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ABSTRACT

Large Language Models (LLMs) are intensively used to assist security analysts in
counteracting the rapid exploitation of cyber threats, wherein LLMs offer cyber
threat intelligence (CTI) to support vulnerability assessment and incident response.
While recent work has shown that LLMs can support a wide range of CTI tasks
such as threat analysis, vulnerability detection, and intrusion defense, significant
performance gaps persist in practical deployments. In this paper, we investigate the
intrinsic vulnerabilities of LLMs in CTI, focusing on challenges that arise from the
nature of the threat landscape itself rather than the model architecture. Using large-
scale evaluations across multiple CTI benchmarks and real-world threat reports,
we introduce a novel categorization methodology that integrates stratification,
autoregressive refinement, and human-in-the-loop supervision to reliably analyze
failure instances. Through extensive experiments and human inspections, we reveal
three fundamental vulnerabilities: spurious correlations, contradictory knowledge,
and constrained generalization, that limit LLMs in effectively supporting CTI.
Subsequently, we provide actionable insights for designing more robust LLM-
powered CTI systems to facilitate future research.

1 INTRODUCTION

We are living in an era of rapid digital transformation, where technological advancements are tightly
associated with the growing prevalence of cyber threats. In recent years, the cyber threat landscape
has shifted dramatically, with reported Common Vulnerabilities and Exposures (CVEs) increasing by
an average of 25% annually (Intelligence, 2023). In 2024 alone, more than 40,000 vulnerabilities
were reported (Corporation, 2025). This surge can be attributed to the rising complexity of IT systems
(Qualys, 2024), the widespread adoption of open-source software (Dam & Neumaier, 2023; Reading,
2024), and the accelerating pace of modern development cycles (Security, 2024). Together, these
dynamics expand the attack surface while making sole reliance on human analysts for vulnerability
assessment and remediation increasingly infeasible.

Spurious Correlation. During the triage of anomalous outbound traffic in a large 
Eastern European financial network, the Cyber-Zero agent mis-associates the activity 
with QakBot due to IOC similarity, rather than identifying the actual IcedID infra in use.

Contradictory Knowledge. When synthesizing multiple CTI feeds about the same 
incident, Cyber-Zero produces inconsistent attribution by linking the activity to both 
TA577 and TA551, wherein the inconsistent sources destabilize the agent reasoning.

Constrained Generalization. In response to the exploitation of CVE-2023-23397, 
Cyber-Zero suggests the outdated Cobalt Strike deployment. In reality, attackers had 
shifted to newer BumbleBee loaders. The agent failed to capture such evolving TTPs.

Figure 1: (Left) Failure ratios of cybersecurity agents. (Right) Examples of vulnerabilities.

Large Language Models (LLMs) have recently demonstrated strong performance in a broad range of
cyber threat intelligence (CTI) tasks. By adapting models through instruction fine-tuning or prompt-
based automation, researchers have applied LLMs to support threat analysis and decision-making
(Zhang et al., 2023), code vulnerability detection (Du et al., 2024), and defense against network
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Contextualization Attribution Prediction Mitigation
Cyber Threat Intelligence Stages

Vulnerability

Spurious 
Correlation

 1.1 Co-mention bias from raw threat incident

 1.2 Exploitation bias from deliberately reused IoCs

 1.4 Skewed source

 1.3 Confounding factors that explicitly/implicitly correlate entities

 1.5 Hierarchical metadata from attack chains

Contradictory 
Knowledge

 2.2 Conflicting reports of attack contexts or dependencies

 2.1 Temporal contradiction between outdated and recent evidence

 2.4 Divergent data structure from different platforms

 2.3 Semantic conflict

  2.5 Misaligned knowledge and security standards

Constrained 
Generalization

 3.1 Distributional bias

  3.3 Overfitted reasoning
  3.2 Unseen pattern from emerging threats

  3.4 Environmental unawareness

General: 20.42%
Agent: 11.64%

General: 35.93%
Agent: 26.35%

General: 33.72%
Agent: 31.05%

4.62% | 3.54%  

  2.6 Counteracting CTI generation and LLM alignment

17.53% | 9.66%  

22.71% | 24.05%

2.77% | 0.85%  

13.60% | 17.67%  

7.73% | 4.69%  
3.06% | 0.75%  

4.51% | 4.47%  

25.44% | 18.77%  

2.68% | 0.91%  

5.72% | 1.95%  

12.51% | 2.36%  

22.26% | 28.26%
2.92% | 18.14%

7.75% | 14.29%
General Agent

Figure 2: Summarization of the vulnerability types of LLMs in various CTI stages. Ratios are
calculated over the entire dataset (§2.2). Vulnerabilities may overlap within a single threat instance.

intrusions (Lavi et al., 2024). Despite these advances, substantial performance gaps remain in their
reported evaluations (Deng et al., 2024; Clairoux-Trepanier et al., 2024; Ji et al., 2024; Alam et al.,
2024; Liu et al., 2025), suggesting that such limitations cannot be fully addressed through typical
model adaptation or prompt-based automation. This raises a fundamental research question: What
intrinsic vulnerabilities constrain the effectiveness of LLMs in supporting CTI tasks?

Although some vulnerabilities stem from general challenges in LLM architecture and training
methodologies (which affect not only CTI but also broader domains (Aguilera-Martı́nez & Berzal,
2025)), this work focuses on the nature of the threat landscape itself, which may introduce unique
vulnerabilities for LLMs in effectively supporting CTI. Specifically, CTI requires reasoning under
intertwined, crowdsourced, and imbalanced evidence, which are conditions that differ substantially
from standard NLP benchmarks. To investigate this, this work makes the following contributions:

First, we conduct large-scale, systematic studies of LLM vulnerabilities in CTI, spanning a full-
fledged CTI lifecycle from threat analysis to incident responses. Our evaluation datasets drawn from
multiple CTI benchmarks (CTIBench (Alam et al., 2024), SevenLLM-Bench (Ji et al., 2024), SWE-
Bench (Jimenez et al., 2023), and CyberTeam (Liu et al., 2025)) as well as real-world threat reports
from CTI databases (CVE Program, 2024; National Institute of Standards and Technology (NIST),
2024; Cybersecurity and Infrastructure Security Agency (CISA), 2024) to ensure comprehensiveness.

Next, we develop a novel categorization methodology to investigate failure instances. One major
challenge in studying extensive threat instances is reliably scaling the analysis to categorize diverse
failure cases. Standard “LLM-as-judge” approaches are unreliable for automatic vulnerability type
finding and classification, as models tend to rationalize their own reasoning or fail to critically
evaluate contradictions (Yamauchi et al., 2025; Guerdan et al., 2025). To address this, we propose
an autoregressive, human-in-the-loop framework that categorizes failure instances efficiently and
with high reliability (§3). This methodology allows us to extract consistent insights from large-scale
evaluations while minimizing annotation workload.

Lastly, through large-scale experiments on industry-leading LLMs and LLM-powered cybersecurity
agents, complemented by detailed case studies, we identify three dominant categories of vulnerabili-
ties that limit LLMs in handling the threat landscape, as illustrated in Figure 1:
(1) Spurious correlations, wherein LLMs over-attribute based on superficial or co-occurring features
(e.g., mistaking commodity tools such as Mimikatz (Delpy, 2011) as actor-specific evidence).
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(2) Contradictory knowledge, wherein inconsistencies in CTI sources confuse models, causing
unstable or conflicting predictions.
(3) Constrained generalization, wherein LLMs struggle to extend beyond familiar distributions,
failing on emerging (zero-day) attack surfaces or novel TTPs.

Our analysis further shows that these vulnerabilities directly undermine the effectiveness of techniques
used in CTI pipelines. As summarized in Figure 2, each vulnerability spans multiple CTI stages and
influences different aspects of LLM reasoning. For example, spurious correlations distort evidence
retrieval, where LLMs amplify irrelevant co-occurrences in retrieved evidence, resulting in misguided
contextualization and faulty attribution. Overall, the detailed studies reveal the root causes by
combining vulnerabilities with the specific LLM workflows involved in different CTI stages, which
provides an in-depth understanding of how these vulnerabilities propagate through the reasoning.

By uncovering blind spots in LLM vulnerabilities for CTI, we provide foundational insights that can
guide principled adaptations in future CTI-focused LLM systems. To facilitate follow-up research,
we release codes at https://anonymous.4open.science/r/LLM-CTI-E773.

2 BACKGROUND AND MOTIVATION

This section first outlines the scope of CTI tasks (§2.1), then introduces the datasets used to assess
LLM performance along with extensive evaluation results (§2.2). These results motivate a deeper
investigation into specific vulnerabilities and their root causes, which we address through our
methodological design to categorize failure instances (§3) and research findings (§4).

2.1 BACKGROUND: CYBER THREAT INTELLIGENCE STAGES

Cyber threat intelligence (CTI) covers a broad range of cybersecurity activities that support the
analysis of threat events and the recommendation of timely, informed incident response.

Motivating Example. A healthcare network detects suspicious outbound traffic linked to newly
registered domains associated with QakBot. The security team first enriches event metadata by
mapping proxy logs to known C2 infrastructure and retrieving prior reports for context. Next,
they attribute QakBot’s reuse of infrastructure to the threat group TA577. Based on historical
correlations, they then predict a likely transition to Cobalt Strike and eventual ransomware
deployment. Finally, the team implements mitigation strategies, including generating Sigma
detection rules and prioritizing patches for vulnerable Exchange servers.

As illustrated by the above motivating example, CTI practices are typically organized into a pipeline
consisting of four stages, each of which involves distinct reasoning tasks and technical solutions:

❶ Contextualization: Security teams must enrich raw observations (e.g., suspicious logs, network
alerts, isolated IOCs) with contextual information to make them actionable. This includes mapping
events to known threat identifiers such as CVEs or MITRE ATT&CK TTPs, linking indicators to
malware families, and constructing coherent timelines of adversarial campaigns. Involved tech-
niques in this stage include topic modeling to group related threat narratives, event extraction to
identify structured incidents, knowledge base mapping to align content with known taxonomies, and
information retrieval to ground outputs in relevant threat reports or databases.

❷ Attribution: Once threat contexts are enriched, security teams investigate the likely adversaries
behind the activity. Attribution connects threat events to specific actor profiles or campaigns by
analyzing shared TTPs, infrastructure reuse (e.g., IP, domain overlap), and stylistic patterns such as
language use or operational cadence. Involved techniques here include named entity recognition
(NER) to extract actors, malware, and victim entities; relation extraction to identify links among
entities and events; structured event graph construction to represent sequences of observed behavior;
and threat actor classification using learned behavioral profiles from historical data.

❸ Prediction: With an understanding of the adversary, security teams aim to forecast future threats,
exploitation likelihood, and potential impact. This involves estimating the probability of exploitation
for known vulnerabilities (e.g., EPSS scoring), anticipating which sectors or systems are likely to be
targeted, and modeling campaign evolution. Involved techniques in this stage focus on historical
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Table 1: Collected cybersecurity benchmarks for LLM-CTI.

Benchmark CTI Scenario
Coverage

Unique Feature
❶ ❷ ❸ ❹

CTIBench (Alam et al., 2024) General CTI tasks ✓ ✓ ✓ ✗ Multi-choice questions (MCQ)
SevenLLM-Bench (Ji et al., 2024) Report understanding ✓ ✓ ✓ ✓ Synthetic instances, MCQ, QA
SWE-Bench (Jimenez et al., 2023) Software bug fixing ✗ ✓ ✗ ✓ Program analysis & patching
CyberTeam (Liu et al., 2025) Blue-team threat hunting ✓ ✓ ✓ ✓ Open-ended decision-making

event correlation to find temporal patterns, temporal modeling to capture threat progression, and
forecasting using time series or graph neural networks to predict propagation or escalation risks.

❹ Mitigation: Finally, CTI must support actionable decisions to reduce risk and guide incident re-
sponse. This includes recommending specific patches, tuning detection signatures (e.g., YARA/Sigma
rules (Alvarez, 2013; Roth & Patzke, 2017)), adjusting firewall or access control configurations, and
drafting response playbooks. Involved techniques supporting this stage include mitigation mapping
to associate observed TTPs or vulnerabilities with known defensive strategies, mitigation efficacy
prediction to rank possible responses, and summarization to generate concise, structured remediation
steps tailored to system environments.

Highlight �. Involved techniques above not only define the operational CTI pipeline but also help
explain the root causes of where vulnerabilities are likely to be introduced from threat landscape.

Section §4.2 and Appendix D.1 analyze root causes of vulnerabilities triggered by these techniques
across CTI stages, while Appendix A provides additional details on the techniques involved.

2.2 MOTIVATION: LLMS REMAIN INSUFFICIENT IN VARIANT CTI TASKS

Evaluation Datasets. To evaluate LLM performance on CTI tasks, we leverage benchmarks (Alam
et al., 2024; Ji et al., 2024; Jimenez et al., 2023; Liu et al., 2025) as well as real-world threat databases
and platforms. The benchmarks are summarized in Table 1, which provide a broad coverage across
all CTI stages and capture both structured (MCQ, QA) and unstructured (decision-making, patch
generation) task formats. To unify their use, we standardize each instance into a CTI-oriented scenario
explicitly aligned with one of the four CTI stages. For example, multi-choice questions (MCQs) from
CTIBench and SevenLLM-Bench are reformulated into concrete threat hunting scenarios, such as
analyzing a suspicious log entry to determine the relevant TTP or linking an IOC to a known malware
family. Our preprocessing mitigates structural biases that could otherwise inflate LLM performance.

We provide the details of real-world databases (or platforms) in Appendix B.2, along with data
statistics in Table 5. The prompt template used in evaluation is also included in Appendix B.6.

