Elucidated Rolling Diffusion Models for
Probabilistic Forecasting of Complex Dynamics

Salva Riihling Cachay Miika Aittala Karsten Kreis Noah Brenowitz

UC San Diego NVIDIA NVIDIA NVIDIA
Arash Vahdat Morteza Mardani” Rose Yu"
NVIDIA NVIDIA UC San Diego
Abstract

Diffusion models are a powerful tool for probabilistic forecasting, yet most ap-
plications in high-dimensional complex systems predict future states individually.
This approach struggles to model complex temporal dependencies and fails to
explicitly account for the progressive growth of uncertainty inherent to the sys-
tems. While rolling diffusion frameworks, which apply increasing noise to fore-
casts at longer lead times, have been proposed to address this, their integration
with state-of-the-art, high-fidelity diffusion techniques remains a significant chal-
lenge. We tackle this problem by introducing Elucidated Rolling Diffusion Mod-
els (ERDM), the first framework to successfully unify a rolling forecast structure
with the principled, performant design of Elucidated Diffusion Models (EDM).
To do this, we adapt the core EDM components—its noise schedule, network pre-
conditioning, and Heun sampler—to the rolling forecast setting. The success of
this integration is driven by three key contributions: (i) a novel loss weighting
scheme that focuses model capacity on the mid-range forecast horizons where
determinism gives way to stochasticity; (¢) an efficient initialization strategy us-
ing a pre-trained EDM for the initial window; and (4i%) a bespoke hybrid sequence
architecture for robust spatiotemporal feature extraction under progressive denois-
ing. On 2D Navier—Stokes simulations and ERAS global weather forecasting at
1.5° resolution, ERDM consistently outperforms key diffusion-based baselines,
including conditional autoregressive EDM. ERDM offers a flexible and powerful
general framework for tackling diffusion-based dynamics forecasting problems
where modeling uncertainty propagation is paramount.’

1 Introduction

Probabilistic forecasting of complex dynamical systems is essential for realistically assessing future
states (“snapshots”) and their inherent uncertainties [2, 11]. For example, medium-range weather
forecasting (< 15 days) grapples with the inherent chaotic nature of the atmosphere and high sen-
sitivities to the initial conditions. Ensembles of numerical weather prediction (NWP) models are
therefore standard practice for estimating forecast uncertainty and the likelihood of high-impact
events [42, 3]. However, each ensemble run of a flagship system such as IFS ENS [15] is computa-
tionally expensive, motivating data-driven alternatives [7].

!Code is available at: https://github.com/NVlabs/ERDM
*Equal advising. Corresponding authors listed alphabetically.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/NVlabs/ERDM

 Omax=200
—e— Start noise

—=— End noise

=
=)
~

=
o
>

2 denoising steps

10!

T
2
Noise level o

N

1072

Grmin = 0.002

Snapshot
2

Figure 1: ERDM sampling with a window, highlighted in bold purple, of size W = 4. Top row: ERDM
starts at diffusion time ¢ = 0 with snapshots, 1, ..., xw, corrupted by progressively larger noise levels,
G1(t) < -+ < ow(t) = oma. Middle row: After N = 2 joint denoising steps, the sequence reaches lower
noise levels at ¢ = 1 such that 31 (1) = omin and G (1) = Gw—1(0) for w > 1, as illustrated in the right-hand
panel. The now fully denoised first snapshot, 1, is returned. Bottom row: The rest of the sequence is shifted
one slot to the right, and a fresh pure-noise snapshot is appended to the new window. The cycle then repeats.

Diffusion models have shown notable success in generative modeling, particularly for high-
dimensional data such as images and videos [52, 13]. The EDM framework [26], for example,
enables stable high-fidelity sample generation due to its principled design that generalizes and im-
proves on the foundational denoising diffusion probabilistic model (DDPM) [21] and related diffu-
sion paradigms [53, 54]. This principled approach makes them especially promising for modeling
time-evolving dynamical systems. In this domain, the ability to generate sharp, diverse ensembles is
crucial for robust uncertainty quantification, and producing high-fidelity, physically consistent sam-
ples is a key advantage over deterministic models that often yield blurry, averaged-out predictions.

Autoregressive conditional diffusion models have been successfully applied to fluid dynamics [29]
and weather [45]. These approaches often use limited temporal context and predict future snap-
shots one by one. To explicitly model the progressively increasing uncertainty common to sequence
generation tasks, Rolling Sequence Diffusion Models (RSDM) [49, 57] employ snapshot-dependent
noise schedules that escalate noise for distant future snapshots. However, existing RSDM’s are
derived from DDPM, rather than leveraging improved practical design choices, such as network
preconditioning and second-order sampling, that were key to EDM’s success.

Our work addresses these limitations by building upon the successful EDM framework [26]. We
adapt and extend EDM’s core design elements—its noise schedule formulation, denoiser network
parameterization, network preconditioning, loss weighting, and sampling algorithms—to the spe-
cific demands of RSDM-like sequence modeling. In developing ERDM, we identified and addressed
key design choices for progressive noise schedules and temporal loss weighting within the EDM
paradigm, aspects that received limited attention in prior work. Our work thus provides novel solu-
tions for these crucial components. All in all, our key contributions are summarized as follows:

* We develop Elucidated Rolling Diffusion Models (ERDM), integrating snapshot-
dependent progressive noise levels into EDM, by adapting EDM’s noise schedule, loss
weighting, preconditioning, and sampling, complemented by a simple, but effective first-
window initialization technique and a hybrid 3D denoiser architecture.

» Extensive experiments on ERAS weather data and Navier-Stokes flows show that ERDM
consistently improves on the autoregressive, conditional EDM baseline in both predictive
skill and calibration. On ERAS5, ERDM rivals state-of-the-art weather forecasters (IFS ENS
and NeuralGCM ENS) for mid- to long-range lead times, while being computationally
more efficient—requiring only 4 H200 GPUs and 5 days for training—and exhibiting high
physical fidelity in its power spectra.

2 Related Works

Diffusion models for spatiotemporal data. Diffusion models, initially transformative in image
and audio generation, are increasingly being adapted for spatiotemporal modeling [58, 20, 17, 50].
Latent-diffusion variants [56, 47] provide the computational advantages integral to state-of-the-art
video generators [22, 5]. Recent work refines the diffusion process itself to strengthen temporal
structure and boost efficiency [50, 32]. Rolling sequence diffusion models (RSDM) advance this
idea by assigning progressively larger noise levels to later timesteps, mirroring the growth of pre-
dictive uncertainty [57, 49, 27]. We embrace the same intuition but depart from these DDPM-based
RSDM’s in two crucial ways. (i) Our approach is derived from the EDM framework, which gen-
eralises and improves upon DDPM. (ii) We re-examine often-overlooked design choices—noise
schedule, loss weighting, and network architecture—and show that their coordination is critical
for forecasting complex dynamics. Progressive schedules like ours form a specific instance of the
completely randomized schedules proposed in Chen et al. [9], corresponding to its ‘pyramid sam-
pling’ scheme. However, our ablations indicate that such training-time randomization degrades
performance—possibly because it misaligns with the temporally increasing uncertainty inherent to
the chaotic systems that we study.

Data-driven medium-range weather forecasting. Initial machine learning (ML)-based attempts
in this area were limited to deterministic forecasting [43, 4, 30, 38, 39, 6], often differentiated
by their underlying neural network architectures [25]. More recently diffusion and flow match-
ing models have shown promise for probabilistic weather forecasting [45, 12, 1], and other tasks
such as downscaling [36, 34, 10, 55], data assimilation [23, 48, 35], and emulation [31, 51, 44].
Latent-variable models offer an alternative probabilistic route [40], and physics-ML hybrids such
as NeuralGCM show promise but face scalability constraints [28]. Of particular relevance to our
work is GenCast [45], which successfully applied the EDM framework, using the graph architecture
from [30], for next-step probabilistic weather forecasting. Our primary baseline in this paper, EDM,
corresponds to the same approach but using our experimental setup (e.g., same U-Net architecture
and dataset resolution; see Appendix D.4 for more details). This design ensures a controlled and
direct comparison between ERDM and an EDM-based next-step forecasting approach.

3 Background

In the following, we refer to clean data as y, noisy data as x, and we use & to make clear when
the data is corrupted according to progressively increasing noise levels. We abbreviate sequences
by y1.w = y1,...,yw. Probabilistic forecasting is concerned with predicting a future sequence
{yT}ff;’ECCast given an initial condition yg, where the horizon Tiorecast can be arbitrarily large. This
requires learning the joint conditional distribution, which can be approximated with, e.g., diffusion
models, by po(Y1:71,eene: |Y0). Directly modeling the high-dimensional joint distribution is often
intractable. A common alternative is modeling a smaller window of size W by learning a short-term
transition, pg(Yuw+1-w+w|Yw) [45, 20]. Long sequences are then generated autoregressively.

Conditional diffusion models can be applied to this task by learning a denoiser network
Dy(x1.w;0,y0). The denoiser is trained to predict the target sequence, yi.\v, given the initial
condition, yo, and data x,.j corrupted with Gaussian noise of standard deviation o € [omin, Tmax]-
The maximum noise level needs to be chosen such that 0. > Tgata, Where ogaiq 1S the standard devi-
ation of the data y ~ pgata and y € RP. The trained network can then be used jointly with an ODE
or SDE solver to iteratively generate the clean data starting from pure noise, € ~ N (0,02, Iwxp),
and yg. See Appendix B for an additional background on diffusion. Often, W = 1 [45, 29], and
the diffusion model becomes a next-step forecasting model. However, the short window size models
limited temporal interactions and generating each step requires a full reverse diffusion process, in-
curring substantial computational cost. Standard sequence diffusion models with W > 1 typically
apply noise uniformly across the prediction window, failing to capture the increasing uncertainty
inherent to future predictions.

Rolling Sequence Diffusion Models (RSDMs) [49, 9] address prior limitations by explicitly incor-
porating progressive forecasting uncertainty. The core innovation is a progressive noise schedule
with W > 1. Instead of uniform noise, RSDMs use a monotonically increasing schedule of noise
standard deviations 0 ~ &, (t) < G5(t) < -+ < Ty () & Tmax, Where ¢ denotes the global diffusion

time. A noisy future state is thus modeled as Z,, ~ N (y., 52 (t)Ip). This structure reflects higher
uncertainty for predictions further into the future. The denoiser Dy (&1.w; 1.w (t)) is trained analo-
gously to a standard diffusion model to predict the clean sequence, y;.;. In our implementation, we
omit direct conditioning of the denoiser on the last known clean state, yg. This is feasible because
we initialize the first window using an external forecaster (itself conditioned on). The minimally
noisy start of the window provides sufficient conditioning to predict subsequent snapshots. When
requiring the RSDM to self-initialize its first window, this is not possible [49].

4 Forecasting with Elucidated Rolling Diffusion Models

Our work, ERDM, integrates the rolling diffusion concept with the Elucidated Diffusion Model
(EDM) framework [26]. While RSDMs introduce the idea of progressive noise, they usually do not
follow EDM'’s principled design choices for preconditioning, loss weighting, and sampler design,
which we hypothesize would similarly improve RSDM performance. ERDM aims to systematically
port and adapt these EDM principles to the rolling, progressive noise setting, thereby providing a
robust and theoretically grounded approach to sequential data generation.

Rolling EDM noise schedule. In contrast to existing RSDMs, which use cosine or linear noise
schedules, we propose adapting EDM’s sampling-time noise schedule to capture progressively in-
creasing noise levels, by defining

D=

()= (@1(t), - ow(®); Fuwlt) = (Omax? + tut(Omin? —Omax?)" (1)

where t,,; = 1 — “’W’t is the local diffusion time of
the snapshot. The 1— is important so that near-future 100 | —— p=7 Omax =200
snapshots receive minimal amounts of noise, while
far-future snapshots receive high levels of noise. This
ensures the correct inductive bias that distant snap-
shots are more uncertain than near-future ones. The
continuous noise schedule is effectively divided into
W segments such that the noise levels at snapshot 1072
w satisty G, (t) € [Fw—1(0),5w+1(1)], where t € omn=0002
[0,1],50(0) := Omin, and Gw41(1) := Omax. Our 1 2 3 4 5 6
formulation thus satisfies oy = 71(1) < 71(0) = Snapshot segment w

o2(1) < -+ < ow(0) = oma. Two example gigyre 2: Noise schedule comparison for a se-
noise schedules are illustrated in Fig. 2. ERDM is quence length W = 6, yielding 6 visualized seg-
trained to see any noise schedule level within the ments [6w (1), 5 (0)]. The schedules differ by
noise segments (color gradients in Fig. 2) by random- their curvature parameter p: one using p = 7
izing t € U([0, 1)). During sampling, each ,,(¢) is (default EDM) and the other p = —10 (ERDM).
evolved from G,,(0) to &,,(1). We found it important ~Color gradients illustrate segment progression.
to tune the curvature parameter, p. Our proposed de-

fault value, p = —10, effectively causes snapshots to be under less noise compared to the default
EDM choice, p = 7, which provides more information for accurate denoising. Importantly, these
noise schedule parameters omin, Omax, and p need to be chosen at training time.

10*

10°

107!

Noise level o

Probability flow ODE. Having defined our windowed noise schedule & (t) = (G1(),...,aw (%)),
we can formulate the associated probability flow ODE [54], which describes the addition and re-
moval of noise when moving the diffusion ‘time’, ¢, forward (1 — 0) and backward (0 — 1),
respectively. For a noisy sequence & := Z.yy, this ODE, as derived in Appendix C.1, is:

dz = —diag(c1(t)o1(t)Ip,...,ow (t)ow (t)Ip)Va log p(x; & (¢))dt, 2)

where d,, () denotes the diffusion time derivative of &,,(¢), and Vz log p(&; &(t)) is the score func-
tion [24] that we will approximate with a denoiser network. This ODE governs W coupled diffusion
processes evolving simultaneously within the window. During inference (i.e., the backward process),
an ODE solver is used, typically for N discrete steps. Upon completion of one such integration to
t = 1, the first snapshot, &1(1), is fully denoised (its noise level 61(1) = omin) and is output as
the forecast of y;. Concurrently, the subsequent snapshots &o.yy (1) are partially denoised. Key to
the rolling mechanism is the design of the per-snapshot noise schedules &, (t), which ensure the
noise level of &,,(1) matches the initial noise level of the (w — 1)-th slot (i.e., 5, (1) = G—1(0)).

