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ABSTRACT

Speculative decoding reduces the inference latency of a target large language
model via utilizing a smaller and faster draft model. Its performance depends on a
hyperparameter K — the candidate length, i.e., the number of candidate tokens
for the target model to verify in each round. However, previous methods often use
simple heuristics to choose K, which may result in sub-optimal performance. We
study the choice of the candidate length K and formulate it as a Markov Decision
Process. We theoretically show that the optimal policy of this Markov decision
process takes the form of a threshold policy, i.e., the current speculation should
stop and be verified when the probability of getting a rejection exceeds a threshold
value. Motivated by this theory, we propose SpecDec++, an enhanced version
of speculative decoding that adaptively determines the candidate length on the fly.
We augment the draft model with a trained acceptance prediction head to predict
the conditional acceptance probability of the candidate tokens. SpecDec++ will
stop the current speculation when the predicted probability that at least one token
gets rejected exceeds a threshold. We implement SpecDec++ and apply it to the
llama-2-chat 7B & 70B model pair. Our adaptive method achieves a 2.04x speedup
on the Alpaca dataset (7.2% improvement over the baseline speculative decoding).
On the GSM8K and HumanEval datasets, our method achieves a 2.26x speedup
(9.4% improvement) and 2.23x speedup (11.1% improvement), respectively.

1 INTRODUCTION

Current state-of-the-art Large Language Models (LLMs) have demonstrated extraordinary capabilities
in various language tasks and have shown early signs of artificial general intelligence (Achiam et al.,
2023; Anil et al., 2023; Team et al., 2023; Touvron et al., 2023a;b). As the top-performing LLMs often
have more than a hundred billion parameters, there is an increasing demand for serving such huge
models efficiently. To decrease the inference latency, motivated by speculative execution techniques
in processors, speculative decoding (Chen et al., 2023a; Leviathan et al., 2023) incorporates a draft
model, which is smaller and faster, as the speculator for the target model, which is the large
language model we want to accelerate. Given the current prefix, the draft model first auto-regressively
generates K tokens, taking substantially less time than it would take the target model. The target
model computes their log probabilities in parallel and then sequentially determines whether each
token is accepted or not. Following the first rejected token (if any), the algorithm discards the
remaining tokens and corrects the rejected token with a fresh sample from a modified distribution. If
all tokens are accepted, a new token is sampled from the next-token probability given by the target
model and appended to the sequence of accepted tokens, and then the process moves forward. Such
draft-verify-correct loops continue until the desired output is fully generated.

The speedup effect of speculative decoding depends on two crucial aspects: (1) how well the draft
model aligns with the target model, and (2) how fast the draft model gets compared to the target
model. The two aspects influence the choice of the hyperparameter K: the number of candidate
tokens generated by the draft model in each loop. When the draft model aligns well and/or runs
fast, we can choose a larger K, which potentially allows more tokens to be accepted in each loop.
However, a larger K also increases the chances of rejection so that more tokens get discarded.

Leviathan et al. (2023) studied the problem of choosing the hyperparameter K under the assumption
that the acceptance rates of all the candidate tokens are constant. The authors showed that there
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Figure 1: The performance of SpecDec++. Compared with the baseline speculative decoding
(SpecDec) with fixed candidate lengths, by adaptively determining the candidate lengths via a trained
acceptance prediction head, SpecDec++ achieves a relative 7.2%, 11.1%, and 9.4% improvement
over the baseline methods on the Alpaca, HumanEval, and GSM8K dataset, respectively. The
experiments are conducted with llama-2-chat 7B & 70B model pair on 2 NVIDIA A100-80G GPUs.

exists one constant K that can maximize the speedup. However, such an assumption is unrealistic
and does not approximate real-world cases well. Whether the draft model and the target model
align well depends on the hardness of predicting the next token. Intuitively, when the next token
is unambiguous from the prefix, the draft model and the target model align well, which means the
acceptance probability of the current candidate token is large compared to other cases.

In this work, we aim to boost the performance of speculative decoding by adaptively choosing the
candidate length K for each round. We formalize the adaptive decision-making of K for speculative
decoding as a Markov Decision Process (MDP). The decision to make at each timestep is whether
or not to stop the current speculation round and submit the candidate tokens to the target model for
verification and correction. The objective is to minimize the total inference time taken to generate a
full response. Theoretically, we show that the optimal policy takes the form of a threshold policy, i.e.,
it is optimal to stop the speculation round whenever the probability of existing at least one rejected
token in the candidates exceeds a threshold.

Inspired by the theory, we propose SpecDec++, an enhanced version of speculative decoding that
adaptively determines the candidate length on the fly. First, we train an acceptance prediction head
on top of the draft model to predict the acceptance probability of the candidate token. Training such
an acceptance prediction head has two challenges: (1) there will be a severe class imbalance problem,
e.g., most tokens generated by the draft model will have a high probability of acceptance, depending
on how well the two models align; (2) the input sequence to the model contains mostly tokens from
the target model and only a fraction of tokens generated by the draft model, so the training signal is
sparse. To overcome the two challenges, we adopt a weighted Binary Cross-Entropy loss to address
the class imbalance problem, and we adapt the random masking idea from BERT (Devlin et al., 2019)
to randomly mix tokens from the target model and the draft model to increase training efficiency.

At inference time, we opt to stop the current speculation round when the predicted probability of
the existence of a rejected token exceeds a constant stopping threshold. The procedure is illustrated
in Figure 2. We implement SpecDec++ and apply it to llama-2-chat 7B & 70B model pair.
Our adaptive method achieves a 2.04x speedup compared with the 1.90x speedup of the baseline
speculative decoding method on the Alpaca dataset (an additional 7.2% improvement). On the easier
GSM8K and HumanEval datasets, our method improves the baseline from 2.07x to 2.26x speedup
(9.4% improvement) and from 2.00x to 2.23x speedup (11.1% improvement), respectively.

We summarize the contributions below.

• We formalize the dynamic choice of candidate length in speculative decoding as a Markov Decision
Process (MDP). We theoretically show that when the probability that at least one token gets rejected
exceeds a threshold, the optimal action is to stop the speculation and submit it for verification.

