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ABSTRACT

The emergence of various multi-agent environments has motivated powerful al-
gorithms to explore agents’ cooperation or competition. Even though this has
greatly promoted the development of multi-agent reinforcement learning (MARL),
it is still not enough to support further exploration on the behavior of swarm in-
telligence between multiple teams, and cooperation between multiple agents due
to their limited scalability. To alleviate this, we introduce GoBigger, a scalable
platform for cooperative-competition multi-agent interactive simulation. GoBigger
is an enhanced environment for the Agar-like game, enabling the simulation of
multiple scales of agent intra-team cooperation and inter-team competition. Com-
pared with existing multi-agent simulation environments, our platform supports
multi-team games with more than two teams simultaneously, which dramatically
expands the diversity of agent cooperation and competition, and can more effec-
tively simulate the swarm intelligent agent behavior. Besides, in GoBigger, the
cooperation between the agents in a team can lead to much higher performance.
We offer a diverse set of challenging scenarios, built-in bots, and visualization
tools for best practices in benchmarking. We evaluate several state-of-the-art
algorithms on GoBigger and demonstrate the potential of the environment. We
believe this platform can inspire various emerging research directions in MARL,
swarm intelligence, and large-scale agent interactive learning. Both GoBigger
and its related benchmark are open-sourced. More information could be found at
https://github.com/opendilab/GoBigger.

1 INTRODUCTION

The swarm behavior of multi-agent systems (MAS) widely exists in nature and human society. In
MAS, individual agent pursues their goal and interacts with each other in local areas, following the
rules of cooperation or competition, and then the intelligent behavior of the agent group forms the
complex collective behaviors. The phenomena of collective behaviors can be found in the flocking
birds (Bhattacharya & Vicsek, 2010), molecular motors (Chowdhury, 2006), human crowds (Helbing
et al., 2000), and traffic systems (Kanagaraj & Treiber, 2018). To understand and simulate such
phenomena, some rule-based models (Castellano et al., 2009) can simulate the swarm behavior in an
unconstrained environment with random movement. However, in a complex interactive environment
such as intra-cellular molecular motor transport, where the interaction of agents is time-varying and
updatable, it is challenging to recover the underlying collective behaviors by manually designing the
controllers or rules.

Interactive simulation of multi-agent systems can provide significant convenience for multi-agent
learning algorithms. Some existing multi-agent simulation environments mainly focus on the coop-
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Figure 1: New users can follow the given research workflow, while advanced users can customize the
configuration of the environment and define new tasks based on GoBigger. The lower left part shows
the basic units (balls) and the related actions. The lower right part shows the training in the league
with many games going on at the same time, from where cooperative and competitive behaviors of
agents can be observed.

eration (Xuan et al., 2001) between agents, such as Bi-DexHands (Chen et al., 2022), Multi-Agent
MuJoCo (Peng et al., 2021), PressurePlate McInroe (2022), RWARE (Papoudakis et al., 2021),
and Flatland (Mohanty et al., 2020). These environments offer simulation designs for cooperation
between agents but do not care about multi-agent competition. With the rapid development of the
field of multi-agent reinforcement learning, more and more multi-agent simulation environments
focus on both cooperation and competition, including LBF (Papoudakis et al., 2020), MALMO
(Johnson et al., 2016), DM Lab (Beattie et al., 2016), DM Lab2D (Beattie et al., 2020), Derk’s
Gym Norén (2020), PommerMan (Resnick et al., 2018), StarCraft Multi-Agent Challenge (SMAC)
(Samvelyan et al., 2019), Google Research Football (Kurach et al., 2019), Multi-Agent Particle
Environment (MPE) (Mordatch & Abbeel, 2017), Hide and Seek (Baker et al., 2019), and Neural
MMO (Suarez et al., 2021). Agents in these environments are divided into different teams to achieve
intra-team cooperation and inter-team competition. However, most of them consist of up to two teams,
named 2×N mode. That means they can not handle situations where multiple teams cooperate or
compete with each other, which is necessary for the research on the swarm behavior of multi-agent
systems. Besides, the performance gap caused by different levels of cooperation is not significant
in most environments including SMAC, Google Research Football, and NeuralMMO. For the most
popular multi-agent environment SMAC, recently SMACv2 (Ellis, 2022) shows that agents can get
high performance after dropping teammates’ observations. The author uses only the identity and
observation of agents in the training phase under QMIX (Rashid et al., 2018) and MAPPO (Yu et al.,
2021) to achieve the same performance as that using the global state additionally. And the replay
videos of these environments with well-trained agents could not show the complex cooperation. For
those environments that emphasize cooperation through game mechanics, the observations of them
are too simple that different multi-agent algorithms can easily reach high performance. More details
about the various multi-agent simulation environments are shown in Table 1.

