press/v202/leviathan23a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Giovanni Monea, Armand Joulin, and Edouard Grave. Pass: Parallel speculative sampling. arXiv
preprint arXiv:2311.13581, 2023.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5, 2023.

Andrea Santilli, Silvio Severino, Emilian Postolache, Valentino Maiorca, Michele Mancusi, Riccardo
Marin, and Emanuele Rodola. Accelerating transformer inference for translation via parallel
decoding. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 12336–12355, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.689. URL https://aclanthology.org/2023.acl-long.
689.

Benjamin Frederick Spector and Christopher Re. Accelerating LLM inference with staged speculative
decoding. In Workshop on Efficient Systems for Foundation Models @ ICML2023, 2023. URL
https://openreview.net/forum?id=RKHF3VYjLK.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Qidong Su, Christina Giannoula, and Gennady Pekhimenko. The synergy of speculative decoding
and batching in serving large language models. arXiv preprint arXiv:2310.18813, 2023.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024a.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix
Yu. Spectr: Fast speculative decoding via optimal transport. Advances in Neural Information
Processing Systems, 36, 2024b.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13484–
13508, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.acl-long.754. URL https://aclanthology.org/2023.acl-long.754.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey of
speculative decoding. arXiv preprint arXiv:2401.07851, 2024.

12

https://aclanthology.org/2023.acl-long.689
https://aclanthology.org/2023.acl-long.689
https://openreview.net/forum?id=RKHF3VYjLK
https://github.com/tatsu-lab/stanford_alpaca
https://aclanthology.org/2023.acl-long.754

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Daliang Xu, Wangsong Yin, Xin Jin, Ying Zhang, Shiyun Wei, Mengwei Xu, and Xuanzhe Liu. Llm-
cad: Fast and scalable on-device large language model inference. arXiv preprint arXiv:2309.04255,
2023.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin Jiang, Linjun Yang, Rangan Majumder, and
Furu Wei. Inference with reference: Lossless acceleration of large language models. arXiv preprint
arXiv:2304.04487, 2023a.

Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun Chen. Multi-candidate speculative decoding. arXiv
preprint arXiv:2401.06706, 2024a.

Seongjun Yang, Gibbeum Lee, Jaewoong Cho, Dimitris Papailiopoulos, and Kangwook Lee. Pre-
dictive pipelined decoding: A compute-latency trade-off for exact llm decoding. arXiv preprint
arXiv:2307.05908, 2023b.

Yunchang Yang, Han Zhong, Tianhao Wu, Bin Liu, Liwei Wang, and Simon S Du. A reduction-based
framework for sequential decision making with delayed feedback. Advances in Neural Information
Processing Systems, 36, 2024b.

Aonan Zhang, Chong Wang, Yi Wang, Xuanyu Zhang, and Yunfei Cheng. Recurrent drafter for fast
speculative decoding in large language models. arXiv preprint arXiv:2403.09919, 2024.

Weilin Zhao, Yuxiang Huang, Xu Han, Chaojun Xiao, Zhiyuan Liu, and Maosong Sun. Ouroboros:
Speculative decoding with large model enhanced drafting. arXiv preprint arXiv:2402.13720, 2024.

Shuzhang Zhong, Zebin Yang, Meng Li, Ruihao Gong, Runsheng Wang, and Ru Huang.
Propd: Dynamic token tree pruning and generation for llm parallel decoding. arXiv preprint
arXiv:2402.13485, 2024.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh, San-
jiv Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improving speculative decoding
via knowledge distillation. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=rsY6J3ZaTF.

13

https://openreview.net/forum?id=rsY6J3ZaTF

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A LIMITATIONS

Our theoretical result contains a problem-specific constant ∆ which is hard to analyze theoretically or
estimate empirically. Nevertheless, the choice of the stopping threshold h can be determined through
hyperparameter search; see Appendix C.3. As is the case with all speculative decoding algorithms,
our method relies on the implicit assumption that the draft model and the target model align well. For
a weak draft model, the acceptance prediction head may perform badly.