• We propose SpecDec++, an enhanced version of speculative decoding that adaptively determines
the candidate length on the fly. We adopt a weighted loss and a token-mixing method to efficiently
train the prediction head and use it for dynamic decision-making in the decoding process.

• Empirically, our method achieves an additional 7.2%, 9.4%, and 11.1% improvement over the
baseline speculative decoding on the Alpaca, HumanEval, and GSM8K datasets, respectively.
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2 BACKGROUND

Rejection Sampling. If we want to sample from a target discrete distribution p(x), we first sample x

from a draft distribution q(x). We accept the sample x with probability min(1, p(x)
q(x) ); otherwise we

replace it with a sample from the modified distribution Norm[(p− q)+], where z+ = max(z, 0) is
the positive part of z and Norm[f ] = f(·)∑

x f(x) normalizes a function f to make it a proper probability
distribution. The proof of the unbiasedness of rejection sampling can be found in (Chen et al., 2023a).

Speculative Decoding. Speculative decoding extends to the auto-regressive generation scenarios by
chaining K rejection sampling procedures together. To auto-regressively generate a sequence from
p(· | xprefix), we first generates K candidate tokens (y1, y2, . . . , yK) from q(· | xprefix)

yi ∼ q(Yi | xprefix, y1, . . . , yi−1), i = 1, 2, . . . ,K.

Next, we sequentially check if each yi is accepted or not. If there is any rejection, we replace the
first rejected token with a fresh sample from the corresponding modified probability distribution and
discard the subsequent tokens.

The key practical consideration is that the probabilities of the candidate tokens p(yi |
xprefix, y1, . . . , yi−1) can be calculated in parallel by the target model with no additional overhead, as
the forward time is bottlenecked by the memory operations (Pope et al., 2023). For completeness, the
speculative decoding algorithm is stated in Algorithm 1.

Algorithm 1 Speculative Decoding (Chen et al., 2023a; Leviathan et al., 2023)
Require: draft model q, target model p, prefix xprefix, number of candidate tokens K.

for i = 1 to K do
Compute qi = q(· | xprefix, y1, . . . , yi−1).
Sample yi ∼ qi.

end for
Compute in parallel pi = p(· | xprefix, y1, . . . , yi−1) for i = 1, . . . ,K + 1.
Sample r1, . . . , rK with ri ∼ Unif[0, 1], i = 1, . . . ,K.
Compute the number of accepted tokens n = min

(
{i− 1 | ri ≥ pi(yi)/qi(yi)} ∪K

)
.

if n < K then
Sample y′ from the modified distribution Norm[(pn+1 − qn+1)+]

else
Sample y′ from pK+1

end if
Return xprefix, y1, . . . , yn, y

′

Inference Time of Speculative Decoding.

Our objective is to minimize the total inference time, which consists of

Ttotal = tdraftNdraft + ttargetNtarget, (2.1)

where tdraft and ttarget are the time needed for one forward pass and Ndraft and Ntarget are the total
number of forward passes of the draft model and the target model, respectively. Equation (2.1) holds
under the implicit assumption that the forward passes of each of the models take constant time, which
is true when we have enough computational resources to support the increased concurrency when the
length of the input sequence grows (Leviathan et al., 2023). We empirically verify that Equation (2.1)
holds in our setting; see Section 4.2.

Let N be the number of the final generated tokens. N is a random variable inherent to the target
model and the initial prompt, independent of the draft model and the number of candidate tokens K
of each round we choose. Let Ndiscarded be the number of total discarded tokens. Then we have the
following identity for Algorithm 1

Ndraft +Ntarget = N +Ndiscarded.

Therefore, Ttotal can be written as

Ttotal = T0 + tdraftNdiscarded + (ttarget − tdraft)Ntarget, (2.2)

3
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where T0 = tdraftN is the oracle inference time.

To minimize the total inference time, we are required to trade-off between two objectives: minimizing
the number of the discarded tokens Ndiscarded and minimizing the number of forward passes of the
target model Ntarget. The two objectives conflict with each other, as a larger K will incur more
discarded tokens but less number of forward passes of the target model. Equation (2.2) states that the
total cost is the weighted sum of the two and the weights are given by tdraft and (ttarget − tdraft).

Metrics. To measure the benefit of a speculative decoding pipeline, we divide Equation (2.2) by N
and get

latency = Ttotal/N = tdraft + tdraft ·Ndiscarded/N + (ttarget − tdraft) ·Ntarget/N. (2.3)

We focus on two metrics: (1) discard rate Ndiscarded/N , which measures the average number of
discarded tokens per one generated token, and (1) verification rate Ntarget/N , which measures the
average number of the forward calls of the target model per one generated token.

2.1 A MOTIVATING EXAMPLE: ORACLE PERFORMANCES OF GREEDY SPECULATIVE
DECODING

Let us focus on a simplified deterministic setting of speculative decoding, where we use greedy
decoding for the draft model and the target model. In this setting, the draft model deterministically
generates a series of greedy tokens (Y1, . . . , YK), and the speculative decoding algorithm reduces
to sequentially checking whether Yi is also the greedy token of the target model. The first rejected
token is replaced by the greedy token of the target model. If all the tokens are accepted, an additional
token is generated by the target model directly.

For a given prompt xprompt, let (X1, X2, . . . , XN ) be the greedy tokens generated by the target model.
We ask the following question:

What is the oracle performance of the speculative decoding algorithm we can obtain by varying the
number of candidate tokens, if we have the knowledge of (X1, X2, . . . , XN ) in hindsight?

Let us consider the first speculation round. The draft model generates (Y1, Y2, . . . ) greedily. Let Yi be
the first token such that Yi ̸= Xi. The optimal strategy is to stop the speculation at time (i−1), so the
last candidate token Yi−1 is accepted, and Yi will be generated directly by the target model, because
(1) if we stop the speculation earlier, then the shorter candidate tokens will still be accepted, but this
induces at least one unnecessary forward pass of the target model; (2) if we stop the speculation later,
then we waste at least one candidate token Yi. By repeating the argument, we have the following.