In this paper, we propose a scalable platform, GoBigger, aiming to delve into cooperative-competitive
multi-agent reinforcement learning for swarm intelligence between multiple teams. Different from
the previous multi-agent simulation environment, GoBigger is a scalable environment that enables
the simulation of various teams and agents in each team. In other words, in the M ×N game mode of
GoBigger, M means the number of teams in the environment, and N means the number of players in
each team. This new game mode dramatically expands the way of agent cooperation and competition
and can more effectively simulate the swarm intelligent agent behavior. In addition, GoBigger makes
agents with intra-team cooperation and inter-team competition achieve higher performance according
to the restriction of game mechanics and rules, which is approved in Section 6.1. We offer a diverse
set of challenge scenarios in GoBigger for best practices in benchmarking. In most of the given
scenarios, each player in a team is controlled by an independent agent that has to act based on
only its local observation or all teammates’ observations. Meanwhile, GoBigger is a more complex

2



Published as a conference paper at ICLR 2023

Table 1: Comparison of GoBigger with other related multi-agent simulation environments. Agents
Size denotes agent scale in the interactive environment, where M and N mean the number of
competitive teams and the agent number in each team, respectively, in the M ×N settings. Actions
denotes whether the action space is continuous, discrete, or hybrid. Obs denotes whether to support
the partial observation. + in Coop and Comp indicates the importance of cooperation and competition.
— means there is no cooperation or competition in the environment.

Agents Size Actions Obs Coop Comp

SMAC (Samvelyan et al., 2019) 2×N Discrete Partial + +++

GRF (Kurach et al., 2019) 2×N Discrete Partial + +++

Bi-DexHands (Chen et al., 2022) 1×N Discrete Full +++ —

MPE (Mordatch & Abbeel, 2017) 2×N Hybrid Full ++ ++

Hide-and-Seek (Baker et al., 2019) 2×N Discrete Partial ++ ++

MAMujoco (Peng et al., 2021) 1×N Continuous Partial +++ —

NeuralMMO (Suarez et al., 2021) M ×N Discrete Partial + +++

GoBigger (Ours) M ×N Hybrid Partial +++ +++

environment with well-designed action space and observation space, giving partial view for all agents
in the game. A reproducible benchmark including several state-of-the-art algorithms under different
scenarios is accessible for users to quickly get started with GoBigger and demonstrate the potential
of the environment. GoBigger also features game systems configurable for users to research on
individual aspects of intelligence and on combinations thereof, with given rule-based built-in bots and
visualization tools to make it easier for users to evaluate their agents. The overview of the research
workflow for users is shown in Figure 1.

2 RELATED WORK

Most multi-agent reinforcement learning environments are mainly designed for cooperation or
competition between no more than two teams of agents. SMAC (Samvelyan et al., 2019) consists of
a set of carefully designed micro scenarios and necessitates learning one or more micromanagement
techniques to defeat the enemy. But the SOTA algorithms can achieve high scores even without
cooperation between agents. Google Research Football (Kurach et al., 2019) is a novel open-
source reinforcement learning environment provides different modes for both single-agent and
multi-agent settings, while there is no baseline indicating multi-agent cooperation and competition in
the environment. Furthermore, both SMAC and Google Research Football can not handle situations
where multiple (more than two) teams in a game, making them unable to be used for the research on
swarm behaviors. Agar (staghuntrpg) implemented with python is also available and is evaluated on
recent works (Tang et al., 2021). However, it focuses on cooperation and competition between two
players but not multiple teams, and its scenarios are not complex. Neural MMO (Suarez et al., 2021)
is a massively multi-agent environment for AI research, which support spans 1 to 1024 agents and
minute- to hours-long time horizons. It also allows M ×N game mode in its scenarios, and agents
need to cooperate with teammates to fight against other teams in the map. According to its given
baselines, we find that agents in Neural MMO focus more on competition with other agents but less
on cooperation up to now. And open-sourced agents in the challenge are more likely to play on their
own instead of cooperating with teammates.

3 DESIGN PRINCIPLES AND SYSTEM OVERVIEW

GoBigger is inspired by the popular online multiplayer game Agar (SA). In a regular full game of
Agar with OFA(One For All) mode, players cooperate with their teammates and fight against other
teams for the final champion. On this basis, many modifications have been made to allow more

3



Published as a conference paper at ICLR 2023

cooperation and competition in GoBigger. Each player, which is represented by one or more balls
(dubbed clone ball), increases its size by colliding and merging with other balls within a bounded
rectangular area in a limited time. The larger the size of clone balls, the higher the player’s score.
At the beginning of the game, a single controllable clone ball (one player) is randomly spawned on
the map. In addition to the clone balls, there are three uncontrollable neutral balls in the game map
(dubbed as food ball, spore ball, and thorn ball), as shown in Figure 1.

