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ABSTRACT

Siamese Networks are a popular self-supervised learning framework that learns
useful representation without human supervision by encouraging representations to
be invariant to distortions. Existing methods heavily rely on hand-crafted augmen-
tations, which are not easy to adapt to new domains. To explore a domain-agnostic
siamese network, we investigate using masking as augmentations in siamese net-
works. Recently, masking for siamese networks has only been shown useful with
transformer architectures, e.g. MSN (Assran et al.,|2022) and data2vec (Baevski
et al.}|[2022). In this work, we identify the underlying problems of masking for
siamese networks with arbitrary backbones, including ConvNets. We propose an
effective masking strategy and demonstrate its effectiveness on various siamese
network frameworks. Our method generally improves siamese networks’ perfor-
mances in the few-shot image classification, and object detection tasks.

1 INTRODUCTION

Self-supervised learning aims to learn useful representations from scalable unlabeled data without
relying on human annotation. It has widely used in natural language processing (Devlin et al.l 2019;
Zhang et al., 2022; Brown et al.| 2020), speech recognition (van den Oord et al., 2018 Hsu et al.,
2021; Schneider et al., [2019; Baevski et al., 2020) and other domains (Rives et al.,[2021; Rong et al.,
2020). Recently, self-supervised visual representation learning has also become an active research
area.

First introduced by [Bromley et al.| (1993), the siamese network (Chen et al.| |2020agb; |He et al.,
2020; |Chen et al.l 202205 2021} (Caron et al., 2020; |Grill et al., [2020; (Chen & He, [2020; [Wang
et al.}2022; |Zbontar et al., 2021; |Bardes et al.,|2021])) is one promising approach among many self-
supervised learning approaches and outperforms supervised counterparts in many visual benchmarks.
It encourages the encoder to be invariant to human-designed augmentations, capturing only the
essential features. Practically, in the vision domain, the siamese network methods rely on domain-
specific augmentations, such as cropping, color jittering and Gaussian blur, which do not transfer
well to other domains. Therefore, it is desired to have a general augmentation approach for siamese
networks that require minimal domain knowledge and can generalize.

Among various augmentations, masking the input is one of the simplest and effective choices, which
has been demonstrated to be useful for language (Devlin et al., 2019) and speech (Hsu et al., [2021).
However, not until the recent success of vision transformers (ViTs) (Dosovitskiy et al.,[2021; Touvron
et al.,|2021)) can vision models leverage masking as a general augmentation. Self-supervised learning
with masked inputs has demonstrated more scalable properties when combined with ViTs (He et al.}
2021;|Bao et al., |2021; |Zhou et al.| [2021; Baevski et al., [2022)). Unfortunately, siamese networks with
naive masking do not work well with arbitrary architecture, e.g., ConvNets (He et al.,|2016; Liu et al.,
2022).

We identify the underlying issues behind masked siamese networks with ConvNets. We argue that
ConvNets do not have a mechanism to encode null information. In addition, masking will introduce
parasitic edges. We propose a preprocessing procedure to solve these problems. We present several
general-purpose designs that allow siamese networks to benefit from masked inputs. Experiments
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show that siamese networks with ConvNets backbone can benefit from masked inputs with our
masking strategy.

‘We summarize our contributions below:

* We discuss the role of augmentations in siamese networks and explore a general-purpose
augmentation approach of masking. We identify the underlying problem of masking for
siamese with ConvNets backbones.

» We propose a preprocessing step to overcome the problem behind masked siamese networks
with ConvNets. We present a series of masking designs which allow masking to benefit the
siamese network with ConvNets backbones.

* We propose Masked Siamese ConvNets (MSCN), an effective masking strategy for general-
purpose siamese networks. Our method can be applied to various siamese network frame-
works, and it demonstrates competitive performances on few-shot image classification
benchmarks and outperforms previous methods on object detection benchmarks.