Lemma 2.1. In the greedy decoding setting, for a given prompt xprompt, let (X1, X2, . . . , XN )
be the greedy tokens generated by the target model. We define Yi = argmax q(· |
xprompt, X1, X2, . . . , Xi−1) to be the greedy token of the draft model q conditioned on the par-
tial generation of the target model. Let S be the set of disagreement between the draft model and the
target model: S = {1 ≤ i ≤ N | Yi ̸= Xi}. Then, by optimally stopping at time (i− 1) for every
i ∈ S, we obtain the oracle performance with Ndiscarded = 0 and Ntarget = |S|+ 1.

To empirically verify this, we perform a preliminary experiment with the same setting in Section 4,
where we use all the prompts in the Alpaca dataset and calculate the set of disagreement S for each
prompt with the llama-2-chat-7B/llama-2-chat-70B model pair. The results show that the average
Ntarget/N = 0.164± 0.078 and the corresponding oracle throughput is 27.06± 4.13 tokens/second
(2.92x speedup) according to Equation (2.3) with the empirical value of (ttarget, tdraft) reported in
Section 4.2. In comparison, the average throughput for the target model without speculative decoding
is 9.26 tokens/second, while speculative decoding with the best fixed K gives 17.58 tokens/second
(1.90x speedup) (Section 4). We can see a huge potential in adaptively tuning the candidate lengths.

3 SPECDEC++: THEORY AND ALGORITHM

3.1 SPECULATIVE DECODING AS MARKOV DECISION PROCESSES

We formulate speculative decoding into the following Markov Decision Process (MDP) framework.

4
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Draft Model

Acceptance Prediction Head

multiplication

STOP CONTINUE

Yes No

Figure 2: SpecDec++ uses a trained acceptance prediction head to predict the conditional accep-
tance probability of the candidate tokens. When the predicted probability of the existence of at least
one rejected token exceeds the stopping threshold h, the current speculation round ends and the
candidate tokens go through the target model for verification and correction.

States. We define the tuple s = (xprefix, (Y1, . . . , Yk)) as the current state of the MDP. Specifically,
xprefix is the concatenation of the prompt and the partial response containing all the accepted tokens.
(Y1, . . . , Yk) is the current candidate tokens, which are auto-regressively sampled from the draft
distribution q:

Yi ∼ q(· | xprefix, Y1, . . . , Yi−1), i = 1, 2, . . . .

The initial state of the MDP is (xprompt,∅).

Actions. Given the current state (xprefix, (Y1, . . . , Yk)), the decision to make is whether or not to end
the current speculation round and submit the candidate tokens to the target model for verification.
We denote the current action by a ∈ {stop, continue} as the choice of stopping or continuing the
current speculation round. 1

We note that in an extended MDP setting, we can include the draft probability qk+1 for the token
Yk+1 as a part of the current action. Finetuning the draft model to align better with the target model
can be viewed as an offline policy optimization algorithm that will likely improve the performance.
And it has been studied in previous work, e.g. DistillSpec (Zhou et al., 2024) and Medusa (Cai et al.,
2024). In the paper, we consider the draft probability qk+1 as given by the draft model and do not
optimize qk+1.

Transitions. First, we draw a random sample Yk+1 ∼ qk+1 and append Yk+1 to the current list of
the candidate tokens.

• When a = continue, the next state s′ is simply (xprefix, (Y1, . . . , Yk, Yk+1)).
• When a = stop, the candidate tokens (Y1, . . . , Yk+1) are verified via speculative decoding (Al-

gorithm 1). Let n be the number of the accepted tokens. Let y′ be the replaced token when
n < k + 1 or the fresh token from the next-token distribution given by the target model when
n = k + 1. The next state s′ = (x′

prefix,∅) with the new prefix x′
prefix = (xprefix, y1, . . . , yn, y

′)
being the concatenation of the previous prefix and the newly generated tokens.

Immediate Costs. According to Equation (2.2), let c1 = tdraft and c2 = (ttarget − tdraft). We can
define the immediate cost as the following

c(s, continue, s′) = I(∃1 ≤ i ≤ k + 1, Yi is rejected) · c1,
1In practice, when Yk+1 is EOS (the special token denoting the end of sequence) or when the total length

hits the maximal generation length, we manually set a = stop.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

c(s, stop, s′) = I(∃1 ≤ i ≤ k + 1, Yi is rejected) · c1 + c2.

For both cases, we suffer a loss c1 if the current candidate token Yk+1 is discarded, which happens if
there exists any candidate token Yi (1 ≤ i ≤ k + 1) that is rejected. If we stop at the current step, we
suffer an additional cost c2 corresponding to the extra inference time of the target model.

Note that different from the traditional MDP setting when the reward/cost is immediately available to
the learner, our setting is more related to the delayed feedback setting (Howson et al., 2023; Lee et al.,
2023; Yang et al., 2024b; Chen et al., 2024a), where the cost is only available after the candidate
tokens are submitted to the target model for verification.
Theorem 3.1. For any time-homogeneous policy π that has an upper bound for the number of
candidate tokens, at the current state s = (xprefix, (Y1, . . . , Yk)), when

P(∃1 ≤ i ≤ k, Yi is rejected | xprefix) ≥
c2 +∆

c1 + c2 +∆
,

the expected total cost of stop is smaller than the expected total cost of continue, where ∆ =
∆(π, xprompt, p, q, c1, c2) is a problem-specific constant.

We defer the proof of Theorem 3.1 to Appendix D.

3.2 SPECDEC++

Theorem 3.1 provides a sufficient condition for us to stop the current round of speculation and call the
target model to verify the candidate tokens. Motivated by Theorem 3.1, we propose SpecDec++,
an adaptive speculative decoding algorithm that utilizes an additional prediction head to determine
whether or not to stop the current speculation round.

SpecDec++ incorporates an additional prediction head fθ on top of the draft model that predicts
the conditional probability

P(Yi is accepted | Y1, . . . , Yi−1 are accepted , xprefix) = min
(
1,

p(Yi|xprefix, Y1, . . . , Yi−1)

q(Yi|xprefix, Y1, . . . , Yi−1)

)
.

