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Abstract

Quality control (QC) of medical images is essential to ensure that downstream analy-
ses such as segmentation can be performed successfully. Currently, QC is predominantly
performed visually at significant time and operator cost. We aim to automate the process
by formulating a probabilistic network that estimates uncertainty through a heteroscedas-
tic noise model, hence providing a proxy measure of task-specific image quality that is
learnt directly from the data. By augmenting the training data with different types of
simulated k-space artefacts, we propose a novel cascading CNN architecture based on a
student-teacher framework to decouple sources of uncertainty related to different k-space
augmentations in an entirely self-supervised manner. This enables us to predict separate
uncertainty quantities for the different types of data degradation. While the uncertainty
measures reflect the presence and severity of image artefacts, the network also provides
the segmentation predictions given the quality of the data. We show models trained with
simulated artefacts provide informative measures of uncertainty on real-world images and
we validate our uncertainty predictions on problematic images identified by human-raters.

1. Introduction

Quality control (QC) in magnetic resonance imaging (MRI) is the process of establishing
whether a scan or dataset meets a required set of standards. QC typically relates to the
acceptable level of image quality required for a particular task, which may be affected by
acquisition noise, resolution, and/or image artefacts induced for instance by blood, motion,
bias field, zipper or radio-frequency (RF) spikes. In MRI, a large variety of potential arte-
facts need to be identified so that problematic images can either be excluded or accounted
for in further image processing and analysis. To date, the gold standard for identification
of these issues remains labour-intensive visual inspection of the data (Graham et al., 2018).

However, with the current trend towards acquiring and exploiting very large imaging
datasets, the time and resources required to perform visual QC have become prohibitive.
Furthermore, as with other rating tasks, visual QC is subject to inter and intra-rater vari-
ability due to differences in radiological training, rater competence, and sample appearance
(Sudre et al., 2019).
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Some artefacts, such as those caused by motion, can also be difficult to detect with
visual QC, as their identification require the careful examination of every slice in a volume.
These challenges have led to an increased interest in automated methods. In addition to
the challenges inherent to visual QC, it is worth highlighting the task-dependent nature of a
quality assessment: what may be deemed of acceptable quality for a radiological assessment
may not be sufficient to provide reliable measurements for some of the automated analyses
the image would undergo.

In this work, we propose to estimate task-specific uncertainty in a deep-learning frame-
work and show this can be used as a measure of image quality for the task of segmentation.
Furthermore, we show that we can decouple sources of uncertainty related to different imag-
ing artefacts. Being able to decouple and identify sources of uncertainty can have a direct
impact on the management of both clinical and research logistics. For instance, if the ob-
served uncertainty is associated to acquisition artefacts (noise for instance) inspection of the
scanner by an engineer may be required while if the uncertainty stems from subject motion,
introducing ghosting or blurring, recall of the subject may be the appropriate path of action.
In addition, in the context of population studies, producing the uncertainty associated with
the desired measurement allows for appropriate statistical treatment of the samples while
limiting the number of exclusions for quality reasons. Lastly, real-time indication of levels
of uncertainty concerning a downstream task would enable radiographers to best manage
session time and ensure repeat scans are taken as needed.
Contributions The main contributions of this work are three-fold:

1. A general method of estimating MR image quality in a self-supervised manner.

2. A novel cascading student-teacher CNN architecture and probabilistic loss function
to decouple sources of uncertainty related to the task and different image artefacts.

3. Validation of uncertainty predictions on problematic images identified by expert raters.

2. Related Work

In recent years, estimating uncertainty in the data/model has become increasingly recog-
nised as an important step to enable the safe transition of automated methods into the
clinical environment (Wang et al., 2018), (Tanno et al., 2019). In Bayesian Deep Learning,
two main types of uncertainty are commonly distinguished: epistemic uncertainty which is
uncertainty in the model, and aleatoric uncertainty which depends on noise or randomness
in the data. In a similar approach to the one presented in this work, Prado et al. (Prado
et al., 2019) have used a dual network to learn both epistemic and aleatoric uncertainty,
assuming their independence. However, since the focus of this work is on the assessment of
image quality, only the aleatoric uncertainty is considered here.