This specific noise structure at ¢ = 1 enables the window to be advanced efficiently. For the next
forecasting step, the sequence @o.y (1) forms the initial state for the first W — 1 slots at the next
iteration’s t = 0. A new, fully-noised snapshot, ey 1 ~ N(0,02,,Ip), is then appended as the
W -th element of this new window. The ODE solving process from ¢ = 0 to 1 is then repeated for
this updated window. This iterative sampling procedure is visualized in Fig. 1.

4.1 Training Objective

We now describe how to train a denoiser network, Dy (&; & (t)), that can be used to solve the proba-
bility flow ODE above. Following EDM, it comprises a raw neural network Fj and preconditioning.
To account for snapshot-dependent noise levels, we vectorize the preconditioning functions:

Do(®; (1)) = cakip(F(£))& + Cout(a () Fo (cin(F (1)) 2, Croise (T (2)))- 3)

The preconditioning functions cgip, Cout, Cin, Cnoise are adapted from EDM and applied per-snapshot
based on the corresponding 7,,(¢) in &(t). The denoiser network is trained to predict the clean
window y1.y from its noisy version, £ ~ N (y1.w, & (t)?I). During training, we randomize ¢ ~
U([0,1)) such that the network learns to deal with the full extent of the segments of Fig. 2.

Uncertainty-aware loss reweighting. EDM employs a loss weighting A\(o) = (0% +
03.2)/(00dan)? to ensure their core network Fy targets a signal with unit variance, promoting train-
ing stability. We apply A(a,,) per frame as a direct extension. However, the rolling mechanism im-
plies that certain noise levels within the & (¢) window are more critical for learning the “de-mixing”
of temporal information. EDM itself indirectly emphasizes intermediate noise levels by sampling o
values from a lognormal distribution py,in (o) during training, whose PDF corresponds to

((In(o) — Pmean)2>
———exp|——F%5 |-
o Pyav 27 2Psld

Since ERDM conditions on a fixed & (¢) per training instance, always covering a wide range of noise
levels (rather than sampling each &, from piqin (o)), we propose a distinct loss weighting for ERDM
that combines the EDM unit-variance objective with an emphasis on these critical intermediate noise
levels within the progressive schedule. The effective loss weighting for snapshot w in ERDM is
A7) * f(F; Preans Psa), which maintains EDM’s target normalization via A(&,,) while using
f(la,) to upwelght snapshots at the most informative noise levels. All things considered, we can
write out our proposed score matching objective as

f(O';]Dmeam Pstd) = (4)

min By, ~poaa Erev(10,0)Bie, ~a0.02011, Z Aow) f (o) Do(yr:w + €1.w;5 6)w — Yull3,

w

where we shorten o := & (t). The full training algorithm is described in Algorithm 1.

Algorithm 1 Elucidated Rolling Diffusion: Training

1: Require: Training data D;,ain, network Fy, omin, Omax, 25 Pmean, Petd

2: repeat

3 Sample y = (y1,.-.,yw) € RW*P from Diyain, € ~ N(0, Iy« p),t ~ U([0,1))

4: o= (01,...,0w) <« &(t)

5: T<—y+o-e€ > Add rolling noise to data
6: Y~ Csklp()3_3 + Cout()FG(Cm():E Cnoise(o'))

7: Update 9 llSlI'lg L9 - W Zw 1 ()f(o—w; Pmeana Pstd)Hyw - 'ng%

8: until Converged

Remark (temporal noise correlations). In both training and sampling algorithms, we draw i.i.d.
Gaussian noise €,, ~ N (0,Ip) for each snapshot w independently. Recent studies show that tem-
porally correlated noise improves video diffusion [8, 18, 1, 33]. Such priors are orthogonal to our
sliding-window framework and can replace the i.i.d. draws in Algorithms 1-2. In our experiments,
we use the progressive noise model with @ = 1 proposed by Ge et al. [18], which we found to
slightly improve long-range forecasts (see Appendix E). More details are provided in Appendix C.4.

4.2 Sampling

The trained denoiser, Dy, can be used to estimate the score function, log p(&; & (t)), in Eq. (2) with
(Dy(z,5(t))—x)/5%(t) forany ¢ € [0, 1) [26]. Based on this identity and the described probability
flow ODE intuition, a mathematical formulation of our proposed sampling algorithm is provided
in Algorithm 2. For simplicity, we omit the second-order Heun step and sampling stochasticity,
which are detailed in Appendix C.2. Note, however, that in our main experiments, we always use
the deterministic Heun sampler.

First-window initialization. The backward ODE requires a noisy window &;.;y whose clean la-
tent y1.3v is unknown. Ruhe et al. [49] addresses this issue by co-training the rolling model to
generate Z1.jy from clean context snapshots and a sequence of pure noise. This approach introduces
extra hyperparameters and diverts the denoiser’s capacity between two distinct denoising tasks. As
an alternative, we propose drawing 9.y from an external forecaster py (y1.w |yo). We then sample
Ty ~ N(ﬁw, 63,(0)113) forw =1,..., W, from where we can start our sliding-window sampling
algorithm. This choice reuses mature short-range models and injects schedule-matched uncertainty;
any existing forecaster (diffusion-based or not) can supply ¢;.1». In our experiments, we rely on the
EDM baselines for initializing ERDM. We ablate this choice in Appendix E.1.

4.3 Denoiser architecture for temporal dynamics

T1:w
Our proposed diffusion model operates on temporal se- ® e i "
quences, necessitating an architecture capable of cap-
turing temporal dependencic.as. Naivg adap.tation.s of. 2D Noise Embedding
architectures, such as stacking the time dimension into Reshape ®, c, t)
channels, disrupt the inherent temporal structure and led Uam—
to suboptimal results in our experiments (see Section 5.4). v
Alternatively, extending to 3D convolutions, while pre- 2D U-Net Block Reshape
serving temporality, often incurs significant computa- (b*t, c, h, W) (b*t, ©)
tional overhead and potentially higher sample complexity.
Instead, we adopt a prevalent strategy from latent video v
diffusion models [5]: augmenting a well-established 2D
U-Net architecture with explicit temporal processing lay- Reshape
ers. Specifically, we integrate causal temporal attention
layers into the 2D ADM U-Net [13] used in EDM, posi- v
tioning before each down- and up-sampling block. These Causal Temporal
temporal layers also incorporate noise level information Attention Block | €——————
via a mechanism analogous to the adaptive layer nor- (bxhxw, c, t)

malization used in the 2D U-Net blocks. Figure 3 il- Figure 3: Sketch of one 2D U-Net block
lustrates this interleaved modular design. This modular and one temporal attention block in our hy-
design could facilitate static pre-training of the 2D back- brid U-Net topology with noise embedding
bone, yet we observed that end-to-end training on the se- t© both spatial and temporal paths. Dimen-
quential data was more effective for our tasks (see Ap- smlns D, 4 c ; E v dreffi; ;0 l;atch, Chﬁn'
pendix E). While we found the proposed architecture to ?t; ,Cwmhow‘; gcl)gn(t;tac%a:]gle tin. thgrsil;lfhlc_
be key for generating good forecasts, it is slower and has B '
higher memory needs than a 2D variant.

S Experiments

5.1 Evaluation and Metrics

Due to the importance of probabilistic forecasts and uncertainty quantification, we focus on two
key ensemble-based probabilistic metrics: Continuous Ranked Probability Score (CRPS) [37], and
the spread-skill ratio (SSR) based on M -member ensembles, where M = 50 for Navier-Stokes and
M = 10 for ERAS. The CRPS is a proper scoring rule commonly used to evaluate probabilistic fore-
casts [19]. The spread-skill ratio is defined as the ratio of the square root of the ensemble variance to
the corresponding ensemble-mean RMSE. It serves as a measure of the reliability of the ensemble,
where values smaller than 1 indicate underdispersion, and larger values overdispersion [16, 46].

Algorithm 2 Elucidated Rolling Diffusion Deterministic Sampler (Euler-only)

1: Require: y1.ww, N, Ttorecast
2: At~ 1/N = Infer step size from desired number of steps per snapshot
3 tewr < 0; S = Initialize global diffusion time and empty generated sequence
4: sample Tcur ~ N (G1.w, & (tewr)*Iwxp) > Initialize window with snapshot-dependent rolling noise
5: while |S| < Ttorecast dO = Predict snapshot |S|+1
6: thext < teur + At = Global diffusion time after denoising
7: Ocur «— O (tcur) = Current noise levels
8: Onext < O (tnext) = Noise levels at the end of this iteration
9: Y — Do(Zcur, Ocur) = Denoise sequence
10: d<— (Bcur — §)/Ocur = Evaluate d&/d¢ at tcur
11: Znext < Teur + (Onext — Tcur)d = Euler step from tcur t0 tnext
12: Nclean < |tnext | = Infer finished snapshots. If 0, the following lines are a no-op
13: add first ncjean snapshots of ¢ to S and discard first 72¢jean snapshots of Enext
14: sample Tyew ~ N (0,020, xD)
15: Tcur < [Tnext, Tnew] = Concatenate fresh noisy snapshots to futuremost
16: teur < tnext — Melean = Re-adjust global diffusion ‘time’ to be in [0, 1)
17: return S
—— ERDM — EDM W =1 EDM W =4 —— DYffusion PDE-Refiner
1.25
0.04
M \ J/\ 1.00
0.03
g ¥ 0.75
¥ [9)]
S 0.02 @
0.50
0 20 40 60 0 20 40 60
Timestep Timestep

Figure 4: Navier-Stokes test rollout over 64 time steps with 50 ensemble members. ERDM superior perfor-
mance in both CRPS and calibration compared to single- and multi-step EDM baselines, except for the initial 3
timesteps. Beyond timestep 15, ERDM consistently delivers an approximate 50% improvement in CRPS over
the next best model (EDM W = 4), demonstrating particular strength in long-range forecasting scenarios.

5.2 Navier-Stokes fluid dynamics

Dataset. We use the Navier-Stokes fluid dynamics benchmark from [41], defined on a 221 x 42
grid. Each simulation features four randomly placed circular obstacles influencing the flow, with
fluid viscosity set to 1 x 1073, The dataset comprises x and y velocities and pressure fields. All
models receive boundary conditions and obstacle masks as auxiliary inputs. For testing, models
predict a 64-timestep trajectory from a single initial snapshot.

Baselines. We benchmark ERDM against DYffusion [50], the current state-of-the-art method on
this dataset, and PDE-Refiner [32]. To ensure a fair comparison, we retrained DYffusion using
our experimental setup, achieving an improvement of over 3x on its originally reported CRPS
scores. Our primary focus, however, is to evaluate ERDM’s performance relative to common
EDM-derived approaches for dynamics forecasting. Consequently, our key baseline is an EDM
denoiser parameterized by Dg(1 ...,xw;0,Yo), where all x,, are corrupted according to the
same o. With W = 1 we recover a next-step forecasting conditional EDM as in [45, 29]. We
tried W € {1,2,4,6}, and found W = 4 to work best for EDM. All baselines are trained on
three random seeds and share the same architecture as much as possible. For ERDM, we use
W = 6,0min = 0.002,0max = 200,p = —10, Ppean = 0.5, Pg = 1.2, N = 1.25. Further de-
tails are provided in Appendix D.2.

Results. In Fig. 4, we benchmark ERDM against the baselines on forecasting the five Navier-
Stokes test trajectories of length 64. While the EDM-based baselines and PDE-Refiner start well

---- EDM —— ERDM IFS ENS NeuralGCM @ Graph-EFM

t850 2t t50 10u

-5

CRPS vs EDM [%
]
(
o

2500 mslp q700 ql1000

CRPS vs EDM [%)]
1
8 o
& L
L.
(9] o

o (4] a

.

1

'

!

!

!

|

!

!

!

!

!

!

!

!

!

!

i

!

!

!

!

!

!

!

| l
w N
S o

I
=
o o

1
N
o

25 -5
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Lead time (h) Lead time (h) Lead time (h) Lead time (h)

Figure 5: Relative CRPS (lower is better) over single-step EDM baseline as a function of lead time, up to 15
days, for 8 selected variables. ERDM consistently outperforms EDM across most variables and lead times by
up to 10%. Furthermore, it performs competitively against the state-of-the-art operational physics-based model
IFS ENS and the hybrid model NeuralGCM ENS, especially for long lead times, while being more efficient.

in terms of CRPS, even beating ERDM for the very first few time steps, they exhibit a significantly
higher error growth than ERDM. We attribute this to the explicit modeling of progressive uncertainty
built into our model. At the end of the rollout, ERDM achieves a 50% better CRPS than the best
baseline, EDM with a window size of W = 4. Similarly, DYffusion starts worse and catches up
with the EDM W = 4 baseline at the end of the rollout, but not with ERDM. In terms of calibration,
we observe that ERDM consistently outperforms the EDM baselines, which are noticeably under-
calibrated. We note that this is despite comprehensive tuning of these baselines, where we were only
able to achieve calibration improvements at the significant expense of CRPS skill (not shown). Ex-
amples of generated forecasts are visualized as videos at this URL: https://youtu.be/jRewZw5JLeO0.

5.3 ERAS weather forecasting

Dataset. We benchmark our model on medium-range weather forecasting on the ERAS reanalysis
dataset. We use the 1.5° resolution of the data (a 240 x 121 grid) provided by [46], with 69 prognostic
(input and output) variables: Temperature (t), geopotential (z), specific humidity (q), and the u and
v components of wind (u, v) over 13 pressure levels (numbers after the abbreviation refer to the level
in hPa) as well as the four surface variables 2m temperature (2t), mean sea level pressure (mslp),
and u and v components of winds at 10m (10u, 10v). We train our models on 12-hourly data, as
in [45], from 1979 to 2020 and evaluate on 64 2021 initial conditions at 00/12 UTC.