We opt to implement a small prediction head such that the computational overhead is negligi-
ble compared to a forward pass of the draft model. During inference time, we feed the input
(xprefix, Y1, . . . , Yi) to the draft model and obtain the final embedding ei of the last token Yi. The
predicted acceptance probability is given by

P̂(Yi is accepted | Y1, . . . , Yi−1 are accepted , xprefix) = sigmoid(fθ(ei)). (3.1)

Given a threshold h, we end the current round of speculation when the predicted probability that
there exists one rejected token exceeds h

π(sk) = stop⇔ P̂(∃1 ≤ i ≤ k, such that Yi is rejected | xprefix) > h,

which can be computed by chain rule

P̂(∃1 ≤ i ≤ k, such that Yi is rejected | xprefix)

=1−
k∏

i=1

P̂(Yi is accepted | Y1, . . . , Yi−1 are accepted , xprefix).

We summarize the proposed algorithm in Algorithm 2 and illustrate it in Figure 2.

3.3 TRAINING DATASET AND OBJECTIVE

Let Dprompt be the prompt distribution. For each xprompt in Dprompt, we generate a response
(X1, . . . , XN ) using the target model. Next, we feed the prompt and the response into the draft model
to get q(· | xprompt, X1, . . . , Xi−1) for every i. We sample a Yi from the distribution and calculate the

conditional acceptance probability Pi = min
(
1,

p(Yi|xprompt,X1,...,Xi−1)
q(Yi|xprompt,X1,...,Xi−1)

)
for each token, which will

be the training target.
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Algorithm 2 SpecDec++
Require: draft model q, target model p, prefix xprefix, acceptance prediction head fθ, threshold
h.

Initialize the cumulative acceptance probability p̂ = 1
for i = 1 do

if i > 1 then
Compute the final hidden embedding ei−1 of the token yi−1.

end if
Compute qi = q(· | xprefix, y1, . . . , yi−1).
Sample yi ∼ qi.
Update p̂← p̂ · sigmoid(fθ(ei−1)).
if 1− p̂ > h then

Break
end if

end for
Let K be the number of candidate tokens in the previous for-loop.
Compute in parallel pi = p(· | xprefix, y1, . . . , yi−1) for i = 1, . . . ,K + 1.
Sample r1, . . . , rK with ri ∼ Unif[0, 1], i = 1, . . . ,K.
Compute the number of accepted tokens n = min

(
{i− 1 | ri ≥ pi(yi)/qi(yi)} ∪K

)
.

if n < K then
Sample y′ from the modified distribution Norm[(pn+1 − qn+1)+]

else
Sample y′ from pK+1

end if
Return xprefix, y1, . . . , yn, y

′

We construct the response sequence (Z1, . . . , ZN ) by randomly taking r% tokens from (X1, . . . , XN )
and the remaining tokens from (Y1, . . . , YN ), borrowing the random masking idea from BERT (Devlin
et al., 2019). We only compute losses for the tokens from (Y1, . . . , YN ).

We note that there will be distribution shifts between (xprefix, Y1, . . . , Yk), the sequence encountered
during the inference process, and (xprefix, Z1, . . . , Zk), the sequence encountered during training
process. The distribution shift may cause certain biases in the prediction head, e.g., over-confident
about the acceptance. Furthermore, as in the typical setting of speculative decoding where the draft
model and the target model align reasonably well, there will be class imbalance issues in the training
dataset, where most of the training examples will have Pi close to 1.

To accommodate the issues above, we train the prediction head using a weighted binary cross-entropy
(BCE) loss, taken over the tokens Zi’s stemming from Yi’s:∑

xprompt∈Dprompt

∑
1≤i≤N :

Zi is taken from Yi

(
− wacc · Pi log P̂i − wrej · (1− Pi) log(1− P̂i)

)
,

where wacc and wrej are the weights and P̂i = sigmoid(fθ(ei(xprompt, Z1, . . . , Zi−1, Yi))).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets and Model Pairs. We adopt three datasets in our experiments: Alpaca (Taori et al., 2023),
HumanEval (Chen et al., 2021), GSM8K (Cobbe et al., 2021). We only use prompts of the datasets
and do not use responses. In the experiments, we use llama-2-chat models (Touvron et al., 2023b).
We choose to use llama-2-chat 7B as the draft model and llama-2-chat 70B as the target model. To
reduce memory consumption, we use the bfloat16 format for the models.

Network Architecture, Weighted BCE Loss, and Stopping Criteria for SpecDec++. We build
a (D + 1)-layer ResNet with SiLU activation as the acceptance prediction head, and we sweep D

7
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from 0 (linear layer) to 4 in the experiments. We adopt the weighted BCE loss where set wacc = 1
and choose wrej from {1, 3, 6, 12}. We tune the stopping threshold h in {0.1, 0.3, 0.5, 0.7, 0.9}. To
ensure the robustness of SpecDec++, we manually stop each speculation round when the number
of candidate tokens exceeds 20.

Baseline Method. We compare SpecDec++ with the naive speculative decoding algorithm
where the number of the candidate tokens K is fixed as a hyperparameter. We tune K in
{2, 4, 6, 8, 10, 12, 14}.
Due to space limits, additional experimental setup is deferred to Appendix C.1.

4.2 FORWARD TIME ANALYSIS

First, we verify the correctness of Equation (2.1) and determine the forward time of the draft model
tdraft and the target model ttarget under our specific setting. We collect all the (Ndraft, Ntarget, Ttotal)
tuples from generations using speculative decoding (either the baseline version or SpecDec++)
and perform a linear regression to determine the coefficients. We also determine the standalone
inference time when using only the draft model or the target model with linear regression. The linear
regressions fit well with all R2 ≥ 0.98 and the results are summarized in Table 2. Additionally, we
visualize tdraft and ttarget across the three settings in Figure 3.

Stand-alone SpecDec SpecDec++0.020

0.022

0.024

Fo
rw
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d 
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e 
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) draft model

Stand-alone SpecDec SpecDec++

0.108
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0.114
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Figure 3: The forward time of the draft model (llama-2-chat-7B) and the target model (llama-2-chat-
70B) under different settings. For each setting, we perform linear regression to calculate the forward
times and then average them across different datasets. The additional cost of the acceptance prediction
head is negligible compared to the systematic error and the random noise of the environment. Full
results are deferred to Table 2.