Evaluated LLMs. Our evaluation covers two complementary lines of models. First, we include
industry-leading, general-purpose LLMs (e.g., GPT-5, Claude-Sonnet-4, Gemini-2.5), which repre-
sent state-of-the-art reasoning capabilities across domains. Second, we evaluate on open-source or
API-accessible cybersecurity-specialized models (e.g., SecGPT (clouditera, 2025), DeepHat (Deep-
Hat, 2025)), which are adapted to security operations through domain-specific training and curated
CTI corpora. Investigating their performance gaps provides insights of vulnerabilities that cannot be
fully addressed by either large-scale pretraining or cybersecurity-specialized adaptation. Appendix
B.5 details all evaluated model and their versions.

Model-specific Gap. Across extensive evaluations on a broad range of CTI tasks (detailed introduc-
tions in B.3), Table 2 shows model-specific gaps: general-purpose LLMs dominate understanding-
heavy and synthesis tasks (e.g., populating attack graphs), while the best cyber-specialized agents
may outstand on semantic-driven or operational outputs (e.g., patch recommendation). In contextu-
alization, general models post sizable wins, e.g., Affected Systems F1 peaks at ∼0.82–0.88 versus
∼0.55–0.56 for most cyber agents; Source Reliability AUC tops out at∼0.91 versus a best cyber score
of ∼0.74, which reflects constrained long-context retrieval and instruction-following that also present
in text generation tasks such as Threat Report Alignment and Event Timeline. In attribution and
forecasting, the trend largely holds: general LLMs lead Threat Actor Linking (Acc up to ∼0.89) and
Exploit Likelihood (AUC up to ∼0.86). Notably, targeted domain tuning can flip certain edges: a top
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Table 2: Evaluation of LLMs on CTI tasks across four CTI stages. Industry-leading general-
purpose LLMs (left) are compared with cybersecurity-specialized models (right). Detailed CTI task
descriptions (with examples) are provided in B.3. Model names and versions are introduced in B.5.

CTI Task Metric
Industry-leading, general-purpose Cybersecurity-specialized

G5 Go4 CLD GEM LL70 MIX QWN GRK FSC CB0 ZYS LLY CBS SPT DHT

❶ Contextualization
Affected Systems F1 .822 .801 .757 .613 .882 .663 .747 .819 .432 .418 .553 .566 .562 .554 .559
Attack Infrastructure F1 .863 .741 .614 .578 .853 .628 .616 .493 .507 .492 .612 .625 .618 .611 .616
Vulnerability Linking Acc .652 .633 .602 .574 .649 .533 .521 .497 .512 .496 .621 .633 .629 .622 .628
Malware Family Mapping F1 .681 .659 .635 .602 .584 .567 .551 .529 .541 .526 .639 .652 .646 .641 .648
IOC Normalization F1 .721 .707 .682 .661 .642 .623 .609 .593 .602 .589 .678 .689 .684 .678 .683
Threat Report Alignment BLEU .429 .218 .206 .396 .486 .279 .271 .363 .159 .352 .441 .348 .244 .139 .342
Event Timeline Construction BLEU .563 .549 .532 .519 .504 .492 .478 .468 .472 .459 .594 .602 .599 .593 .597
Graph Population Acc .793 .676 .559 .539 .724 .507 .693 .478 .487 .472 .421 .334 .629 .424 .628
Source Reliability Scoring AUC .912 .894 .773 .861 .745 .631 .717 .753 .712 .699 .738 .547 .642 .537 .641

❷ Attribution
Threat Actor Linking Acc .892 .871 .652 .822 .598 .773 .753 .528 .643 .526 .704 .413 .707 .771 .608
TTP Extraction F1 .751 .738 .724 .703 .478 .669 .654 .642 .654 .639 .724 .537 .731 .726 .732
Campaign Attribution Acc .712 .691 .671 .649 .631 .607 .586 .567 .578 .563 .694 .703 .699 .694 .701
Infrastructure Reuse F1 .677 .656 .636 .609 .591 .574 .556 .534 .548 .531 .688 .528 .692 .754 .603
Language/Style Profiling Acc .598 .581 .561 .539 .521 .503 .488 .475 .489 .476 .632 .643 .638 .633 .639
False Flag Detection F1 .679 .526 .501 .486 .672 .459 .547 .436 .444 .431 .574 .286 .462 .576 .582
Evidence Weighting BLEU .362 .247 .131 .226 .402 .288 .178 .207 .073 .059 .097 .007 .102 .197 .083
Relation Graph Building F1 .642 .628 .611 .595 .579 .562 .547 .533 .544 .528 .675 .683 .678 .673 .679

❸ Prediction
Exploit Likelihood AUC .821 .806 .792 .771 .856 .742 .629 .714 .519 .703 .742 .559 .764 .653 .759
Impact Forecast BLEU .498 .383 .271 .354 .441 .226 .213 .202 .108 .094 .207 .119 .046 .115 .221
Target Sector Prediction Acc .841 .759 .743 .819 .602 .756 .712 .553 .564 .679 .502 .311 .623 .415 .619
Campaign Escalation AUC .683 .627 .611 .598 .582 .568 .554 .541 .548 .532 .607 .518 .652 .607 .613

❹ Mitigation
Patch Recommendation F1 .702 .679 .659 .636 .718 .601 .583 .671 .582 .567 .632 .442 .629 .641 .446
Rule Generation (YARA) BLEU .382 .216 .339 .482 .267 .213 .337 .184 .231 .307 .281 .089 .094 .287 .202
Response Summarization BLEU .514 .399 .286 .567 .252 .236 .422 .311 .118 .304 .315 .227 .433 .126 .208
Mitigation–TTP Mapping Acc .672 .652 .633 .611 .596 .578 .561 .548 .559 .544 .613 .626 .631 .624 .629
Defensive Playbook Gen BLEU .586 .572 .557 .537 .522 .508 .495 .482 .491 .476 .561 .572 .576 .571 .575
Countermeasure Ranking NDCG .591 .574 .561 .547 .532 .519 .504 .494 .503 .489 .623 .533 .629 .424 .429
Incident Ticket Generation Acc .831 .716 .601 .682 .868 .753 .639 .628 .536 .421 .653 .464 .668 .602 .564

cyber agent outperforms on Infrastructure Reuse (F1∼0.75 vs∼0.68 best general), and cyber models
consistently beat generals on operational ranking/classification such as Countermeasure Ranking
(NDCG ∼0.62–0.63 vs ∼0.57–0.59), suggesting influences from environmental (enterprise) contexts.
Performance among cyber agents is also more uneven (e.g., low F1 on False Flag Detection for some
models), indicating sensitivity to the quality and coverage of training (or retrieving) evidence.

Universal Gap. We also observed universal gaps among all models: limited IOC normalization and
CVE linking under obfuscation, inconsistent TTP extraction across retrieval-augmented reasoning,
and weak temporal coherence in timelines/escalation forecasts. We also observe shallow reliance on
real-world evidence in report alignment (low BLEU) and format errors in ticket/playbook generation.
These deficiencies present with both larger online models (e.g., GPT-5) and cyber-specific agents,
implying inherent limitations that may be triggered by the nature of the threat landscape.

Motivated by these gaps, we investigate vulnerabilities based on the concrete failure modes of LLMs
in CTI tasks. We aim to build a systematic view about where models break down and why these
vulnerabilities persist despite large-scale pretraining or domain-specific adaptation.

3 METHODOLOGY: CATEGORIZE FAILURE INSTANCES

After conducting the large-scale evaluation described in §2, we categorize the resulting failure cases
to better understand the limitations of LLMs. This process is guided by three research questions:

RQ1: How can we identify “failure” especially in tasks that lack hard-label annotations?
RQ2: How can we determine the finite scope of vulnerabilities (i.e., failure modes)?
RQ3: How can we efficiently categorize large-scale instances into these failure modes?

Overall, we do not fully trust LLM-as-judge or model-generated confidence to detect failure
cases, due to the lack of transparency and the risk of “self-rationalized” reasoning. Nevertheless, the
large scale of the evaluation set requires us to categorize instances efficiently beyond purely manual
efforts. To address this, we propose a stratification approach that partitions instances based on their
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Evaluation results Stratification 
(RQ1)

LLM-found 
“other” type

Multi-agent Failure categorization

Human inspection (RQ3)
• Multi-agent discrepancy and 

failure type changeAutoregression (RQ2)

1st run 2nd run
Human-proposed 

failure types

Figure 3: Overview of method to categorize failure instances (addressing RQ1-RQ3).

“failure” depth, followed by an autoregressive method combined with human-in-the-loop efforts to
resolve the above RQs. Figure 3 illustrates the workflow. Algorithms are deferred to Appendix C.1

3.1 STRATIFYING INSTANCES WITHOUT HARD-LABEL ANNOTATIONS (RQ1)

Most cyber threat intelligence tasks, such as mitigation rule generation, lack hard labels that allow a
binary correct/incorrect assessment. However, reference materials are typically available from CTI
reports and vulnerability advisories (e.g.,Cybersecurity and Infrastructure Security Agency (CISA)
(2024); CVE Program (2024)). We therefore leverage the reference-based metrics (e.g., text similarity
by BLEU) to quantify the matching degree between model outputs and authoritative sources.

Based on the calculated similarity scores, we stratify instances by their “failure” depth, ranging from
severe mismatches to partial alignment and near matches. Specifically, we rank all instances and
partition them into quantile-based strata (5% bins). Within each stratum, we initially inspect some
“correct” and “failed” samples and record their score distributions into two groups. For the remaining
instances, we classify them as “failed” if their scores fall within the range associated with failed
samples; if they fall in the overlapping region between the two groups, we conduct additional manual
inspection. We terminate the process once no new failure modes emerge (as defined in §3.2) and
the distribution of failure modes (in §3.3) across strata converges to a stable ratio. Practically, this
process is efficient as it requires manually inspecting no more than 3% of instances across all
CTI tasks. For clarity, the detailed algorithm is provided in Algorithm 1.

3.2 AUTOREGRESSIVE FAILURE MODE DETERMINATION (RQ2)

We avoid of using LLMs to directly determine failure modes (i.e., vulnerabilities), instead, we design
an iterative process alternating between human annotation and LLM-assisted classification. Let
D = {xi}Ni=1 denote the set of failure instances (from stratification results in §3.1).

Step 1 (Initialization). Human annotators randomly inspect a small subset D0 ⊂ D to derive an
initial taxonomy of failure modes, T0 = t1, . . . , tk.

Step 2 (LLM classification). For each remaining instance xj ∈ D \ D0, an LLM assigns a label
yj ∈ Tm ∪ {other}, where Tm is the taxonomy after m iterations.

Step 3 (Refinement). Instances labeled as other, i.e., Om = {xj | yj = other}, are further
inspected by human annotators. If new failure patterns are identified, new modes ∆T are added to
the taxonomy, yielding Tm+1 = Tm ∪∆T .

This loop repeats until ∆T = ∅, i.e., no new failure modes are found. We ultimately find the
stabilized set of failure modes: T ∗ = limm→∞ Tm (see Algorithm 2).

Note that determining vulnerability types (failure modes) requires comparing failure cases with the
ground-truth answers (or references). The specific methods tailored to each vulnerability type are
detailed in Appendix C.2.

3.3 HUMAN-IN-THE-LOOP CATEGORIZATION OF FAILURE INSTANCES (RQ3)

To balance reliability and scalability in large-scale categorization, we integrate human inspection
with multi-agent LLM decisions:

6
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Figure 4: Varying proportions of vulnerabilities (types listed in Figure 2). Note that different
vulnerabilities can intertwine within the same instance, which is particularly common in Contradictory
Knowledge (CK) and Constrained Generalization (CG), less common in Spurious Correlation (SC).

Step 1 (Multi-agent decision). For each threat instance xi requiring failure mode classification,
we construct a model set Θ = {GPT-5,Llama-4-17B,Gemini-2.5,Claude-Sonnet-4}.
Each model independently proposes an initial label ŷ(1)i ∈ T during the first execution.

Step 2 (Repetition for stability). Motivated by evidence that unstable internal knowledge may
lead to fluctuations across runs (Kumar et al., 2024), we execute a second round of multi-agent
deliberation. In this round, each LLM observes the predictions ŷ(1)i from other models, refines its
reasoning, and then proposes a new label ŷ(2)i for the same instance.

Step 3 (Human verification). Human inspectors evaluate consistency along two dimensions: (1)
if agent-level votes show disagreement (lack of consensus), or (2) if ŷ(1)i ̸= ŷ

(2)
i (fluctuation across

rounds). In either case, the instance is flagged as uncertain:

U = {xi | Var({ŷi(a)}) > 0 or ŷ
(1)
i ̸= ŷ

(2)
i }

where {ŷi(a)} denotes the set of labels assigned by agents a ∈ Θ. All xi ∈ U are then inspected by
human annotators for final determination.

The multi-agent collaboration handles the majority of straightforward cases efficiently, while humans
focus only on instances with instability or misalignment (empirically, less than 1.8% cases in this
step), thus balancing scalability with reliability in failure mode categorization (Algorithm in 3).

4 RESEARCH FINDING

Our categorization method leads to a detailed list of vulnerability types, as presented in Figure 2.
Building on this, we further investigate specific failure cases to address the following questions:

RQ4: How do different LLMs present varying proportions of vulnerabilities?
RQ5: What are the primary root causes that give rise to these vulnerabilities?
RQ6: How do multiple vulnerabilities interact and become intertwined within the same instance?