2 RELATED WORKS

2.1 SIAMESE NETWORKS

Self-supervised visual representation learning has become an active research area since they have
shown superior performances over supervised counterparts in recent years. One promising approach
is to learn useful representations by encouraging them to be invariant to augmentations, known as
siamese networks or joint-embedding methods (Misra & van der Maaten| [2020; |Chen et al., 2020azbj
He et al.| [2020; (Chen et al., [20220; 2021} |Caron et al., [2020; |Grill et al., 2020; |Chen & He, 20205
Wang et al.| [2022} Zbontar et al.,[2021; Bardes et al.,[2021). These methods use different mechanisms
to prevent collapse, and they all rely on carefully designed augmentations such as random resized
cropping, color jittering, grayscale and Gaussian blur. These augmentations prevent the encoder
from only using trivial features. Empirically, siamese networks with these standard augmentation
settings usually work well with arbitrary architectures, including ResNets (He et al., 2016) and
ViTs (Dosovitskiy et al.,[2021)). Their representations are label-efficient (Assran et al., 2021} |2022)),
more robust (Hendrycks et al}[2019), and have improved fairness (Goyal et al.,|2022)). In addition,
Siamese networks have been demonstrated to benefit from scalable data (Goyal et al., [2021a).

2.2 REPRESENTATION LEARNING WITH MASKED INPUTS

Masking the input is one of the simplest methods to corrupt the information input and could be
applied to a wide range of data types. It has been mostly used in two scenarios.

The first is for denoising autoencoder frameworks (Vincent et al., 2010; 2008)). Motivated by its
success in NLP (Devlin et al.| [2019; Brown et al., [2020) with transformers (Vaswani et al., [2017)),
various visual representation learning methods (He et al., [2021}; |Bao et al., [2021; Zhou et al., 2021}
using ViTs have also shown benefit from masked inputs. These methods have proven to be a promising
general-purpose self-supervised learning approach.

The second is for siamese networks. Siamese networks can benefit from masked inputs (Baevski
et al.| [2022; |Assran et al.,|2021)) where masking serves as an extra augmentation. These methods are
able to learn more transferable representations and have the benefit of being label-efficient. These
works are limited to ViT architectures. However, no previous work has shown that the masking
approach can work equally well with arbitrary ConvNets.

3 AUGMENTATIONS FOR STAMESE NETWORKS

In this section, we discuss the role of augmentations in siamese networks and outline several design
principles which will be used to guide our masking strategy.
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3.1 PRELIMINARIES

Siamese networks for visual representation learning start with creating two random views x; and
X9 from the same input x, with two different sets of random augmentation transformations 77 and
T, to each view. These methods then train an encoder fy(-) and a projector gy(-) to minimize
L, = Egollae(fo(Ts(x1))) — qo(fo(Ty (x2)))]|%, known as the positive term of the siamese

network loss function. To simplify the notation, we will ignore the projector gg(-) in all of our
following discussions, since we could always consider the projector as a part of the encoder.

However, if the encoder fy(-) is trained with the positive term alone, it fy(-) will quickly converge to
a collapsed solution that produces a constant representation for all inputs. Preventing collapse can
be solved by various frameworks, including contrastive loss |Chen et al.|(2020a); He et al.| (2020),
redundancy reduction Zbontar et al.| (2021)); [Bardes et al|(2021)), clustering |Caron et al.| (2020) and
distillation |Grill et al.| (2020); |(Chen & He| (2020); |Caron et al.| (2021)). These methods explicitly
or implicitly prevent E 4 (|| fo(Ts (X)) — fo(Ty (x'))]|?] becoming too small for x,x" coming from
different images. This is known as the negative term of the siamese networks loss function. Although
the negative term design is an important topic of siamese network methods, it is relatively independent
of augmentation choice.

In this work, we focus on the positive term to analyize the role of augmentations Ty. Data aug-
mentation plays an important role in guiding encoders fy(-) to learn useful representations of the
input so that they can be used for downstream tasks. With weak augmentation, we could find a
encoder g based on simple input statistics such that ||g(T4(x)) — g(Ty (x))|| is small for all ¢ and
@', then the encoder f only needs to capture those superficial features to minimize the positive term
of the loss function. With aggressive augmentations, it becomes difficult to find a encoder g such
that ||g(T(x)) — g(Tg (x))|| is small for all ¢ and ¢’ due to the mutual information between two
augmented views is destroyed. Then the encoders fy(-) are impossible to capture that information
which is potentially useful for downstream tasks.