The additional cost of the acceptance prediction head is negligible, as we find that the average
tdraft in SpecDec++ setting is smaller than the average tdraft in baseline SpecDec setting by 0.0004s,
which is likely caused by random noise of the environment, as the standard deviation between
difference datasets around 0.0006s. Therefore, for both the baseline speculative decoding setting and
SpecDec++ setting, we choose (tdraft, ttarget) = (0.0234, 0.112), which is the average between the
two cases. We use Equation (2.3) to calculate the theoretical throughputs (tokens per second), which
match the noisier empirical throughputs well with relative error ≤ 6.2% for all prompts.

In the standalone setting where only the draft model or the target model is used, we see significant
decreases in both tdraft and ttarget, which indicates that speculative decoding induces minor additional
communication overhead. We use (tdraft, ttarget) = (0.0207, 0.108) for the stand-alone setting. The
average throughput for the target model is 9.26 tokens/second.

4.3 PERFORMANCES

We test the performances of the baseline speculative decoding with different K and SpecDec++
with the different acceptance prediction heads and different thresholds h. We calculate the discard
rates Ndiscarded/N and the verification rates Ntarget/N (Equation (2.3)). The results are plotted in
Figure 4. We see that SpecDec++ has strictly better Pareto frontiers than the baseline SpecDec
on both the in-distribution test set Alpaca and the two out-of-distribution datasets HumanEval and
GSM8K. Our method with adaptive candidate lengths improves upon the baseline method of fixed
candidate lengths by reducing both the discard rate and the verification rate. The two metrics are
independent of the actual forward times (tdraft and ttarget) and hence reusable for other hardware
configurations, which indicates that SpecDec++ will still outperform the baseline under different
sets of tdraft and ttarget. Finally, we plug in the actual values of (tdraft, ttarget) = (0.0234, 0.112) as in
Section 4.2. We summarize the throughputs in Table 1 and visualize the improvements in Figure 1.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.15 0.20 0.25 0.30
Verification Rate 

0.5

1.0

1.5

D
is

ca
rd

 R
at

e

Alpaca

SpecDec++
SpecDec

0.15 0.20 0.25 0.30
Verification Rate 

0.5

1.0

1.5

D
is

ca
rd

 R
at

e

HumanEval

SpecDec++
SpecDec

0.15 0.20 0.25 0.30
Verification Rate 

0.5

1.0

1.5

D
is

ca
rd

 R
at

e

GSM8K

SpecDec++
SpecDec

Figure 4: The average verification rates Ntarget/N and the average discard rates Ndiscarded/N for
SpecDec with different candidate lengths and SpecDec++ with different acceptance prediction
heads and stopping thresholds. SpecDec++ has better Pareto frontiers than SpecDec on both the
in-distribution dataset Alpaca and the two out-of-distribution datasets HumanEval and GSM8K.

Table 1: The best throughputs achieved by SpecDec++ compared to the best throughputs achieved
by the speculative decoding baseline on Alpaca, HumanEval, and GSM8K datasets.

Dataset Alpaca HumanEval GSM8K
SpecDec++ 18.88 (tokens/s) 20.61 (tokens/s) 20.95 (tokens/s)
SpecDec (baseline) 17.62 (tokens/s) 18.55 (tokens/s) 19.14 (tokens/s)

Discussions. As the distribution shift of the OOD datasets will influence the accuracies and the
calibrations of the acceptance prediction heads, a natural question to ask is whether the optimal
performances for different datasets are achieved with different acceptance prediction heads and
stopping thresholds. Empirically, we confirm that this is indeed the case. Nevertheless, we find that
using the acceptance prediction trained with wrej = 6 and network depth D = 3 and the stopping
threshold h = 0.7 achieves over 99.3% of the best tokens per second across the three datasets (2.03x
for Alpaca, 2.21x for HumanEval, and 2.26x for GSM8K). Additional ablation studies on how the
hyperparameters (wrej, D, h) influence the final tokens per second can be found in Appendix C.3.

5 RELATED WORK

Speculative decoding. Since the proposal of speculative decoding, people have been improving
the algorithm from different perspectives. Our work is complementary to the works that improve
speculative decoding by (1) making the draft model align better with the target model (Zhou et al.,
2024; Agarwal et al., 2024; Liu et al., 2023), (2) building smaller draft models or merging draft
models into the target model (e.g. early-exiting) (Miao et al., 2023; Liu et al., 2024; Yang et al.,
2023b; Bae et al., 2023; Zhang et al., 2024; Monea et al., 2023; Chen et al., 2023b), and (3) building
a heirachical system of speculative decoding (Spector & Re, 2023; Sun et al., 2024a). Our work is not
directly appliable to the methods that do not have the concept of an auto-regressive draft model (Stern
et al., 2018; Li et al., 2024b; Bhendawade et al., 2024; Cai et al., 2024) and the retrieval-based
methods (He et al., 2023; Zhao et al., 2024; Yang et al., 2023a; Fu et al., 2024). See Appendix B for
an extended related work about speculative decoding, token trees, and diffusion language models.

Candidate length selection. Leviathan et al. (2023) make the i.i.d. assumption on the acceptance
probabilities of the candidate tokens and theoretically derive the optimal choice of K. Besides,
Liu et al. (2024) and Kim et al. (2024) adopt a simple heuristic that ends the speculation if the
confidence of the current draft token distribution falls below a threshold. Xu et al. (2023) uses the
cumulative product of the confidences and extends to the token tree version. In comparison, our
work systematically studies the candidate length selection within the MDP framework and uses the
cumulative product of our trained prediction head to determine the end of the speculation.

6 CONCLUSION

We study the determination of the candidate lengths for speculative decoding. We formulate the
problem as a Markov Decision Process and provide a theorem that gives a sufficient condition to stop
the current speculation. Motivated by the theoretical result, we propose SpecDec++ to adaptively
select the candidate length with a trained acceptance prediction head. We demonstrate significant
speedups over baselines and our method can be seamlessly integrated with other improvements.
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A LIMITATIONS

Our theoretical result contains a problem-specific constant ∆ which is hard to analyze theoretically or
estimate empirically. Nevertheless, the choice of the stopping threshold h can be determined through
hyperparameter search; see Appendix C.3. As is the case with all speculative decoding algorithms,
our method relies on the implicit assumption that the draft model and the target model align well. For
a weak draft model, the acceptance prediction head may perform badly.