3. A Heteroscedastic Aleatoric Uncertainty Model

Aleatoric uncertainty is classically divided into two categories; the homoscedastic component
is the task-dependent uncertainty, while the heteroscedastic component depends on the input
data, reflecting for instance its quality, and can be predicted as a model output. Following
this classification, task-specific image quality is modelled according to a heteroscedastic
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noise model. Heteroscedastic models assume that observation noise σ2 can vary with the
input x, allowing for regions of the observation space to have higher noise levels than others
(Kendall and Gal, 2017).

In this work, a single task, grey matter segmentation is considered; thus task uncertainty
should be similar across experiments. The total predicted uncertainty is further assumed to
be the sum of the task uncertainty (uncertainty given clean data) and the heteroscedastic
uncertainties introduced as a function of image corruption.

For the segmentation task, the problem is presented as a voxel-wise classification. The
likelihood to maximise is defined as the softmax function of the scaled output logits, i.e.
p(y|fW(x), σ) = Softmax

(
fW(x)/σ2

)
where fW(x) is the output of a neural network with

weights W and input x (Bragman et al., 2018). The negative log likelihood is therefore:

− log p(y = c|fW(x), σ) = − log Softmax

(
1

σ2
fWc (x)

)
(1)

= − 1

σ2
fWc (x) + log

∑
c′

exp

(
1

σ2
fWc′ (x)

)
(2)

where fWc (x) is the cth element of the output vector fW(x). Note, in practice for seg-
mentation we compute the unscaled cross entropy loss of y, given by CE

(
y = c, fW(x)

)
=

− log Softmax
(
fWc (x)

)
= −fWc (x) + log

∑
c′ exp

(
fWc′ (x)

)
. Substituting this into Eq. 2:

− log p(y = c|fW(x), σ) =
1

σ2
CE
(
y = c, fW(x)

)
+ log

∑
c′ exp

(
1
σ2 fWc′ (x)

)(∑
c′ exp

(
fWc′ (x)

)) 1
σ2

(3)

Following (Kendall et al., 2017) the likelihood is approximated:
(∑

c′ exp
(
fWc′ (x)

)) 1
σ2 ≈

1
σ

∑
c′ exp

(
1
σ2 fWc′ (x)

)
. Substituting into Eq. 3 results in the weighted cross entropy loss

that is used as the base loss function for all segmentation networks, as given by Eq. 4.

LNN =
1

σ2
CE
(
y, fW(x)

)
+

1

2
log σ2 (4)

Decoupling Multiple Uncertainties We use the weighted cross entropy loss in Eq. 4
to learn voxel-wise uncertainty, i.e. the network has two outputs: the segmentation y and
the variance σ2, as shown by the task network in Figure 1. We adapt this loss function to
predict multiple uncertainty quantities related to different aspects of image quality. The
aim is to decompose the total predicted uncertainty σ2 into multiple uncertainty quantities
related to the inherent difficulty of the task and to different types of image degradation
or augmentation that may affect image quality. Our model assumes the variance sum law
for independent events, such that the total predicted variance is the sum of the individual
variances associated with each mode of augmentation, i.e. σ2 = σ2t + σ21 + σ22 + ...+ σ2N =

σ2t +
∑N

i=1 σ
2
i for N possible augmentations, where σ2t is the task uncertainty and σ2i is

the uncertainty due to the ith augmentation. This assumption of independence has the
merit to simplify the model and ensure training tractability. While interactions with task
uncertainty (task harder to learn with noisier data) or between degradation types (blurring
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Figure 1: Proposed network architecture and training strategy: First, the task network is
trained on clean images xt to predict segmentation yt and task uncertainty σ2t .
Then, for each augmentation i, a teacher network is trained to predict both the
task uncertainty σ̂2t and augmentation uncertainty σ2i , where the output from the
task network supervises with consistency loss L(σ̂2t , σ

2
t ). Lastly, a combined stu-

dent network is trained, where the uncertainty outputs from all previous teacher
networks supervise its uncertainty predictions in a similar fashion. The loss func-
tions for each CNN at each training stage are shown in corresponding colours.

and noise for instance) exist, their modelling would require the learning of new covariance
terms and would greatly complexify both model and training procedure.