Furthermore, other than assessing the augmentations based on how aggressive it is, [Huang et al.
(2021) shows that the generalization ability of contrastive self-supervised learning depends on the
concentration of augmented data within the same latent class. Intuitively, it means that to increase the
performance of downstream tasks that require the semantic information of the data, the augmentations
we applied to input data should be able to increase the probability of similar augmented views of
images from the same latent class, or decrease the probability of similar augmented views of images
from the different latent classes.

3.2 AUGMENTATION DESIGNING PRINCIPLE

Following the discussion in[3.1} we present three design principles of data augmentations for siamese
networks:

1. Prevent easy solutions such that encoder fy(-) only captures certain superficial features;
2. Keep as much mutual information between the two views as possible;

3. Increase the probability of similar augmented views of images from the same latent class,
or decrease the probability of similar augmented views of images from the different latent
classes.

4 PROBLEMS IN MASKED SIAMESE NETWORKS WITH CONVNETS

Siamese networks using masking as an extra augmentation have demonstrated competitive perfor-
mances (Assran et al.| 2022; Baevski et al., 2022)) with ViT backbones. Naively replacing ViTs with
ConvNets results in significantly worse performances. Here, we identify its underlying problems.
See Figure[]

Masking As Missing Information - The main reason masking as augmentation performs poorly on
siamese networks with ConvNets is that masking represents missing information, and there is no
good choice of assigned values for continuous input. Figure[Tb]shows the color histograms for the
original input and its masked version. Naively assigning zero or noise or even a trainable value will
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(a) input images (b) histogram (c) learned convolution kernels

Figure 1: Underlying problems in masked siamese networks with ConvNets. Each pair in a subfigure
corresponds to the original input and the masked version. (a) visualization of the input image and the
masked version; (b) the color histogram was distorted with masks. The values close to the assigned
mask value now represent missing information and could confuse the network; (c) visualization of
the encoder’s first convolutional layer kernels after pretraining.

confuse the network. For ViTs, this problem is automatically avoided by the self-attention mechanism
that does not attend to the masked area. Hence, it is essential for the network to identify masking as
missing information with proper preprocessing.

Masking Introduces Parasitic Edges - The convolutional kernels are well known for their edge
detection behaviors (LeCun et al.}[1998)). Applying masks creates a large number of parasitic edges
in the images. The feature maps generated by edge-detecting kernels are drastically distorted; hence,
these kernels are suppressed during training by siamese networks. More severally, these parasitic
edges will remain in the intermediate feature maps and affect all the convolutional layers. In Figure[Ic]
we visualize the encoder’s first convolutional layer kernels pretrained with standard augmentation
or masked input. Due to the parasitic edges, many kernels collapsed to trivial blank features. ViTs
dodge this problem by simply matching the patch boundaries to the mask.

5 METHODS

5.1 PREPROCESSING

To solve the problems caused by masking in siamese networks with ConvNets backbones as discussed
in Section[d] we propose to apply a high-pass filter during the preprocessing stage. See Figure 2]

High-pass filter allows zeros to represent null information - With an high-pass filter, the zero values
in the input image now represent null information instead of a regular pixel. Therefore, by applying
an extra mask with zero value perfectly fit the value distribution and results in minimal information
distortion change to the regular pixels.

High-pass filter elimiates parastic edges - We observe that the masking edges on the high-pass filtered
image becomes invisible. See Figure[2] Empirical results also verify that the ConvNets encoder is
able to learn useful edge detection kernels.

Figure 2: Preprocessing: A high-pass filter is able to solve the problem caused by masks on ConvNets.
The high-pass filter shifts the pixel value distribution so that zeros represent null information. These
zeros mean that the original information can be interpolated from surrounding pixels. In addition, the
mask edges on the image become invisible after applying the high-pass filter.