Baselines. Our primary baseline is a conditional next-step forecasting EDM, trained using a
methodology consistent with ERDM’s development. To gauge the absolute performance of ERDM,
we also benchmark it against two prominent external models: (1) IFS ENS: The European Cen-
tre for Medium-Range Weather Forecasts’ (ECMWF) operational, physics-based ensemble fore-
casting system [15]; (2) NeuralGCM ENS: A hybrid ML-physics stochastic model [28]. Offi-
cial 1.5°-resolution forecasts for both external models were sourced from Weatherbench-2 [46]
for all variables where available. The IFS ENS evaluation uses the same 2021 initial condi-
tion dates as our EDM and ERDM models, but is verified against operational analyses.”> Due
to the unavailability of NeuralGCM forecasts for 2021, we use its 2020 forecasts and evaluate
them against the corresponding 2020 ERAS data. Our conditional EDM baseline can be seen
as a reproduction of GenCast [45], for which forecasts are only available at higher spatial reso-
lutions and a limited set of variables, but using our experimental setup and neural architecture.
Notably, training ERDM is considerably less computationally expensive than NeuralGCM ENS
1.5° (GenCast 1°), which required 128 (32) v5 TPUs and 10 (3.5) days to train. In contrast,

2As opposed to ERAS5 targets. This choice is standard practice [46] and favorable to IFS ENS.

https://youtu.be/jRcwZw5JLe0

ERDM was trained on 4 H200 GPUs in 5 days only. Lastly, we also include scores for z500
and 2t from Graph-EFM [40], taken from their paper. These scores are provided for reference,
noting that Graph-EFM is trained on 20 more years and evaluated in 2020. For ERDM, we use
W =6, 0min = 0.002, omax = 500, p = —10, Ppean = 2, Pyg = 1.2, N = 2. See Appendix D.2 for
more experimental details.

-- ERA5 — EDM NeuralGCM
—— ERDM IFS ENS
Results. An evaluation of ERDM’s performance, il- 850

lustrated in Fig. 5, reveals its consistent superiority in
relative CRPS skill over our primary EDM baseline,
by up to 10%. Similarly, ERDM demonstrates a clear
advantage over related methods, significantly outper-
forming Graph-EFM on all four CRPS metrics reported 2500

in their study [40]. Against more computationally de- :
manding models such as IFS ENS and NeuralGCM, / i
our approach is broadly competitive. Its primary lim- o A api o it |
itation is a noted weakness in some short-range fore- e e I 10
casts compared to IFS ENS, which we attribute to our msip ’

EDM-based initialization strategy and a backbone ar-
chitecture not fully specialized for weather prediction.
/'\‘\“\'/WW"“’WM -10°

-———»-M:_—,q\;—:/-\/Aa‘A\wMAW 3 10°

Normalized spectral density

In terms of spread-skill ratio, ERDM, along with IFS
ENS, delivers the most calibrated forecasts (see Fig. 12).
In contrast, EDM and Neural GCM often produce un-
derdispersed short-range forecasts. A crucial aspect of 10 10’ 10
. Zonal wavenumber
evaluating any ensemble forecast is its physical realism.
In this regard, ERDM performs exceptionally well. As
depicted in Fig. 6, its normalized power spectra are on o oo e
par with those of the physics-based IFS ENS. This is a][5618 Asg(r)e;ﬁai?;ztrsi)szfr; ngﬁ%ﬁ g‘;s;%:st
significant achievement, as many ML models typically highly accurate spectra that match or slightly
struggle to reproduce such physically consistent spec- beat the physics-based model IFS ENS. Neu-
tra—a challenge evident with NeuralGCM in Fig. 6 and ralGCM ENS underestimates energy at the
documented by Rasp et al. [46]. See Appendix F for mid to high frequencies. See Appendix F.3
extended results, including analyses of extra variables, for more variables and absolute spectra.
spread-skill ratios, visualizations, and an EDM vs. ERDM score card.

Figure 6: Normalized spectral density of 14-
day forecasts, averaged over high latitudes,

5.4 Ablations

We conducted a comprehensive ablation study on the Navier-Stokes task to validate ERDM’s design.
Our findings reveal that several architectural and training strategies are fundamental to its success;
their removal causes performance to collapse, often falling below that of the single-step EDM base-
line. In contrast, the model is robust to certain hyperparameters, showing little sensitivity to the
window size, W, or the noise bounds, o, and op,y, Within a reasonable range. We focus on the
most impactful ablations below and provide a full analysis in Appendix E.

1. Appropriate progressive noise schedule & fixed training: The design of the noise sched-
ule is paramount. Default EDM hyperparameters (p = 7) prove suboptimal for ERDM,
yielding 2x worse CRPS than our proposed default schedule (p = —10). Performance is
robust within a reasonable range of p € [—30, —5], see Fig. 2 for intuition on why. Further-
more, training with a fixed, optimized noise schedule is critical; randomizing the schedule
during training degrades performance by nearly 2x. Despite this, such randomized train-
ing can serve as a heuristic to identify an effective fixed schedule for subsequent retraining.
This finding contrasts with the randomized training procedure from Chen et al. [9].

2. Strategic loss weighting: Reweighing the losses based on the lognormal probability den-
sity function of noise levels, f (o), as proposed, is crucial. Removing this weighting causes
a > 2x performance drop. We generally found that a larger mean of the lognormal distri-
bution, Prpean > 0, than EDM’s default, —1.2, was necessary for ERDM to achieve optimal
results, confirming the importance of tuning here.

3. Dedicated spatiotemporal architecture: A crucial element is the use of a proper archi-
tecture that explicitly models spatiotemporal dependencies. Naively stacking the time di-

mension into the channel dimension of a 2D architecture results in severe 4 x performance
degradation, confirming the need for our bespoke temporal architecture.

5.5 Computational complexity

To analyze the computational demands of ERDM relative to a standard autoregressive EDM, we
benchmarked key efficiency metrics on a single A100 GPU. The results, summarized in Table 1,
correspond to generating a 30-step (15-day), 5-member ensemble weather forecast. The primary
trade-off lies in the architectural design. ERDM’s hybrid 3D denoiser is inherently more memory-
intensive than the 2D architecture used by EDM, requiring more than twice as much GPU memory.
However, the rolling window mechanism makes ERDM significantly more efficient in terms of
Neural Function Evaluations (NFEs). ERDM requires 5x fewer NFEs to generate the full 15-day
forecast than the step-by-step EDM. Thus, despite the higher cost per step, ERDM’s total inference
time (including the initialization cost) is competitive with, and even slightly faster than, EDM’s.

Table 1: Efficiency metrics for ERDM vs. EDM. All measurements were performed on a single A100 GPU
using mixed precision. Inference figures correspond to a 15-day (30 time steps), S-member ensemble weather
forecast with second-order Heun solver. Training uses a batch size of 1. NFEs are Neural Function Evaluations.

GPU Memory (GB)
Model Inference NFEs Inference Time (s) Inference Training

EDM 600 237 21 19
ERDM 120 209 49 53

6 Conclusion

We introduced the Elucidated Rolling Diffusion Model (ERDM), a diffusion framework for long-
range probabilistic forecasting in complex scientific systems. ERDM adapts EDM diffusion to se-
quential data by integrating a progressive temporal noise schedule and snapshot-dependent precondi-
tioning, enabling it to explicitly model the increasing uncertainty of chaotic dynamics. Our ablation
studies validate that these components, combined with a bespoke spatiotemporal architecture, are
synergistic and essential for strong performance. On challenging benchmarks like ERAS weather
data and Navier-Stokes simulations, ERDM consistently outperforms relevant baselines in proba-
bilistic metrics such as CRPS, calibration, and physical realism—particularly over extended forecast
horizons. Future work could improve computational efficiency through latent-space modeling or
explore the framework’s applicability to a wider range of physical systems.

Limitations. The primary limitation of ERDM is the computational cost of its 3D denoiser ar-
chitecture. While ERDM requires fewer sampling steps than autoregressive baselines (e.g., 40%
less on ERAS), each step is more expensive, resulting in a comparable total inference time but sig-
nificantly higher memory usage. This memory complexity poses a key barrier to scaling to higher
resolutions, though techniques like gradient checkpointing or latent diffusion could offer a path for-
ward. Beyond computational hurdles, ERDM’s short-range weather forecasts are not yet on par with
leading operational models like IFS ENS. The framework is also constrained by its reliance on an
external model for initialization and its use of an explicit noise-level loss weighting, which may be
suboptimal compared to importance sampling [14], offering exciting directions for future work.

Acknowledgements

S.R.C. acknowledges generous support from the summer internship and collaboration at NVIDIA.
This research used resources from the National Energy Research Scientific Computing Center
(NERSC), a Department of Energy User Facility, using NERSC awards DDR-ERCAP0034142,
ASCR-ERCAP0033209, and EESSD-ERCAP0033799. This work was supported in part by the U.S.
Army Research Office under Army-ECASE award W911NF-07-R-0003-03, the U.S. Department
Of Energy, Office of Science, IARPA HAYSTAC Program, and NSF Grants #2205093, #2146343,
#2134274, CDC-RFA-FT-23-0069, DARPA AIE FoundSci and DARPA YFA. We are grateful to the
anonymous reviewers for their valuable feedback that helped strengthen this work.

10

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

Martin Andrae, Tomas Landelius, Joel Oskarsson, and Fredrik Lindsten. Continuous ensemble

weather forecasting with diffusion models. International Conference on Learning Representa-
tions, 2025. 3, 5

Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather
prediction. Nature, 525(7567):47-55, Sep 2015. ISSN 1476-4687. doi:10.1038/nature14956.
1

Emanuele Bevacqua, Laura Suarez-Gutierrez, Aglaé Jézéquel, Flavio Lehner, Mathieu Vrac,
Pascal Yiou, and Jakob Zscheischler. Advancing research on compound weather and climate
events via large ensemble model simulations. Nature Communications, 14(1):2145, April
2023. 1

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate
medium-range global weather forecasting with 3D neural networks. Nature, 619(7970):533—
538, 2023. doi:10.1038/s41586-023-06185-3. 3

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Do-
minik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, Varun Jampani, and Robin
Rombach. Stable video diffusion: Scaling latent video diffusion models to large datasets. 2023.
URL https://arxiv.org/abs/2311.15127. 3,6

Cristian Bodnar, Wessel P. Bruinsma, Ana Lucic, Megan Stanley, Anna Allen, Johannes Brand-
stetter, Patrick Garvan, Maik Riechert, Jonathan A. Weyn, Haiyu Dong, Jayesh K. Gupta,
Kit Thambiratnam, Alexander T. Archibald, Chun-Chieh Wu, Elizabeth Heider, Max Welling,
Richard E. Turner, and Paris Perdikaris. Aurora: A foundation model for the earth system,
2024. URL https://arxiv.org/abs/2405.13063. 3

Zied Ben Bouallegue, Mariana C. A. Clare, Linus Magnusson, Estibaliz Gascén, Michael
Maier-Gerber, Martin Janousek, Mark Rodwell, Florian Pinault, Jesper S. Dramsch, Simon
T. K. Lang, Baudouin Raoult, Florence Rabier, Matthieu Chevallier, Irina Sandu, Peter Dueben,
Matthew Chantry, and Florian Pappenberger. The rise of data-driven weather forecasting:
A first statistical assessment of machine learning—based weather forecasts in an operational-
like context. Bulletin of the American Meteorological Society, 105(6):E864 — E883, 2024.
doi:10.1175/BAMS-D-23-0162.1. 1

Pascal Chang, Jingwei Tang, Markus Gross, and Vinicius C. Azevedo. How i warped
your noise: a temporally-correlated noise prior for diffusion models. International Con-
ference on Learning Representations, 2024. URL https://openreview.net/forum?id=
pzElnMrgSD. 5

Boyuan Chen, Diego Marti Monso, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent
Sitzmann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. Advances
in Neural Information Processing Systems, 2024. 3,9

Lei Chen, Fei Du, Yuan Hu, Zhibin Wang, and Fan Wang. Swinrdm: integrate swin-
rn with diffusion model towards high-resolution and high-quality weather forecasting.
In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, 2023.
doi:10.1609/aaai.v37i1.25105. 3

James S. Clark, Steven R. Carpenter, Mary Barber, Scott Collins, Andy Dobson, Jonathan A.
Foley, David M. Lodge, Mercedes Pascual, Roger Pielke, William Pizer, Cathy Pringle, Wal-
ter V. Reid, Kenneth A. Rose, Osvaldo Sala, William H. Schlesinger, Diana H. Wall, and
David Wear. Ecological forecasts: An emerging imperative. Science, 293(5530):657-660,
2001. doi:10.1126/science.293.5530.657. 1

Guillaume Couairon, Renu Singh, Anastase Charantonis, Christian Lessig, and Claire Mon-

teleoni. ArchesWeather & ArchesWeatherGen: a deterministic and generative model for effi-
cient ML weather forecasting. 2024. doi:10.48550/arxiv.2412.12971. 3

11

https://doi.org/10.1038/nature14956
https://doi.org/10.1038/s41586-023-06185-3
https://arxiv.org/abs/2311.15127
https://arxiv.org/abs/2405.13063
https://doi.org/10.1175/BAMS-D-23-0162.1
https://openreview.net/forum?id=pzElnMrgSD
https://openreview.net/forum?id=pzElnMrgSD
https://doi.org/10.1609/aaai.v37i1.25105
https://doi.org/10.1126/science.293.5530.657
https://doi.org/10.48550/arxiv.2412.12971

[13] Prafulla Dhariwal and Alex Nichol. Diffusion models beat GANs on image synthesis. Ad-
vances in Neural Information Processing Systems, 2021. doi:10.48550/arxiv.2105.05233. 2,
6,29, 30

[14] Sander Dieleman. Noise schedules considered harmful, 2024. URL https://sander.ai/
2024/06/14/noise-schedules.html. 10

[15] ECMWE. [IFS Documentation CY46RI - Part V: Ensemble Prediction System. 2019.
doi:10.21957/38yug0cev. 1, 8