4.1 VARYING PERFORMANCE OF LLMS (RQ4)

We first study the varying performance of different models. As shown in Figure 4, and consistent
with the distributions across vulnerabilities in Figure 2, our analysis reveals clear differences in
how various LLMs handle distinct categories of errors: For vulnerabilities that directly impair LLM
inference (e.g., co-mentioned but irrelevant mitigation strategies or outdated metadata that reduce
retrieval effectiveness), general-purpose LLMs tend to accumulate a higher volume of failures. This
indicates that their broad but non-specialized training leaves them vulnerable to overfitting and
misinterpreting contextual evidence.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Summarized root causes of vulnerabilities, with detailed analysis in §4.2 and Appendix D.1.

Vulnerability Subtype Stage How Vulnerability Happens

Spurious (1.1) Co-mention bias ❶❷❸❹ RAG surfaces unrelated but co-mentioned mitigations or vulnerabilities, causing LLMs to infer false associations.
Correlation (1.2) Exploitation bias ❶❷❸❹ Reused IoCs across incidents mislead models into over-attributing infrastructure reuse or ongoing activity.

(1.3) Confounding factors ❶❷❸❹ Non-causal variables (e.g., geography, org tags) treated as causal predictors for exploit likelihood.
(1.4) Skewed source ❶ Overrepresentation of certain feeds biases patch prioritization and defensive rules toward specific vendors.
(1.5) Hierarchical metadata ❶❷❸ Structured taxonomies (e.g., ATT&CK chains) interpreted as causal orderings rather than descriptive metadata.

Contradictory (2.1) Temporal contradiction ❶❷❸❹ Outdated advisories conflict with newer reports, confusing model reasoning about valid mitigations.
Knowledge (2.2) Conflicting reports ❶❷❸❹ Disagreement between sources on documented attack context, actor, dependencies, or other evidence.

(2.3) Semantic conflict ❶ Different naming/taxonomies (e.g., PlugX vs. Korplug) cause inconsistency.
(2.4) Divergent structures ❶❷❸ JSON feeds vs. unstructured PDFs produce inconsistencies when fused into CTI mapping (e.g., TTP to patch).
(2.5) Misaligned standards ❷❸❹ Differences in scoring frameworks (CVSS vs. vendor ratings) yield contradictory threat intelligence.
(2.6) Counteracting generation ❷❸❹ Reasoning and generation on CTI tasks disrupt LLM safety alignment, causing unstable outputs.

Constrained (3.1) Distributional bias ❶ Training on limited language/region corpora hinders generalization to unseen threat contexts.
Generalization (3.2) Unseen patterns ❷❸❹ Zero-day exploits exhibit novel paths absent from model training, degrading exploitability forecasts.

(3.3) Overfitted reasoning ❷❸ Memorized patterns (e.g., CVE-TTP) lead to brittle linking and ineffective generation.
(3.4) Environmental unawareness ❷❸❹ Models overlook local system/sector-specific dependencies, producing ineffective mitigation strategies.

In contrast, for vulnerabilities rooted in the data used during fine-tuning (e.g., confounding factors in
the threat corpus), cyber agents such as Foundation-Sec or Cyber-Zero tend to produce less reliable
outputs (e.g., forecasting exploitability with contradictory PoCs). Such vulnerabilities act as data
poisoning, where spurious correlations and contradictory knowledge can arise either intentionally
(introduced by adversaries) or unintentionally (inherent in the fragmented cyber threat landscape).

Besides, we also observed that all models show constrained performance when confronted with
emerging or zero-day threats. Failure ratios are particularly high in specialized cyber agents, whose
localized nature and narrower pre-trained knowledge bases limit their adaptability. Once their training
cutoffs are reached, they lack the generalization capacity to extrapolate effectively to novel threats.

4.2 ROOT CAUSES OF VULNERABILITIES (RQ5)

During failure categorization (§3), we also gained detailed insights into how different vulnerabilities
are triggered by the used techniques among CTI tasks. Table 3 summarizes these causes in alignment
with the vulnerability types shown in Figure 2. Here, we highlight some representative cases:

Co-mention bias (1.1) in ❶ contextualization. Co-mention bias emerges in contextualization when
retrieval systems treat co-occurring entities in raw reports as causally linked. The security bulletin
may list multiple vulnerabilities or mitigation strategies together in a single section, even though
only one is relevant to a particular incident. Topic modeling or knowledge base mapping that lack
fine-grained data disambiguation may surface all co-mentioned entities as equally relevant. This
inflates the context with spurious links (e.g., assigning unrelated CVEs or MITRE TTPs to the same
intrusion set), misguiding LLMs to propagate spurious associations.

Case Study. Microsoft Patch Tuesday advisories often list many CVEs under one product (e.g.,
Windows Server) (Microsoft Security Response Center, 2003). The contextualization pipeline
ingests the bulletin and a threat report cites CVE-2021-34527 (PrintNightmare), GPT-5 incorrectly
infers that all co-mentioned CVEs were exploited in the same campaign, creating false links
between benign vulnerabilities and active threats.

Conflicting report (2.2) in ❹ Mitigation. Mitigation is influenced by different testing environment
and study scope of different vendors. For example, one advisory may claim that a patch fully resolves
an exploited vulnerability, while another report provides evidence that attackers continued exploitation
through chained dependencies, such as leveraging an adjacent misconfiguration. Mitigation mapping
that relies on these contradictory reports may overestimate or underestimate the coverage of a
particular countermeasure. Similarly, summarization pipelines may output inconsistent defensive
playbooks, some emphasizing patch deployment while others prioritize compensating controls. These
varying mitigation strategies leaving LLMs uncertain about actions that truly address threat incidents.

Case Study. In the 2021 Microsoft Exchange “Hafnium” case (Microsoft Threat Intelligence &
Microsoft 365 Security, 2021), some advisories claimed patches fully mitigated the threat, while
others warned of persistent web shells post-patch. The conflicting reports gave Qwen retriever
false assurance about their mitigation effectiveness.

A comprehensive analysis with case studies across all vulnerabilities is provided in Appendix D.1.
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4.3 STUDY OF INTERTWINED VULNERABILITIES (RQ6)

We also notice that multiple vulnerabilities frequently interact and compound within the same
instance. The root cause lies in the coupled nature of the CTI pipeline: early retrieval errors such as
co-mention bias or skewed sources propagate forward as “facts,” which downstream attribution or
prediction models cannot easily disconfirm. This effect is amplified by heterogeneous and drifting
evidence, wherein reports that differ temporally, semantically, or structurally force models to merge
incompatible signals. Under such uncertainty, models lean on inductive shortcuts, such as memorized
actor–TTP links, which transform incomplete or conflicting metadata into brittle reasoning. Finally,
the hierarchical and dependency-driven structure of attack chains and mitigation mappings means
that once one link is misread, the error cascades into adjacent stages. As a result, intertwined
vulnerabilities like co-mention bias plus temporal contradiction, or unseen patterns combined with
environmental unawareness, emerge as self-reinforcing loops that entangle multiple failures within
the same CTI instance.

Appendix D.2 also details additional analyses with case studies to complement our discussions.

Design Insight �. Vulnerabilities studied in this work are not solely caused by model design, but
by the inherently fragmented and adversarial threat landscape. Noise such as contradictory
proofs-of-concept, reused indicators, or incomplete metadata can propagate into models. Ad-
dressing these vulnerabilities therefore requires combining data curation, adversarially aware
fine-tuning, and inference-time safeguards to integratively control the adversarial influences.

5 RELATED WORK

LLM-as-agent. LLM-based agents have been explored across diverse domains such as educa-
tion (Chu et al., 2025), scientific discovery (Schmidgall et al., 2025), data science (Hong et al.,
2024), and urban mobility modeling (Wang et al., 2024). These applications highlight the ability of
LLM agents to decompose complex tasks, integrate external tools, and generate executable outputs.
In cybersecurity, distributed detection frameworks (Dong et al., 2023) and adaptive rule-evasion
defenses (Uetz et al., 2024) illustrate how agent-like systems can strengthen enterprise protection.

LLMs for cybersecurity. LLMs are increasingly leveraged for both offensive and defensive cyber-
security tasks, owing to their strong natural language understanding and reasoning capabilities. In
static analysis, LSAST augments traditional SAST tools with dynamic vulnerability knowledge (Kel-
tek et al., 2025), while hybrid systems use LLM-driven preprocessing and explanation to improve
anomaly detection in IoT (Ghimire et al., 2025). Autonomous agents have demonstrated the ability to
exploit one-day vulnerabilities (Fang et al., 2024b) and guide fuzzing across multi-hop library depen-
dencies (Zhou et al., 2024). Additional applications include enhancing intrusion detection (G. Lira
et al., 2024), supporting large-scale code review (Sun et al., 2025), and enabling malware tracking
through dataset augmentation and semantic analysis (Yu et al., 2024).

Vulnerabilities of LLMs. Despite their promise, LLM-based agents exhibit critical vulnerabilities
that undermine reliability in high-stakes domains. Recent work shows that malfunction amplification
attacks can cascade small reasoning errors into severe misjudgments (Zhang et al., 2024). Other
studies highlight vulnerabilities to data poisoning (Wang et al., 2025), adversarial prompts Debenedetti
et al. (2024), and misalignment (Fang et al., 2024a), all of which raise concerns for deploying LLMs
in security-sensitive environments.

6 CONCLUSION

This work presents systematic yet intensive studies of intrinsic vulnerabilities that constrain the
effectiveness of LLMs in cyber threat intelligence. By combining large-scale benchmark evaluations
with real-world CTI reports, we uncover three fundamental failure modes (spurious correlations,
contradictory knowledge, and constrained generalization) that persist across multiple CTI stages
and workflows. Our autoregressive, human-in-the-loop methodology enables reliable categorization
of failure instances and provides insights into how these limitations emerge and propagate. These
findings not only reveal blind spots in current LLM reasoning but also chart a path toward more
principled model adaptations and robust cyber agent design.
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ETHICS STATEMENT

This study does not raise ethical concerns. All experiments were conducted using publicly available
cyber threat intelligence (CTI) reports, standardized vulnerability databases (e.g., CVE, NVD, CISA
KEV), and openly accessible vendor advisories. No proprietary, sensitive, or personally identifiable
data were used. The research strictly adheres to the licensing and usage terms of all data sources.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the full implementation of our framework, including stratifica-
tion algorithms, evaluation scripts, and experimental settings, in an anonymous GitHub repository
linked in the Introduction. The repository contains detailed instructions that allow independent
researchers to follow our results and build upon our analyses.
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A COMPLEMENTARY DETAILS OF CTI

This appendix section provides additional details on how different CTI stages are conducted with the
involvement of various techniques, complementing Section §2.1.

A.1 ❶ CONTEXTUALIZATION

The contextualization stage transforms raw, fragmented observations into structured and actionable
intelligence. Below we elaborate on the specific techniques commonly employed in real world CTI
operations, with a natural sequence in practice.

• Topic Modeling. Topic modeling techniques such as Latent Dirichlet Allocation (LDA) (Blei
et al., 2003), Non-negative Matrix Factorization (Lee & Seung, 1999), and more recent neural
topic models (Dieng et al., 2020) are applied to large corpora of unstructured CTI text, including
threat reports, incident tickets, and log annotations. These models group documents or paragraphs
into coherent themes, enabling analysts to identify clusters of related activity such as “phishing
campaigns leveraging Office macros” or “ransomware families exploiting VPN vulnerabilities.”
In practice, topic modeling supports early triage by prioritizing threat feeds that share thematic
overlap with active campaigns in a given sector.

• Event Extraction. Event extraction identifies structured incidents—who did what, when, and
how—from unstructured logs or reports. Natural Language Processing (NLP) pipelines detect
entities such as vulnerabilities (CVEs), indicators of compromise (IP addresses, file hashes), and
TTPs (MITRE ATT&CK techniques (Strom et al., 2018)), then associate them with temporal
markers and actor actions. In Security Operations Centers (SOCs), event extraction enables
long-form reports to be converted into structured JSON objects or STIX bundles (oas, 2017),
which can be automatically ingested into SIEM platforms such as Splunk or Elastic. This reduces
manual parsing effort and ensures consistent representation across heterogeneous data sources.

• Knowledge Base Mapping. Knowledge base mapping aligns extracted entities and events
with standardized taxonomies such as CVE (CVE Program, 2024), CWE (MITRE Corporation,
2024b), MITRE ATT&CK (Strom et al., 2018), and CAPEC (MITRE Corporation, 2024a). This
process typically involves both exact matching (e.g., direct CVE ID resolution) and approximate
entity linking (e.g., mapping the phrase “remote PowerShell execution” to ATT&CK T1059.001).
In CTI practice, knowledge base mapping is essential for interoperability: intelligence can be
shared across organizations using a common language of identifiers, enabling correlation of local
incidents with global adversary behaviors.

• Information Retrieval. Information retrieval systems allow analysts to ground their findings
in relevant historical reports and external databases. Implementations include keyword- and
embedding-based retrieval from proprietary CTI feeds (e.g., Recorded Future, Mandiant Advan-
tage), open-source repositories (e.g., AlienVault OTX, AbuseIPDB), and structured vulnerability
catalogs such as NVD (National Institute of Standards and Technology (NIST), 2024) and the
CISA KEV catalog (Cybersecurity and Infrastructure Security Agency (CISA), 2024). Retrieval
pipelines often combine lightweight keyword filters for precision with dense embedding search
for semantic coverage. Analysts use these systems to verify whether a newly observed domain
has prior associations with known malware campaigns, or whether a vulnerability is actively
being exploited.