B ADDITIONAL RELATED WORK

Large language models are mostly based on Transformer architectures (Vaswani et al., 2017) that
auto-regressively predict the probability of the next token given its predecessors. One bottleneck of
the inference speed lies in the fact that auto-regressive decoding is an inherently non-parallelizable
sequential operation: the probabilities of future tokens depend on the current token and there is no
trivial way to skip the current token when predicting future tokens. Therefore, the inference time of
auto-regressive decoding scales linearly with the number of the generated tokens.

However, the time of a forward pass to compute the log probabilities of the tokens through transform-
ers is nearly constant for batched sequences with different lengths within a proper range, thanks to
the increasingly powerful parallel computing units (Pope et al., 2023; Vaswani et al., 2017; Chen
et al., 2023a; Leviathan et al., 2023).

Therefore, to overcome the bottleneck of the auto-regressive decoding, one can find a fast way to
generate K tokens, which often increases FLOPs, and the ask the target model to verify and correct
the candidates (Stern et al., 2018; Chen et al., 2023a; Leviathan et al., 2023); see a comprehensive
survey (Xia et al., 2024). For those methods to work, we assume that we have enough computational
resources (e.g. CUDA memories) to support the increased concurrency. Nevertheless, in the long-
context generation regime, the memory issue becomes prominent, which requires additional KV-cache
management techniques such as compression or retrieval (Li et al., 2024a; Sun et al., 2024a).

Improvements of Speculative Decoding Methods

The performance of speculative decoding depends on how well the draft model aligns with the target
model, and how fast the draft model is compared to the target model. People have been improving
speculative decoding in two aspects: (1) making the draft model align better with the target model
via distillation (Zhou et al., 2024; Agarwal et al., 2024) and online learning (Liu et al., 2023); and
(2) making the token generation faster and cheaper, e.g. training multiple smaller draft models from
stratch (Miao et al., 2023).

In addition, the candidate tokens can be generated without a separate draft model (Stern et al., 2018;
Li et al., 2024b; Du et al., 2024; Bhendawade et al., 2024), such as building additional modules that
predict the next k tokens (Medusa heads (Cai et al., 2024), RNN heads (Zhang et al., 2024), soft
tokens (Monea et al., 2023)), early-exiting methods that reuse the intermediate representations of the
target model (Liu et al., 2024; Yang et al., 2023b; Bae et al., 2023), and retrieval-based methods that
involve constructing an n-gram datastore and using retrieval to generate candidates (He et al., 2023;
Zhao et al., 2024; Yang et al., 2023a; Fu et al., 2024).

Those techniques can be combined, resulting in a heirachical system (Spector & Re, 2023; Zhao
et al., 2024; Sun et al., 2024a).

Token Tree Generation, Verification and Pruning.

Paralleling across the batch dimension via token trees is another direction to increase through-
puts (Miao et al., 2023; Xu et al., 2023; Su et al., 2023). For greedy decoding, token tree generation
and verification are studied in (Cai et al., 2024). For the stochastic sampling setting, REST (He
et al., 2023) proposes a straightforward approach: keeping the token paths that coincide with the
stochastic tokens given by the target model. There are also researches extending the stochastic
speculative decoding to the token tree setting, which often needs to adjust the drafting and verification
probabilities to ensure unbiasedness, e.g. MCSD (Yang et al., 2024a), Recursive SD (Jeon et al.,
2024), Sequoia (Chen et al., 2024b), EAGLE (Li et al., 2024b), SpecTR (Sun et al., 2024b).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

One important problem to study is how to construct and prune the token tree to maximize throughputs
and avoid heavy communication overheads, which is studied in (Chen et al., 2024b; Zhong et al.,
2024). Our work can serve as a starting point towards the problem, as the candidate length K can be
viewed as the depth of a token tree with only one branch.