[16] V. Fortin, M. Abaza, F. Anctil, and R. Turcotte. Why should ensemble spread match the
rmse of the ensemble mean? Journal of Hydrometeorology, 15(4):1708 — 1713, 2014.
doi:https://doi.org/10.1175/JHM-D-14-0008.1. 6, 31

[17] Zhihan Gao, Xingjian Shi, Boran Han, Hao Wang, Xiaoyong Jin, Danielle C Maddix, Yi Zhu,
Mu Li, and Bernie Wang. PreDiff: Precipitation nowcasting with latent diffusion models.
Advances in Neural Information Processing Systems, 2023. 3

[18] Songwei Ge, Seungjun Nah, Guilin Liu, Tyler Poon, Andrew Tao, Bryan Catanzaro, David
Jacobs, Jia-Bin Huang, Ming-Yu Liu, and Yogesh Balaji. Preserve your own correlation: A
noise prior for video diffusion models. ICCV, 2024. 5, 27, 31, 33

[19] Tilmann Gneiting and Matthias Katzfuss. Probabilistic forecasting. Annual Review of Statistics
and Its Application, 1(1):125-151, January 2014. ISSN 2326-831X. doi:10.1146/annurev-
statistics-062713-085831. 6

[20] William Harvey, Saeid Naderiparizi, Vaden Masrani, Christian Weilbach, and Frank Wood.
Flexible diffusion modeling of long videos. Advances in Neural Information Processing Sys-
tems, 2022. doi:10.48550/arxiv.2205.11495. 3

[21] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Ad-
vances in Neural Information Processing Systems, 2020. doi:10.48550/arxiv.2006.11239. 2

[22] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko,
Diederik P. Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans.
Imagen video: High definition video generation with diffusion models. arXiv, 2022.
doi:10.48550/arxiv.2210.02303. 3

[23] Langwen Huang, Lukas Gianinazzi, Yuejiang Yu, Peter Dominik Dueben, and Torsten Hoefler.
DiffDA: a diffusion model for weather-scale data assimilation. International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=vhMq3eAB34. 3

[24] Aapo Hyvirinen. Estimation of non-normalized statistical models by score matching. Journal
of Machine Learning Research, 6(24):695-709, 2005. URL http://jmlr.org/papers/v6/
hyvarinenO5a.html. 4

[25] Matthias Karlbauer, Danielle C. Maddix, Abdul Fatir Ansari, Boran Han, Gaurav Gupta,
Yuyang Wang, Andrew Stuart, and Michael W. Mahoney. Comparing and contrasting deep
learning weather prediction backbones on navier-stokes and atmospheric dynamics. 2024.
URL https://arxiv.org/abs/2407.14129. 3

[26] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. Advances in Neural Information Processing Systems, 2022.
doi:10.48550/arxiv.2206.00364. 2, 4, 6, 24, 25, 26, 27, 30

[27] Jihwan Kim, Junoh Kang, Jinyoung Choi, and Bohyung Han. FIFO-diffusion: Generating
infinite videos from text without training. Advances in Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=uikhNadwam. 3

[28] Dmitrii Kochkov, Janni Yuval, Ian Langmore, Peter Norgaard, Jamie Smith, Griffin Mooers,
Milan Klower, James Lottes, Stephan Rasp, Peter Diiben, Sam Hatfield, Peter Battaglia, Alvaro
Sanchez-Gonzalez, Matthew Willson, Michael P. Brenner, and Stephan Hoyer. Neural general
circulation models for weather and climate. Nature, 632(8027):1060-1066, July 2024. ISSN
1476-4687. doi:10.1038/s41586-024-07744-y. 3, 8

12

https://doi.org/10.48550/arxiv.2105.05233
https://sander.ai/2024/06/14/noise-schedules.html
https://sander.ai/2024/06/14/noise-schedules.html
https://doi.org/10.21957/38yug0cev
https://doi.org/https://doi.org/10.1175/JHM-D-14-0008.1
https://doi.org/10.1146/annurev-statistics-062713-085831
https://doi.org/10.1146/annurev-statistics-062713-085831
https://doi.org/10.48550/arxiv.2205.11495
https://doi.org/10.48550/arxiv.2006.11239
https://doi.org/10.48550/arxiv.2210.02303
https://openreview.net/forum?id=vhMq3eAB34
http://jmlr.org/papers/v6/hyvarinen05a.html
http://jmlr.org/papers/v6/hyvarinen05a.html
https://arxiv.org/abs/2407.14129
https://doi.org/10.48550/arxiv.2206.00364
https://openreview.net/forum?id=uikhNa4wam
https://doi.org/10.1038/s41586-024-07744-y

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Georg Kohl, Liwei Chen, and Nils Thuerey. Benchmarking autoregressive conditional diffu-
sion models for turbulent flow simulation. 2023. 2, 3, 7, 30

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato,
Ferran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose,
Stephan Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir Mo-
hamed, and Peter Battaglia. Learning skillful medium-range global weather forecasting. Sci-
ence, 382(6677):1416-1421, 2023. ISSN 1095-9203. doi:10.1126/science.adi2336. 3, 30

Lizao Li, Robert Carver, Ignacio Lopez-Gomez, Fei Sha, and John Anderson. Generative
emulation of weather forecast ensembles with diffusion models. Science Advances, 10(13):
eadk4489, 2024. doi:10.1126/sciadv.adk4489. URL https://www.science.org/doi/abs/
10.1126/sciadv.adk4489. 3

Phillip Lippe, Bastiaan S. Veeling, Paris Perdikaris, Richard E Turner, and Johannes Brandstet-
ter. PDE-Refiner: Achieving accurate long rollouts with temporal neural pde solvers. Advances
in Neural Information Processing Systems, 2023. doi:10.48550/arxiv.2308.05732. 3,7, 29

Chao Liu and Arash Vahdat. Equivdm: Equivariant video diffusion models with temporally
consistent noise. 2025. 5

Ignacio Lopez-Gomez, Zhong Yi Wan, Leonardo Zepeda-Nufiez, Tapio Schneider, John
Anderson, and Fei Sha. Dynamical-generative downscaling of climate model ensem-
bles. Proceedings of the National Academy of Sciences, 122(17):¢2420288122, 2025.
doi:10.1073/pnas.2420288122. 3

Peter Manshausen, Yair Cohen, Peter Harrington, Jaideep Pathak, Mike Pritchard, Piyush
Garg, Morteza Mardani, Karthik Kashinath, Simon Byrne, and Noah Brenowitz. Genera-
tive data assimilation of sparse weather station observations at kilometer scales. 2025. URL
https://arxiv.org/abs/2406.16947. 3

Morteza Mardani, Noah Brenowitz, Yair Cohen, Jaideep Pathak, Chieh-Yu Chen, Cheng-
Chin Liu, Arash Vahdat, Mohammad Amin Nabian, Tao Ge, Akshay Subramaniam, Karthik
Kashinath, Jan Kautz, and Mike Pritchard. Residual corrective diffusion modeling for km-
scale atmospheric downscaling. Communications Earth & Environment, 6(1), February 2025.
ISSN 2662-4435. doi:10.1038/s43247-025-02042-5. 3

James E. Matheson and Robert L. Winkler. Scoring rules for continuous probability distribu-
tions. Management Science, 22(10):1087-1096, 1976. 6, 31

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover.
ClimaX: A foundation model for weather and climate. International Conference on Machine
Learning, 2023. doi:10.48550/arxiv.2301.10343. 3

Tung Nguyen, Rohan Shah, Hritik Bansal, Troy Arcomano, Sandeep Madireddy, Romit
Maulik, Veerabhadra Kotamarthi, Ian Foster, and Aditya Grover. Scaling transformer neu-
ral networks for skillful and reliable medium-range weather forecasting. Advances in Neural
Information Processing Systems, 2024. doi:10.48550/arxiv.2312.03876. 3

Joel Oskarsson, Tomas Landelius, Marc Peter Deisenroth, and Fredrik Lindsten. Probabilistic
weather forecasting with hierarchical graph neural networks. Advances in Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=wTIzpqX121. 3,9

Karl Otness, Arvi Gjoka, Joan Bruna, Daniele Panozzo, Benjamin Peherstorfer, Teseo Schnei-
der, and Denis Zorin. An extensible benchmark suite for learning to simulate physical systems.

Advances in Neural Information Processing Systems Track on Datasets and Benchmarks, 2021.
7,18, 28

T. N. Palmer. The economic value of ensemble forecasts as a tool for risk assessment: From

days to decades. Quarterly Journal of the Royal Meteorological Society, 128(581):747-774,
2002. doi:https://doi.org/10.1256/0035900021643593. 1

13

https://doi.org/10.1126/science.adi2336
https://doi.org/10.1126/sciadv.adk4489
https://www.science.org/doi/abs/10.1126/sciadv.adk4489
https://www.science.org/doi/abs/10.1126/sciadv.adk4489
https://doi.org/10.48550/arxiv.2308.05732
https://doi.org/10.1073/pnas.2420288122
https://arxiv.org/abs/2406.16947
https://doi.org/10.1038/s43247-025-02042-5
https://doi.org/10.48550/arxiv.2301.10343
https://doi.org/10.48550/arxiv.2312.03876
https://openreview.net/forum?id=wTIzpqX121
https://doi.org/https://doi.org/10.1256/0035900021643593

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopad-
hyay, Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pe-
dram Hassanzadeh, Karthik Kashinath, and Anima Anandkumar. FourCastNet: Accelerating
global high-resolution weather forecasting using adaptive Fourier neural operators. Proceed-
ings of the National Academy of Sciences (PNAS), 119(48):€2208655119, 2022. 3

Jaideep Pathak, Yair Cohen, Piyush Garg, Peter Harrington, Noah Brenowitz, Dale Durran,
Morteza Mardani, Arash Vahdat, Shaoming Xu, Karthik Kashinath, and Michael Pritchard.
Kilometer-scale convection allowing model emulation using generative diffusion modeling,
2024. URL https://arxiv.org/abs/2408.10958. 3

Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R. Andersson, Andrew El-Kadi, Do-
minic Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, Remi Lam,
and Matthew Willson. Probabilistic weather forecasting with machine learning. Nature, 637
(8044):84-90, December 2024. ISSN 1476-4687. doi:10.1038/s41586-024-08252-9. URL
http://dx.doi.org/10.1038/s41586-024-08252-9. 2, 3,7, 8, 28, 30

Stephan Rasp, Stephan Hoyer, Alexander Merose, Ian Langmore, Peter Battaglia, Tyler Rus-
sell, Alvaro Sanchez-Gonzalez, Vivian Yang, Rob Carver, Shreya Agrawal, Matthew Chantry,
Zied Ben Bouallegue, Peter Dueben, Carla Bromberg, Jared Sisk, Luke Barrington, Aaron
Bell, and Fei Sha. WeatherBench 2: A benchmark for the next generation of data-driven
global weather models. Journal of Advances in Modeling Earth Systems, 16(6), June 2024.
ISSN 1942-2466. doi:10.1029/2023ms004019. 6, 8, 9, 18, 28, 30, 31

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer.
High-resolution image synthesis with latent diffusion models. pages 10684-10695, 2022. 3

Frangois Rozet and Gilles Louppe. Score-based data assimilation. Advances in Neu-
ral Information Processing Systems, 2023. URL https://openreview.net/forum?id=
VUvLSnMZdX. 3

David Ruhe, Jonathan Heek, Tim Salimans, and Emiel Hoogeboom. Rolling diffusion models.
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=a9bzTv9Sz0. 2, 3,4, 6

Salva Riihling Cachay, Bo Zhao, Hailey Joren, and Rose Yu. DYffusion: A dynamics-informed
diffusion model for spatiotemporal forecasting. Advances in Neural Information Processing
Systems, 2023. doi:10.48550/arxiv.2306.01984. 3, 7

Salva Riihling Cachay, Brian Henn, Oliver Watt-Meyer, Christopher S. Bretherton, and Rose
Yu. Probabilistic emulation of a global climate model with Spherical DY ffusion. Advances in
Neural Information Processing Systems, 2024. 3

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. International Conference on Machine

Learning, 2015. doi:10.48550/arxiv.1503.03585. 2

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. Inter-
national Conference on Learning Representations, 2021. 2

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations.
International Conference on Learning Representations, 2021. doi:10.48550/arxiv.2011.13456.
2,4,24,25

Prakhar Srivastava, Ruihan Yang, Gavin Kerrigan, Gideon Dresdner, Jeremy J McGibbon,
Christopher S. Bretherton, and Stephan Mandt. Precipitation downscaling with spatiotemporal
video diffusion. Advances in Neural Information Processing Systems, 2024. 3

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative model-
ing in latent space. Advances in Neural Information Processing Systems, 2021.
URL https://proceedings.neurips.cc/paper_files/paper/2021/file/

5dca4c6b9e244d24a30b4c45601d9720-Paper . pdf. 3

14

https://arxiv.org/abs/2408.10958
https://doi.org/10.1038/s41586-024-08252-9
http://dx.doi.org/10.1038/s41586-024-08252-9
https://doi.org/10.1029/2023ms004019
https://openreview.net/forum?id=VUvLSnMZdX
https://openreview.net/forum?id=VUvLSnMZdX
https://openreview.net/forum?id=a9bzTv9SzO
https://openreview.net/forum?id=a9bzTv9SzO
https://doi.org/10.48550/arxiv.2306.01984
https://doi.org/10.48550/arxiv.1503.03585
https://doi.org/10.48550/arxiv.2011.13456
https://proceedings.neurips.cc/paper_files/paper/2021/file/5dca4c6b9e244d24a30b4c45601d9720-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/5dca4c6b9e244d24a30b4c45601d9720-Paper.pdf

[57] Tong Wu, Zhihao Fan, Xiao Liu, Yeyun Gong, Yelong Shen, Jian Jiao, Hai-Tao Zheng, Juntao
Li, Zhongyu Wei, Jian Guo, Nan Duan, and Weizhu Chen. AR-Diffusion: auto-regressive
diffusion model for text generation. Advances in Neural Information Processing Systems,
2023. 2,3

[58] Ruihan Yang, Prakhar Srivastava, and Stephan Mandt. Diffusion probabilistic modeling for
video generation. Entropy, 25(10):1469, 2023. 3

[59] Michaél Zamo and Philippe Naveau. Estimation of the continuous ranked probability score
with limited information and applications to ensemble weather forecasts. Mathematical Geo-
sciences, 50(2):209-234, 2018. doi:10.1007/s11004-017-9709-7. 31

15

https://doi.org/10.1007/s11004-017-9709-7

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly mention our key contributions at the end of the introduction, which
reflect our experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the bespoke limitations paragraph at the end of our conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

16

Justification: Albeit not central to our work, we include a complete derivation of the prob-
ability flow ODE of our model in Appendix C.1.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental configurations, including dataset details and hyperparame-

ters,

are fully described in Appendix D. Algorithmic details for training and sampling are

provided in Algorithm 1 and Algorithm 2.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

17

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code, including a detailed README with instructions, will be open-sourced.
Datasets that we use are publicly available. Refer to Otness et al. [41] and Rasp et al. [46]
for instructions for the Navier Stokes and ERAS data, respectively.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Data splits are described in the main text, where we introduce the respective
datasets. All experimental configurations, including baseline details and hyperparameters,
are fully described in Appendix D.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the Navier Stokes experiments, we train every method with three different
random seeds and report error bars based on these sets of 3 runs per method. For ERAS,
we only train a single model per method for computational efficiency reasons.