• Operational Integration. In SOC environments, the above techniques are integrated into semi-
automated pipelines. For example, a suspicious DNS query may trigger automated enrichment:
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(i) topic modeling identifies thematic overlap with phishing campaigns, (ii) event extraction links
the query to specific malware families, (iii) knowledge base mapping ties the observed behavior
to ATT&CK techniques, and (iv) information retrieval retrieves prior cases of infrastructure
reuse. The result is a structured incident summary that equips analysts with actionable context for
attribution, prediction, and mitigation.

A.2 ❷ ATTRIBUTION

Attribution in cyber threat intelligence involves identifying the adversary or campaign responsible for
observed malicious activity. This process requires combining technical indicators with contextual and
behavioral evidence. Below we describe the primary techniques used in real-world practice, along
with how they are operationalized by analysts.

• Named Entity Recognition (NER). NER systems are used to extract structured entities such as
malware families, infrastructure elements, or actor names from unstructured reports and incident
logs. For example, extracting references to APT28, Mimikatz, or QakBot across heterogeneous
feeds helps analysts consolidate threat narratives (Barnes & Kordzadeh, 2021).

• Relation and Event Extraction. Beyond isolated entities, attribution requires uncovering rela-
tionships among adversary tactics, techniques, and infrastructure. Relation extraction techniques
map, for instance, shared IP ranges between phishing campaigns or code reuse across malware
variants, while event extraction captures sequences of actions such as exploitation followed by
lateral movement (Husari et al., 2018a; Zhang et al., 2019).

• Infrastructure Correlation. Adversaries frequently reuse or repurpose command-and-control
(C2) infrastructure. CTI teams apply graph-based correlation to link domain registrations, TLS
certificates, and hosting providers, enabling attribution of otherwise fragmented observations to
known actor toolkits or campaigns (Stone-Gross et al., 2009; Antonakakis et al., 2017).

• Stylistic and Linguistic Profiling. Analysts also consider linguistic cues in adversary communi-
cations or malware code artifacts. Stylometry and compilation fingerprinting methods can identify
patterns in variable naming, debugging strings, or grammar usage, which help to tie malware
development back to particular groups (Alonso et al., 2019; Rosenblum et al., 2011).

• Campaign Graph Construction. To synthesize diverse evidence, CTI analysts build structured
graphs of adversarial campaigns, linking entities, infrastructure, and TTPs across incidents. Graph
construction enables propagation of attribution hypotheses and detection of actor evolution over
time (Park et al., 2020; Yang et al., 2021).

A.3 ❸ PREDICTION

Prediction in CTI involves forecasting adversarial actions, exploitation likelihood, and campaign
evolution. Unlike contextualization and attribution, prediction requires reasoning under temporal
uncertainty and incomplete information. In practice, analysts and automated systems deploy a range
of data-driven and model-based techniques to anticipate threats:

• Historical correlation and trend analysis. Analysts correlate prior incidents and intrusion cam-
paigns to identify recurring attacker playbooks. For example, statistical methods on longitudinal
CVE exploitation data help assess whether recently disclosed vulnerabilities follow exploitation
trends of past families (Bilge & Dumitras, 2012; Allodi & Massacci, 2014).

• Exploit prediction scoring. Models such as the Exploit Prediction Scoring System (EPSS)
estimate the probability that a vulnerability will be exploited within a given time window, using
features such as vulnerability metadata, CVSS scores, and real-world exploit observations (Jacobs
& Romanosky, 2019; 2021).

• Temporal modeling of campaign progression. Recurrent neural networks and temporal point
processes capture how campaigns unfold over time, modeling likely transitions from initial access
to follow-on payloads such as ransomware (Wang et al., 2019; Okutan & Yilmaz, 2020).

• Temporal forcasting. LLMs predict which TTPs an actor is likely to employ next or what’s
impact. This supports proactive defense, such as generating detection rules for tactics not yet
observed in the ongoing campaign (Sood & Enbody, 2013; Husari et al., 2018b).
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• Threat propagation simulation (synthesis). Agent-based and epidemic-style models simulate
the spread of malware or worms across interconnected systems, forecasting infection curves and
propagation likelihood (Xu et al., 2012; Liu et al., 2015).

A.4 ❹ MITIGATION

Mitigation is the final stage of cyber threat intelligence (CTI), where enriched analysis and attribution
results are translated into concrete defensive measures. Unlike contextualization or attribution, which
primarily generate insights, mitigation requires actionable transformations that directly alter security
posture. Below, we introduce the major classes of techniques commonly adopted in real-world CTI
practice.

• Detection rule generation. Security teams design, validate, and deploy detection rules in
languages such as Sigma and YARA to capture specific threat behaviors. In practice, detection
rules are tuned iteratively: analysts translate threat reports into rule signatures, test them against
telemetry or sandbox logs, and refine them to reduce false positives while ensuring coverage of
attacker tradecraft.

• Mitigation efficacy evaluation. Beyond applying countermeasures, analysts must assess their
effectiveness. Approaches include red-teaming exercises, breach-and-attack simulation (BAS)
platforms, and adversary emulation scenarios that replay known TTPs to test whether mitigations
succeed in preventing, detecting, or containing malicious activity (Shostack, 2014; Peisert et al.,
2021).

• Response playbook recommendation. Structured playbooks standardize incident response
by encoding lessons from CTI. These include step-by-step containment and recovery actions
tailored to adversary campaigns (e.g., disabling compromised accounts, isolating infected subnets).
Orchestration tools such as SOAR platforms automate playbook execution, integrating CTI feeds
into dynamic workflows (Mitnick & Vamosi, 2018; Scarfone & Grance, 2012).

• Summarization. Finally, mitigation intelligence is communicated through concise, contextual-
ized reports for executives and IT operators. Summarization synthesizes prioritized vulnerabilities,
mapped mitigations, and recommended workflows. This ensures decision makers understand
trade-offs between operational impact and security gains, and supports cross-team coordination
in enterprise-scale defense (Mavroeidis & Bromander, 2018; Anwar et al., 2021).

B ADDITIONAL DETAILS OF CTI EXPERIMENT FOR §2

B.1 USED BENCHMARK IN EVALUATION

Table 4 presents the original scales of the datasets used in our evaluation.

Table 4: Used cybersecurity benchmarks in our evaluations.

Benchmark Focus #Data #Task #Source
CTIBench (Alam et al., 2024) Cyber Threat Intelligence 5,610 5 N/A
SevenLLM-Bench (Ji et al., 2024) Report Analyzing 92,701 28 N/A
SWE-Bench (Jimenez et al., 2023) Bug fixing 2,294 12 1
CYBERTEAM (Liu et al., 2025) Blue-team threat hunting 452,293 30 23

B.2 USED REAL-WORLD DATABASES AND PLATFORMS IN EVALUATION

In addition to benchmarks, we incorporate several real-world cybersecurity databases and intelligence
platforms to ensure that our evaluation settings reflect practical CTI usage. Each database provides
complementary coverage across the CTI stages (§2.1), and we detail both their scope and our
methodology for leveraging their information.
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National Vulnerability Database (NVD). The NVD (National Institute of Standards and Technology
(NIST), 2024) serves as the canonical repository for software vulnerabilities and their CVSS severity
scores. We utilize NVD entries to support all ❶–❹ tasks. Specifically, we map vulnerabilities in
benchmark items to NVD records in order to standardize CVE identifiers, extract official CVSS
vector strings, and obtain temporal metadata (publication and modification dates). These fields allow
us to align system-environment observations with ground-truth vulnerability characteristics, and to
test forecasting models that predict exploit likelihood (e.g., by contrasting NVD base scores against
EPSS-derived estimates).

Exploit Prediction Scoring System (EPSS). EPSS (Jacobs & Romanosky, 2021) provides prob-
abilistic estimates of the likelihood that a given CVE will be exploited in the wild. We use EPSS
scores directly for ❸ prediction tasks, both as a source of labels (ground-truth exploitation likelihood)
and as a reference distribution to evaluate calibration of LLM-based forecasts. EPSS time-series
updates also enable temporal correlation experiments, where we assess whether models capture shifts
in exploitation likelihood following disclosure, patch release, or threat-actor reuse.

MITRE ATT&CK and CAPEC. The ATT&CK (mit, 2020) knowledge base encodes adversarial
tactics, techniques, and procedures (TTPs) in a structured taxonomy. We map CTI tasks involving
entity extraction, campaign attribution, and mitigation alignment to ATT&CK entries. For instance,
when evaluating ❷ attribution, extracted TTPs from LLM outputs are compared against ATT&CK
technique identifiers to assess correctness. We also leverage CAPEC (Common Attack Pattern
Enumeration and Classification) (MITRE Corporation, 2024a) to validate abstract attack patterns
referenced in benchmark items, particularly for mapping contextualized logs or IOCs to higher-level
adversarial behaviors.

MISP (Malware Information Sharing Platform). MISP (MISP Project, 2011) serves as a
community-driven threat intelligence sharing platform, containing structured feeds of indicators of
compromise (IOCs), malware samples, and infrastructure metadata. We use MISP to enrich contextu-
alization tasks (❶) by grounding benchmark instances in realistic IOC–malware–actor relationships.
For example, when a dataset item involves resolving a suspicious domain, we verify its presence in
MISP feeds and align it to associated threat actors or malware families. This enrichment supports
evaluation of LLMs’ ability to normalize IOCs and link them to campaigns.

VirusTotal. VirusTotal (Google LLC, 2004) aggregates antivirus detections and malware analysis
results across a large corpus of submitted files, domains, and URLs. We leverage VirusTotal reports
for ❶ contextualization and ❷ attribution tasks. In contextualization, VirusTotal tags (e.g., malware
family labels, sandbox behavior summaries) serve as auxiliary ground-truth for tasks like malware
family mapping. In attribution, we analyze infrastructure overlap by checking whether related
domains or IPs have been co-reported in VirusTotal samples, allowing us to validate LLM predictions
about infrastructure reuse.

Open Threat Exchange (OTX). AlienVault’s OTX (AlienVault, 2012) provides community-curated
threat pulses (collections of IOCs associated with specific campaigns or malware). We use OTX
primarily for ❷ attribution and ❸ prediction: pulses give us labeled groupings of IOCs tied to
campaigns, which we then cross-check against LLM-predicted campaign attributions.

Security Advisories and Vendor Bulletins. Finally, vendor advisories (e.g., Microsoft, Cisco,
Progress Software) and public CERT bulletins provide authoritative patching and mitigation recom-
mendations (Multiple Vendors (Microsoft, Cisco, Progress Software, etc.), 2000). We incorporate
these resources into ❹ mitigation tasks by aligning recommended countermeasures with benchmark
items. For instance, in patch recommendation evaluation, the correct answer set is derived from
vendor bulletins rather than from secondary threat reports. Similarly, YARA and Sigma rule examples
are drawn from advisory-linked repositories, ensuring that response summarization tasks are grounded
in practical remediation steps.

For consistency, we design a preprocessing pipeline that (i) normalizes identifiers (CVE, IOC,
ATT&CK TTPs) across databases, (ii) aligns timeframes so that prediction tasks respect disclo-
sure/exploitation chronology, and (iii) constructs ground-truth mappings between observations and
actor/campaign/mitigation entities. We are thus able to systematically evaluate LLMs across all CTI
stages using both controlled benchmarks (Table 1) and real-world ground-truth data.
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B.3 TASK DESCRIPTION

❶ Contextualization.

Affected Systems (F1). Binary decision per asset: is a listed host/application impacted by the
described CVE/IOC set (yes/no). Example: decide whether Exchange 2019 CU12 is affected
given a CVE vector and server build.

Attack Infrastructure (F1). Binary decision per indicator: determine whether an IP/domain/URL
belongs to adversary C2 or delivery infrastructure. Example: classify cdn-upd[.]com as campaign
infra vs. benign CDN.

Vulnerability Linking (Acc). Multi-class assignment of correct CVE(s) from candidates based on
logs/snippets. Example: map an IIS error pattern to {CVE-2021-34473} among distractors.

Malware Family Mapping (F1). Binary decision per candidate family: does observed behavior/ar-
tifacts match the family’s signature (yes/no). Example: tag samples as belonging to a loader vs.
banking trojan family.

IOC Normalization (F1). Binary correctness for canonicalizing raw IOCs (type+value)
against gold forms. Example: normalize hxxp://ex[.]ample[.]com/login to
http://ex.ample.com/login (URL).

Threat Report Alignment (BLEU). Text similarity between a generated one-sentence alignmen-
t/abstract and a reference summary of the most relevant report. Example: produce a synopsis that
matches the gold advisory linkage.

Event Timeline Construction (BLEU). Compare generated event sequence text to a gold timeline.
Example: “phish → beacon → lateral → exfil” vs. reference steps.

Graph Population (Acc). Multi-label slot filling for nodes/edges in an event graph (accuracy over
required triples). Example: add {host–used tool–T1059} and {user–compromised via–phish} edges
correctly.

Source Reliability Scoring (AUC). Binary scoring of source credibility (reliable vs. suspect) with
probabilistic output; evaluated by ROC-AUC. Example: score a paste site vs. vendor advisory on the
same IOC claim.

❷ Attribution.

Threat Actor Linking (Acc). Multi-class assignment of the most plausible actor profile(s) from
candidates. Example: pick the actor whose historical TTP set matches observed techniques.

TTP Extraction (F1). Binary decision per candidate technique ID: is T#### evidenced (yes/no).
Example: confirm T1059 (command execution) from process tree snippets.

Campaign Attribution (Acc). Multi-class selection of a campaign label among candidates. Example:
assign activity to a 2023 spearphishing campaign vs. a 2024 credential-harvest run.