Diffusion language models. Diffusion language models either in the discrete space (see
D3PM (Austin et al., 2021) and its follow-ups) or in the embedding space (see Diffusion-LM (Li
et al., 2022) and its follow-ups) are non-autoregressive language models, whose generation time can
scale sub-linearly with the sequence length. BERT-type encoder-only models and auto-regressive
decoder-only models can be also viewed as diffusion model, with mask prediction and next-token
prediction being the denoising operation (Austin et al., 2021). Viewing next-token prediction as
Jacobi iteration (Santilli et al., 2023) and denoising operation is a powerful idea and it leads to
subsequent work such as lookahead decoding (Fu et al., 2024) and consistency LLMs (Kou et al.,
2024).

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ADDITIONAL EXPERIMENTAL SETUPS

The subsection continues Section 4.1.

Datasets. We adopt three datasets in our experiments: (1) Alpaca (Taori et al., 2023), an
instruction-following dataset generated using Self-Instruct (Wang et al., 2023) from OpenAI’s
text-davinci-003 model; (2) HumanEval (Chen et al., 2021), a test dataset containing Python
code synthesis problems; and (3) GSM8K (Cobbe et al., 2021), a dataset of high-school math
problems. We only use prompts of the datasets and do not use responses.

Dataset splits. We split the Alpaca dataset into train/dev/test splits, containing 40k, 10k, 2k prompts,
respectively. We use train split to train the prediction heads and evaluate them on the dev split. We
benchmark the performance of SpecDec++ on the test split. For HumanEval and GSM8K, we only
use them for benchmarking the out-of-distribution (OOD) performance of SpecDec++. For each
test dataset, we subsample 150 examples for benchmarking the performances.

Mixing probability. As in Section 3.3, we mix the response tokens from the generations from
the target model and the predicted next-tokens from the draft model. We set an aggressive value
r% = 15% so only 15% of the tokens are from the target model, as we find empirically that the draft
model and the target model often align well. Setting a smaller r increases the training efficiency as
more supervision signals are used.

Training Details. We train all the acceptance prediction heads on the train split of the Alpaca dataset
for 3 epochs with batch size 32. We use Adam optimizer and a cosine learning rate schedule with the
initial learning rate 5e− 5.

Hardware configuration. We use 2 NVIDIA A100 GPUs with 80G memory for the experiments.
We shard the 70B model across the two devices and communication overhead occurs when inferring
with llama-2-chat 70B. When doing speculative decoding, the 7B model is loaded only on one device.

Inference setting. We set the maximal sequence length to be 512. We use temperature T = 1 and
adopt top-k sampling with k = 50. We do not integrate KV cache management techniques such as
PagedAttention (Kwon et al., 2023) or KV cache pre-allocation.

Experiments Compute Resources. The required compute resources are estimated to be 500 hours on
2 NVIDIA A100-80G GPUs for the training dataset generation, 400 hours on 1 NVIDIA A100-80G
GPU for training 20 acceptance prediction heads (sweeping D from 0 to 4 and wrej among 1, 3, 6, 12),
500 hours on 2 NVIDIA A100-80G GPUs for the whole evaluation set. The full research project
would require at least 2x the reported compute, as there were preliminary experiments that are not in
the paper.

C.2 FORWARD TIME ANALYSIS

We report the full results of the linear regression in Section 4.2 in Table 2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 2: The forward time of the draft model (llama-2-chat-7B) and the target model (llama-2-chat-
70B) under different settings and different datasets. We perform linear regression to calculate the
forward times.