Guidelines:

* The answer NA means that the paper does not include experiments.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, the used compute resources are described in Appendix D.5 for each
dataset.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and believe that the
conducted research in the paper conforms, in every respect, with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

19

https://neurips.cc/public/EthicsGuidelines

11.

12.

Justification: Potential positive and negative societal impacts are discussed in a special
section (Appendix A).

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not deal with data or models with a high risk of misuse or
related to internet scraping.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We explicitly reference the creators of the datasets and baseline forecast data
for ERAS that we use. The licenses of the datasets, which we fully respect, are explicitly
mentioned in Appendix D.1

Guidelines:

* The answer NA means that the paper does not use existing assets.

20

13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: Our method’s training and sampling algorithms are fully described in Algo-
rithm | and Algorithm 2. Our proposed method is fully reproducible in our source code,
including clear instructions. Model weights for our ERA5 model will be open-sourced
together with the code.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

21

paperswithcode.com/datasets

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLMs are only used for helping with editing and formatting of latex and
figures. LLMs are not related to the core methods in our work in any way.

Guidelines:

e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

Appendix

Contents
A Broader Impact 23
B Background on Diffusion Models 23
C ERDM 25
C.1 Probability flow ODE derivation, 25
C.2 Sampling e 26
C.3 Stochastic Heun Sampler 27
C.4 Temporal nOISE Prior v v v v v e e e e e e e e e e e e 27
D Experimental Details 28
D.1 Datasetdetails e e e 28
D.2 TImplementation details and hyperparameters 29
D.3 Baselinedetails e e e 29
D.4 Distinctions between GenCast and our EDM model for ERAS 30
D.5 Compute reSOUICES . . v v v v v v v v e e e e e e e e e e e e e e e e e e 30
D.6 MEMriCS . . . o ot o e e e e e e e e e e e e e e e 30
E Ablations 31
E.1 ERDMinitialization o 0 v i e e e e e 33
E.2 ERASevaluation year ablation, 34
F Additional Results 34
F.1 Additional Navier-Stokes results 34
F.2 Detailed ERAS quantitativeresultso 35
F3 Comprehensive ERAS power spectrao 35
F4 ERAS forecast visualizations 37

A Broader Impact

Our research holds the potential for societal benefits, primarily through improved disaster prepared-
ness, enhanced decision-making across sectors like agriculture or energy. However, these advance-
ments also necessitate careful consideration of potential negative impacts, such as over-reliance
on ML-based forecasts or socioeconomic disparities in access and benefit. Mitigating these risks
requires comprehensive evaluations, communication about forecast uncertainties, and efforts to en-
sure equitable access to these new tools. Any deployment of our model, or derived versions, should
be accompanied by either more comprehensive evaluations than in our paper, or careful disclaimers
to not blindly trust its forecasts, especially for data outside of the training data distribution.

B Background on Diffusion Models

Consider the data distribution represented by pgata(x). The forward diffusion process transforms
this distribution by incorporating time-dependent Gaussian noise, yielding modified distributions

23

p(x; G(t)). This transformation is achieved by adding Gaussian noise with zero mean and covari-
ance G(t) to the data. G(t) is a d x d positive definite noise covariance matrix that evolves over
diffusion time ¢t. When the “magnitude” of G(¢) (e.g., its trace or smallest eigenvalue) is sufficiently
large, the resulting distribution p(x; G(t)) approximates a pure Gaussian distribution A/(0, G(t)).

Conversely, the backward diffusion process operates by initially sampling noise, represented as x,
from a prior distribution, typically A/(0,G(0)), where G(0) corresponds to the maximum noise
level. The process then focuses on denoising this sample through a sequence, x;, characterized by
a sequence of decreasing noise covariance matrices: G(to) > G(¢1) > ... > G(tn) &~ 0 (in the
Loewner order), where ¢y = 0. Each intermediate sample x; is drawn from x; ~ p(x;; G(¢;)).
The terminal sample of the backward process, x, is expected to approximate the original data
distribution pqata(y). Note that for the sake of consistency with our ERDM formulation, we reversed
the diffusion time order. That is, £ = 0 (1) corresponds to maximal (minimal) noise levels, which is
sometimes described in opposite order in the diffusion literature.

SDE formulation. To present the forward and backward processes rigorously, they can be captured
via stochastic differential equations (SDEs). Such SDEs ensure that the sample, x(t), aligns with the
designated data distribution, p(x; G(t)), as it evolves through diffusion time ¢ [54]. The Elucidated
Diffusion Model (EDM) by Karras et al. [26] provides a principled design for diffusion models,
typically based on a scalar noise schedule o (¢) (leading to isotropic noise o2 (¢)I). The formulation
presented here extends these principles to accommodate a general, potentially anisotropic, time-
varying noise covariance matrix G(t). Let G(t) = dG(t)/dt be the time derivative of the noise
covariance matrix. We assume G(t) is positive semi-definite for all ¢, and let K(¢) be any matrix
such that K(t)K(t)T = G(t) (e.g., via Cholesky decomposition if G (t) is strictly positive definite,
or other matrix square roots). The forward SDE, describing the process of adding noise such that
xz(t) — z(1) ~ N(0,G(t)) (assuming G(1) = 0, and x(1) ~ pgaa(y)), is:

dx = K(t)dw(t), 5)
where w(t) is a standard d-dimensional Wiener process. The corresponding backward (reverse-time)
SDE is given by [54]:

dx = —G(t)V log p(x; G(t))dt + K(t)dw(t), (6)

where w(t) is a standard Wiener process in reverse time. The term ‘time‘ ¢ here is a conceptual
dimension for the denoising steps. The backward SDE comprises a deterministic drift term related
to the score of the perturbed data distribution and a stochastic noise injection term.

Denoising score matching. An examination of the SDE in equation 6 indicates the necessity of
the score function, V logp(z; G(t)), for sampling. This score function can be estimated using
the relationship derived from Tweedie’s formula. Given that * = y + € where y ~ pga(y) and
€ ~ N(0,G(t)), the score is:
Valogp(a; G(1) = (G(1) ™ (Elylz, G(1)] —). o

A denoising neural network, Dy(x; G(t)), is trained to approximate the conditional expectation
E[y|z, G(t)] ~ y. Thus, the score is approximated as (G(t))~!(Dg(x; G(t)) —). The network
is trained by minimizing the following objective, typically by sampling ¢ (and thus G(¢)) according
to a predefined schedule or distribution p;(t) over diffusion times:

min By p, Biep, (o Eeno.cp 1 Doy + € G(#)) — yl5]. ®)
The denoiser Dy is now conditioned on the full noise covariance matrix G(t).

Sampling. To generate samples from the model, one typically discretizes the backward SDE equa-
tion 6 and simulates it from ¢ = 0 to ¢t ~ 1. A common discretization is the Euler-Maruyama
method. Given a sequence of diffusion times 0 = 79 < 71 < ... < 7y & 1, and an initial sample
., ~ N(0,G(0)), the update rule fori = 0,..., N — 1is:

— (G(7;) = G(7i11)) Vo log p(®+,; G(71)) + /G (7i) — G(Ti41)2i, 9

where AG(7;) = G(7;) — G(7i4+1) > 0, we have used the approximation G(;)A7; ~ G(7;) —
G(7i+1) (assuming AG(7;) is small), and z; ~ A(0,1I) is a standard Gaussian noise sample. The
term V4 log p(x,,; G(7;)) is the score estimated using the trained denoiser:

Ve logp(@r,; G()) = (G(1:) " (Do(+,; G(7i)) — @r,). (10)

L7 = Lt

i

24

More sophisticated samplers, such as those proposed by Karras et al. [26] (e.g., second-order Heun
or DPM-Solver++), can also be adapted for the general covariance case to improve sample quality or
reduce the number of sampling steps V. These often involve more complex update rules, potentially
incorporating predictor-corrector steps or higher-order approximations of the SDE.

EDM preconditioning. Recall the denoiser network parameterization in EDM:
Dy (m§ J) = Cskip(a)w + Cout(U)FO(Cin(U)m7 Cnoise(U))y (11

where = corresponds to data corrupted with Gaussian noise of standard deviation o and Fj is the
raw neural network trained to denoise . One of the key contributions in EDM is the careful choice
of preconditioning (Cip, Cout, Cin)- The preconditioning ensures unit variance for the denoiser net-
work’s inputs and targets. Consistent scales, regardless of noise levels, simplify the task for the
denoiser network, which does not need to adapt to changing magnitudes for different noise standard
deviations. Mathematically, these functions are defined as:

2
1 O data

(o) = om0 = oy, o) = o
ata ata

The transformation of the noise level is chosen empirically as cpoise(0) = In(c)/4. In ERDM, we
vectorize the preconditioning to function on each snapshot independently, thus ensuring that the
same EDM design principles apply to the noisy sequence that ERDM’s denoiser network ingests.

12)

C ERDM

C.1 Probability flow ODE derivation

Recall that ERDM operated on noisy sequences X117 of size W, with each &,, € R corrupted

according to increasing noise level standard deviations 0 ~ &;1(t) < G2(t) < -+ < w(t). The
noise covariance matrix for the entire window .y at diffusion time ¢ is block-diagonal:
Gyindow (t) = diag(a3(t)Ip, a5 (H)1p, ..., 55 (t)Ip). (13)

Its time derivative is:
Gindow (t) = diag(251(t)1(H)Ip, .. ., 25w (t)ow (H)Ip). (14)
Let Kindow (t) be a matrix such that Kyindow (¢) Kwindow (1) 7 = Gwmdow(t). Specifically:
Kindow (t) = diag(+/201(t)o1(t)Ip, ..., /20w (t)ow (t)Ip), (15)
assuming ., (t)&, (t) = 0. The forward SDE for the window x(¢) is:
dz = Kyindow(t)dw(¥), (16)

where w(t) is a standard W D-dimensional Wiener process. The corresponding backward (reverse-
time) SDE, which is the primary SDE used for generation, is [54]:

dx = [_Gwindow (t)vi IOg p(:iv Gwindow (t))] dt + KWinUW(t)dw(t)' (17)
The score for the w-th snapshot of the window, ., is approximated with the learned denoiser, Dy:
vi:w Ingg(i; Gwindow(t)) = (5'3; (t))_l(DG(ja &(t))w - :Ew)7 (18)

where Dy(Z; & (t)),, is the w-th snapshot output of the denoiser Dy, which is conditioned on the
full noisy window & and the vector of current noise standard deviations & (t). The probability flow
ODE, which provides a deterministic path for generation, is obtained by removing the stochastic
term from the backward SDE and adjusting the drift (see Song et al. [54], Eq. (14) and Karras et al.
[26], Eq. (5)):

Az — [fcwmdow(t)vi. log po (; Gwindow(t))] at. (19)

Using the specific EDM parameterization where the ODE drift is —D(¢)Vz log p(&; &(t)) with
D(t) = diag(a1(t)o1(¢t)Ip,...,ow (t)ow (t)Ip), the ODE becomes:

0@ = —diag(31 (1)1 (1) Lp, - . ., 5w (0w (1)1p) Va log po (@ (1))dt. (20)

25

C.2 Sampling

ERDM generates sequences with a sliding window of size W. Generating each window requires
solving the backward SDE in equation 17 (or ODE in equation 20). In each iteration k where the

SDE is fully solved, ERDM operates on the noisy window a:() . After solving the SDE backwards

k = 1 times, the first snapshot of the window, a,'(l) (with relatlve window index w = 1), corresponds
to a forecast of yy, where k is the absolute time step of the forecast time dimension. Solving the
SDE requires discretizing it into Ny, diffusion “time” steps, each of size Aty := N%V In general, Ny
may vary across iterations. To simplify our illustrations of the sampling process in the following,
we assume that Vi and Aty are identical for all k£, denoted as IV and At respectively. This can be
achieved by setting IV in our sampling algorithms to a positive integer. Note that in practice N need
not be an integer (e.g., we use N = 1.25 for our Navier-Stokes experiments), which is accounted
for in our sampling algorithms. With this simplification, the SDE evolves, for all k, following
g(ty) > a(ty) — -+ — a(tn), where t;1q = t;+Atfori > 1,t; = 0,and ¢ty = 1. For example,
if N = 1 the SDE is solved from &(0) to (1) in one sampling step, while if N = 2 it would be
solved following &(0) — &(3) — &(1) in two sampling steps (see illustration in Fig. 1). At the

2
end of the N sampling steps, 71(1) = omi, and the first snapshot in the window can be emitted as

the forecast for lead time k, a‘:gk) ~ Y. In the next iteration of /N sampling steps, the next snapshot

k + 1 will be predicted by operating on a new window, wgk;{,l). Because 7,,+1(1) = 74,(0) for

w > 1, this new window can be constructed by shifting the noisy parts of the old window by one

position. That is, (kH) = il(ﬁl for w < W, and a new pure-noise snapshot is appended as

E,éH) ~ N(0,02,,I). The new window is thus noised according to standard deviations &(0) and

the process can be restarted and repeated indefinitely, as illustrated in Fig. 1.