3.1 BASIC UNITS

Food Ball: Food balls are neutral resources and they are always fixed on the map. Clone balls can
eat food balls, and then absorb their size. Food balls will be randomly and continuously generated
until the number of available food balls reaches the maximum.

Spore Ball: Spore balls are ejected by clone balls. They will stay on the map and can be eaten by
any other clone balls.

Thorn Ball: Thorn balls are another kind of neutral resource in the game. Different from food balls,
they have a larger size and less quantity on the map. In addition, they can eat the spore balls ejected
from clone balls and absorb their size. When a clone ball eats a thorn ball, it will evenly split into
several small balls. It means a player can push a thorn ball to an opponent’s clone ball, force it to
split, and eat its small balls.

Clone Ball: A player consists of several clone balls and they are the only controllable balls. In
addition, a clone ball can eat other smaller balls including food balls, thorn balls, spore balls, and
clone balls (from teammates or opponents) by covering their center. Clone balls of an agent can be
merged after a certain time. Clone balls will decay in size to ensure they will not grow too large. If
all clone balls of a player are eaten, this player will respawn on the map randomly in the next frame.
A player can control clone balls by the following three actions in total:

• Move: Moving can help a clone ball eat other balls or escape from danger. The bigger the
clone ball, the slower it moves.

• Eject: Ejecting a spore ball can help a clone ball drop some size and move faster (Figure 1).
When a clone ball ejects, a new spore ball will appear on the clone ball’s moving direction at
high speed but quickly slow down and stop.

• Split: Splitting helps a clone ball to evenly split into two clone balls (Figure 1). Besides, a
player can have at most 16 clone balls. To move faster, a player can split and turn the clone balls
into smaller ones and get a higher speed.

3.2 GAME SYSTEMS

The base game representation is a limited map comprising the units declared in Section 3.1. Note that
the map is not a grid map, which means that the continuous state is a complex challenge for agents.
At the same time, GoBigger makes the operating efficiency of the game acceptable for users. The
whole game can be split into the following systems: resources, cooperation, and competition.

Resources: Resource system is designed for navigation and multi-task reasoning. In GoBigger,
food balls and thorn balls can help the agents to grow larger. Eating food balls is safe but slow while
eating thorn balls is dangerous but quick. There are food balls and thorn balls randomly distributed
on the map. The agent needs to decide which ball to eat according to its current size and the state of
other agents around it to obtain faster development. The initial state and the regeneration rates of
resources are all configurable.

Cooperation: Cooperation system is designed for direct cooperation among agents in a team. For a
single agent, the maximum number of clone balls is 16 (configurable), which causes an agent cannot
move fast by splitting indefinitely on its own. At the same time, each clone ball of the agent has a
20 seconds cooldown period, which is reset after each split. When the clone ball is on its cooldown
period, it cannot merge with other clone balls that belong to the same agent. This means that splitting
is dangerous because failing to merge quickly can easily lead to attacks by other agents. The above
two constraints make multiple agents in the same team need to cooperate and transfer size to each
other by splitting and ejecting to move faster and ensure safety. In addition, the final ranking of
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(a) The full view of the game (b) The partial view of players

Figure 2: Screenshots for the different observation methods of GoBigger. (a) The full view of the
game with 4 teams and 3 players in each team. (b) The players in (a) have their observations, and the
three figures in each column represent the three players’ view from each team.

GoBigger is based on the size of the whole team. Therefore, frequent and reasonable cooperation
within the team is an important condition for victory.

Competition: Competition system is designed for direct competition among different teams. In
GoBigger, the agent loses some size after each timestep. This is more obvious when the agent is
very large. Therefore, as the resources on the map decrease as the game progress, the agent needs
to eat other agents to ensure it size. Agents can attack other agents by moving and splitting to gain
their size. In addition, gathering the size of the team to fight against other agents can often have an
advantage in the competition. GoBigger encourages competition among teams.

4 ENVIRONMENT

GoBigger provides a set of standard game environment configurations. To facilitate access to
the current observation and the efficient control of the balls, GoBigger follows the design of gym
(Brockman et al., 2016) and develops easy-to-use interfaces of observation and action.

4.1 OBSERVATION

As mentioned in Section 3, the observation space of GoBigger is quite complex. It consists of
GlobalState and PlayerState:

GlobalState is shared by all players. It includes all essential global information, such as map size,
total frames of the game, current running frame in the game, and the leaderboard which consists of
the current scores and rankings of all teams.

PlayerState is player-wise. It is the information that can be observed within the view of each player,
making GoBigger a partially observable MDP (POMDP) (Drake, 1962; Sondik, 1971). Specifically,
the player’s view depends on the range of the positions of its clone balls. Figure 2 shows the view of
different players in a game. When the clone balls of a player are dispersed enough, a larger view will
be applied to this player. Given a view, PlayerState contains the positions and radius of all balls in
the view, including food balls, thorn balls, spore balls, and clone balls, as well as their owner.