Setting Dataset tdraft ttarget R2

stand-alone

Alpaca 0.0206 0.108 0.9994 & 0.9998
HumanEval 0.0207 0.107 0.9994 & 0.9998
GSM8K 0.0206 0.109 0.9990 & 0.9992
average 0.0207 ± 0.0001 0.108 ± 0.001

SpecDec

Alpaca 0.0232 0.114 0.9983
HumanEval 0.0246 0.111 0.9965
GSM8K 0.0229 0.113 0.9926
average 0.0236 ± 0.0007 0.112 ± 0.001

SpecDec++

Alpaca 0.0240 0.110 0.9982
HumanEval 0.0229 0.111 0.9880
GSM8K 0.0225 0.113 0.9925
average 0.0231 ± 0.0006 0.111 ± 0.001

C.3 ABLATION STUDIES.

We study how the hyperparameters wrej, D, h influence the final throughputs (tokens per second).
First, we calculate the (unweighted) binary KL divergence between the ground-truth probability and
the predicted probability, i.e.,

KL(p||q) = p log
p

q
+ (1− p) log

1− p

1− q
.

As KL(p||q) = BCE(p||q)−H(p), the binary KL divergence is a metric for how well the acceptance
prediction head fits the ground-truth probabilities. Next, for each acceptance prediction head, we
report the best throughput by varying the stopping threshold h among {0.1, 0.3, 0.5, 0.7, 0.9}, and
the corresponding h that achieves the best performance. The results are summarized in Table 3.

From the table, we see that increasing wrej = 1 increases the unweighted eval KL. All the prediction
heads trained with wrej = 1 perform the best with h = 0.3 under all three datasets, and similarly, most
prediction heads trained with wrej = 3, 6, 12 perform the best with h = 0.5, 0.7, 0.9, respectively.
This synergy between wrej = 1 and h is expected, since increasing wrej = 1 forces the acceptance
prediction head to focus more on the cases where the candidate token is rejected and thus mitigates
the over-confidence issue. In return, the stopping threshold h can be set to a higher value to adjust for
the increased predicted probability of existing one rejection.

We bold the throughputs that are above 99% of the maximum throughput of the same dataset. We see
that there are two sets of hyperparameters that consistently achieve 99% of the maximum throughputs
across the three datasets: wrej = 6, D = 3, h = 0.7 and wrej = 6, D = 4, h = 0.7.

D THEORETICAL ANALYSIS

In the section, we present the proof of Theorem 3.1.

For any time-homogeneous policy π, we define a random variable Cπ(s, a) as the total cost-to-go
from the current state s = (xprefix, (Y1, . . . , Yk)) when taking action a.

Cπ(s, a) =

M∑
i=1

c(si, ai, si+1), with s1 = s, a1 = a,

where the next state si+1 given (si, ai) follows the stochastic transition of the MDP, ai = π(si) for
i ≥ 2, and M is a random variable of the number of total steps. We make the assumption that π
has an upper bound for the number of candidate tokens, so we exclude the cases where the policy π
potentially leads to an infinite loop and hence M <∞. Let Cπ(s) = Cπ(s, π(s)).