B ADDITIONAL RELATED WORK

Large language models are mostly based on Transformer architectures (Vaswani et al., 2017) that
auto-regressively predict the probability of the next token given its predecessors. One bottleneck of
the inference speed lies in the fact that auto-regressive decoding is an inherently non-parallelizable
sequential operation: the probabilities of future tokens depend on the current token and there is no
trivial way to skip the current token when predicting future tokens. Therefore, the inference time of
auto-regressive decoding scales linearly with the number of the generated tokens.

However, the time of a forward pass to compute the log probabilities of the tokens through transform-
ers is nearly constant for batched sequences with different lengths within a proper range, thanks to
the increasingly powerful parallel computing units (Pope et al., 2023; Vaswani et al., 2017; Chen
et al., 2023a; Leviathan et al., 2023).

Therefore, to overcome the bottleneck of the auto-regressive decoding, one can find a fast way to
generate K tokens, which often increases FLOPs, and the ask the target model to verify and correct
the candidates (Stern et al., 2018; Chen et al., 2023a; Leviathan et al., 2023); see a comprehensive
survey (Xia et al., 2024). For those methods to work, we assume that we have enough computational
resources (e.g. CUDA memories) to support the increased concurrency. Nevertheless, in the long-
context generation regime, the memory issue becomes prominent, which requires additional KV-cache
management techniques such as compression or retrieval (Li et al., 2024a; Sun et al., 2024a).

Improvements of Speculative Decoding Methods

The performance of speculative decoding depends on how well the draft model aligns with the target
model, and how fast the draft model is compared to the target model. People have been improving
speculative decoding in two aspects: (1) making the draft model align better with the target model
via distillation (Zhou et al., 2024; Agarwal et al., 2024) and online learning (Liu et al., 2023); and
(2) making the token generation faster and cheaper, e.g. training multiple smaller draft models from
stratch (Miao et al., 2023).

In addition, the candidate tokens can be generated without a separate draft model (Stern et al., 2018;
Li et al., 2024b; Du et al., 2024; Bhendawade et al., 2024), such as building additional modules that
predict the next k tokens (Medusa heads (Cai et al., 2024), RNN heads (Zhang et al., 2024), soft
tokens (Monea et al., 2023)), early-exiting methods that reuse the intermediate representations of the
target model (Liu et al., 2024; Yang et al., 2023b; Bae et al., 2023), and retrieval-based methods that
involve constructing an n-gram datastore and using retrieval to generate candidates (He et al., 2023;
Zhao et al., 2024; Yang et al., 2023a; Fu et al., 2024).

Those techniques can be combined, resulting in a heirachical system (Spector & Re, 2023; Zhao
et al., 2024; Sun et al., 2024a).

Token Tree Generation, Verification and Pruning.

Paralleling across the batch dimension via token trees is another direction to increase through-
puts (Miao et al., 2023; Xu et al., 2023; Su et al., 2023). For greedy decoding, token tree generation
and verification are studied in (Cai et al., 2024). For the stochastic sampling setting, REST (He
et al., 2023) proposes a straightforward approach: keeping the token paths that coincide with the
stochastic tokens given by the target model. There are also researches extending the stochastic
speculative decoding to the token tree setting, which often needs to adjust the drafting and verification
probabilities to ensure unbiasedness, e.g. MCSD (Yang et al., 2024a), Recursive SD (Jeon et al.,
2024), Sequoia (Chen et al., 2024b), EAGLE (Li et al., 2024b), SpecTR (Sun et al., 2024b).
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One important problem to study is how to construct and prune the token tree to maximize throughputs
and avoid heavy communication overheads, which is studied in (Chen et al., 2024b; Zhong et al.,
2024). Our work can serve as a starting point towards the problem, as the candidate length K can be
viewed as the depth of a token tree with only one branch.

Diffusion language models. Diffusion language models either in the discrete space (see
D3PM (Austin et al., 2021) and its follow-ups) or in the embedding space (see Diffusion-LM (Li
et al., 2022) and its follow-ups) are non-autoregressive language models, whose generation time can
scale sub-linearly with the sequence length. BERT-type encoder-only models and auto-regressive
decoder-only models can be also viewed as diffusion model, with mask prediction and next-token
prediction being the denoising operation (Austin et al., 2021). Viewing next-token prediction as
Jacobi iteration (Santilli et al., 2023) and denoising operation is a powerful idea and it leads to
subsequent work such as lookahead decoding (Fu et al., 2024) and consistency LLMs (Kou et al.,
2024).

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ADDITIONAL EXPERIMENTAL SETUPS

The subsection continues Section 4.1.

Datasets. We adopt three datasets in our experiments: (1) Alpaca (Taori et al., 2023), an
instruction-following dataset generated using Self-Instruct (Wang et al., 2023) from OpenAI’s
text-davinci-003 model; (2) HumanEval (Chen et al., 2021), a test dataset containing Python
code synthesis problems; and (3) GSM8K (Cobbe et al., 2021), a dataset of high-school math
problems. We only use prompts of the datasets and do not use responses.

Dataset splits. We split the Alpaca dataset into train/dev/test splits, containing 40k, 10k, 2k prompts,
respectively. We use train split to train the prediction heads and evaluate them on the dev split. We
benchmark the performance of SpecDec++ on the test split. For HumanEval and GSM8K, we only
use them for benchmarking the out-of-distribution (OOD) performance of SpecDec++. For each
test dataset, we subsample 150 examples for benchmarking the performances.

Mixing probability. As in Section 3.3, we mix the response tokens from the generations from
the target model and the predicted next-tokens from the draft model. We set an aggressive value
r% = 15% so only 15% of the tokens are from the target model, as we find empirically that the draft
model and the target model often align well. Setting a smaller r increases the training efficiency as
more supervision signals are used.

Training Details. We train all the acceptance prediction heads on the train split of the Alpaca dataset
for 3 epochs with batch size 32. We use Adam optimizer and a cosine learning rate schedule with the
initial learning rate 5e− 5.

Hardware configuration. We use 2 NVIDIA A100 GPUs with 80G memory for the experiments.
We shard the 70B model across the two devices and communication overhead occurs when inferring
with llama-2-chat 70B. When doing speculative decoding, the 7B model is loaded only on one device.