We quantitatively show that a high-pass filter as an extra preprocessing step significantly improves
siamese networks’ performance with masked inputs. We start with applying two random grid masks
with grid size 32 on the same random crop with a fixed 30% masking ratio. We do not apply any other
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Figure 3: Masking Strategy: We present five effective design components that allow siamese
networks to benefit from masked input. These design components are general-purpose and can work
with various input formats.

augmentations, such as random resized crops or color distortions. This mask-only setting achieves
a non-trivial 21.0% linear probe accuracy on ImageNet. By adding a high-pass filter, the accuracy
improves to 30.2%. We empirically find that a smaller high-pass filter kernel o = 5 is optimal, see

Appendix [B]

One may suspect that a high-pass filter will eliminate low-frequency information and results in
learning worse representations. We empirically show that a high-pass filter will cause negligible
change in terms of performance. We conduct supervised training experiments with or without a
high-pass filter and evaluate their image classification accuracy. A ResNet-50 with a high-pass filter
reaches 76.2% ImageNet supervised Top-1 accuracy, while the one without a high-pass filter gets
76.0%. These two numbers are within an error range.

5.2 MASKING STRATEGY

Besides standard augmentations, adding masks could prevent the encoder fy(-) from learning some
superficial features, as discussed in Sec[5] but at the same time, masking might also introduce new
superficial features that confuse the encoder. We propose several masking designs to prevent such
behaviors.

Noisy Mask - Inspired by masked language modeling |Devlin et al.| (2019) where masked tokens
were replaced by random tokens with a certain probability, we find that adding Gaussian noise to the
masked area is beneficial and reduces the siamese networks’ reliance on augmentations such as color
jittering. A noisy mask prevents the network from easily overfitting to use the color histogram as the
entire feature, which is similar to the role of applying color-jittering on the unmasked area

20204).

Channel-Independent Mask - In a discrete space, it is natural to mask the entire patch or token.
However, for continuous input with ConvNets backbone, it is essential for the network to attend to
not only spatial correlation but local channel-wise dependency. In standard siamese networks, this is
done by handcrafting augmentations such as color-jittering and grayscale. Here, we propose to add
such functionality for masks by introducing a channel-independent mask. In addition to standard
spatial-wise masking, where we apply the same mask on three color channels, we generate three
random masks and apply them to each color channel separately. Thus, this design is agnostic to input
format as it blurs the difference between spatial and channel dimensions. We suspect that this design
can further improve high-dimensional input such as RGBD images or videos.

Combining Random Masks and Focal Masks - In siamese networks with ViTs, |Assran et al.[(2022)
show that a mixture of random grid masks and focal masks can significantly boost the performance
of the siamese network. This is also similar to where larger blockwise masks are
combined with randomly smaller ones. Compared to a random grid mask, a focal mask decreases
the probability of similar augmented views of images from the different latent classes. Intuitively,
the larger a patch is, the smaller the probability that images from the different latent classes could
both generate the patch. Therefore, the siamese network will be encouraged to learn semantic-level
features. In our design, we randomly apply focal masks or distributed grid masks for each view.

Asymmetric Augmentation - |Wang et al.| (2022) highlighted the importance of asymmetry for
siamese networks in augmentations on various siamese network frameworks. Here, we find that
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Figure 4: Masked Siamese ConvNets (MSCN) framework. MSCN first generates multiple views
from the preprocessed image using a series of standard augmentations. Then it applies random masks
on each view using our masking strategy. An ConvNet encoder computes the representations of these
masked views. Then it applies joint-embedding loss is applied to pairs of these representation vectors.

masking asymmetrically between the two branches in the siamese networks improves learned rep-
resentations. This has also been used in masked siamese networks with ViTs (Assran et all,[2022)
that one branch always takes an unmasked view. Empirically, we find that applying masking on both
branches is essential for good representations, especially for frameworks that do not use momentum
encoders (He et al},[2020; [Grill et al., 2020). In our design, we will apply masking alongside other
augmentations on both branches with different magnitudes.