More details can be found in Appendix A.1.

4.2 ACTION SPACE

The action space of the clone ball consists of move, eject and split could be shown as:

a := (x, y, t). (1)
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Table 2: GoBigger challenges. Agents Size denotes the number of agents on the map as Table 1. Map
Size denotes the length and width of the map. Food denotes the range of food balls. Thorn denotes
the range of thorn balls. Init Size denotes the size of clone balls at their first birth. Limited Frame
denotes the number of frames in a game.

Name Agents Size Map Size Food Thorn Init Size Limited Frame

Small maps
st_t1p1 1× 1 32× 32 [65, 75] [1, 2] 1000 3600 (3min)
st_t1p2 1× 2 48× 48 [130, 150] [2, 3] 1000 3600 (3min)
st_t2p1 2× 1 48× 48 [130, 150] [2, 3] 1000 3600 (3min)
st_t2p2 2× 2 64× 64 [260, 300] [3, 4] 13000 3600 (3min)
st_t3p2 3× 2 88× 88 [500, 560] [5, 6] 13000 3600 (3min)

Large maps
st_t4p3 4× 3 128× 128 [800, 900] [9, 12] 1000 14400 (12min)
st_t5p3 5× 3 128× 128 [900, 1000] [10, 12] 1000 14400 (12min)
st_t5p4 5× 4 144× 144 [900, 1000] [10, 12] 1000 14400 (12min)
st_t6p4 6× 4 144× 144 [1000, 1100] [11, 13] 1000 14400 (12min)

Here a denotes the action, (x, y) is a unit vector for the direction of movement, and t is the action
type for the clone ball to be executed in the current frame. When a player applies a direction (x, y),
enforcement in this direction will be applied on all this player’s clone balls and smoothly alters their
movement direction to this direction in several frames. The action types consist of moving, ejecting,
and splitting. Agents can complete development and attack according to the combination of different
action types. For more details, please refer to Appendix A.2.

4.3 REWARD

In Gobigger, the goal of all teams is to become bigger and bigger and finally become the biggest.
Thus a natural reward for a single agent is to consider its score change of two adjacent steps:

Rewardt := Scoret+1 − Scoret. (2)

The above reward can directly reflects the players’ growth and induce agents to grow bigger. But it
can’t encourage agents to cooperate and confront each other very well. Therefore, GoBigger provides
some other kinds of reward functions as follows:

Example 1: Rapid development must come from eating a large number of thorn balls, so the reward
function can be designed as the number of thorn balls eaten by the agent between two adjacent steps.

Example 2: The cooperation among teammates consists of ejecting spore balls to each other and
eating teammates’ clone balls, so the reward function can be designed as the number of spores and
the number of clone balls eaten by teammates between two adjacent steps.

Example 3: To improve the offensive performance of the agent, the reward function can be designed
as the number of clone balls that the agent eats from other teams between two adjacent steps.

With the help of different kinds of rewards and constraints, an agent with strong cooperation and
aggression will be obtained. For more details of reward functions, please refer to Section 5.

4.4 SCENARIOS

GoBigger consists of a set of scenarios that aim to evaluate the learning cooperation and competition
of different agents in different game settings. The scenarios are carefully designed with different
settings including agents size, map size, food number, thorn number, and so on. Most of the scenarios
are a confrontation among over two teams of players. In different scenarios, agents need to learn
to acquire resources on the map and fight against other teams through cooperation. Teams are only
different in their locations of birth. When the specified time limit is reached, the team with the
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Figure 3: Agents trained on st_t2p2, st_t3p2, and st_t4p3 with DQN (the first row) and PPO (the
second row). Each column (left to right) denotes the score against built-in bots, the average number
of eaten food balls, the average number of eaten thorn balls, and the average number of eaten clone
balls from teammates.

higher score wins. In the evaluation phase, agents have to battle against other teams of agents in the
scenarios. Built-in bots with different levels could be also chosen as competitors. The rule-based
bots can increase their sizes quickly by eating the food balls and thorn balls and avoid being eaten by
other players through the given rules. The complete list of challenges is presented in Table 2. The
Init Size of st_t2p2 and st_t3p2 is 13000 to reduce farming time and make the agent more focused on
cooperation and competition. According to the map size and the number of agents on the map, the
scenarios are simply divided into two parts including small maps and large maps. The large maps
may be more difficult as its larger observation while playing against more teams of agents.

5 EXPERIMENTS

In this section, we will present some experiments results of GoBigger, which are based on the most
representative scenarios: st_t2p2, st_t3p2 and st_t4p3. Details of observation encoding and neural
network can be found in Appendix B.1. The agents learned by different RL algorithms are evaluated
by fighting against the built-in bots of level 3 A.5 several times. The average score will be one of
the most important metrics as it stands for the game level of the agents, showing cooperation and
competition skills.