Discretization. As mentioned above, the SDE or probability flow ODE need to be solved through
discretization over N diffusion steps. We denote the noisy window at diffusion stepn € {1,..., N}
as (n). We ignore the superscript k since the ODE discretization is independent of it. Assuming
that ©(0) corresponds to a window corrupted according to &(0), an Euler—Maruyama step for the
probability flow ODE and the whole window is

s+ 1) = () + TR () Dy (aan)] @D

The ODE is thus solved in parallel for all snapshots in the window. When &(N) is reached, its
noise levels correspond to (N At) = &(1). Thus, the first snapshot is emitted, and the window is
shifted as describe above. Higher-order stochastic integrators—e.g. the second-order Heun scheme
of EDM [26]—can replace Euler—Maruyama as decribed in the next subsection C.3 below.

Continuous-time view of a tracked snapshot. Focus on a single physical snapshot z as it is
refined across windows. Let k be the rollout step at which z is finalised. The snapshot first appears
at rollout step k — W + 1 (relative position w = W) and moves to w = 1 at step k. Define
Sw = 7,,(0) as the initial noise level when the snapshot is at position w, and treat w as a continuous
variable on the normalised interval [0, 1] (with w \, 0 as refinement proceeds). Let z,, denote the
state of the tracked snapshot when its current noise level is s,,. Its evolution is governed by

1 ds? [ds?
dzy, = 79 dw = vzwIng(zwv Suncw) dw + d5 déy, (22)

where dw < 0 since w decreases. The context C comprises all other snapshots in the window: The

past [0, w) and the future (w, 1]. Note that w > (), and the score is obtained as
1
vzwIng(zuﬁ Sws Cw) = 2 (DG (zw§ S1:Ws Cw)w - zw)a

where Dy (zy; $1.w, Ci) 18 the fully denoised estimate of the snapshot at position w. SDE in equa-
tion 22 therefore captures how a snapshot is progressively refined as it shifts forward through suc-
cessive windows, with its effective noise level s,, decreasing monotonically.

26

C.3 Stochastic Heun Sampler

In the main text, we introduced our proposed deterministic, first-order sampling algorithm (Al-
gorithm 2). We now extend this into a more sophisticated sampler, detailed in Algorithm 3, by
incorporating two key modifications: a second-order Heun correction step and optional sampling
stochasticity via a “churn” mechanism. Both components are inspired by EDM’s stochastic sam-
pling algorithm [26], but require specific adaptations for our ERDM to work.

Heun correction step. The Heun method enhances sampling accuracy by incorporating a correc-
tor step over the basic Euler step during the denoising of the data. However, a complication arises
because when ¢ .., > 1, the first snapshot of &/, is already fully denoised (i.e., “clean”). Apply-
ing the denoiser to such a clean snapshot as part of the Heun step would be inappropriate. To address
this, we pad the noisy data by one extra pure-noise snapshot to the end of the sequence, resulting
in a window of size W + 1. The core denoiser, Dy, is then selectively applied on the sub-window

of size W, depending on whether the first snapshot is already clean or not. That is, if ¢, > 1,

next =
the denoiser would be applied on the snapshots with indices 2, ..., W + 1. Otherwise, it is applied,
as usual, to the indices 1,. .., W. To formalize this selective application, we define Dapad(:c, (1))

such that it applies the actual denoiser on all snapshots with indices I = {|t| + 1, ..., |t] + W} and
leaves all other snapshots untouched. This ensures that the denoiser evaluations within the Heun
step are confined to snapshots that are indeed noisy.

D2 (2,5 (1)) = {DG(:”I"’(t)I)thJ ifwel

Loy otherwise 23)
Churn mechanism adaptation. The second modification is the integration of a “churn” step,
which introduces new noise at each iteration to inject stochasticity into the sampling process. Unlike
the EDM algorithm, which applies churn at the beginning of each iteration, we position it at the end
of each iteration. This change is motivated by the fact that the first snapshots of the very first initial
window are noised based on low levels of noise, so that artificially injecting more noise before
performing any denoising could be harmful. This contrasts with the EDM setup, where the noisy
data at the very first iteration is typically maximally noisy.

Experimental configuration. For the experiments reported in this work, the stochastic Heun sam-
pler (Algorithm 3) is always used with the Heun correction step. Our ablations in Appendix E
demonstrate that our second-order sampler provides better results than a first-order version (Euler-
only; Algorithm 2). However, we disable sampling stochasticity by setting the churn rate Schum = 0.
In our experience, we found that small values of Schym &~ 0.1 can increase the ensemble spread,
albeit it had minimal impact on error metrics such as the CRPS. We defer a more comprehensive
analysis of stochastic sampling to future work. Our algorithm can, in principle, be used to fully
denoise multiple snapshots at once (e.g., output two snapshots per iteration when N = %). This
could be useful in certain modalities or problems where subsequent snapshots are highly correlated,
but is left to future work too.

C.4 Temporal noise prior

In our training and sampling algorithms (Alg. 1-3), we use i.i.d. noise to corrupt the first window as
well as append new pure-noise snapshots when sliding the window. As mentioned in the main text,
it has been shown to be useful to sample temporally correlated noise snapshots. In our experiments,
we use the simple “progressive noise model” technique proposed by Ge et al. [18], which we found
to improve results on the Navier-Stokes dataset compared to using i.i.d. noise (see Appendix E).
This noise prior generates the noise for each snapshot autoregressively by combining a perturbed
version of the previous noise with a new i.i.d. noise sample. Mathematically, the noise for the first
snapshot is random, €") ~ A(0,T), while for the following snapshots k > 1:

1

- L el el ~ N0), 24

where « controls the correlation strength between snapshot noises and o = 0 corresponds to i.i.d.
noise. In our experiments, we use « = 1 following the recommended practice in [18]. These
temporally correlated noise samples replace the i.i.d. draws in lines 6 and 27 of Algorithm 3. For

27

Algorithm 3 Elucidated Rolling Diffusion Stochastic Heun Sampler

1: Require: glf‘{,f/, N, Ttorecast , Schum = 0, Shoise = 1 > Choose Schum > 0 for sampling stochasticity
2: # Initialization
3: At < 1/N = Infer step size from given number of steps per snapshot
4: At' «— At/(1 — Sehum) > Size of larger, initial step, before backtracking (if Schum > 0) to At
S50 tewr < 0; S — I = Initialize global diffusion time and empty generated sequence
6: sample ey ~ N (9, & (tewr)* Iwxp) > Initialize window with snapshot-dependent rolling noise
7: concatenate n,,q := |At'| + 1 fully noisy snapshots to the end of Ecyr > Necessary for Heun step
8: while |S| < Tiorecast do = Predict snapshot |S|+1
9: thext < tour + At > Global diffusion time after denoising, before churn
10: tnext < tour + At > Global diffusion time after churn (tnext < thext)
11: Ocur — O (tcur) = Current noise levels
12: Orext < T (thext) = Noise levels before churn
13: Onext < T (tnext) > Noise levels at the end of this iteration
14: # Euler step
15: G« Dy* (Zeur, Tcur) = Denoise sequence
16: d — (Zeur — Y)/0cur = Evaluate de/dT at tcur
17: Thext < Tour + (Ohext — Tcur)d o Buler step from teyr t0 thexs
18: # Heun step (2nd-order correction)
19: dl A (zﬁ;cxt - Dgad(i’;mxta O-;ICXt))/O';ICXt = Denoise at t;lCXt
20: Thext — Teur + 5 (Chexs — Tewr)(d + d) = 2" order Heun correction step
21: # Churn step (stochastic backtrack)
22: sample € ~ N(0, 52, . Twxp) = Sample churn noise
23: Tnext — Tpext T A/ Tlexts — T2+ € = Backtrack to tnext noise levels
24: # Sliding-window shift and forecast snapshot extraction
25: Neclean < |tnext | = Infer finished snapshots. If 0, the following lines are a no-op
26: add first n¢lean Snapshots of g to S and discard first nciean snapshots of Znext
27: sample Zyew ~ N(0, 0001000, xD)
28: Zeur — [Enexts Tnew] > Concatenate fresh noisy snapshots to futuremost
29: teur < tnext — Mclean > Re-adjust global diffusion ‘time’ to be in [0, 1)
30: return S
example, line 6 becomes Zcyy < Y + & (feur)€1, Where €. := (e, ..., ")), Note that

the noise prior is applied during both training and sampling, enabling the model to learn how to deal
with temporally correlated noise samples. A more comprehensive study of alternative noise priors
in the context of ERDM is left to future work.

D Experimental Details

D.1 Dataset details

Licenses. We use the Navier-Stokes dataset with four obstacles introduced by Otness et al. [41].
Its license is CC BY 4.0. We also use the ERAS dataset provided by Weatherbench-2 [46]. Its
license is CC BY 4.0.

ERAS variables. We use the 1.5° resolution of the data (a 240 x 121 grid) provided by [46],
with 69 prognostic (input and output) variables: Temperature (t), geopotential (z), specific hu-
midity (q), and the u and v components of wind (u,v) over 13 pressure levels as well as
the four surface variables 2m temperature (2t), mean sea level pressure (mslp), and u and
v components of winds at 10m (10u, 10v). Following Weatherbench-2, the 13 levels are
{50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850,925, 1000}. Numbers after any variable ab-
breviation refer to the level in hPa. For example, z500 refers to geopotential at 500 hPa. Besides
these prognostic variables, we also use six static maps as additional inputs: A land-sea mask, soil
type, orography, and sin(lat), cos(lat) cos(lon), cos(lat) sin(lon), where lat, lon are the latitude
and longitude of each location. We train our models on 12-hourly data, as in [45], from 1979 to
2020 and evaluate the models based on 64 initial conditions at 00/12 UTC, evenly spaced in 2021.

Sizes. The Navier-Stokes training set consists of around 6100 samples, and the corresponding
validation set consists of 118 samples (slightly less for W7 > 1). We use the ERAS5 training data

28

set at 12-hourly resolution with possible initial condition times in 00/06/12/18 UTC. The training
data size is thus around 61000 samples. Following Weatherbench-2, we only use 00/12 UTC start
times for evaluation. We use 64 samples for evaluation. During validation, we use ensemble sizes
of M = 10 and M = 5 for Navier-Stokes and ERAS5 respectively, which we increase to M = 50
and M = 10 during final testing.

D.2 Implementation details and hyperparameters

Architecture. For all experiments and baselines that we train, we use the same basic ADM U-
Net [13] architecture, only modified where necessary depending on the method. We always use 4
down- and up-sampling blocks, with channel multipliers 1,2, 3,4. The base channel dimension is
64 for Navier-Stokes and 256 for ERAS experiments. We use attention layers at the two lowest
spatial resolutions. We use a dropout rate of 0.15 for Navier-Stokes, but disable it for ERAS. Other
architectural hyperparameters are kept to the defaults from EDM. This results in a parameter count of
29.5 million for Navier-Stokes, and 517 million for ERAS. For the models operating on sequence,
ERDM and EDM with W > 1, we integrate causal temporal attention layers into the 2D U-Net
before each down- and up-sampling block. This increases the respective parameter counts slightly
to 31.5 and 537 million for Navier-Stokes and ERAS, respectively. For ERAS, we use circularly
padded convolutions along the longitude dimension (and zero-padding for the latitude dimension)
to better respect the spherical structure of the Earth.

Navier-Stokes hyperparameters. We train each model for 300 epochs with a global effective
batch size of 32, leading to almost 57,000 gradient steps. The effective batch size is kept the
same by balancing per-GPU batch size and gradient accumulation steps appropriately over different
training runs. We use a cosine learning rate schedule with a linear warmup period of 10 epochs and a
peak learning rate of 6 x 10~%. We use the AdamW optimizer with a weight decay of 10~%. During
evaluation, we use an exponential moving average (EMA)-based on an EMA decay rate of 0.995—
version of the model. Because the input spatial grid, 221 x 42, after four halvings does not result
in an even number—a problem for the residual connections in the upsampling blocks—we bilinearly
interpolate it to a 256 x 64 grid at the input layer (and back before the final convolution layer).

ERAS hyperparameters. We use a cosine learning rate schedule with a linear warmup period of
5 epochs and a peak learning rate of 5 x 10~%. ERDM and EDM are trained with a global effective
batch size of 32 and 512, respectively. The difference in this choice was informed by how many
data points we could fit into GPU memory (ERDM has higher memory needs due to operating on a
window of data) and the observation that EDM benefited more strongly from higher effective batch
sizes. The maximum length of the schedule is 60 epochs for ERDM and 1000 epochs for EDM,
resulting in a comparable number of total gradient steps. We use the AdamW optimizer without
weight decay, clipping gradients above a norm of 0.8. During evaluation, we use an EMA version of
the model, with an EMA decay rate of 0.9999. Because the input spatial grid, 240 x 121, after four
halvings does not result in an even number—a problem for the residual connections in the upsampling
blocks—we bilinearly interpolate it to a 240 x 128 grid at the input layer (and back before the final
convolution layer).

D.3 Baseline details

DYffusion. We follow the default values used by DYffusion for its Navier-Stokes experiments,
but replace the interpolator and forecaster architecture with the more performant U-Net and use our
optimization hyperparameters, both described above. We tuned the interpolator dropout rates and
found a rate of 0.5 to produce the best results. The interpolator dropout rate is a key hyperparameter
in DYffusion, since it is responsible for the stochasticity in the model (if 0, it reduces to a deter-
ministic model). As for ERDM, we use a window size of W = 6. Our improved architecture and
training hyperparameters jointly improved the DY ffusion CRPS scores by over 3 x compared to the
results in the original paper.