Multicrops - Besides the two main views used in siamese networks, Multicrops (Caron et al, 2020)
feed additional views for each image and apply siamese networks between some pairs of them.
Multicrops have been proven beneficial in various frameworks. Instead of relying on small resolution
views used in previous methods (Caron et al.} 2020} [Assran et al} 2022), we simply apply multiple
views with the same resolution and apply siamese network loss on every pair of them. Specifically,
we propose to use two extra masked views. Thus, our strategy does not assume input format.

5.3 MASKED SIAMESE CONVNETS FRAMEWORK

The overall Masked Siamese ConvNets (MSCN) architecture is shown in Figure@ This framework
can be a simple add-on to various siamese network frameworks with arbitrary backbone architecture.
During preprocessing, the high-pass filter is conducted after normalization. During the augmentation
stage on each branch, the masking is applied after other augmentations.

6 RESULTS

In this section, we evaluate the representations obtained by a Masked Siamese ConvNets pretrained
on the ImageNet-1K dataset (Russakovsky et al.|, 2015) with ResNet-50 backbone 2016).
We train MSCN with different joint-embedding losses, namely SimCLR and BYOL. The network is
pretrained for 800/1000 epochs, including 10 epochs of warm-up, and uses a cosine learning rate
schedule. We use the LARS optimizer with a batch size of 4096. All the hyperpa-
rameters, including learning rate, closely follow the original SimCLR and BYOL implementation
so that we could have a fair comparison. For each model, the pretraining is distributed across 32
V100 GPUs and takes approximately 180 hours. We list all the pretraining and evaluation details in
supplementary material.

6.1 IMAGE CLASSIFICATION

We first evaluate the representations on the ImageNet-1K dataset using linear probe and semi-
supervised classification. We compare MSCN with baselines in Table[T]
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For linear probe, we train a linear classifier on 100% of the labels with frozen weights. MSCN
improves SimCLR but performs slightly worse with the BYOL baseline. We suspect BYOL may
require a different asymmetric masking setting due to its asymmetric nature of the framework.

For semi-supervised classification, we finetune the network using 1% of the labels. MSCN demon-
strates superior performances. The advantage of masked siamese networks in few-shot image
classification tasks has also been observed by|Assran et al.|(2022) using ViTs.

We compare the effect of masking on ConvNets and ViTs in Table ] MSCN with a ConvNet
backbone demonstrates similar behaviors to MSN with a ViT backbone.

Table 1: Image Classification on ImageNet-1K. We first evaluate the MSCN representations with
ImageNet- 1k classification. For linear evaluation, we freeze the backbone and train a linear classifier
with all the labels. For low-shot semi-supervised learning, we finetune the network with 1% of the
labels. MSCN demonstrates improvement over baselines on both SimCLR and BYOL frameworks
on both settings.

Method Linear Evaluation Finetuning
Label fraction 100% 1%
SimCLR (Chen et al,2020a) 69.5 48.3
+MSCN 71.5 (+2.0) 54.0 (+5.7)
BYOL (Grill et al., [2020) 74.3 53.2
+MSCN 74.5 (+0.2) 55.2 (+2.0)

Table 2: Effect of Masking on ConvNets and ViTs. We compare the effect of masking on ConvNets
and ViTs on ImageNet-1K with linear probe. MSCN with a ConvNet backbone demonstrates similar
behaviors to MSN with a ViT backbone.

Method Architecture Parameters Use Mask Accuracy
Supervised (Touvron et al., 2021)  ViT-S 22M 79.9
DINO (Caron et al., 2021) ViT-S 22M X 78.3
MSN (Assran et al., [2022) ViT-S 22M v 76.9
Supervised (He et al.,|2016)) ResNet-50 24M 76.5
BYOL (Grill et al., [2020) ResNet-50 24M X 74.3
MSCN (ours) ResNet-50 24M v 74.5

6.2 TRANSFER LEARNING

We then evaluate the representations by transferring the network to other downstream tasks. We
report the transferred image classification results on iNaturalist 2018 (Horn et al.| |2018)) dataset and
Places-205 (Zhou et al.l 2014} dataset in Table E} In Table E} we report the object detection and
instance segmentation performance on VOC07+12 (Everingham et al.,|2009) and COCO datasets (Lin
et al.,[2014).