Substituting for σ2 in Eq. 4 results in the combined loss function in Eq. 5.

Lcombined =
CE
(
y, fW(x)

)
σ2t +

∑N
i=1 σ

2
i

+
1

2
log

(
σ2t +

N∑
i=1

σ2i

)
(5)

The purpose of Lcombined is to enable the network to predict task uncertainty σ2t and
augmentation uncertainty σ2i for each mode of augmentation. Since networks trained with
this probabilistic loss function learn uncertainty in an unsupervised way, we do not have
explicit labels for uncertainty. Therefore the network cannot determine how to decompose
the total variance into separate quantities σ2t and σ2i by itself, i.e. without supervision. To
do this, inspired by student-teacher networks (Tarvainen and Valpola, 2017) and knowledge
distillation (Hinton et al., 2015), (Xie et al., 2019), we use a series of intermediate teacher
networks where each network predicts the uncertainty due to a single augmentation, creat-
ing “pseudo labels” of uncertainty maps. By training these teacher networks sequentially,
the output uncertainties from each intermediate network are used as self-supervising la-
bels for the uncertainties predicted by a final combined student network. This is shown
schematically in Figure 1.
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(a) (b) (c) (d)

Figure 2: Examples of our k-space augmentations, a) RF spike artefact b) Gaussian noise
in the k-space c) low-pass filter along one axis d) aliasing/wraparound artefact.

The training procedure can be summarised in the following three steps: 1) Train a
teacher network on clean data only to predict the segmentation yt and task uncertainty σ2t .
2) Freeze the task network and train a new network Ni for each mode of augmentation we
wish to decouple, where each augmented network predicts the segmentation yi, the task
uncertainty and the noise uncertainty σ2i for augmentation i. The output uncertainty from
the first network acts as a “pseudo label” for the task uncertainty. 3) Freeze all previous
networks and train a final student network with all modes of data augmentation to predict
the task uncertainty and all possible augmentation uncertainties, where each uncertainty is
supervised by the pseudo uncertainty labels from their respective teacher networks.

For each network to learn the task uncertainty, an additional consistency loss term
L(σ̂t

2, σ2t ) is added to the weighted cross entropy loss to minimise the difference in uncer-
tainty. Therefore, each augmentation network Ni minimises a loss function Laugi given by
Eq. 6,

Laugi =
CE
(
yi, f

W(x)
)

σ2t + σ2i
+

1

2
log
(
σ2t + σ2i

)
+ L(σ̂t

2, σ2t ) (6)

where,
L(σ̂2, σ2) = L1(σ̂2, σ2) + Lgrad(σ̂2, σ2) + λLSSIM (σ̂2, σ2). (7)

L1 is the L1 loss of the uncertainty and Lgrad is the L1 loss of gradient differences of the
uncertainty maps in all three axes. The term LSSIM computes the 3D structural similarity
(SSIM). The gradient and structural similarity losses help preserve the structure of the
predicted uncertainty maps as the level of degradation increases. However, in the presence
of severe image artefacts, the position, shape, appearance/visibility of the segmentation
boundary can change causing SSIM to breakdown. Therefore LSSIM is down-weighted by
λ = 0.1. A simplified SSIM with a 3× 3× 3 average filter is used in our implementation.