Inference setting. We set the maximal sequence length to be 512. We use temperature T = 1 and
adopt top-k sampling with k = 50. We do not integrate KV cache management techniques such as
PagedAttention (Kwon et al., 2023) or KV cache pre-allocation.

Experiments Compute Resources. The required compute resources are estimated to be 500 hours on
2 NVIDIA A100-80G GPUs for the training dataset generation, 400 hours on 1 NVIDIA A100-80G
GPU for training 20 acceptance prediction heads (sweeping D from 0 to 4 and wrej among 1, 3, 6, 12),
500 hours on 2 NVIDIA A100-80G GPUs for the whole evaluation set. The full research project
would require at least 2x the reported compute, as there were preliminary experiments that are not in
the paper.

C.2 FORWARD TIME ANALYSIS

We report the full results of the linear regression in Section 4.2 in Table 2.
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Table 2: The forward time of the draft model (llama-2-chat-7B) and the target model (llama-2-chat-
70B) under different settings and different datasets. We perform linear regression to calculate the
forward times.

Setting Dataset tdraft ttarget R2

stand-alone

Alpaca 0.0206 0.108 0.9994 & 0.9998
HumanEval 0.0207 0.107 0.9994 & 0.9998
GSM8K 0.0206 0.109 0.9990 & 0.9992
average 0.0207 ± 0.0001 0.108 ± 0.001

SpecDec

Alpaca 0.0232 0.114 0.9983
HumanEval 0.0246 0.111 0.9965
GSM8K 0.0229 0.113 0.9926
average 0.0236 ± 0.0007 0.112 ± 0.001

SpecDec++

Alpaca 0.0240 0.110 0.9982
HumanEval 0.0229 0.111 0.9880
GSM8K 0.0225 0.113 0.9925
average 0.0231 ± 0.0006 0.111 ± 0.001

C.3 ABLATION STUDIES.

We study how the hyperparameters wrej, D, h influence the final throughputs (tokens per second).
First, we calculate the (unweighted) binary KL divergence between the ground-truth probability and
the predicted probability, i.e.,

KL(p||q) = p log
p

q
+ (1− p) log

1− p

1− q
.

As KL(p||q) = BCE(p||q)−H(p), the binary KL divergence is a metric for how well the acceptance
prediction head fits the ground-truth probabilities. Next, for each acceptance prediction head, we
report the best throughput by varying the stopping threshold h among {0.1, 0.3, 0.5, 0.7, 0.9}, and
the corresponding h that achieves the best performance. The results are summarized in Table 3.

From the table, we see that increasing wrej = 1 increases the unweighted eval KL. All the prediction
heads trained with wrej = 1 perform the best with h = 0.3 under all three datasets, and similarly, most
prediction heads trained with wrej = 3, 6, 12 perform the best with h = 0.5, 0.7, 0.9, respectively.
This synergy between wrej = 1 and h is expected, since increasing wrej = 1 forces the acceptance
prediction head to focus more on the cases where the candidate token is rejected and thus mitigates
the over-confidence issue. In return, the stopping threshold h can be set to a higher value to adjust for
the increased predicted probability of existing one rejection.

We bold the throughputs that are above 99% of the maximum throughput of the same dataset. We see
that there are two sets of hyperparameters that consistently achieve 99% of the maximum throughputs
across the three datasets: wrej = 6, D = 3, h = 0.7 and wrej = 6, D = 4, h = 0.7.

D THEORETICAL ANALYSIS

In the section, we present the proof of Theorem 3.1.

For any time-homogeneous policy π, we define a random variable Cπ(s, a) as the total cost-to-go
from the current state s = (xprefix, (Y1, . . . , Yk)) when taking action a.

Cπ(s, a) =

M∑
i=1

c(si, ai, si+1), with s1 = s, a1 = a,

where the next state si+1 given (si, ai) follows the stochastic transition of the MDP, ai = π(si) for
i ≥ 2, and M is a random variable of the number of total steps. We make the assumption that π
has an upper bound for the number of candidate tokens, so we exclude the cases where the policy π
potentially leads to an infinite loop and hence M <∞. Let Cπ(s) = Cπ(s, π(s)).

proof of Theorem 3.1. We analyze the difference Cπ(s, continue)− Cπ(s, stop) for three cases.
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Table 3: The performance of the acceptance prediction heads with different loss weights wrej and
network depths D. The train/eval KL refers to the binary KL divergence between the ground-truth
probability and the predicted probability. For the three datasets, we report the best throughput and
the corresponding stopping threshold h. The throughputs are bolded if they are above 99% of the
maximum throughput of the same dataset.
wrej Depth D train/KL eval/KL Alpaca HumanEval GSM8K
1 0 0.422 0.412 18.48 (h = 0.3) 19.91 (h = 0.5) 20.32 (h = 0.3)
1 1 0.409 0.390 18.39 (h = 0.3) 20.29 (h = 0.3) 20.44 (h = 0.3)
1 2 0.391 0.387 18.87 (h = 0.3) 20.26 (h = 0.3) 20.87 (h = 0.3)
1 3 0.387 0.384 18.82 (h = 0.3) 20.10 (h = 0.3) 20.86 (h = 0.3)
1 4 0.384 0.383 18.57 (h = 0.3) 20.51 (h = 0.3) 20.73 (h = 0.3)
3 0 0.515 0.491 18.31 (h = 0.5) 20.12 (h = 0.7) 20.36 (h = 0.5)
3 1 0.479 0.461 18.88 (h = 0.5) 20.32 (h = 0.5) 20.70 (h = 0.5)
3 2 0.475 0.458 18.60 (h = 0.5) 20.17 (h = 0.5) 20.61 (h = 0.3)
3 3 0.462 0.454 18.76 (h = 0.5) 20.32 (h = 0.5) 20.88 (h = 0.5)
3 4 0.465 0.451 18.88 (h = 0.5) 20.50 (h = 0.7) 20.82 (h = 0.5)
6 0 0.657 0.637 18.67 (h = 0.7) 19.90 (h = 0.9) 20.24 (h = 0.7)
6 1 0.620 0.596 18.75 (h = 0.7) 20.09 (h = 0.9) 20.86 (h = 0.7)
6 2 0.607 0.589 18.65 (h = 0.7) 20.17 (h = 0.9) 20.70 (h = 0.7)
6 3 0.617 0.582 18.80 (h = 0.7) 20.47 (h = 0.7) 20.95 (h = 0.7)
6 4 0.603 0.575 18.87 (h = 0.7) 20.61 (h = 0.7) 20.77 (h = 0.7)
12 0 0.922 0.871 18.55 (h = 0.9) 19.93 (h = 0.9) 20.62 (h = 0.9)
12 1 0.830 0.805 18.71 (h = 0.9) 20.25 (h = 0.9) 20.73 (h = 0.9)
12 2 0.834 0.794 18.58 (h = 0.9) 20.39 (h = 0.9) 20.77 (h = 0.7)
12 3 0.801 0.781 18.76 (h = 0.9) 20.29 (h = 0.9) 20.67 (h = 0.9)
12 4 0.799 0.773 18.82 (h = 0.9) 20.19 (h = 0.9) 20.65 (h = 0.9)