Comparing MSCN with other methods in Table[3] We observe similar results as Table[I} that MSCN
improves SimCLR but performs worse with BYOL. We still suspect that the worse performance
of BYOL could come from the non-optimal masking hyperparameters. Since most of the objects
in Places-205 have a larger scale than the objects in iNaturalist 2018, the non-optimal masking
hyperparameters cost more harm on the smaller scale objects than on larger-scale objects.

For the object detection and instance segmentation tasks, MSCN demonstrates superior performances
over previous siamese network frameworks on VOCO07+12 detection task and performs comparably
to the state-of-the-art representation learning methods on COCO dataset.
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Table 3: Image classification transfer learning with a ResNet-50 pretrained on ImageNet-1K. We
follow the standard evaluation protocol that trains the linear classifiers on fixed features with the
same hyperparameters as other methods except for the learning rate.

Method Place-205 iNatl18

SimCLR |Chen et al.[(2020a) 52.5 37.2
+MSCN 53.8 (+1.3) 38.2 (+1.0)

BYOL |Grill et al.| (2020) 54.0 47.6
+MSCN 54.5 (+0.5) 45.7 (-1.9)

Table 4: Object detection and instance segmentation transfer learning with a ResNet-50 pretrained
on ImageNet-1K. All VOCO07+12 results using Faster R-CNN (Ren et al.,|2015) with C4 backbone
variant (Wu et al.,[2019) finetuned 24K iterations. All COCO results using Mask R-CNN (He et al.,
2017) with C4 backbone variant (Wu et al.|[2019) finetuned using the 1x schedule. Methods with an
asterisk are reproduced by [Chen & He|(2020). 0.3 within the best are underlined

Method VOCO07+12 det COCO det COCO instance seg
AP,y AP5y AP;5; APPP  APRY  APRP  Apmk AP AP
Supervised 535 813 588 382 582 412 33.3 54.7 35.2
MoCo v2 574 825 64.0 393 589 425 344 55.8 36.5
SwAV 56.1 826 627 384 58.6 413 33.8 55.2 35.9
SimSiam 57 824 637 392 593 421 34.4 56.0 36.7
Barlow Twins 56.8 826 634 392 59.0 425 343 56.0 36.5
SimCLR* 555 81.8 614 379 577 409 33.3 54.6 353
BYOL* 553 814 61.1 379 578 409 332 54.3 35.0
MSCN 575 8.0 644 391 591 421 342 557 364

6.3 ABLATION STUDY

We conduct ablation experiments to gain insights into our masking design strategy. By default, we
pretrain MSCN for 100 epochs with the SImCLR framework. We measure the performance by linear
probe accuracy on ImageNet-1K.

Masking Ratio - We first explore the optimal masking ratio in Figure|5a] A small masking ratio of
15% is optimal for a ResNet-50 backbone. This matches the observation in (Assran et al.| [2022) that
smaller networks (e.g. ViT-S) prefer a smaller masking ratio. We also observe that the accuracy is
relatively stable against the masking ratio up to 50% with our masking strategy.

Masking Grid Size - Mask grid size is an important hyperparameter that controls the balance between
local and global features in the input, and determine what the siamese network will learn. In masked
siamese networks with ViTs, the masking grid size is fixed, and it is always set to match the patch
boundaries. However, an optimal masking grid size can vary. In Figure[5b] we show that the siamese
networks can benefit from a more appropriate mask grid size. We observe a large grid size of 32 is
optimal for our current masking strategy with ConvNets backbone.

Focal Mask Probability - We explore the optimal focal mask probability in Figure[5c| Combining
focal masks with random grid masks leads to significant improvements. It remains an interesting
open direction on how to optimally mix local features with global ones.

Independent Mask Probability - We explore the optimal independent mask probability in Table [5d]
Independent mask with high probability results in significant accuracy boost.