4. k-Space Augmentation

During the training of each segmentation CNN, random k-space augmentations affecting
image quality are applied on-the-fly. The types of augmentation are designed to emulate
realistic MRI artefacts and are detailed below. Each augmentation is applied in the k-
space by computing the 3D Fast Fourier Transform (FFT) of input volumes, modifying
the k-space, and then computing the inverse 3D FFT, taking the magnitude image scaled
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between 0 and 1 as input to the network. All augmentations are applied at a rate such
that roughly 50% of images seen by each CNN during training contain artefacts. The order
in which k-space augmentations are applied is important to best reflect the MR imaging
process, with for instance RF spike −→ noise −→ lowpass filter/k-space sampling. In addition
to k-space augmentation, image rotation, scaling and flipping augmentations are applied, as
well as bias field augmentation to account for variation in image intensity across samples.
RF spike artefact is characterised by dark stripes over the image, as shown in Fig. 2 a)
caused by the convolution of spikes in k-space of very high/low intensity during the FFT
(Zhuo and Gullapalli, 2006). For augmentation we sample uniformly its location in k-space
which specifies the angle/frequency of stripes and its magnitude which defines the intensity.
k-Space noise augmentation involves injecting Gaussian noise into the k-space, as shown
in Fig. 2 b), to model Rician noise in the image domain. The desired signal-to-noise ratio
(SNR) of the image is uniformly sampled between [-10dB, 30dB] and the corresponding
amount of complex noise with zero mean and equal variance is added to the k-space.
Blurring artefact can be observed when acquiring data at lower resolution along one axis
prior to resampling. Low-pass filter applied by truncating the k-space along one randomly
chosen axis as shown in Fig. 2 c) can simulate this effect. The width of the filter defines
the equivalent downsampling ratio, which is uniformly sampled between 2× and 12×.
Aliasing/wrap artefact occurs when the imaging field of view (FOV) is smaller than the
anatomy being imaged. This is retrospectively simulated by masking out k-space lines as
shown in Fig. 2 d). A proportion of k-space lines are either randomly masked uniformly, or
at regularly spaced intervals, along a random axis that defines the wraparound direction.

5. Experiments

Proposed Network Architecture All CNNs use the updated U-Net architecture from
(Isensee et al., 2019) as their base architecture implemented in NiftyNet (Gibson et al.,
2017). Each network is modified with two output heads, one for the segmentation ŷ and
one for the uncertainty σ2, where the uncertainty output from each CNN has a different
number of channels – one for each decoupled uncertainty prediction. We first train the task
network to learn a single task uncertainty σ2t . We then train N teacher networks for each
augmentation i, where each CNN outputs two uncertainties σ2t and σ2i . Finally a combined
network is trained to learn the task uncertainty and N augmentation uncertainties. Each
CNN is trained for 30,000 iterations with a patch size of 963 and batch size of 2 across 4
GPUs with Adam optimiser (Kingma and Ba, 2015) and an initial learning rate of 10−4.

Implementation Details As in (Kendall et al., 2017), for numerical stability, each CNN
is trained to predict log variance s := log σ2 instead of variance σ2. In addition, the ex-
ponential mapping σ2 = exp(s) enforces valid positive uncertainty values. We add a small
constant ε to the variance to ensure the proper definition of the weighted cross entropy loss,
LNN = CE/(σ2 + ε) + 1

2 log
(
σ2 + ε

)
. It’s value controls the network’s sensitivity to noise

and the amount of output uncertainty. For instance, if ε is small, the network is penalised
more for making mistakes, outputting higher uncertainty to compensate. If ε is large, the
amount the network is penalised is limited by CE/ε as σ2 −→ 0. Furthermore, smaller values
of ε lead to training instability. Initially, ε is set to 0.05 and divided by 2 every time the loss
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Figure 3: Qualitative results on a hold-out test set of simulated artefacts. First row:
artefact-corrupted input image x, second: resulting segmentation y, third: pre-
dictive task variance σ2t , and fourth: corresponding augmentation uncertainties
σ2i = {σ2noise, σ2rfspike, σ2blur, σ2wrap}. Best viewed zoomed-in on digital copy.

plateaus until ε < 10−3. In parallel, at each of these steps, the learning rate is also halved.