5.1 SINGLE AGENT ALGORITHMS

We apply DQN (Mnih et al., 2015) and PPO (Schulman et al., 2017) on GoBigger, where each agent
only use its own observation and learns a value function independently. Training details are presented
in Appendix B.3. The experiment results in different scenarios can be found in Figure 3. The score
represents the game level of the agents. Agents can get high scores by eating more food balls and
thorn balls in a limited time. It also shows that the popular single-agent algorithms can quickly
converge in the given scenarios, inferring that GoBigger is a feasible and challenging environment
for multi-agent reinforcement learning research.

5.2 MULTI AGENT ALGORITHMS

We also apply several state-of-the-art multi-agent algorithms including QMIX (Rashid et al., 2018),
MAPPO (Yu et al., 2021), COMA (Foerster et al., 2018), and VMIX (Su et al., 2021) on GoBigger.
The training details are presented in Appendix B.3. Figure 4 shows the performance of different
multi-agent algorithms in GoBigger. Overall MAPPO achieves the highest scores when fighting
against the built-in bots and is the best performer in all three scenarios with the fewest environment
steps. Additionally, with a fixed number of steps, COMA has the worst performance of all algorithms,
demonstrating the on-policy policy gradient methods can not have an advantage over different
algorithms. Figure 4 also shows that the number of food balls and thorn balls grows rapidly in the
training phase. This is in line with the expectations of the environments, in which the fastest way for
an agent to farm is to eat food balls and thorn balls quickly. Besides, after enough steps, the agents
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Figure 4: Agents trained on st_t2p2, st_t3p2, and st_t4p3 with QMIX (the first row), VMIX (the
second row), MAPPO(the third row), and COMA (the fourth row). Each column (left to right) denotes
the score against built-in bots, the average number of eaten food balls, eaten thorn balls, and eaten
clone balls from teammates.

learn to cooperate with teammates, which is shown from the number of clone_team. The growth of
clone_team means that the agents are trying to merge with teammates.

The results in different scenarios are also shown in Figure 4. st_t2p2 is a small map with only two
teams and four agents, while st_t4p3 is a large map containing four teams and each consists of
three agents. QMIX plays well on small maps including st_t2p2 and st_t3p2 but plays bad on large
map st_t4p3. We infer that the map of st_t4p3 is too large and too difficult for agents to find their
teammates, which causes a low level of cooperation.

6 ABLATION STUDY

GoBigger provides small and large maps for training on different scales. Here we explore some
factors that have impacts on the performance of an agent, including the necessity of the observations
from teammates, the frequency of acting in the game, and the ladder system.

6.1 DROPPING OBSERVATIONS FROM TEAMMATES

To explore the importance of cooperation in GoBigger, we drop the observations from teammates,
making the agents decide their actions only based on their observations. Figure 5 shows that the
agents with teammates’ observations outperform the agents without observations from the whole
team. Agents can not easily find their teammates without the observations sharing especially on a
large map, i.e., st_t4p3, resulting that they could not cooperate with their teammates to fight against
other teams, which is consistent with our original intention of designing the GoBigger. Appendix C.1
shows more details.
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Figure 5: Comparing agents w/ or w/o observation from teammates. Each picture (left to right)
denotes the performance of agents on st_t2p2, st_t3p2, and st_t4p3.

Figure 6: Comparing agents with different frequencies of actions on st_t2p2, st_t3p2, and st_t4p3
(left to right). Each line denotes the score against bots with a certain frequency of actions.

6.2 FREQUENCY OF ACTIONS

In most reinforcement learning environments, agents will execute actions immediately after envi-
ronments step(Jia et al., 2021). However, it is not necessary in a real-time game. For example,
AlphaStar(Vinyals et al., 2019) uses a delay head in their network to predict delay of the next action.
To save computing resources, we explore the impact of the frequency of actions on an agent’s perfor-
mance. Figure 6 shows that the agents with frequency = 8 outperform other settings. We infer this
is because higher frequency will bring more redundant information, which is a little more difficult for
agents to understand and distinguish.

6.3 LADDER SYSTEM AND LEADERBOARD

In multiplayer games, reward versus some specific opponents is not enough to fully measure agents
skills in different situations. So we introduce a ladder system based on TrueSkill (Herbrich et al., 2006)
to evaluate different kinds of agents objectively. This ladder system will make agents continuously
play against each other, and then use their final ranks in each game to update their trueskill scores.
Figure 11 shows the ladder system including all of our trained agents as well as built-in bot. More
details of the ladder system could be found in Appendix C.2.