7 DISCUSSION AND FUTURE DIRECTIONS

General-purpose Siamese Networks - Human-designed augmentations leveraging domain knowl-
edge are essential for siamese networks to learn useful representations. Similar to masked siamese
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Figure 5: Ablation Study. (a) a masking ratio of 15% is optimal for masked siamese ConvNets; (b)
masked siamese ConvNets prefer a large masking grid size of 32; (c) a focal mask probability of 40%
is optimal; (d) independent mask with high probability benefits siamese networks.

networks with ViTs (Assran et al., |2022)), our approach still combines standard augmentations
with masking by proposing masking as an extra augmentation. However, it is desirable to find a
domain-knowledge-free augmentation strategy so that this approach can be applied to more general
domains or out-of-distribution scenarios. And it is reasonable to believe that the importance of

domain-knowledge-specific augmentations will diminish with an increasing amount of pretraining
data.

Masked ConvNets for Masked Image Models - Besides siamese networks, masked image modeling
based on denoising autoencoders (Vincent et al., 2008; |2010) is another promising approach for
visual representation learning. These methods (Bao et al.| 2022; He et al., 2021)) have demonstrated
impressive performances in visual representation learning. Unfortunately, masked autoencoders also
fail to work with ConvNets caused by similar problems as mentioned in Sec 4] for siamese networks.
Even though the mask here serves a different purpose, we suspect that our design in Masked Siamese
ConvNets may also apply to masked image modeling with ConvNets. We hope the discovery in this
paper may shed light on general self-supervised learning and reduce the requirement for inductive
bias of different architectures.

8 CONCLUSION

This work explores whether masking can be applied as an general-purpose augmentation to siamese
networks with arbitrary backbones, including ConvNets. We first present the problems introduced by
the use of masking as augmentation. We then propose an effective masking strategy and demonstrate
its effectiveness on various siamese network frameworks. Our method performs competitively on
few-shot image classification benchmarks and outperforms previous methods on object detection
benchmarks.

REPRODUCIBILITY STATEMENT

The pretraining code can be found in the supplementary material. We also provide a detailed
implementation setup for pre-training and downstream experiments in Appendix[A] After publication,
we will provide pretrained checkpoints and open-source the code on a public repo.
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A IMPLEMENTATION DETAIL

A.1 PRETRAINING

We closely follow the original setting in (Chen et al.,|2020a)) for our MSCN (w/ SimCLR) pretraining
and original setting in (Grill et al., 2020) for our MSCN (w/ BYOL) pretraining.

Augmentation - For both methods, we use the same augmentation methods. Each augmented
view is generated from a random set of augmentations from the same input image. We apply a
series of standard augmentations for each view, including random cropping, resizing to 224x224,
random horizontal flipping, a random color-jittering, randomly converting to grayscale, and a random
Gaussian blur. These augmentations are applied symmetrically on two branches.

Architecture - For MSCN (w/ SimCLR), the encoder is a ResNet-50 network without the final
classification layer followed by a projector. The projector is a two-layer MLP with input dimension
2048, hidden dimension 2048, and output dimension 256. The projector has ReLU between the
two layers and batch normalization after every layer. This 256-dimensional embedding is fed to the
infoNCE loss. We use a temperature 0.2 for the infoNCE loss.

For MSCN (w/ BYOL), the online encoder is a ResNet-50 network without the final classification
layer. The online projector is a two-layer MLP with input dimension 2048, hidden dimension 4096,
and output dimension 256. The predictor is a two-layer MLP with input dimension 256, hidden
dimension 4096, and output dimension 256. The projector and the predictor have ReLU between the
two layers and batch normalization after every layer except the final linear layer. The target encoder
and projector are the exponential moving average of the online encoder and projector, with an initial
momentum 7 = 0.996 with a cosine decay schedule to 1.0 during the pretraining.

Optimization - We follow the training protocol in (Zbontar et al., 2021) . For MSCN (w/ SimCLR),
we use a LARS optimizer and a base learning rate 4.8 using cosine learning rate decay schedule. We
pretrain the model for 800 epochs with 10 epochs warm-up with batch size 4096.

For MSCN (w/ BYOL), we use a LARS optimizer and a base learning rate 3.2 using cosine learning
rate decay schedule. We pretrain the model for 1000 epochs with 10 epochs warm-up with batch size
4096.