PDE-Refiner PDE-Refiner [32] is a next-step diffusion-derived forecaster. We tune the two key
hyperparameters of PDE-Refiner, K and oy,,. The best forecasts were obtained with K = 6, opin =
0.002. The recommended values from [32], K = 4, onin = 2e-7, did not work as well. We use
the same denoiser architecture as for EDM. PDE-Refiner performs extremely well for the first few

29

timesteps of the Navier-Stokes rollout, but rapidly diverges after that. We believe this is because it
cannot model temporal interactions.

EDM. Our primary focus is to evaluate ERDM’s performance relative to common EDM-derived
approaches for dynamics forecasting. Consequently, our key baseline is an EDM denoiser parame-
terized by Dy(xy ..., xw;0,yo), where all x,, are corrupted according to the same noise standard
deviation, 0. With W = 1, we recover a next-step forecasting conditional EDM as in [45, 29]. On
Navier-Stokes, we tried W € {1,2,4, 6}, and found W = 4 to work best for EDM. For compu-
tational reasons, we only report an EDM run with W = 1 for ERAS. To condition the denoiser
network on the initial condition, Yo, we concatenate it along the channel dimension to the input,
noisy window, x1.;7. When W > 1, yq is thus first duplicated along the window dimension. We
found this to perform better than operating on a W + 1 window, where yj is inserted into the first
position of the window. Preconditioning is applied before concatenation, only to the noisy window.

To be clear, the EDM “video” baseline with W > 1 does not use rolling diffusion. It is a standard
sequence-to-sequence EDM, using the same 3D denoiser architecture as ERDM, that operates au-
toregressively. Conditioned on a single clean frame (e.g., at time t), it jointly predicts a window of
future frames (¢t + 1 to ¢t + W). Unlike ERDM, all frames in this window are denoised from the
same initial noise level. To generate a long forecast, the last frame of the predicted window (at time
t + W) is then used as the new “clean” condition for the next prediction step.

D.4 Distinctions between GenCast and our EDM model for ERA5

Our primary baseline, conditional EDM, applied to ERAS shares several similarities with Gen-
Cast [45]. A primary distinction lies in the spatial resolution: GenCast is trained on a spatial res-
olution of 1° and 0.25°, whereas our model, EDM, and other baselines are exclusively trained at a
1.5° resolution. The denoiser network architecture presents another significant divergence. GenCast
uses a graph neural network, similar to the approach in Lam et al. [30], while we use a 2D U-Net
for our EDM baseline borrowed from [26, 13]. Furthermore, GenCast incorporates SST as both
an input and an output variable. sea surface temperature as an input and output, which we do not.
More minor differences between GenCast vs. our EDM are: ODE solver (DPMSolver++ vs. Heun),
training noise level distribution (uniform vs. lognormal), noise distribution (spherical vs. i.i.d.),
optimization hyperparameters, and residual vs. full-state prediction.

D.5 Compute resources

For Navier-Stokes experiments, we trained all models and baselines on 2 — 8 L40S or A100 GPUs.
For ERAS, we trained some models (including our final ERDM version) on 4 H200 GPUs, but
performed most of our development work on 8 — 16 A100 GPUs (per training run). For ERDM with
W = 6 (W = 4), a full training run on 8§ L40S GPUs took around 16 (10.5) hours. For ERAS with
W = 6, a full training run on 4 H200 GPUs took almost 5 days.

D.6 Metrics

Let y € R/*7 indicate the targets for a specific time step, and § € RM>*/*/ the corresponding
predictions with an ensemble size of M. I and J are the size of the height dimension and width
dimension, respectively. For ERAS, these are latitude and longitude, respectively. The definitions of
the metrics below follow common practices (e.g., cf. Weatherbench-2 [46]).

Weighting. For ERAS experiments, we follow the common practice of area-weighting all spatially
aggregated metrics according to the size of the grid cell, ensuring that they are not biased towards
the polar regions [46]. The unnormalized area weights are computed as @ (i) = sin ¢¥ — sin ¢!,
where ¢ and ¢! represent upper and lower latitude bounds, respectively, for the grid cell with

latitude index ¢ € {1,2,...,I}. The normalized area weights, used in all metrics below are thus
w(i) = %, where [is the number of latitude indices. For the Navier-Stokes experiments,
I =1

we report unweighted spatially aggregated metrics (i.e., w(i) = 1 for all 7).

Ensemble-mean RMSE. In ensemble-based forecasting, the RMSE is typically computed based
on the ensemble mean prediction as follows:

30

RMSEenS = [J Z meanm ym i,]) yi,j)Qy (25)

where mean,,, refers to the average over the ensemble dimension.

Spread-skill ratio (SSR). Following Fortin et al. [16], the spread-skill ratio is defined as the ratio
between the ensemble spread and the ensemble-mean RMSE. The ensemble spread is defined as the
square root of the ensemble variance. Thus, the SSR is defined as:

1) R M +1 Spread
Spread = ﬁ;w(z)varm(ymm]), SSR = \/7RMSECHS7 (26)

where var,, refers to the variance over the ensemble dimension, and /(M + 1)/M is a correction
factor which is especially important to include for small ensemble sizes. The SSR serves as a simple
measure of the reliability of the ensemble, where values closer to 1 are better. Values smaller (larger)
than 1 indicate underdispersion (overdispersion). In our ablations, we also report the average squared
deviation, (1 — SSR)? (lower is better), where the overline indicates averaging over all rollout/lead
times. This is more useful than reporting SSR, since such a metric would be sensitive to canceling
out deviations from 1 on both sides (e.g., an SSR of 0.5 and 1.5 on the first and last half of the
rollout, respectively, would average to 1).

Continuous ranked probability score (CRPS). Following [59, 46], we use the unbiased version
of the CRPS [37] (lower is better)

M
CRPS = %Zw(i) % 3 i — yigl — Z Zlym ij = Onagl |- @D

7 m=1 m=1n=1

CREPS skill score (CRPSS). The CRPSS is commonly used to compare the CRPS scores relative
to a baseline. It is computed as 1 — CRPS;0de1/ CRPSpasetine, where CRPS 0de1 and CRP Spagetine
refer to the CRPS scores for the evaluated model and baseline, respectively. Values larger than 0
indicate that the model is better than the baseline model in underscore, while values smaller than O
indicate that the model is worse than the baseline model.

E Ablations

Starting from our proposed ERDM configuration (“Base” in Table 2), which uses the second-order
Heun sampler, loss weighting with P,y = 0.5, Pyg = 1.2, a temporally correlated progressive
noise prior following [18] with €., := o = 1 (see Appendix C.4), noise schedule parameters
Omin = 0.002,0mx = 200,p = —10, and a window size of W = 6, we systematically varied
individual components. For sampling, we use N = 1.25 (At = 0.8) and Schum = 0 by default.
The first window is initialized based on predictions from the EDM W = 4 baseline. Our findings,
summarized in Table 2, highlight several critical elements for achieving optimal performance.

Heun versus Euler sampler. Compared to the first-order Euler method (Algorithm 2), the second-
order sampling algorithm detailed in Algorithm 3 achieved superior performance in CRPS, MSE,
and SSR metrics. This improvement comes at the cost of doubling the neural function evaluations
due to the correction step, which significantly reduces sampling speed. Nevertheless, we deemed
this increased computational overhead justifiable for the enhanced accuracy.

Number of sampling steps. Our base ERDM model uses N = 1.25 sampling steps “per snap-
shot”, which results in a step size of At = 1/N = 0.8. That is, depending on the noise levels at
the start of an iteration for solving the ODE, it may use 1 or 2 sampling steps before outputting the
first frame and sliding the window. Increasing NV extends sampling time, but optimal performance
is found at a “sweet spot”; for example, N = 1.25 outperforms N = 2 for Navier-Stokes. This was
also confirmed for ERAS, where CRPS scores showed minimal improvement for N > 2 (with an
optimum around N = 2). The parameter N is also crucial for tuning the model’s spread—smaller
N increases spread, larger IV reduces it—thereby providing a control for adjusting the spread-skill
ratio. Ultimately, the ideal N and step size depend on the dataset complexity and the window size,
where larger window sizes generally tolerate larger step sizes (smaller V).

31

Table 2: Ablation study results on the Navier-Stokes dataset. The most important design choices, without which
ERDM would degrade to worse performance than the EDM baseline (highlighted in red), are 1) a proper 3D
architecture; 2) an appropriate noise schedule (in particular, not EDM’s default p = 7); 3) our proposed loss
weighting; 4) a fixed training schedule. CRPSS refers to the CRPS skill score, where > 0 means that the model
is better than the baseline model in underscore. CRPSS values smaller than O indicate that the model is worse

than the baseline model. For all other metrics, lower is better.

Ablation CRPSXlOZ MSEXlos CRPSSgrpM CRPSSEDM (1 — SSR)2
Base 0.904 0.588 0.000 0.432 0.052
Sampling
Euler Sampler 1.160 0.752 -0.279 0.288 0.227
At =1 1.270 0.810 -0.399 0.224 0.343
At =0.9 1.067 0.823 -0.160 0.349 0.056
At =0.7 0.986 0.668 -0.084 0.389 0.080
At =0.5 1.042 0.648 -0.159 0.349 0.121
Loss Weighting
No f(o) 2.168 2.987 -1.296 -0.243 0.244
mean = 1 1.082 0.783 -0.181 0.338 0.057
Prean =0 1.431 1.517 -0.489 0.177 0.119
Prean = —1.2 2.001 2.694 -1.086 -0.134 0.259
Noise Prior (¢)
€indep 1.176 0.977 -0.240 0.309 0.134
€prog=2 1.060 0.715 -0.151 0.357 0.065
€prog=10 1.404 1.353 -0.474 0.190 0.098
Noise schedule
Random training sched. 1.904 1.998 -1.065 -0.130 0.347
Omin = 0.001 1.040 0.758 -0.102 0.383 0.062
Omin = 0.01 1.511 1.342 -0.692 0.052 0.219
Omax = 80 1.094 0.878 -0.175 0.346 0.080
Omax = 800, p = —20 1.249 1.086 -0.355 0.244 0.056
p=-—> 1.529 1.569 -0.615 0.121 0.189
p=-20 1.060 0.695 -0.180 0.339 0.045
p="1 1.982 2.382 -1.273 -0.265 0.098
Window Size (W)
W =4 1411 1.308 -0.487 0.185 0.104
W =8 1.258 1.134 -0.313 0.276 0.196
W =12 1.709 1.841 -0.765 0.041 0.422
Architecture
Uncond. Pre-training 1.475 1.732 -0.528 0.157 0.074
2D arch. 3.931 2.979 -3.202 -1.209 3.476
Initialization
Init=EDM W =1 1.176 0.977 -0.240 0.309 0.134
Init=persistence 14.789 172.233 -25.361 -20.412 0.765
Init=truth 0.899 0.593 0.053 0.492 0.286

32

Loss weighting. As detailed in the main text, a well-tuned loss weighting can significantly im-
prove results. In particular, using no loss reweighting based on the PDF of the lognormal distri-
bution, f(0; Preans Psta) (‘No f(o)”), degraded CRPS and MSE scores by more than 2x and 5x,
respectively. It also resulted in a worse calibration score. Similarly, choosing a poor value for the
center of the lognormal distribution, e.g., Ppean = —1.2, resulted in almost as suboptimal results.
Interestingly, Ppean = —1.2 corresponds to the default value in EDM, but we found values > 0.5 to
be necessary for ERDM. We found EDM’s default Py = 1.2 to work well for ERDM generally.

Noise prior. As hinted in Appendix C.4, we found it beneficial to use a temporally correlated noise
prior as opposed to simply sampling i.i.d. noise for each snapshot (“€indep”). The noise prior that
we use [18] introduces one hyperparameter, o, which balances the strength of the correlation. We
generally found « € [0.5,1.5] to work best. Similarly to the findings of Ge et al. [18], using overly
large o (e.g., a = 10, which introduces large correlations between noise snapshots) is detrimental
to performance and worse than simply using i.i.d. noise.

Other design choices. Surprisingly, unconditional static pre-training of the non-temporal com-
ponents of the model before fine-tuning on the forecasting task was found to degrade performance
(“Uncond. Pre-training”). Preliminary ERAS experiments seemed to confirm this finding. More-
over, we did not find ERDM to be overly sensitive to the window size within a reasonable range
(W = 6 as base). However, overly large window sizes (e.g., W = 12) significantly degrade per-
formance, potentially due to fixed network capacity. Note that for each window size, we tuned the
sampling step size from At € {0.25,0.5,0.8, 1} and report the best results only.

E.1 ERDM initialization

— Init=EDM W =4 Init=EDM W =1 —— Init=truth
4
0.015
3
%)
0.010 1
a 7
o) ® 2
0.005
1
// ~A\ S
0.000
0 20 40 60 0 20 40 60
Timestep Timestep

Figure 7: Impact of first-window initialization methods on ERDM’s Navier-Stokes forecast performance. The
chosen initialization strategy significantly affects short-range skill (up to timestep 10), but its influence di-
minishes over longer forecast horizons. While initializing with ground truth data (an impractical approach)
unsurprisingly yields the best initial results, it also produces an artificially inflated Spread-Skill Ratio (SSR)
due to a near-zero initial RMSE. Notably, this early advantage dissipates throughout the rollout, leading to final
CRPS and SSR scores that are largely indistinguishable regardless of the initialization method.