7 CONCLUSION AND FUTURE WORK

In this paper, GoBigger is presented as a scalable platform for multi-agent interactive simulation.
GoBigger allows M × N game mode that focuses on intra-team cooperation and inter-team competi-
tion. We offer a diverse set of challenge scenarios in GoBigger for best practices in benchmarking.
A reproducible benchmark including several state-of-the-art algorithms under different scenarios is
accessible. GoBigger also features a game system configurable with given rule-based built-in bots
and visualization tools to make it easier for users to evaluate their agents.

In the near future, we aim to explore more based on GoBigger. Considering the scenarios in GoBigger
now are monotonous, we plan to develop more interesting and complex scenarios that require a higher
level of coordination amongst agents. We also plan to expand GoBigger as a massive environment to
host thousands of agents. With harder multi-agent coordination and competition problems, we aim to
motivate further research in this domain, particularly in areas such as multi-agent exploration and
coordination.
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A GOBIGGER

A.1 OBSERVATION

The observation in GoBigger is divided into two parts, including Global State and Player States.
After each step, GoBigger will return observation for all agents in the environment. Here are the
details for Global State. border denotes the map size of the game. total_frame denotes the number
of total frames in the game. last_framecount denotes the number of frames that have passed.
leaderboard denotes the ranks and scores of all agents.

1 global_state = {
2 ’border’: [map_width, map_height],
3 ’total_frame’: total_frame,
4 ’last_frame_count’: last_frame_count,
5 ’leaderboard’: { team_name: team_size }
6 }

The Player States declare the specific states for each player (or agent) in each team. player_id
denotes the identity of the player in the game. rectangle denotes the position of partial vision. overlap
denotes all kinds of balls in the vision of the player, including the position, radius, score, velocity,
direction, player_id, and team_id. team_name denotes the team’s name of the player. score denotes
the score of the player. can_eject denotes if the player can eject at this frame. can_split denotes if
the player can split at this frame.

1 player_states = {
2 player_id: {
3 ’rectangle’: [left_top_x, left_top_y, right_bottom_x,

right_bottom_y],
4 ’overlap’: {
5 ’food’: [[position.x, position.y, radius, score], ...],
6 ’thorns’: [[position.x, position.y, radius, score, vel.x,

vel.y], ...],
7 ’spore’: [[position.x, position.y, radius, score, vel.x, vel.

y, owner], ...],
8 ’clone’: [[[position.x, position.y, radius, score, vel.x,

vel.y, direction.x, direction.y, player_id, team_id],
...],

9 },
10 ’team_name’: team_name,
11 ’score’: player_score,
12 ’can_eject’: bool,
13 ’can_split’: bool,
14 },
15 ...
16 }

The original structural observations may be difficult for new users in GoBigger. That’s why we
modified the observations into a simpler tensor array in Section B.1. New users can directly use the
given observation encoder, while advanced users can build their own observation encoders which are
more suitable for their algorithms.

A.2 ACTION

In Section 4.2, we offers a simple action space for the control of agents. And the format of the given
action could be shown as:

a := (x, y, t). (3)

The value of t is in 0, 1, 2, separately representing move, eject and split. Especially, when t is 1 or 2,
the clone balls will eject or split in the given direction decided by (x, y). At most time, a player has
more than one clone ball. Under this circumstance, the action will be applied to all the clone balls of
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(a) (b) (c) (d)

Figure 7: Screenshots for one of the action combinations named middle-ejecting. This action
combination will make agents gather their size into one big clone ball. (a) The clone ball is ready to
eat the thorn ball. (b) After eating the thorn ball, the clone ball is forced to split into several pieces.
(c) The agent ejects to the center. (d) The clone balls at the center eat the spore and merges their size
together.

the player, i.e., all clone balls with sizes exceeding the split threshold will split when t is 1, and all
clone balls with sizes exceeding the eject threshold will eject spores when t is 2.

A.3 ACTION COMBINATIONS

Though the action space in GoBigger is simple, the combinations of different actions can lead to quick
growth, attack, and escape. Figure 7 shows one of the action combinations named middle-ejecting,
which is the combination of moving and ejecting. It is really useful to gather most of the size in one
clone ball after eating the thorn ball. Besides, agents could use this action combination when they
are split into too many pieces, which may help them to avoid being eaten by other agents. In the
experiments in Section 5 we find that the agents can perform these action combinations.

A.4 COLLISION DETECTION

The core problem of GoBigger is how to detect the collision of the balls in each frame and help the
game update the state of the balls. The problem of collision detection could be simplified into a
scenario where we need to get the collided balls from the given gallery balls for each ball in the given
query balls. GoBigger has designed four collision detection algorithms as follows:

Exhaustive For each ball in the query, we enumerate each ball in the gallery to determine whether
there is a collision. This is an exhaustive solution that will take a long time if the number of balls in
the gallery is large. The complexity of the algorithm could be written in:

O(n ∗m) (4)

where m denotes the number of balls in the query, and n denotes the number of balls in the gallery.