Infrastructure Reuse (F1). Binary decision per linkage: does an IOC show reuse across events
(yes/no). Example: mark 203.0.113.7 as reused across two clusters within 30 days.

Language/Style Profiling (Acc). Multi-class style attribution (e.g., build system, macro style, lure
phrasing). Example: assign documents to a known lure/style family.

False Flag Detection (F1). Binary decision: is an observed signature intentionally misleading
(yes/no). Example: detect planted strings mimicking a different actor’s toolkit.

Evidence Weighting (BLEU). Textual rationale summarizing which evidence most supports the con-
clusion; compared to a gold rationale via BLEU. Example: generate a short justification prioritizing
sandbox logs over OSINT.

Relation Graph Building (F1). Binary decision per candidate relation triple (entity–relation–entity).
Example: validate {domain→hosts→IP} and reject spurious actor edges.

❸ Prediction.
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Exploit Likelihood (AUC). Binary probability that a CVE will be exploited within horizon h (e.g.,
30/90 days); evaluated with ROC-AUC. Example: score CVE-YYYY-XXXX as p = 0.41 for 30-day
horizon.

Impact Forecast (BLEU). Generate a short impact summary (availability/integrity/confidentiality
and severity band) and compare to a reference text. Example: “high integrity, medium availability;
critical if unpatched.”

Target Sector Prediction (Acc). Multi-class selection of likely sectors to be targeted. Example:
choose {healthcare, finance} from a sector set.

Campaign Escalation (AUC). Binary probability that activity will escalate (e.g., hands-on-keyboard,
ransomware) within h; measured by ROC-AUC. Example: output p = 0.32 escalation within 14
days.

❹ Mitigation.

Patch Recommendation (F1). Binary decision per candidate patch/hotfix: apply (yes/no) given
product/version constraints. Example: select KB# for a specific Windows build; skip superseded
fixes.

Rule Generation (YARA) (BLEU). Generate a detection rule text and compare to a canonical
reference via BLEU. Example: produce a YARA rule body that matches gold strings/conditions.

Response Summarization (BLEU). Produce a concise remediation summary aligned to gold text.
Example: “disable external OWA, apply patch KB. . . , add WAF rule . . . ”.

Mitigation–TTP Mapping (Acc). Multi-class mapping from observed TTPs to the correct mitigation
set. Example: map {T1059, T1027} to script-blocking and DLL-search-order hardening.

Defensive Playbook Gen (BLEU). Generate stepwise response playbook text; similarity to reference
measured by BLEU. Example: contain→eradicate→recover with host/network steps.

Countermeasure Ranking (NDCG). Rank candidate defenses by expected risk reduction; graded
relevance compared to an ideal ranking. Example: prioritize patching and credential hygiene over
low-yield blocks.

Incident Ticket Generation (Acc). Multi-class assignment for ticket fields (category, priority,
assignment group). Example: classify as malware/P2 with SOC-triage group.

B.4 DATA STATISTICS

Table 5 lists the number of instances we collected and used in evaluations.

B.5 MODEL NAME AND VERSION

Here we detail the used LLMs in our extensive evaluation (§2.2), corresponding to the abbre-
vated names used in Table 2 and in Section §4: G5–GPT-5, Go4–GPT-o4 mini, CLD–Claude
Sonnet 4, GEM–Gemini 2.5, LL70–Llama-3.1-70B-Instruct, MIX–Mixtral-8x7B-Instruct-v0.1,
QWN–Qwen2.5-14B-Instruct, GRK–Grok-2, FSC–Foundation-Sec-8B (Weerawardhena et al., 2025),
CB0–Cyber-Zero (Zhuo et al., 2025), ZYS–ZySec-AI-SecurityLLM (ZySec AI, 2024), LLY–Lily-
Cybersecurity-7B-v0.2 (Labs, 2024), CBS–CyberBase-13b (CyberNative, 2024), SPT–clouditera-
secgpt (clouditera, 2025), DHT–DeepHat-V1-7B (DeepHat, 2025).

B.6 EVALUATION PROMPT STRUCTURE

Below we provide our evaluation prompt used in §2.2:

Role. You are a cybersecurity threat-intelligence (CTI) analyst assistant and strict schema-
enforcer. Convert only the provided inputs (docs, logs, IOCs, CVEs, ATT&CK, advisories)
into the JSON contract below—no prose. Ground every field in supplied evidence; never
invent identifiers. Honor <SNAPSHOT DATE> as a hard knowledge freeze. Normalize and
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Table 5: Per-task instance counts in our evaluations. Counts may overlap across tasks.

❶ Contextualization

Affected Systems 38.6K
Attack Infrastructure 42.7K
Vulnerability Linking 35.2K
Malware Family Mapping 29.8K
IOC Normalization 33.1K
Threat Report Alignment 26.4K
Event Timeline Construction 19.7K
Graph Population 22.9K
Source Reliability Scoring 16.2K

❷ Attribution

Threat Actor Linking 21.6K
TTP Extraction 30.4K
Campaign Attribution 17.9K
Infrastructure Reuse 19.8K
Language/Style Profiling 12.7K
False Flag Detection 9.4K
Evidence Weighting 15.2K
Relation Graph Building 18.4K

❸ Prediction

Exploit Likelihood 24.6K
Impact Forecast 14.8K
Target Sector Prediction 13.2K
Campaign Escalation 11.7K

❹ Mitigation

Patch Recommendation 19.3K
Rule Generation (YARA) 12.4K
Response Summarization 16.8K
Mitigation–TTP Mapping 14.7K
Defensive Playbook Gen 11.6K
Countermeasure Ranking 13.1K
Incident Ticket Generation 12.2K

deduplicate CTI entities (CVE, ATT&CK, actor, IOC). If evidence is insufficient, return
"status":"NEED MORE CONTEXT" with missing fields. Respect safety (no exploit
guidance) and determinism (temperature=<TEMP>, top p=<TOPP>). Return exactly one JSON
object and nothing else.
Objective. Solve <TASK NAME> within <CTI STAGE> (CONTEXTUALIZATION |
ATTRIBUTION | PREDICTION | MITIGATION) using only the provided inputs at/be-
fore <SNAPSHOT DATE>.
Inputs
• Case ID: <CASE ID>

• Snapshot date (ISO): <SNAPSHOT DATE>

• Source docs (IDs + short snippets): <DOC LIST>

• Structured feeds: <STRUCT FEEDS>

• Task guidance: <TASK GUIDANCE>

• Output profile (choose fields to populate): <OUTPUT PROFILE>

· · · · · ·
Operating Rules
• Use only provided inputs. No external browsing or unstated facts.
• Do not fabricate CVE/TTP/actor names. Use exact IDs when given.
• If critical evidence is missing, return "status":"NEED MORE CONTEXT" and list
missing fields.

• Safety: no exploit code or offensive guidance. Mitigation only.
• Determinism: temperature=<TEMP>, top p=<TOPP>.
· · · · · ·
Output Contract (return one JSON only)
{
"status": "OK | NEED_MORE_CONTEXT | UNSUPPORTED",
"task": "<TASK_NAME>",
"case_id": "<CASE_ID>",
"snapshot_date": "<YYYY-MM-DD>",
"answer": {
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"ioc_normalization": [{
"raw":"<str>","type":"ipv4|domain|url|hash","value":"<canon>","

first_seen":"<date?>",
"tags":["<malware?>","<actor?>"]

}],
"vuln_linking": {
"cve_candidates":[{"cve_id":"CVE-YYYY-XXXX","score":0.0-1.0}],
"vector_string":"<CVSS3/4?>"

},
"malware_mapping": {
"family_candidates":[{"name":"<family>","score":0.0-1.0}],
"aliases":["<aka?>"], "capabilities":["<tags>"]

},
"event_timeline": [{
"t":"<ISO>","type":"<beacon|phish|lateral|exfil>",
"artifacts":["<IOC|host|user>"], "source_ref":"<DOC_ID>"

}],
"actor_linking": {
"actor_candidates":[{"name":"<actor>","score":0.0-1.0}],
"shared_ttps":["T####"], "infra_overlap":[{"indicator":"<ip|

domain>","match":"exact|fuzzy"}]
},
"ttp_extraction": [{"technique_id":"T####","sub":"T####.###?","
evidence_ref":"<DOC_ID>"}],
"campaign_attribution": {"name":"<label>","score":0.0-1.0,"
rationale_tags":["<sector?>","<geo?>"]},
"false_flag": {"likelihood":0.0-1.0,"signals_for":["<s>"],"
signals_against":["<s>"]},
"exploit_likelihood": {"cve_id":"CVE-YYYY-XXXX","horizon_days
":<7|30|90>,

"prob_exploit":0.0-1.0,"drivers":["<poc
?>","<reuse?>"]},
"impact_forecast": {"impact_vector":["<A|I|C>"],"severity_band":"
low|med|high|critical","uncertainty":0.0-1.0},
"target_sector": [{"name":"<NAICS-like>","prob":0.0-1.0}],
"escalation": {"prob":0.0-1.0,"signals":["<toolchain shift>","<
tempo>"]},
"patch_recommendation": {"affected_assets":["<product|version>"],

"patches":[{"kb_or_id":"<vendor-ID>","
priority":"P1|P2|P3"}],

"prechecks":["<backup?>","<downtime?>"]},
"rule_generation": {"rule_type":"YARA|Sigma","rule_name":"<name
>","rule_body":"<escaped>",

"test_iocs":["<ioc1>","<ioc2>"]},
"countermeasure_ranking": [{"mitigation_id":"<ATT&CK M###|vendor
>","title":"<short>",

"effort":"low|med|high","expected_gain
":"<short>"}],
"incident_ticket": {"category":"<phishing|malware|ransomware
|...>",

"priority":"P1|P2|P3","work_notes":["<steps
>"],

"required_artifacts":["<pcap?>","<edr?>"]}
},
"confidence": 0.0-1.0,
"justification": "<=40 words, terse, evidence-based>",
"evidence_refs": ["<DOC_ID or IOC or CVE>", "..."],
"metadata": {
"stage": "<CONTEXTUALIZATION|ATTRIBUTION|PREDICTION|MITIGATION>",
"assumptions": ["<short>"],
"missing_fields": ["<if status=NEED_MORE_CONTEXT>"]

}
}
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Scoring & Tie-Breaks
• Prefer precise IDs (CVE, ATT&CK T#, actor handles) and multi-source corroboration.
• Resolve conflicts by source quality, recency (≤ <SNAPSHOT DATE>), and internal consis-

tency.
Run Settings (fill before inference)
• <TASK NAME> = <...> <CTI STAGE> = <...>

• <CASE ID> = <...> <SNAPSHOT DATE> = <YYYY-MM-DD>

• <DOC LIST> = <[ID:desc, ...]> <STRUCT FEEDS> = <...>

• <TASK GUIDANCE> = <...> <OUTPUT PROFILE> = <...>

• <TEMP> = <0.0--0.3> <TOPP> = <0.8--1.0>

C COMPLEMENTARY DETAILS FOR §3

C.1 ALGORITHM

This part presents algorithm for our failure categorization methods:

Algorithm 1: Stratification for Failure Analysis (RQ1)
Input:
Original dataset Do = {xi}Ni=1 (CTI instances);
Predicted reports {yi} (model-generated outputs);
Ground-truth reports {ri} (reference advisories);
Evaluation metric Sim(·, ·) (e.g., BLEU);
Quantile step δ = 0.05;
Output:
Stratified failure group D;

1 foreach xi ∈ Do do
2 Compute similarity score si = Sim(yi, ri);
3 end
4 Sort {si} in ascending order;
5 Partition into candidate strata Gδ of size δ (quantile bins);
// Step 1: Establish anchors

6 Manually inspect representative samples in selected Gδ;
7 Record score ranges for “correct” vs. “failed” anchors;
// Step 2: Assign remaining instances

8 foreach xi not manually inspected do
9 if si within failed anchor range then

10 xi → D ; // Label xi as failure
11 else
12 if si within correct anchor range then
13 Label xi as non-failure (i.e., correct);
14 else
15 Manually inspect xi (boundary case);
16 end
17 end
18 end
// Step 3: Termination condition

19 Stop once no new failure modes appear and distribution of failure modes stabilizes across strata;
20 return Failure group D;
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Algorithm 2: Autoregressive Failure Mode Determination (RQ2)

Input: Failure instances D = {xi}Ni=1 (from stratification)
Human annotators H (for seeding and refinement)
Large Language Model fθ (for assisted classification)
Stability threshold ε; coverage threshold ρ (e.g., 0.6)
Output: Stabilized taxonomy of failure modes T ∗

// Step 1: Initialization
1 Human annotators H inspect a subset D0 ⊂ D;
2 Derive initial taxonomy T0 = {t1, . . . , tk};
// Step 2: LLM classification

3 foreach xj ∈ D \ D0 do
4 Assign label yj ∈ Tm ∪ {other} using fθ;
5 end
// Step 3: Refinement

6 Collect Om = {xj | yj = other};
7 Human annotators H inspect Om;
8 If new modes ∆T found, update taxonomy:
9 Tm+1 ← Tm ∪∆T ;
// Repeat until convergence

10 Repeat Steps 2–3 until ∆T = ∅ and coverage ≥ ρ;
11 Set T ∗ = limm→∞ Tm;
12 return stabilized taxonomy T ∗;

Algorithm 3: Human-in-the-loop Categorization of Failure Instances (RQ3)
Input:
Failure instances D = {xi}Ni=1 (from stratification)
Model set Θ = {GPT-5,Llama-4,Gemini,Claude}
Human annotators H
Output:
Final categorized instances with reliable failure modes
// Step 1: Multi-agent deliberation (round 1)

1 foreach xi ∈ D do
2 Each model a ∈ Θ independently assigns ŷ(1,a)i ∈ T ;
3 end
// Step 2: Repetition for stability (round 2)

4 foreach xi ∈ D do
5 Each model a ∈ Θ observes {ŷ(1,b)i }b∈Θ;
6 Refine reasoning and output ŷ(2,a)i ;
7 end
// Step 3: Human verification of uncertain cases

8 Define uncertain set:
9 U = {xi | ∃a : Var({ŷ(a)i }a∈Θ) > 0 or ŷ

(1,a)
i ̸= ŷ

(2,a)
i };

10 Human annotators H inspect all xi ∈ U and assign final labels;
// Finalize results

11 Instances D \ U take majority-agreed labels from models;
12 Instances U take human-verified labels;
13 return categorized dataset with reliable failure mode assignments;

C.2 DETERMINING VULNERABILITY TYPES

To systematically determine vulnerability types, we compare model-generated outputs with ground-
truth advisories or reference materials. Each type requires distinct criteria to establish whether a case
constitutes a failure. Below, we provide detailed guidance for all vulnerability types (failure modes).