proof of Theorem 3.1. We analyze the difference Cπ(s, continue)− Cπ(s, stop) for three cases.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 3: The performance of the acceptance prediction heads with different loss weights wrej and
network depths D. The train/eval KL refers to the binary KL divergence between the ground-truth
probability and the predicted probability. For the three datasets, we report the best throughput and
the corresponding stopping threshold h. The throughputs are bolded if they are above 99% of the
maximum throughput of the same dataset.
wrej Depth D train/KL eval/KL Alpaca HumanEval GSM8K
1 0 0.422 0.412 18.48 (h = 0.3) 19.91 (h = 0.5) 20.32 (h = 0.3)
1 1 0.409 0.390 18.39 (h = 0.3) 20.29 (h = 0.3) 20.44 (h = 0.3)
1 2 0.391 0.387 18.87 (h = 0.3) 20.26 (h = 0.3) 20.87 (h = 0.3)
1 3 0.387 0.384 18.82 (h = 0.3) 20.10 (h = 0.3) 20.86 (h = 0.3)
1 4 0.384 0.383 18.57 (h = 0.3) 20.51 (h = 0.3) 20.73 (h = 0.3)
3 0 0.515 0.491 18.31 (h = 0.5) 20.12 (h = 0.7) 20.36 (h = 0.5)
3 1 0.479 0.461 18.88 (h = 0.5) 20.32 (h = 0.5) 20.70 (h = 0.5)
3 2 0.475 0.458 18.60 (h = 0.5) 20.17 (h = 0.5) 20.61 (h = 0.3)
3 3 0.462 0.454 18.76 (h = 0.5) 20.32 (h = 0.5) 20.88 (h = 0.5)
3 4 0.465 0.451 18.88 (h = 0.5) 20.50 (h = 0.7) 20.82 (h = 0.5)
6 0 0.657 0.637 18.67 (h = 0.7) 19.90 (h = 0.9) 20.24 (h = 0.7)
6 1 0.620 0.596 18.75 (h = 0.7) 20.09 (h = 0.9) 20.86 (h = 0.7)
6 2 0.607 0.589 18.65 (h = 0.7) 20.17 (h = 0.9) 20.70 (h = 0.7)
6 3 0.617 0.582 18.80 (h = 0.7) 20.47 (h = 0.7) 20.95 (h = 0.7)
6 4 0.603 0.575 18.87 (h = 0.7) 20.61 (h = 0.7) 20.77 (h = 0.7)
12 0 0.922 0.871 18.55 (h = 0.9) 19.93 (h = 0.9) 20.62 (h = 0.9)
12 1 0.830 0.805 18.71 (h = 0.9) 20.25 (h = 0.9) 20.73 (h = 0.9)
12 2 0.834 0.794 18.58 (h = 0.9) 20.39 (h = 0.9) 20.77 (h = 0.7)
12 3 0.801 0.781 18.76 (h = 0.9) 20.29 (h = 0.9) 20.67 (h = 0.9)
12 4 0.799 0.773 18.82 (h = 0.9) 20.19 (h = 0.9) 20.65 (h = 0.9)

Case 1. E1 = {∃1 ≤ i ≤ k + 1, such that Yi is rejected}.
Let x′

prefix be the next prefix given by the speculative decoding algorithm, where the first rejected
token among (Y1, . . . , Yk+1) is replaced by the token from the modified distribution. We know that

Cπ(s, stop) = c1 + c2 + Cπ((x′
prefix,∅)).

If we choose to continue at the current step, we know that no matter how many additional steps we
continue to generate draft tokens, we will eventually discard them and get the same new prefix x′

prefix.
Let Nπ

continue(s) be the total number of extra continue’s induced by the policy π given the current
state s and action continue. We have

Cπ(s, continue) = c1 + c1 · (1 +Nπ
continue(s)) + c2 + Cπ((x′

prefix,∅)).

In summary, we have

Cπ(s, continue)− Cπ(s, stop) ≥ c1, conditioned on E1.

Case 2. E2 = {∀1 ≤ i ≤ k + 1, Yi is accepted, Yk+2 is rejected}.
If we stop the current round of speculation, then all the candidate tokens (Y1, . . . , Yk+1) will be
accepted and an additional Xk+2 is sampled from p(· | xprefix, Y1, . . . , Yk+1).

Cπ(s, stop) = c2 + Cπ(((xprefix, Y1, . . . , Yk+1, Xk+2),∅)).

Again, if we choose to continue at the current step, as Yk+2 is rejected, future generated tokens
beyond Yk+2 will also be discarded. After the verification, Yk+2 will be replaced by Wk+2 ∼
Norm[(p(·|xprefix, Y1 . . . , Yk+1)− q(·|xprefix, Y1 . . . , Yk+1))+]. Let Nπ

continue(s) be the total number
of extra continue’s induced by the policy π given the current state s and action continue. We have

Cπ(s, continue) = c1 · (1 +Nπ
continue(s)) + c2 + Cπ(((xprefix, Y1, . . . , Yk+1,Wk+2),∅)).