Precision Precision approximation algorithm divides the map into several rows according to the
accuracy that has been set, dynamically maintain the row information in each frame and search by
row. First, we need to sort the balls in each row according to their ordinate. For the balls in query,
we abstract the boundary of the ball into a rectangle, then traverse each row in the rectangle, and
find the first ball covered by the query through dichotomy in each row, and then Enumerate the balls
in sequence until the ordinate exceeds the boundary of the query rectangle. The complexity of the
algorithm could be written in:

O(n ∗ log(n) + Σr ∗ log(n) + p) (5)

where m denotes the number of balls in query, n denotes the number of balls in the gallery, k denotes
the precision we set, r denotes the number of balls whose position status has changed and p denotes
the number of balls that collide with other balls.

RebuildQuadTree We build a Quadtree on a two-dimensional plane in every frame based on the
positions of balls and search the collisions that happen among the balls in query and gallery according
to the Quadtree. With the Quadtree, GoBigger can quickly find the nearby balls of the given query
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ball, which helps to search the collisions in a relatively small search area. The complexity of the
algorithm could be written in:

O(n ∗ log(n) +m ∗ log(n) + p) (6)

where m denotes the number of balls in query, n denotes the number of balls in the gallery, and p
denotes the number of balls that collide with other balls.

RemoveQuadTree This algorithm is based on the RebuildQuadTree A.4, and we add the operations
of deleting nodes in the tree with dynamically maintaining the tree. The complexity of the algorithm
could be written in:

O(r ∗ log(n) +m ∗ log(n) + p) (7)

where m denotes the number of balls in query, n denotes the number of balls in the gallery, r denotes
the number of balls whose position status has changed and p denotes the number of balls that collide
with other balls.

To test the efficiency of the above algorithms, we modify the parameters including the number of
balls in query and gallery, the number of changed balls, and the iteration rounds to get a more fair
and intuitive result. The data in Table 3 comes from the most representative scenarios. We finally
choose Precision A.4 as our default algorithm for collision detection.

Table 3: Comparison of the different algorithms of collision detection on different settings. T denotes
the number of balls in the gallery. Q denotes the number of balls in the query. C denotes the number
of changing balls, which means the number of collisions.

T=3000
Q=300
C=600

T=3000
Q=300
C=1500

T=10000
Q=1000
C=2000

T=10000
Q=2000
C=5000

T=30000
Q=600
C=3000

Exhaustive 688ms 1067ms 8384ms 12426ms 127000ms

Precision 14ms 16ms 61ms 86ms 403ms

Rebuild QuadTree 47ms 50ms 339ms 586ms 5691ms

Remove QuadTree 48ms 178ms 497ms 2460ms 8419ms

A.5 BUILT-IN BOTS

Built-in bots of different levels can help users to get started with the environment and perform a
standard evaluation for algorithm development. Level 1 The bot of level 1 aims to collect neutral
resources on the map for quick development in size. It can only move and eat the closest food balls in
its view. Level 2 We add the exploration of thorn balls in view for the bot of level 2. The bot prefers
to eat thorn ball in its view. Level 3 The bot of level 3 can avoid being eaten by other larger players
as they will move far away from the larger player in their view.

B EXPERIMENTS

B.1 OBSERVATION TRANSFORM

It is challenging to encode thousands of entities compared to other multi-agent environments. In
order to better model the observation information, we transform the original information into Scalar
info, Spatial info, Team info, Ball info. As shown in (Figure 8), Scalar Info models the size of the
agent’s local vision, the current ranking and score, and the action type at the last moment. Spatial info
models the location of different types of balls in vision. Team info models information of teammates
in vision. Ball info models the properties of different balls, including relative position, size, and
speed. Here are more details of the information after transformation.
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Figure 8: The overview of feature encoder.

Scalar info

• (view_x, view_y): The positions of the center of the observation.

• view_width: The width of the observation.

• score: Score of the agent.

• team_score: Team score of the agent.

• time: Remaining game time.

• rank: Rank of the agent.

• last_action_type: Action type in the previous step.

Ball info

• alliance: The numbering for different types in observation.

• score: Scores for different types of balls.

• radius: Radius for different types of balls.

• rank: Rank for different types of balls.

• x,y: position for different types of balls.

• next_x,next_y: The predicted position in the next frame for different types of balls.

• ball_num: The number of the balls(clone and thorn) in observation.

Team info

• alliance: The teammate’s identity information.

• view_x,view_y: The teammate’s position information.

• player_num: The number of the teammates.

Spatial info

• food_x, food_y: The position of food balls.

• spore_x, spore_y: The position of spore balls.

• ball_x, ball_y: The position of clone balls and thorn balls.

• food_num: The number of food balls.

• spore_num: The number of spore balls.
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Figure 9: Neural network in experiments.