1.1 Co-mention bias from raw threat incident. This type arises when the model assumes two
entities are related simply because they appear together in the input. To detect it, we check whether
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the reference advisory explicitly states a relationship. If not, and the model still reports an association
(e.g., linking a domain and a malware family that are merely co-mentioned in the same log file), we
classify the case as co-mention bias. For instance, if a proxy log shows both “malware.exe” and
“example.com” but the advisory only validates the domain as malicious, any model statement that
marks the executable as directly tied to the domain would be considered a co-mention failure.

1.2 Exploitation bias from deliberately reused IoCs. This failure occurs when the model treats
historical IoCs as valid for a new incident without reference confirmation. To identify it, we
compare whether the reference differentiates between “legacy” IoCs and those active in the reported
exploitation. If the model does not honor this distinction, it is flagged. For example, if the advisory
specifies that old C2 servers from 2021 were no longer used, but the model still lists them as indicators
of the current 2024 campaign, we mark it as exploitation bias.

1.3 Confounding factors that correlate entities. This error stems from mistaking correlation for
causation. To check, we review whether the model claims causal links between entities that the
references treat only as co-occurring or related by context. For instance, if two APT groups both use
the same loader malware, but references emphasize they are separate actors, any model conclusion
that “Group A conducted the intrusion because the loader was observed” is a confounding-factor
failure.

1.4 Skewed source. We detect this when the model bases its judgment on incomplete or biased
evidence. To assess, we compare the diversity of sources reflected in the output against references
that aggregate multiple reports. If the model reflects only one vendor’s outdated claim while ignoring
corrections from other advisories, it is considered a skewed-source failure. For example, if Symantec
updates its report that the threat vector was RDP rather than phishing, but the model still reproduces
the outdated phishing claim, the case is flagged.

1.5 Hierarchical metadata from attack chains. Here the failure lies in mishandling hierarchical
structures like ATT&CK techniques and sub-techniques. We check whether the model’s reported
granularity matches the reference hierarchy. If a reference states “T1059.001: PowerShell execution”
but the model collapses this to a generic “execution tactic,” it shows a hierarchy error. Similarly, if
the model treats a campaign label as equivalent to a single technique, the hierarchy is broken.

2.1 Temporal contradiction. This type occurs when the model confuses timelines. To identify it, we
compare the time anchors in the model output (e.g., attack start date, patch release) with those in the
references. If the model asserts events happened earlier or later than documented, it is a temporal
contradiction. For example, if the advisory states that exploitation began in June 2024 but the model
outputs “first exploited in 2022,” we classify it as temporal contradiction.

2.2 Conflicting reports of attack contexts. This failure arises when multiple sources disagree
and the model selects or merges them incorrectly. To determine it, we check whether the model
reflects the final reconciled context in references. For example, if initial reports said “phishing email”
but were later corrected to “supply-chain compromise,” and the model insists on phishing without
acknowledging the update, it is labeled as conflicting-context failure.

2.3 Semantic conflict. This error occurs when the model misinterprets terms or security concepts.
To identify it, we verify whether the technical meaning in the reference aligns with the model’s
description. If references mention “privilege escalation” but the model interprets it as “initial access,”
the semantic mismatch makes it a semantic conflict.

2.4 Divergent data structures. This happens when the model fails to follow structured taxonomies.
To evaluate it, we cross-check ATT&CK IDs, CVE structures, or CVSS vectors in the output with
those in the references. If the model generalizes or drops detail (e.g., returning “execution” instead of
“T1059.001”), the failure is classified as divergent data structure.

2.5 Misaligned knowledge and standards. This type emerges when the model applies outdated or
inconsistent standards. We check whether the model’s labels follow the same version of taxonomy as
the references. For instance, if a CVE is officially scored with CVSS v3.1 but the model outputs a
CVSS v2 vector, this is marked as misaligned knowledge.

2.6 Counteracting CTI generation and LLM alignment. This failure reflects cases where safety
alignment suppresses accurate CTI reporting. To detect it, we compare whether the advisory confirms

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

sensitive facts (e.g., that a zero-day is under active exploitation). If the model avoids mentioning it
with a vague refusal (e.g., “details omitted for safety”), we classify it as alignment counteraction.

3.1 Distributional bias. We check if the model over-generalizes to common patterns. References may
specify rare attack types, but if the model predicts frequent ones regardless, it is a distributional bias
failure. For example, when the advisory confirms a banking trojan but the model reports “ransomware”
(because ransomware dominates training data), we flag it.

3.2 Unseen pattern from emerging threats. This failure occurs when the reference describes a
novel exploitation unseen in prior data, and the model defaults to outdated templates. We identify it
when the model misses new threat mechanics (e.g., cloud API abuse) and instead describes traditional
server exploits. Such mismatches are categorized as unseen-pattern failures.

3.3 Overfitted reasoning. This type occurs when the model rigidly applies a reasoning shortcut.
We check whether the model attributes intrusions repeatedly to the same group or vector, even
when references show otherwise. For instance, if the reference states multiple groups use a given
malware but the model always assigns it to a high-frequency CVE or APT, we label the case overfitted
reasoning.

3.4 Environmental unawareness. This failure arises when the model ignores environmental scope.
To check, we compare the affected platforms or industries in the output with those in the references. If
the advisory states that only Linux servers are vulnerable but the model generalizes to “all enterprise
systems,” it is considered environmental unawareness.

D COMPLEMENTARY ANALYSIS

D.1 ROOT CAUSES OF VULNERABILITIES (CONTINUE TO RQ5)

Co-mention bias (1.1) in ❷ attribution. In attribution, co-mention bias presents when reports
describe overlapping infrastructure or techniques across multiple actors. A single campaign report
may reference domains, malware families, or TTPs associated with different groups, not because
of true collaboration but due to co-reporting practices. Relation extraction or graph construction
techniques then misinterpret these shared mentions as evidence of actor overlap or shared lineage,
resulting in erroneous attribution. For instance, if infrastructure reused by both APT X and APT
Y is co-mentioned, the model may incorrectly assign responsibility to one actor or merge distinct
campaigns. The root cause is that attribution pipelines often lack mechanisms to filter incidental
co-mentions from true operational reuse.

Case Study. As reported by Group-IB (Group-IB, 2025), analysts observed infrastructure overlap
in domains or servers co-mentioned across multiple campaigns attributed to MuddyWater. How-
ever, further investigation revealed that although the same infrastructure was used or appeared
in reports, the operational characteristics (targeting, malware payloads, attack vectors) differed
significantly between those campaigns. Because relation extraction or graph building techniques
often rely on co-occurrence of infrastructure to infer actor reuse, models might erroneously link
distinct campaigns to the same threat actor, or assume a shared campaign lineage, solely based on
the shared infrastructure.

Co-mention bias (1.1) in ❸ prediction. In prediction tasks, co-mention bias arises when models
forecast exploit likelihood or campaign escalation based on correlated but unrelated evidence in
prior reports. For example, if a dataset frequently co-mentions a vulnerability with a high-profile
exploit alongside unrelated low-severity flaws, predictive models may overestimate the risk of the
latter. Similarly, temporal modeling that uses co-occurring events may incorrectly infer progression
paths between independent threat activities. Historical event correlation amplifies this effect: threats
repeatedly co-mentioned in vendor advisories may be predicted to evolve together, even when no
causal relationship exists. Here, the root cause is an overreliance on surface-level temporal or
co-occurrence signals without causal disentanglement.

Co-mention bias (1.1) in ❹ mitigation. In mitigation, co-mention bias leads to flawed defensive
recommendations. CTI reports often list multiple countermeasures (e.g., patches, YARA rules,
firewall configurations) together, though not all apply to a given threat instance. Mitigation mapping
systems that rely on keyword overlaps may thus associate irrelevant countermeasures with observed

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

TTPs, producing noisy or infeasible recommendations. For example, if two patches are co-mentioned
in an advisory but only one addresses the exploited vulnerability, the model may still rank both as
equally necessary. Similarly, summarization pipelines can inadvertently include unrelated mitigations,
generating bloated or misaligned playbooks. The root cause lies in the assumption that co-mentioned
countermeasures share equal applicability, ignoring the fine-grained specificity required in operational
defenses.

Case Study. In Microsoft’s June 2025 Patch Tuesday advisory, 65 CVEs were addressed, including
a zero-day vulnerability exploited in the wild. The advisory lists patches for many components
including Microsoft Office, Visual Studio, Windows Kernel, WebDAV, SMB, and others (Research,
2025). Because patching is broad and multiple fixes are mentioned in the same bulletin, a CTI
model might treat all listed patches as equally urgent defense actions — even though only a small
subset correspond to vulnerabilities currently exploited. This leads organizations or systems to
over-allocate resources toward non-critical patching, or generate mitigation playbooks that include
countermeasures not immediately relevant to active threats.

Exploitation bias (1.2) in ❶ contextualization. In contextualization, exploitation bias emerges when
reused IoCs (e.g., IPs, domains, hashes) are repeatedly referenced across unrelated incidents, leading
enrichment pipelines to overgeneralize their significance. Information retrieval systems may surface
threat reports where the same IP is mentioned in multiple campaigns, without clarifying whether it
is genuinely reused by adversaries or simply a shared infrastructure artifact (e.g., cloud hosting or
CDN services). Topic modeling and knowledge base mapping exacerbate this issue by clustering
these co-occurrences, causing LLMs to link disparate events as if they were causally connected. The
root cause here is that raw IoC reuse lacks contextual disambiguation, so enrichment steps propagate
spurious relevance signals that distort downstream reasoning.

Exploitation bias (1.2) in ❷ attribution. Threat actor identification often relies on detecting overlaps
in IoCs, assuming that infrastructure reuse reflects shared adversary control. However, many IoCs are
deliberately reused by attackers to create ambiguity, or coincidentally shared due to compromised
hosting providers. Relation extraction and event graph construction may then over-attribute distinct
campaigns to a single actor, collapsing multiple adversarial lineages into one. For instance, if the same
command-and-control domain appears across incidents attributed separately to APT28 and APT29,
attribution models may incorrectly merge them. The root cause is an assumption of exclusivity in
IoC ownership, which adversaries exploit through deliberate recycling of infrastructure.

Exploitation bias (1.2) in ❸ prediction. During prediction, reused IoCs bias forecasts by inflating
the perceived likelihood of exploitation or campaign escalation. Historical event correlation and
temporal modeling often treat repeated appearances of an IoC as evidence of persistent activity,
projecting elevated future risk. Yet, in reality, the reuse may reflect low-cost attacker behavior
(spamming multiple targets with the same domain) rather than meaningful escalation. Graph-based
forecasting amplifies this, propagating edges from over-represented IoCs across multiple vulnerability
nodes, leading to inflated EPSS-like scores. The root cause lies in predictive models’ reliance on
frequency of appearance, without mechanisms to discount intentionally or incidentally reused IoCs.

Case Study. Multiple CVEs share many IoCs (e.g., IP addresses and domain names) across
different CTI provider feeds (Kodituwakku et al., 2023). Over time, some of these IoCs appear
repeatedly in contexts of various vulnerabilities, even though not all of them are actually exploited
in relation to each CVE. Because prediction models often take frequency of IoC appearance as
a strong signal, they tend to assign higher risk to these CVEs or predict escalation based on the
reused IoCs. In this way, reuse of IPs/domains (which may simply reflect broad surveillance
coverage or shared infrastructure, not genuine exploit activity) inflates perceived future threat
likelihoods.

Exploitation bias (1.2) in ❹ mitigation. In mitigation, exploitation bias presents when counter-
measure recommendations are tied too strongly to reused IoCs. For example, signature generation
systems may repeatedly create YARA rules around the same recycled domain or hash, producing
redundant or noisy detection logic. Patch recommendation pipelines may mis-prioritize vulnerabilities
linked to reused IoCs, assuming their recurrence reflects higher severity. Summarization systems
generating response playbooks may include repeated references to blocking the same IoC across
different incidents, inflating defensive burden without increasing actual protection. The root cause
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is that mitigation mapping often equates frequency of IoC appearance with actionable importance,
overlooking the adversary tactic of deliberate recycling.

Confounding factors (1.3) in ❶ contextualization. In contextualization, confounding factors often
emerge when raw observations contain multiple entities that correlate implicitly but lack a direct
causal relationship. For instance, topic modeling applied to large incident corpora may cluster a
vulnerability (CVE) with a malware family simply because they are frequently mentioned together
in reports, even if the malware never exploited that vulnerability. Similarly, event extraction can
incorrectly bind unrelated infrastructure (e.g., a benign domain) to a malicious timeline because both
appear in the same paragraph. The root cause is that contextual enrichment techniques rely heavily
on co-occurrence or textual proximity, which implicitly correlates entities without accounting for
deeper causal validation, thereby inflating the contextual landscape with misleading links.