A.2 LINEAR PROBE ON IMAGENET

We closely follow the setting used in (Zbontar et al.,|2021)) for our linear probe evaluation. The linear
classifier is trained for 100 epochs with a base learning rate of 1.0 and a cosine learning rate schedule.
We minimize the cross-entropy loss with the SGD optimizer with momentum and weight decay of
10~°. We use a batch size of 256.

At training time, we use random resized crops to 224x224, followed by random horizontal flip and a
High-pass filter. At test time, we resize the image to 256x256 and center-crop it to a size of 224x224
and followed by a High-pass filter.

A.3 FINETUNING

We closely follow the setting used in (Zbontar et al.l |2021) for our finetuning evaluation. We finetune
the ResNet-50 encoder for 20 epochs with a learning rate of 0.002 and the classifier with a base
learning rate 0.5. The learning rate is multiplied by a factor of 0.2 after the 12th and 16th epoch.
We minimize the cross-entropy loss with the SGD optimizer with momentum and do not use weight
decay. We use a batch size of 256. The image augmentations are the same as in the linear evaluation
setting.

A.4 OBJECT DETECTION

We use the detectron? library (Wu et al.,[2019) for training the detection models. All the configuration
files are from the VISSL library (Goyal et al.,[2021b)), which are closely follow the evaluation settings
from (He et al., 2020). The backbone ResNet50 network for Faster R-CNN (Ren et al., [2015) and
Mask R-CNN (He et al., [2017) is initialized using our pretrained model.
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VOCO07+12 We use the VOCO07+12 (Everingham et al., 2009)) trainval set of 16K images for training
a Faster R-CNN C-4 backbone for 24K iterations using a batch size of 16. The initial learning rate
for the model is 0.085 which is reduced by a factor of 10 after 18K and 22K iterations. We use linear
warmup (Goyal et al.,[2019) with a slope of 0.333 for 1000 iterations.

COCO We train Mask R-CNN C-4 backbone on the COCO (Lin et al.,[2014) 2017 train split for
90K iterations using a batch size of 16 The initial learning rate for the model is 0.05 which is reduced
by a factor of 10 after 60K and 80K iterations. We use linear warmup (Goyal et al., 2019) with a
slope of 0.333 for 1000 iterations. We report results on the 2017 val split.

B ADDITIONAL ABLATION STUDY

We conduct additional ablation experiments to gain insights into our masking design strategy. By
default, we pretrain MSCN with SimCLR loss for 100 epochs. We measure the performance by linear
probe accuracy on ImageNet-1K.

High-pass Sigma - We explore the optimal high-pass filter o in Figure[6] In addition to the varying
o for pretraining, we also update the high-pass filter o for the transformation during evaluation. In
practice, we prefer a small o because there is less computational overhead.

= 1 3 5 7 9
high-pass filter sigma (pixel)

Figure 6: Impact of high-pass filter parameter o during pretraining on ImageNet-1K linear probe
accuracy.

View Sharing - In our masking strategy, we apply the standard augmentations to generate multiple
views and then randomly apply masks on these views. One alternative is to apply random masks
on the same augmented view. Figure [5] shows that applying masks on the same view results in
significantly worse representations.

As discussed in our design principle, the masks are used to prevent superficial solutions based on
masked areas. It is still important to apply different augmentations to the original image to prevent
the superficial solutions based on unmasked areas.

Table 5: Impact of view-sharing during pretraining on ImageNet-1K linear probe accuracy (in
%). A view is generated with standard augmentations, including RandomResizedCrop, ColorlJitter,
HorizontalFlip, GaussianBlur, and Grayscale. Our standard approach applies masks to two different
views. Here, we find that applying masks on a shared view results in significantly worse performance.

Augmentation strategy Accuracy
Same view + random mask 29.1
Different views + random mask 65.6

C ADDITIONAL VISUALIZATION
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Figure 7: Color histograms of (left) high-pass filtered image and (right) high-passed image with
mask.

Figure 8: Visualization of convolutional kernels trained with MSCN
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