Denote ∆1 = Cπ(((xprefix, Y1, . . . , Yk+1, Xk+2),∅))−Cπ(((xprefix, Y1, . . . , Yk+1,Wk+2),∅)). In
summary, we have

Cπ(s, continue)− Cπ(s, stop) ≥ c1 −∆1, conditioned on E2.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Case 3. E3 = {∀1 ≤ i ≤ k + 2, Yi is accepted}.
Similar to Case 2, if we stop the current round of speculation, then all the candidate tokens
(Y1, . . . , Yk+1) will be accepted, and an additional Xk+2 is sampled from p(· | xprefix, Y1, . . . , Yk+1).

Cπ(s, stop) = c2 + Cπ(((xprefix, Y1, . . . , Yk+1, Xk+2),∅)).

If we choose to continue at the current step, there is no immediate cost at the current step and we
transit to (xprefix, (Y1, . . . , Yk+1)).

Cπ(s, continue) = Cπ((xprefix, (Y1, . . . , Yk+1))).

Denote ∆2 = Cπ(((xprefix, Y1, . . . , Yk+1, Xk+2),∅))− Cπ((xprefix, (Y1, . . . , Yk+1))). We have

Cπ(s, continue)− Cπ(s, stop) ≥ −c2 −∆2, conditioned on E3.

Summary. At the current state, the values of (Y1, . . . , Yk) are known. We calculate the conditional
expectation of Cπ(s, continue) − Cπ(s, stop) given the current observation. For simplicity of
notation, we do not explicitly write out the condition on (Y1, . . . , Yk).

E[Cπ(s, continue)− Cπ(s, stop)]

≥P(E1)c1 + P(E2)(c1 − E[∆1 | E2]) + P(E3)(−c2 − E[∆2 | E3]).

When the right-hand side of the above inequality is larger than zero, the expected total cost of
continue is larger than the expected cost of stop. Therefore, we obtain a sufficient condition to stop
at the current step.

To continue the analysis, we assume that we have an almost-sure upper bound ∆ on E[∆1 | E2] and
E[∆2 | E3]:

E[∆1 | E2] ≤ ∆ a.s. and E[∆2 | E3] ≤ ∆ a.s..

A naive bound for ∆ is the upper bound of C, e.g., maxNtarget · ttarget +maxNdraft · tdraft. We assume
that both the maximum generated tokens and the numbers of candidate tokens per round have an
upper limit, so the upper bound is finite.

Then

P(E1)c1 + P(E2)(c1 − E[∆1 | E2]) + P(E3)(−c2 − E[∆2 | E3]) ≥ 0

⇔ P(E1)c1 + P(E2)c1 ≥ P(E3)c2 + P(E3)E[∆2 | E3] + P(E2)E[∆1 | E2]
⇐ P(E1)c1 + P(E2)c1 ≥ P(E3)c2 + P(E3)∆ + P(E2)∆
⇐ P(E1)c1 ≥ (P(E2) + P(E3))c2 + (P(E3) + P(E2))∆

⇔ P(E1) ≥
c2 +∆

c1 + c2 +∆
.

Finally, we note that

P(E1) = P[∃1 ≤ i ≤ k + 1, such that Yi is rejected | Y1, . . . , Yk]

≥ P[∃1 ≤ i ≤ k, such that Yi is rejected | Y1, . . . , Yk],

which concludes the proof.

18

	Introduction
	Background
	A Motivating Example: Oracle Performances of Greedy Speculative Decoding

	SpecDec++: Theory and Algorithm
	Speculative Decoding as Markov Decision Processes
	SpecDec++
	Training Dataset and Objective

	Experiments
	Experimental Setups
	Forward Time Analysis
	Performances

	Related Work
	Conclusion
	Limitations
	Additional Related Work
	Additional Experimental Results
	Additional Experimental Setups
	Forward Time Analysis
	Ablation Studies.

	Theoretical Analysis