Confounding factors (1.3) in ❷ attribution. Confounding factors are especially problematic in
attribution, where analysts and models attempt to connect behaviors to actors. Relation extraction
and event graph construction can erroneously merge distinct campaigns if they share surface fea-
tures — for example, multiple threat groups may use commodity malware or overlapping hosting
providers. Without careful disentanglement, the attribution pipeline interprets these shared attributes
as strong evidence of common authorship. Moreover, stylistic signals such as language or compilation
timestamps may correlate with regional actors but can be misleading when adversaries deliberately
obfuscate or mimic others. Thus, attribution systems are vulnerable to implicit correlations that
misguide actor classification, producing overconfident but flawed linkages between incidents and
threat groups.

Case Study. In our attribution dataset, we observed a campaign exploiting CVE-2022-1388 (a
remote code execution vulnerability in F5 BIG-IP devices) that was mistakenly clustered with
another intrusion attributed to a different actor. Both campaigns used the same publicly available
exploitation script and temporarily shared IP infrastructure via a bulletproof hosting provider.
Although the payloads and target industries differed, the attribution pipeline—heavily relying on
shared malware hashes and infrastructure proximity—merged the two incidents under a single
actor label. Further analysis revealed that one group had intentionally mimicked the operational
cadence and header patterns of the other, introducing stylistic confusion. This misattribution was
rooted in the model’s inability to disentangle commodity tooling from actor-specific behavior,
exemplifying how confounding factors can mislead attribution systems.

Confounding factors (1.3) in ❸ prediction. During prediction, confounding factors distort forecast-
ing by elevating signals that are correlated with exploitation or escalation but not truly causal. For
example, historical event correlation may reveal that vulnerabilities discussed in the same advisories
as high-severity flaws appear more likely to be exploited, even if they are rarely targeted in practice.
Time series models may overweight recurring co-mentions across campaigns, predicting that certain
malware–sector combinations will reappear simply because of their past textual co-occurrence. Graph
neural networks, when trained on CTI event graphs, may propagate spurious links (e.g., connecting
two vulnerabilities through a shared but irrelevant indicator), reinforcing false associations. Here,
the root cause lies in the inability of predictive models to filter out spurious correlates from genuine
causal drivers.

Confounding factors (1.3) in ❹ mitigation. In mitigation, confounding factors lead to noisy or
misaligned defensive recommendations. For instance, mitigation mapping systems may associate
a patch with multiple unrelated TTPs simply because they were mentioned in the same advisory,
conflating the true scope of the fix. Similarly, defensive playbook generation may cluster unrelated
countermeasures together, producing bloated response strategies that overprescribe actions. Even
mitigation efficacy prediction models can be misled if training data shows that certain mitigations are
frequently co-listed with high-profile vulnerabilities, causing the model to rank them as universally
effective. The underlying issue is that mitigation pipelines frequently assume that correlated mentions
of threats and countermeasures imply operational relevance, leading to inflated or misdirected defense
guidance.

Skewed source (1.4) in ❶ contextualization. Skewed source bias originates primarily in contextu-
alization because this stage depends heavily on external retrieval and enrichment pipelines. When
information retrieval systems disproportionately pull from certain vendors, open-source repositories,
or community feeds, the resulting knowledge base becomes skewed toward specific regions, vendors,
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or product lines. For instance, a RAG system trained on CTI feeds dominated by North American
vendors will overrepresent CVEs affecting widely deployed enterprise systems, while underrepre-
senting region-specific threats or mobile malware in other ecosystems. Topic modeling and event
extraction then propagate this imbalance by clustering narratives around the most frequently indexed
vendors rather than providing a representative view of the global threat landscape. Thus, the root
cause lies in uneven data source availability and ingestion pipelines, which distort the contextual
foundation upon which downstream reasoning is built.

Case Study. In our contextualization experiments, we analyzed enrichment results for
CVE-2023-20963 (a critical privilege escalation vulnerability affecting Google Pixel devices).
While regional CERTs and Android security blogs had documented active exploitation of this
CVE in Southeast Asia, our retrieval module—trained predominantly on English-language feeds
from North American enterprise vendors—failed to surface these reports. As a result, the contex-
tualization pipeline linked the CVE only to generic kernel privilege escalation patterns, without
associating it with active campaigns or mobile-targeted payloads. Topic modeling then grouped
the CVE under server-side vulnerabilities rather than mobile device threats, further distancing it
from relevant mitigation data. This illustrates how over-reliance on skewed sources can suppress
visibility into region-specific threats and impair downstream enrichment quality.

Skewed source (1.4) in ❷ attribution (Why not influential). Attribution is less directly affected
by skewed source bias, since once contextualized entities are available, the task focuses on linking
them to adversary profiles or campaigns. While attribution accuracy can degrade if upstream contex-
tualization is biased, the attribution process itself (e.g., relation extraction, event graph construction,
stylistic profiling) does not inherently depend on the relative volume of one vendor’s reports over
another. Instead, attribution errors are more likely to stem from confounding overlaps, contradictory
knowledge, or overfitted reasoning. Therefore, skewed source bias has only an indirect influence at
this stage, primarily through the quality of contextual signals passed forward.

Skewed source (1.4) in ❸ prediction (Why not influential). Prediction tasks such as exploit
likelihood estimation, campaign escalation modeling, or sectoral targeting forecasts typically rely
on historical event correlation and temporal modeling, rather than raw source diversity. Once
contextualized and attributed data is available, predictive models infer temporal or causal structures
independent of whether one vendor dominates the input streams. Skewed sources may still indirectly
shape the training distribution (e.g., overpredicting risks for vendor-popular products), but the
predictive mechanisms themselves are not fundamentally triggered by source skew. Instead, failures
in this stage more commonly arise from unseen patterns, zero-day threats, or distributional bias in
event histories rather than skewed input sources.

Skewed source (1.4) in ❹ mitigation (Why not influential). Mitigation is similarly insulated
from direct skewed source effects. Once recommendations are mapped (e.g., patches, rules, or
playbooks), the ranking and summarization steps focus on aligning countermeasures with observed
TTPs or vulnerabilities, not on the origin of the source reports. While an upstream bias may
have limited the initial diversity of vulnerabilities considered, the mitigation stage itself does not
amplify source skew. Errors in mitigation typically reflect misaligned standards (e.g., CVSS vs
vendor scoring), counteracted evidence (patch bypasses), or environmental unawareness (system-
specific configurations). Thus, skewed source remains a contextualization-stage vulnerability whose
downstream effects are secondary rather than intrinsic to mitigation logic.

Hierarchical metadata (1.5) in ❶ contextualization. During contextualization, hierarchical meta-
data embedded in attack chains can mislead enrichment processes. MITRE ATT&CK or similar
frameworks present TTPs as sequences in which adversaries may progress from initial access to
impact. However, when LLMs or RAG-based pipelines ingest this structured knowledge, they
may mistakenly treat the ordering as deterministic rather than illustrative. For example, if multiple
unrelated IOCs are linked to a chain stage, the model may infer that they are causally connected
because of their shared position in the hierarchy. Topic modeling and event extraction further amplify
this issue, since co-occurrence within the same hierarchical step often gets interpreted as functional
equivalence, thereby creating spurious associations between distinct threat activities. The root cause
is the conflation of descriptive, taxonomy-based ordering with ground-truth causal relations.

Hierarchical metadata (1.5) in ❷ attribution. In attribution, hierarchical metadata bias presents
when structured attack chain taxonomies are used to connect adversary behavior to actor profiles.
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Threat reports often highlight sequences of TTPs that adversaries are “known” to employ, but in
practice attackers skip, reorder, or substitute steps. Relation extraction and graph construction tools,
however, may rigidly map observed behavior to the canonical hierarchy, leading to over-attribution.
For instance, if two groups share overlapping steps in the ATT&CK chain (e.g., persistence or lateral
movement), hierarchical metadata can cause models to collapse them into the same attribution cluster,
even if their infrastructure and operational cadence differ. Thus, reliance on hierarchical metadata in
attribution conflates broad behavioral categories with actor-specific evidence.

Case Study. In our attribution experiments, we observed a misclassification related to
CVE-2022-30190 (Follina Microsoft Support Diagnostic Tool RCE), where two distinct cam-
paigns—one leveraging Microsoft Office documents, and another using HTML smuggling tech-
niques—were both partially mapped to the same sequence in the MITRE ATT&CK framework
(Initial Access → Execution → Lateral Movement). Despite clear differences in command-and-
control infrastructure and target sectors, the graph construction module merged both campaigns
under a single actor cluster due to their alignment with a common TTP hierarchy. The system
interpreted the overlapping ATT&CK phases as evidence of a shared operational lineage. However,
manual review confirmed the two campaigns were launched by different groups, with different
goals and temporal scopes. This case illustrates how over-reliance on hierarchical metadata can
collapse distinct operations into the same attribution cluster, reducing fidelity.

Hierarchical metadata (1.5) in ❸ prediction. Prediction tasks are particularly vulnerable to
hierarchical metadata bias, as temporal models often use sequential patterns from attack chains
to forecast campaign escalation. Forecasting tools may assume that once a threat is observed at
one stage (e.g., privilege escalation), subsequent hierarchical steps (e.g., data exfiltration) will
necessarily follow. This prescriptive interpretation leads to inflated probabilities of certain outcomes,
even when the adversary’s campaign objectives differ. For example, opportunistic attackers may
terminate activity after initial access without advancing through the full chain, but predictive models,
trained on hierarchical metadata, extrapolate full kill chain completion. Here the root cause is the
overgeneralization of taxonomy-driven sequences as predictive signals of adversarial intent.

Hierarchical metadata (1.5) in ❹ mitigation (why not influential). By contrast, mitigation tasks
are less directly affected by hierarchical metadata bias. Defensive actions such as patch application,
YARA rule generation, or firewall tuning are typically grounded in concrete IOCs or known vulner-
abilities rather than inferred positions in an attack chain. Mitigation mapping focuses on linking
observed TTPs to available defensive strategies, not on reconstructing or extrapolating hierarchical
steps. Even if upstream contextualization or prediction stages have been biased, mitigation operates
on a more pragmatic level: “given X IOC or Y vulnerability, recommend Z patch or rule.” Thus,
hierarchical metadata plays a minimal role in this stage, since response generation depends on
actionable artifacts rather than assumed causal ordering of adversarial behaviors.

Temporal contradiction (2.1) in ❶ contextualization. In contextualization, temporal contradictions
emerge when retrieval or enrichment systems ingest both outdated and recent advisories without
properly disambiguating their validity. For instance, information retrieval pipelines may surface a
vendor’s original advisory that labeled a vulnerability as “under investigation” alongside a newer
update stating it has been patched. Topic modeling or knowledge base mapping then treat both pieces
of information as equally valid, causing LLMs to enrich raw indicators with conflicting metadata.
This leads to enriched contexts where a vulnerability is simultaneously “exploited in the wild” and
“not yet confirmed,” which can misguide subsequent correlation. The root cause is the absence of
temporal weighting or source freshness filters in contextualization pipelines.

Temporal contradiction (2.1) in ❷ attribution. In attribution, temporal contradictions present when
different reports about an adversary’s activity span different time periods but are fused as if they
describe the same campaign. Relation extraction or event graph construction may link infrastructure
referenced in an outdated report to more recent attack chains, even if the adversary has long since
abandoned those assets. Similarly, named entity recognition can tag an actor profile based on old
malware usage, which conflicts with newer intelligence indicating a complete toolset shift. This
results in inflated or inaccurate attribution, where models mistakenly conclude that an actor is reusing
infrastructure or TTPs when the overlap exists only across time-separated reports. The root cause
here is insufficient temporal resolution in attribution graphs and classification models.
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Temporal contradiction (2.1) in ❸ prediction. Temporal contradictions pose particular risks in
prediction, where forecasts rely heavily on historical data. If older datasets mark a vulnerability as
non-exploitable, but newer advisories confirm widespread weaponization, models trained on both may
generate unstable exploitability estimates. Temporal modeling pipelines may inadvertently treat early
false negatives and later confirmed positives as equivalent, confusing progression trends. Similarly,
forecasting models using historical event correlation may blend outdated infrastructure associations
with current actor behaviors, leading to incorrect campaign evolution predictions. The root cause lies
in the lack of mechanisms to discount superseded evidence, which creates contradictory temporal
signals during exploit likelihood and impact modeling.

Case Study. A concrete example is the evolution of exploit activity for CVE-2020-1472 (Ze-
rologon). Initially, after its disclosure, exploit usage was limited and many datasets treated the
vulnerability as low risk. Over time, threat actors began leveraging Zerologon widely, including
in ransomware and lateral movement toolchains. EclecticIQ’s long-term analysis demonstrates
how risk associated with this vulnerability evolved substantially across months, with early scarce
activity later giving way to broad exploit adoption (Team, 2022). Predictive models that do not
de-emphasize earlier false negatives risk underestimating exploitability or generating contradic-
tory forecasts. This case underscores how temporal contradiction — mixing outdated low-risk
labeling with current high exploitation data — can destabilize predictions of vulnerability exploit
likelihood.