Training Data for this work was obtained from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) (adni.loni.usc.edu). Launched in 2003, ADNI attempts to assess whether
medical imaging and biological markers and clinical assessment can be combined to mea-
sure progression of Alzheimer’s Disease. For training we use 272 MPRAGE scans that
were deemed to be artefact-free, split into 80% train, 10% valid and 10% test. We evalu-
ate our model on simulated and real-world artefacts in the task of grey matter segmentation.

Simulated Data A model trained with artefact augmentation was used to perform infer-
ence on the hold-out test set. Fig. 3 presents a selection of these results. For each sample,
predicted segmentation, task and corresponding augmentation uncertainties are displayed.
Areas of high uncertainty are generally in the artefacted regions. This enables us to quickly
locate in the volume the image quality issue and judge its effect on the prediction by the
level of uncertainty. Note, that in cases of heavy noise, the task uncertainty decreases as
the signal is impaired, and therefore the model reverts back to the prior distribution.

Real-world Data Using the model trained on synthetic artefacts, we performed inference
on a dataset of real-world artefacts identified as low quality by expert raters. A selec-
tion of these are shown in Fig. 4. We note that the uncertainty predictions generalise well
to real-world artefacts and that the uncertainty is generally higher in the artefacted regions.
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Figure 4: Left: Real-world artefact results. From left to right: artefact-corrupted input
image x, predicted segmentation y, task uncertainty σ2t , and corresponding aug-
mentation uncertainties σ2wrap and σ2noise. Right: Total augmentation uncertainty
over the data. View zoomed-in on digital copy.

(a) (b)

Figure 5: Predicted confidence intervals at ±σ on volume measurements from the grey
matter segmentation for images with a) increasing noise and b) increasing blur.

Entropic Uncertainty The per-voxel variance values predicted by the network pertain to
the logit space. While these values directly are useful indicators of uncertainty given the
data, they relate to the actual uncertainty in the segmentation prediction via the entropy.
Therefore, we can estimate a measure of uncertainty in our probabilities by computing the
entropy as H = −

∑
c pc log pc, where pc = p(y = c|fW(x), σ) are the scaled output logits

from the network. Furthermore, using standard variance-entropy relations (Jee and Rat-
naparkhi, 1986) we can obtain approximate error bars on segmentation measurements. In
Fig. 5, we use our uncertainty predictions to estimate the confidence interval for increasing
noise and blurring in the image, relative to clean data. As this is a relative measure of
uncertainty, i.e. even noise-free images will have some level of predicted uncertainty, we
must transform the uncertainty by some amount to obtain calibrated error bars. In this
work we simply compute the difference from the known uncertainty of a noise-free image,
but these scaling parameters could be learnt from the data as in (Eaton-Rosen et al., 2019).
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6. Discussion

The aim of this work was to build a deep-learning framework capable of identifying and
decoupling sources of uncertainty due to MRI artefacts that may affect a given segmentation
task. We have shown that it is possible to obtain approximately decoupled uncertainties
that reflect the presence (location and severity) of k-space artefacts. We have also shown
that these uncertainties can be used to generate error bars on segmentation measurements.
Limitations Our uncertainty predictions are limited by the fact that we are estimating
uncertainty given the data p(y|x, σ), but have not modelled the likelihood of the data itself
p(x), achievable through methods such as autoencoders. Extrapolation problems also limit
our ability to decouple uncertainty, as the introduction of extreme artefacts results in an
unstable learning process. Lastly, we assume that the original data (used for training the
task network) is artefact-free, possibly resulting in inflated task uncertainty estimates.

7. Conclusion

We have presented a method for estimating quality-induced task-specific uncertainty using
a heteroscedastic noise model. Entirely self-supervised, the proposed model can approx-
imately decouple and localise sources of uncertainty related to different MRI artefacts,
thus automatically highlighting problematic areas affecting segmentation predictions. The
method is general and may be applied to other automated image analysis processing tasks.
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