Case 1. E1 = {∃1 ≤ i ≤ k + 1, such that Yi is rejected}.
Let x′

prefix be the next prefix given by the speculative decoding algorithm, where the first rejected
token among (Y1, . . . , Yk+1) is replaced by the token from the modified distribution. We know that

Cπ(s, stop) = c1 + c2 + Cπ((x′
prefix,∅)).

If we choose to continue at the current step, we know that no matter how many additional steps we
continue to generate draft tokens, we will eventually discard them and get the same new prefix x′

prefix.
Let Nπ

continue(s) be the total number of extra continue’s induced by the policy π given the current
state s and action continue. We have

Cπ(s, continue) = c1 + c1 · (1 +Nπ
continue(s)) + c2 + Cπ((x′

prefix,∅)).

In summary, we have

Cπ(s, continue)− Cπ(s, stop) ≥ c1, conditioned on E1.

Case 2. E2 = {∀1 ≤ i ≤ k + 1, Yi is accepted, Yk+2 is rejected}.
If we stop the current round of speculation, then all the candidate tokens (Y1, . . . , Yk+1) will be
accepted and an additional Xk+2 is sampled from p(· | xprefix, Y1, . . . , Yk+1).

Cπ(s, stop) = c2 + Cπ(((xprefix, Y1, . . . , Yk+1, Xk+2),∅)).

Again, if we choose to continue at the current step, as Yk+2 is rejected, future generated tokens
beyond Yk+2 will also be discarded. After the verification, Yk+2 will be replaced by Wk+2 ∼
Norm[(p(·|xprefix, Y1 . . . , Yk+1)− q(·|xprefix, Y1 . . . , Yk+1))+]. Let Nπ

continue(s) be the total number
of extra continue’s induced by the policy π given the current state s and action continue. We have

Cπ(s, continue) = c1 · (1 +Nπ
continue(s)) + c2 + Cπ(((xprefix, Y1, . . . , Yk+1,Wk+2),∅)).

Denote ∆1 = Cπ(((xprefix, Y1, . . . , Yk+1, Xk+2),∅))−Cπ(((xprefix, Y1, . . . , Yk+1,Wk+2),∅)). In
summary, we have

Cπ(s, continue)− Cπ(s, stop) ≥ c1 −∆1, conditioned on E2.
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Case 3. E3 = {∀1 ≤ i ≤ k + 2, Yi is accepted}.
Similar to Case 2, if we stop the current round of speculation, then all the candidate tokens
(Y1, . . . , Yk+1) will be accepted, and an additional Xk+2 is sampled from p(· | xprefix, Y1, . . . , Yk+1).

Cπ(s, stop) = c2 + Cπ(((xprefix, Y1, . . . , Yk+1, Xk+2),∅)).

If we choose to continue at the current step, there is no immediate cost at the current step and we
transit to (xprefix, (Y1, . . . , Yk+1)).

Cπ(s, continue) = Cπ((xprefix, (Y1, . . . , Yk+1))).

Denote ∆2 = Cπ(((xprefix, Y1, . . . , Yk+1, Xk+2),∅))− Cπ((xprefix, (Y1, . . . , Yk+1))). We have

Cπ(s, continue)− Cπ(s, stop) ≥ −c2 −∆2, conditioned on E3.

Summary. At the current state, the values of (Y1, . . . , Yk) are known. We calculate the conditional
expectation of Cπ(s, continue) − Cπ(s, stop) given the current observation. For simplicity of
notation, we do not explicitly write out the condition on (Y1, . . . , Yk).

E[Cπ(s, continue)− Cπ(s, stop)]

≥P(E1)c1 + P(E2)(c1 − E[∆1 | E2]) + P(E3)(−c2 − E[∆2 | E3]).

When the right-hand side of the above inequality is larger than zero, the expected total cost of
continue is larger than the expected cost of stop. Therefore, we obtain a sufficient condition to stop
at the current step.

To continue the analysis, we assume that we have an almost-sure upper bound ∆ on E[∆1 | E2] and
E[∆2 | E3]:

E[∆1 | E2] ≤ ∆ a.s. and E[∆2 | E3] ≤ ∆ a.s..

A naive bound for ∆ is the upper bound of C, e.g., maxNtarget · ttarget +maxNdraft · tdraft. We assume
that both the maximum generated tokens and the numbers of candidate tokens per round have an
upper limit, so the upper bound is finite.

Then

P(E1)c1 + P(E2)(c1 − E[∆1 | E2]) + P(E3)(−c2 − E[∆2 | E3]) ≥ 0

⇔ P(E1)c1 + P(E2)c1 ≥ P(E3)c2 + P(E3)E[∆2 | E3] + P(E2)E[∆1 | E2]
⇐ P(E1)c1 + P(E2)c1 ≥ P(E3)c2 + P(E3)∆ + P(E2)∆
⇐ P(E1)c1 ≥ (P(E2) + P(E3))c2 + (P(E3) + P(E2))∆

⇔ P(E1) ≥
c2 +∆

c1 + c2 +∆
.

Finally, we note that

P(E1) = P[∃1 ≤ i ≤ k + 1, such that Yi is rejected | Y1, . . . , Yk]

≥ P[∃1 ≤ i ≤ k, such that Yi is rejected | Y1, . . . , Yk],

which concludes the proof.
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