In Fig. 7 and the last part of Table 2, we ablate possible initialization schemes for ERDM. These in-
clude two neural initializations based on the EDM baselines with W = 1 and W = 4 (our default for
Navier-Stokes being EDM W = 4), alongside two simple non-neural approaches. One non-neural
method, Init=truth, initializes ERDM using ground truth data for the first window. While clearly
impractical, it serves as an informative upper bound on the achievable performance of ERDM. The
other, Init=persistence, populates the first window by duplicating the initial condition y; this ap-
proach performed very poorly and is omitted from Fig. 7 for visual clarity. Expectedly, Init=truth
yields optimal initial CRPS results but cannot be used in practice. More significantly, Fig. 7 demon-
strates that the choice of initialization predominantly impacts ERDM’s short-range forecast skill
(up to approximately timestep 10). The initial performance advantages conferred by methods like
Init=truth, or differences among other practical schemes, diminish substantially as the forecast
horizon extends. By the end of the rollouts, both CRPS and SSR scores become largely indis-
tinguishable across the various practical initialization methods, including our default EDM W = 4

33

---- ERDM 2021 ERDM 2022

t850 2t t50 10u
00 0 125 05
-0.5
10.0 00— L VA
10 -1
75 ~
15 0.5
oy -2
X -20 50 -1.0
N 25 25
g 3 -15
B0 | NS T g g e
s 0.0
E 500 | 700 1000
z ms|
T S — 2 B 0.75 A q
14
> 1.5
............................ 0.50
o 0
% -5 > 0.25 1.0
. 0.00 | g-—————pi—t——— 0.5
-10 -
-0.25 0.0 Apmmmmmmmmm iy
-6
-0.50 -0.5
-15 &
-0.75 -1.0
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Lead time (h) Lead time (h) Lead time (h) Lead time (h)

Figure 8: Impact of ERAS evaluation year on ERDM’s CRPS performance. The model, trained on data up
to 2020 (inclusive), generally shows improved CRPS scores when evaluated on initial conditions from 2022
compared to 2021 (the baseline year used throughout this paper), with t50 being an exception. While most
variables exhibit CRPS changes of less than 3%, geopotential and mean sea level pressure are significantly
more sensitive to the evaluation year, particularly for lead times under 8 days (e.g., z600 scores improve by up
to 15%). This variability underscores the need for careful interpretation when comparing model results from
different evaluation years, especially for geopotential and stratospheric fields.

initialization. This convergence suggests that while the first-window initialization is crucial for early
forecast accuracy, its specific choice becomes less critical for the long-range performance of ERDM
(except when using a naive initialization such as persistence).

E.2 [ERAS evaluation year ablation

In our quantitative comparison, we evaluated ERDM, EDM, and IFS ENS on the same 64 initial
conditions evenly spaced in 2021, ensuring a fair comparison. Unfortunately, we only have ac-
cess to the NeuralGCM ENS and Graph-EFM results for 2020. This discrepancy highlights the
importance of understanding how model scores might vary across different evaluation years. We
investigate this for our ERDM model (trained on data up to 2020 inclusive) in Fig. 8. As detailed
in the figure and its caption, ERDM’s CRPS performance indeed shows sensitivity to the evaluation
year. For example, when evaluated on 2022 initial conditions, scores often improved relative to our
2021 baseline, though for most variables this change was less than 3%. However, certain variables,
notably geopotential (with z500 improving by up to 15%) and mean sea level pressure, exhibited
significantly greater sensitivity, particularly at lead times under 8 days. These findings suggest that
while our 2021-based evaluations provide a consistent benchmark for ERDM, EDM, and IFS ENS,
direct comparisons with results from NeuralGCM ENS and Graph-EFM on 2020 data should be
made with an awareness of this potential inter-annual performance variability.

—— ERDM EDM W =4
—— EDMW=1 —— DYffusion

F Additional Results 0.008

F.1 Additional Navier-Stokes results 0.006

MSE scores. For completeness, we report the
ensemble-mean MSE test rollout scores for all Navier-

Stokes models in Fig. 9, analogously to our main
CRPS and SSR results in Fig. 4. The MSE scores are ofe
strongly correlated to the CRPS scores, which is why
we deferred their discussion to the appendix. Similarly 0.000

to the CRPS scores, ERDM achieves significantly bet- 0 E Timeste40 60
ter MSE scores, especially for long-range lead times. :

L 0.004

MS

Figure 9: Ensemble-mean MSE scores for the
Navier-Stokes test rollout.

34

—— EDM —— ERDM IFS ENS NeuralGCM ¢ Graph-EFM

850 [K] 2t [K] t50 [K] 10u [m/s]
1.50 - 1.0 <& 12 / 1.75 /
195 s » / 150 / /
) : g 1.25 g
1.00 °
06 08 1.00
0.75
0.75
0.50 / 04 0.6
) 0.50
/ /
o 0.25 02 0.4 025 L
6 2500 [m?/s?] mslp [Pa] q700 [kg/kg] q1000 [kg/kg]
— 300 _— = 0.0007
300 P> 250 = 0.0007 P
250 0.0006 00006 7
200
200 0.0005 0.0005
L/
150 150 0.0004 0.0004
100 100 0.0003 0.0003 /
50 50 0.0002 0.0002
0
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Lead time (h) Lead time (h) Lead time (h) Lead time (h)

Figure 10: Absolute CRPS corresponding to the relative scores shown in Fig. 5. Lower is better.

A slight difference to the CRPS results is that the relative improvement of the block-wise autore-
gressive EDM W = 4 baseline over the DYffusion baseline is larger in terms of MSE than CRPS.

F.2 Detailed ERAS quantitative results

A comprehensive quantitative assessment of forecast skill is presented in Fig. 11, which displays
the CRPS for ERDM, IFS ENS, Neural GCM, and Graph-EFM, relative to the EDM baseline. These
relative CRPS values are reported as percentages (where lower indicates better performance) for
numerous atmospheric variables (extending the set shown in Fig. 5) over the full 15-day forecast
horizon. These results underscore that ERDM consistently achieves significantly lower CRPS values
than the EDM baseline. The corresponding absolute CRPS scores are visualized in Fig. 10, and a
selection of them are summarized in Table 3. A full relative comparison between ERDM and EDM
is presented in the form of a scorecard in Fig. 13. A quantitative assessment of forecast calibration is
presented in Fig. 12, which displays the spread-skill ratio for the same set of models and variables.
ERDM generally generates well-calibrated forecasts on par or better than IFS ENS, and consistently
more calibrated forecasts than the EDM baseline or Neural GCM.

Table 3: Tabular CRPS scores for a selection of forecast horizons (three, seven, and ten days) and variables
(10m u-component of wind and 500 hPa geopotential). Lower is better.

ulOm z500
Model 3d 7d 14d 3d 7d 14d
EDM 0.6923 1324 1.769 76.04 204.9 3274
ERDM 0.6748 1.312 1.737 69.29 1975 316.7
IFS ENS 0.6830 1.318 1.785 5841 1834 3173
Neural GCM N/A 54.59 173.1 311.1

F.3 Comprehensive ERAS power spectra

To assess the physical realism of the generated forecasts, we analyze their spectral properties, as
presented in Fig. 14. This figure shows the spectral density of 14-day forecasts for several key
atmospheric variables, averaged over high latitudes ([60°,90°]). The absolute spectra (subfigure
(a)) and spectra normalized by ERAS reanalysis (subfigure (b)) consistently demonstrate the high
fidelity of ERDM. Our model’s spectra closely align with the ERAS target across a broad range of
zonal wavenumbers and frequently match or even slightly outperform those from the operational

35

---- EDM —— ERDM —— IFSENS NeuralGCM @ Graph-EFM

2t 10u 10v mslp

0 0
-5

-10 / -2 -2
-10

t1000 21000 q1000 ul000
20 30
20 10 i
20
10 10 4
0 10
0 -10 0 0
—
-10 S
t850 z850 q850 us50
. 10 .
5

CRPS vs EDM [%]
o

t700 2700 q700 u700

t500 2500 q500 u500

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Lead time (h) Lead time (h) Lead time (h) Lead time (h)

Figure 11: CRPS relative to next-step autoregressive EDM baseline (in %; lower is better) for 15-day rollouts
across a more comprehensive set of variables than in Fig. 5.

—— EDM —— ERDM —— IFSENS -+=+ NeuralGCM

10u

0.8

0.8

% 1.00
%]

0.75

1.00

0.75
12

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300

Lead time (h) Lead time (h) Lead time (h) Lead time (h)
Figure 12: Spread Skill Ratio (SSR) computed as the ensemble spread / ensemble-mean RMSE based on 10-
member ensembles for each model. Closer to 1 is better and represents a well-calibrated ensemble. Among
the ML-based methods, ERDM tends to produce the best calibration in terms of SSR, together with IFS ENS,
except for the first few lead times of z500 and z700 where it is overcalibrated. NeuralGCM and EDM tend to
be severely underdispersed, while IFS ENS tends to be slightly overdispersed, in the short range.

36

nm nw -

t z -75
so- M | .
il [J o
100- II -50
150- I.
200- -25
| =
. |5 s
— =
© -00 ®
< 8 :
Q
[
"5 s
& 500- | | '
& | 9
600-
L =50
mw
{ |1
925-
e [1
1000~ N a --10.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1
1357 10 %5 1.3 57 10 %5 1.3 5 7 10 5 1.3 57 10 15
Lead time (days) Lead time (days) Lead time (days) Lead time (days)

Figure 13: Scorecard of ERDM’s CRPS relative to next-step autoregressive EDM baseline (in %; lower is
better) for all predicted variables (except v, which is correlated with u), pressure levels, and lead times (up
to 15 days). ERDM consistently outperforms the EDM baseline, especially for geopotential and high-altitude
levels.

physics-based IFS ENS model. This accurate representation indicates that ERDM effectively cap-
tures the energy distribution from large planetary scales down to smaller synoptic scales for diverse
atmospheric fields. In contrast, NeuralGCM ENS exhibits a marked underestimation of energy at
mid to high frequencies for several variables, evident by its spectra decaying more rapidly in the
absolute plots and falling below unity in the normalized plots at these scales. The robust spectral
characteristics of ERDM across multiple variables underscore its capability to produce physically
consistent and realistic long-range weather forecasts.

F.4 ERAS forecast visualizations
See Fig. 15 and Fig. 16 for visualizations of example forecasts by ERDM for a specific initial

condition (2022-01-01) and several lead times. As suggested by the good power spectra (see section
above), ERDM produces realistic forecasts, including at long lead times (e.g., 15 days).

37

----- ERA5 —— ERDM —— EDM

—— IFSENS - NeuralGCM
» t50 10u
10" 10
8
10 106
6
10
. 10°
10
.
0 10
q700 q1000

10° 10’ 10° 10° 10' 10
Zonal wavenumber Zonal wavenumber

(a) Absolute spectral density.

. t850 2t
10
10° 10"
10’ .
10° 10
5
10
. 10
10
> 10° s
= 10
2 10
7}
°
‘_E 2500 mslp
©
12
(%_ 10 10'6
10 10‘A
10
1012
8
10
1010
10° 10°
10° 10’ 10 10° 10' 10°
Zonal wavenumber Zonal wavenumber
---- ERA5 —— ERDM —— EDM
t850 2t
10°
2
‘B
S
L 10
©
=
15}
o}
73 2500 mslp
el i
@
N
©
£
=
S
P4
10°

2 0

10 10' 10 10 10' 10
Zonal wavenumber Zonal wavenumber

—— IFSENS - NeuralGCM

q700 q1000

10° 10’ 10° 10° 10’ 10

Zonal wavenumber Zonal wavenumber

2

(b) Normalized spectral density (relative to ERAS reanalysis).

Figure 14: Spectral density of 14-day forecasts, averaged over high latitudes ([60°,90°]). ERDM generates
highly accurate spectra that match or even slightly beat the physics-based model IFS ENS, while NeuralGCM
ENS underestimates energy at mid to high frequencies. Subfigure (a) displays the absolute spectral density, and
subfigure (b) presents the normalized spectral density (absolute spectra divided by the target ERAS spectra).

38

2m Temperature
Init. time: 2022-01-01 00:00 UTC

300

290

Truth

280

270

260

ERDM

250

240

Error (Pred - Truth)

(a) 2 meter temperature (2t).
10m U-Wind Component
Init. time: 2022-01-01 00:00 UTC
.
.

.

S

Truth

ﬁ-‘”

s/w

-5

ERDM

L L1 1 © N & o o
© & AN
() Jouz

°
(s/w) so113

Error (Pred - Truth)

(b) 10m u component of wind (10u).

Figure 15: Example visualizations of ERDM (second row), the corresponding ground truth (first row), and the
bias (last row) for two example variables and forecast lead times 3, 7, 10, and 15 days.

39

Geopotential at 500hPa
Init. time: 2022-01-01 00:00 UTC

3d 7d 10d 15d
56000

.
_ “ _ M o
w - w w 52000

50000

» ‘ _.’i -‘.? \ 4. 2000

Truth
2S/zW

ERDM

= 3 LS

s .

E ., Y . ’ .‘1 » '_’ .. 1000 m
] 0o 2
H 3
T ~1000 =
o

=

w

Za AN i Bew'ehin o Y.

(a) Geopotential at 500 hPa (z500).

Specific Humidity at 700hPa
Init. time: 2022-01-01 00:00 UTC

0.008

Truth

0.006

63/6%

0.004

:;‘Lt oy Sl
#; ;M N 0.002
. \, o NG

e

ERDM

0.004

0.002

0.000

(64/6%) Jo3

~0.002

Error (Pred - Truth)

HlT Sl |
i\ 7“ X*“}éﬁ bl
(b) Specific humidity at 700 hPa (q700).

Figure 16: Example visualizations of ERDM (second row), the corresponding ground truth (first row), and the
bias (last row) for two example variables and forecast lead times 3, 7, 10, and 15 days.

40

	Introduction
	Related Works
	Background
	Forecasting with Elucidated Rolling Diffusion Models
	Training Objective
	Sampling
	Denoiser architecture for temporal dynamics

	Experiments
	Evaluation and Metrics
	Navier-Stokes fluid dynamics
	ERA5 weather forecasting
	Ablations
	Computational complexity

	Conclusion
	Broader Impact
	Background on Diffusion Models
	ERDM
	Probability flow ODE derivation
	Sampling
	Stochastic Heun Sampler
	Temporal noise prior

	Experimental Details
	Dataset details
	Implementation details and hyperparameters
	Baseline details
	Distinctions between GenCast and our EDM model for ERA5
	Compute resources
	Metrics

	Ablations
	ERDM initialization
	ERA5 evaluation year ablation

	Additional Results
	Additional Navier-Stokes results
	Detailed ERA5 quantitative results
	Comprehensive ERA5 power spectra
	ERA5 forecast visualizations