B.2 NEURAL NETWORK

The neural network in our experiments consists of MLP (Haykin, 1994), Transformer (Vaswani
et al., 2017), and ResNet (He et al., 2016). The specific structure is shown in Figure 9. Finally, we
concatenate all the output embeddings into a feature.

B.3 EXPERIMENTAL SETUP

DQN The batch_size is set as 512. learning_rate is 1e-4, replay_buffer_size is 2e4.

PPO The batch_size is set as 256. clip_range is 0.2, gae_lambda is 0.95, and grad_clip is 0.5.

QMIX The batch_size is set as 512. learning_rate is 1e-4, replay_buffer_size is 2e4.

MAPPO The batch_size is set as 512. clip_range is 0.2, gae_lambda is 0.95, and grad_clip is 0.5.

VMIX The batch_size is set as 2048, and the data in every step contains all the observations and
actions of all the agents. td_lambda is 0.95, and grad_clip is 0.5.

COMA The batch_size is set as 2048, and the data in every step contains all the observations and
actions of all the agents. td_lambda is 0.95, target_update_interval is 20, and grad_clip is 0.5.

C ABLATION STUDY

C.1 DROPPING OBSERVATIONS FROM TEAMMATES

Figure 10 shows the food, thorn, spore, clone_self, clone_team, and clone_other of the experiments
in Section 6.1. With the observations from teammates, agents are more likely to eat thorn balls
instead of food balls. We can find that the number of eaten thorn balls is more than that without the
observations, as eating thorn balls can provide more scores. A single agent can not eat too many
thorn balls, as it will split into several pieces after eating a thorn ball. With the cooldown period,
an agent can not merge quickly to gather enough size to eat the next thorn ball. But when an agent
learns to cooperate with teammates, they can gather size quickly and eat the next thorn ball ignoring
the cooldown period, which could be found by the number of clone_team in the figure. Eating more
clone balls from teammates means that the agents can better cooperate with other agents in the same
team.

C.2 LADDER SYSTEM AND LEADERBOARD

Our ladder system is based on TrueSkill (Herbrich et al., 2006), which is a skill-based ranking system
developed by Microsoft for use with video game matchmaking on Xbox Live. TrueSkill is designed
to support games with more than two players. In our ladder system, we assume that each contestant
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(a) st_t2p2.

(b) st_t3p2.

(c) st_t4p3.

Figure 10: Comparing agents w/ or w/o observation from teammates.

controls a whole team. The contestant continuously plays against other contestant and update their
scores based on the ranking at the end of the game. The initial score for each contestant is 1000. To
ensure the balance of contestants’ matches, we select the contestant with the least number of matches
each time. Eq 8 shows the quality we use as the indicator for selecting opponents.

qualitydraw(β
2, µi, µj , σi, σj) =

√
2β2

2β2 + σ2
i + σ2

j

· exp(− (µi − µj)
2

2(2β2 + σ2
i + σ2

j )
) (8)
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Figure 11: Comparing agents on the ladder system. The scenario is st_t2p2.

(a) (b) (c) (d) (e)

Figure 12: Screenshots of cooperating to eat the thorn ball. (a) The clone ball A and B get closed to
each other. (b) The clone ball B eject to the A. (c) The clone ball A eat the spore and grow bigger. (d)
The clone ball A eat several clone balls from teammates and grow big enough to eat the thorn ball.
(e) The clone ball A eat the thorn ball.

(a) (b) (c)

Figure 13: Screenshots of competition between different agents. (a) The green clone balls find the
purple clone balls nearby. (b) The green clone balls split to eat the purple ones. (c) The purple clone
balls gather together to avoid being eaten by the green clone balls.

where contestant i is assumed to exhibit a performance pi ∼ N(pi;µi, σ
2
i ), contestant j is assumed

to exhibit a performance pj ∼ N(pj ;µj , σ
2
j ), and β2 =

(
σ
2

)2
Figure 11 shows the ladder system including all the trained agents in Section 5. Most of the contestants
have played over 1500 games with other contestants. The ladder system ensures that each contestant
can match opponents with similar game levels as much as possible while retaining the possibility of
matching opponents with higher or lower game levels.

D PERFORMANCE

In this section, we post some screenshots to show the actual performance of the agent in the game,
including the cooperation with teammates and the competition with opponents.
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(a) (b) (c) (d)

Figure 14: Screenshots of cooperation between different agents. (a) The clone ball C is ready to eat
the thorn ball. (b) The clone balls split into many pieces. (c) The clone balls eject to the center of the
agents. (d) The clone balls finally merge into a big one.

(a) (b) (c)

Figure 15: Screenshots of competition between different agents. (a) The bule and green agents are
competing for the thorn ball. (b) The green clone balls split to eat the thorn ball. (c) The blue clone
balls split and eat the green clone balls and win more score.
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