Temporal contradiction (2.1) in ❹ mitigation. During mitigation, temporal contradictions can
mislead response prioritization. For example, mitigation mapping may retrieve a vendor patch note
stating “fix not yet available,” while a newer advisory lists a released patch. Summarization or
mitigation ranking systems that fail to resolve the temporal sequence may present both claims to
the analyst, leaving uncertainty about whether a defense is actionable. Similarly, mitigation efficacy
prediction models may weigh outdated proofs-of-concept that show patch bypasses against more
recent vendor confirmations that the patch has been hardened, producing contradictory rankings. The
root cause is inadequate reconciliation of evolving patch and mitigation information over time, which
allows old and obsolete advice to persist alongside updated guidance.

Conflicting report (2.2) in ❶ contextualization. Conflicting reports frequently arise during con-
textualization because raw observations are aggregated from diverse sources — vendor advisories,
community threat feeds, and open reports — that describe incidents with varying detail and emphasis.
For example, one feed may assert that a suspicious log entry corresponds to exploitation of a particular
CVE, while another links the same log to an entirely different vulnerability or malware family. Topic
modeling and event extraction pipelines, designed to cluster narratives and structure incidents, may
then merge these contradictory claims into a single enriched context. This creates confusion over
which CVE, TTP, or malware family is actually relevant, with the root cause being the absence of a
standardized ground truth and the reliance on partially overlapping but inconsistent external reports.

Case Study. In our contextualization dataset, we observed a case related to CVE-2020-1472
(Netlogon Elevation of Privilege) where two intelligence sources described the same suspicious
authentication anomaly differently. Source A associated the log entries with attempted exploitation
of CVE-2020-1472 based on domain controller access patterns, while Source B linked the same
entries to a credential stuffing attack referencing a password reuse vulnerability. Our event
extraction and clustering module merged both narratives into one incident node, assigning mixed
attributes (some from CVE-2020-1472 context, some from credential reuse context). As a result,
downstream enrichment conflated the CVE and misattributed the observed behavior to the wrong
TTP/malware family. This demonstrates how conflicting reports can introduce ambiguity in
contextualization, leading to corrupted or merged contexts that mislead later modules.

Conflicting report (2.2) in ❷ attribution. In attribution, contradictions become even more pro-
nounced because different intelligence providers often assign conflicting actors, dependencies, or
motivations to the same activity. For instance, one report may classify an intrusion as the work of
APT29 based on shared TTPs, while another attributes the same infrastructure to APT28 due to
linguistic or operational cadence evidence. Relation extraction and graph construction techniques
that link entities across sources may therefore inherit and fuse these contradictions, producing noisy
actor graphs or overextended campaign links. The underlying root cause is the subjectivity and
methodological diversity of attribution across organizations — some weigh infrastructure overlaps
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more heavily, others focus on malware lineage — which produces irreconcilable dependency paths
when combined.

Conflicting report (2.2) in ❸ prediction. Prediction models also suffer from contradictory re-
ports when forecasting exploitation likelihood or campaign escalation. Historical event correlation
may treat conflicting dependency chains as equally plausible futures: for instance, one source sug-
gests a vulnerability will be exploited in ransomware campaigns, while another asserts it is tied to
espionage-focused actors. Temporal modeling then captures both trajectories, leading to unstable
or diluted predictions. Graph neural networks used for campaign evolution may amplify these
conflicts, generating escalation paths that reflect contradictory dependencies across threat actors or
malware ecosystems. The root cause lies in how predictive systems implicitly assume coherence
in historical data, but when inputs encode conflicting dependencies, the forecasts inherently inherit
those contradictions.

Semantic conflict (2.3) in ❶ contextualization. Semantic conflict most prominently arises during
contextualization because this stage depends heavily on mapping raw threat indicators to standardized
taxonomies such as CVEs, MITRE ATT&CK TTPs, or malware family names. In practice, different
vendors or intelligence feeds often use divergent terminology for the same underlying concept —
for example, one feed may classify an intrusion set as “APT28,” while another uses “Fancy Bear.”
Similarly, malware families may appear under multiple aliases (e.g., “PlugX” versus “Korplug”), or
distinct CVEs may be referenced with vendor-specific identifiers. When contextualization systems
use topic modeling, event extraction, or knowledge base alignment, they may fail to reconcile
these terminological mismatches. This results in fragmented knowledge graphs where semantically
identical entities are treated as distinct, leading to duplicated or incomplete enrichment. The root cause
is the reliance on surface-level string matching or incomplete ontology alignment when normalizing
threat information across heterogeneous data sources.

Case Study. In our contextualization pipeline logs, we observed a case related to CVE-2022-22965
(Spring4Shell remote code execution vulnerability) in which two CTI sources referred to the
underlying exploit using different aliases: one feed tagged the exploit as “SpringShell,” while
another labeled it “Spring4Shell RCE.” Because our mapping module used strict string-based
matching and a limited alias dictionary, it failed to align the two aliases to the same canonical
exploit entity. As a result, enrichment modules treated the two references separately, creating
two parallel nodes in the knowledge graph with only partial contextual links (one with attacker
metadata, the other with domain reuse). Downstream modules thus had incomplete context when
correlating indicators across both nodes, weakening detection or attribution inference. This illus-
trates how semantic conflict in naming can fragment context and destabilize CTI contextualization
outputs.

Semantic conflict (2.3) in ❷ attribution (Why not influential). In attribution, semantic conflict
is less influential because attribution reasoning does not hinge primarily on the naming of entities
but on relational patterns and behavioral signatures. For instance, identifying an actor depends
more on shared infrastructure reuse, campaign TTPs, or linguistic style than on whether a malware
sample is labeled “PlugX” or “Korplug.” Relation extraction and event graph construction are
designed to capture structural patterns rather than surface semantics, allowing attribution models to
tolerate naming inconsistencies so long as the underlying features remain consistent. While semantic
divergence may create minor noise, it rarely changes the actor assignment itself; two labels referring
to the same malware family still connect to the same infrastructure nodes or TTPs. Thus, attribution
tasks are comparatively robust to semantic conflicts.

Semantic conflict (2.3) in ❸ prediction (Why not influential). Prediction tasks are not substantially
affected by semantic conflict because forecasting relies on temporal dynamics and statistical trends
rather than entity naming conventions. For example, exploit likelihood estimation (e.g., EPSS)
depends on historical exploitation rates, vulnerability characteristics, and observed attack timelines.
Whether a malware strain is labeled with one alias or another has little bearing on probability estimates,
since the predictive models aggregate numerical and structural features rather than semantic labels.
Similarly, temporal modeling and graph neural networks capture correlations between event sequences
independent of specific vocabulary. As a result, semantic inconsistencies have negligible impact
on predictive accuracy, except in rare cases where mislabeled data significantly distorts training
distributions.
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Semantic conflict (2.3) in ❹ mitigation (Why not influential). Mitigation is minimally impacted
by semantic conflict, because defensive actions map to vulnerabilities, TTPs, or attack surfaces
rather than to naming conventions alone. For example, a patch recommendation system aligns a
CVE identifier with its associated vendor fix, regardless of whether different advisories describe the
vulnerability with varied terms. Similarly, YARA rule generation focuses on technical indicators
such as byte patterns or log events, which are invariant to naming disputes. Response playbooks are
typically tied to standardized defensive frameworks (e.g., ATT&CK, CVSS), which already normalize
naming variations. While semantic divergence may cause minor confusion in documentation or
cross-team communication, it rarely degrades the technical quality of mitigation outputs.

Divergent structures (2.4) in ❶ contextualization. In contextualization, divergent data structures
create noise when raw threat intelligence is aggregated from multiple heterogeneous sources such
as JSON-based threat feeds, PDF advisories, STIX-formatted indicators, and unstructured blog
posts. Information retrieval and knowledge base mapping pipelines often assume consistent schema
alignment, yet structural discrepancies (e.g., different field names for “affected system,” varying
timestamp formats, or nested vs. flat representations of IoCs) cause mismatches. When LLMs
enrich observations under these inconsistencies, some attributes may be duplicated, dropped, or
misinterpreted. For instance, one platform may list malware family as a top-level attribute while
another embeds it in narrative text, leading to incomplete enrichment. The root cause is the lack of
robust schema normalization during the fusion of structurally diverse CTI inputs.

Divergent structures (2.4) in ❷ attribution. Attribution pipelines rely on entity and relation
extraction, but divergent data structures across platforms distort graph construction. Structured
feeds may represent relationships (e.g., IP–Domain–Actor) as explicit triples, while unstructured
reports only provide natural language references. Relation extraction systems trained on one schema
may fail on the other, creating inconsistent or fragmented event graphs. This can yield incorrect
attributions, such as splitting a single campaign into multiple unrelated clusters or merging distinct
actor profiles due to structurally divergent naming conventions. For example, some feeds may
encode actor aliases explicitly, while others bury them in footnotes, leading the model to under- or
over-aggregate. The root cause is schema heterogeneity across platforms that undermines consistent
relation representation.

Case Study. In our attribution dataset, we observed a case involving CVE-2019-0708 (BlueKeep
Remote Desktop Services vulnerability) where structural heterogeneity between a structured threat
feed and a narrative security report caused contradictory graph links. Specifically, a structured CTI
feed represented the relation “Actor Delta uses DomainX → IPY” as a neat triple, allowing direct
linking to that actor. Meanwhile, a free-text incident report described the same infrastructure but
only said “the attacker used a domain resolved via IPY, associated with DomainX, commonly tied
to Delta’s campaigns” in a footnote. The relation extraction model, trained primarily on structured
triple formats, failed to recognize the footnote phrasing as linking to Actor Delta, instead treating
it as an independent mention. As a result, the domain/IP chain was disconnected in the event
graph, causing the system to assign the activity to a generic “Unattributed” cluster rather than
merging with Delta’s campaign. In another variant, when domain aliasing was encoded differently,
the system mistakenly merged it with Actor Epsilon, whose structured feed used a similar alias
triple, thereby conflating two distinct actors. This demonstrates how divergent structural formats
across platforms can fragment or overmerge attribution graphs in real-world CTI pipelines.

Divergent structures (2.4) in ❸ prediction. Prediction systems that depend on temporal modeling
or cross-platform event correlation are particularly sensitive to structural divergence. Historical
correlation models assume standardized event logs, but if one feed provides vulnerability exploitation
dates as free-text while another encodes them as epoch timestamps, time-series models may misalign
or discard the data. Similarly, graph neural networks forecasting campaign escalation require
uniform edge types and attributes; divergent structures across CTI sources (e.g., “sector” encoded
as a categorical variable in one feed but as descriptive text in another) disrupt model training and
inference. This leads to biased forecasts or missed escalation patterns. The root cause is that predictive
algorithms cannot reconcile structurally inconsistent features, weakening their ability to capture true
temporal and relational dynamics.

Divergent structures (2.4) in ❹ mitigation (Why not influential). Mitigation tasks, unlike the earlier
stages, are relatively insulated from divergent data structure issues because defensive actions tend to
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be represented in standardized, prescriptive formats. Patches are tied to CVE identifiers, detection
rules often use formal languages like YARA, and configuration changes are usually documented
as explicit command lines or policy instructions. These standardized forms limit the degree of
structural variation compared to raw threat intelligence data. While minor discrepancies may occur
(e.g., different vendors labeling patch IDs differently), the core content is highly structured and
task-specific, reducing the likelihood that divergent data structures across platforms significantly
affect mitigation outputs.

Misaligned standards (2.5) in ❶ contextualization (Why not influential). In the contextualization
stage, misaligned knowledge and security standards generally do not exert a strong influence. The
task here is primarily to enrich raw observations (logs, IOCs, alerts) with contextual information
such as CVEs, malware families, and ATT&CK TTPs. While standardization issues exist in naming
conventions, they do not typically fall under formal security scoring or prioritization frameworks.
Thus, contextualization is more affected by spurious correlation or semantic conflicts rather than by
misaligned standards, since the goal is mapping and enrichment rather than prioritization or scoring.

Misaligned standards (2.5) in ❷ attribution. Misaligned standards can distort attribution outcomes
when different organizations adopt varying taxonomies or classification schemes for actors and
campaigns. For example, one CTI provider may label a campaign under an APT designation (e.g.,
“APT29”), while another refers to the same activity under a vendor-specific alias (e.g., “Cozy Bear”).
When models integrate these heterogeneous standards, they may fragment evidence across labels
or mistakenly merge distinct actors. Similarly, divergence in the way behavioral profiles or TTPs
are scored—some focusing on tool use, others on infrastructure overlap—can misguide attribution
classification. The root cause lies in the absence of universally accepted standards for actor naming
and behavior profiling, which introduces structural misalignment into attribution models.

Misaligned standards (2.5) in ❸ prediction. In prediction, misaligned knowledge and standards
significantly amplify failure. Forecasting tasks often rely on vulnerability severity ratings (e.g.,
CVSS), exploit prediction scores (e.g., EPSS), or proprietary vendor risk models. A misalignment
occurs when different standards assign conflicting severities to the same vulnerability: one database
might rank it as “Critical” due to remote code execution potential, while another rates it “Medium”
because of authentication requirements. Temporal modeling or forecasting systems ingesting both
signals may oscillate between divergent risk profiles, leading to unstable exploitability predictions or
over/under-estimation of campaign escalation risks. The core issue is that prediction models assume
commensurability of scores, when in reality, standards reflect different prioritization philosophies.

Case Study. In our prediction logs, we observed an instance involving CVE-2021-26855 (Ex-
change Server ProxyLogon vulnerability) where different scoring sources conflicted sharply. One
threat feed assigned it a Critical severity in CVSS (base score 9.x) given its remote code execution
nature, while another vendor’s internal risk model (factoring in required authentication, exploit
maturity, and environment heuristics) gave it only a Medium rating. When our prediction module
ingested both signals, it produced unstable forecasts: in some runs it predicted high likelihood of
exploitation, and in others it down-prioritized the CVE, delaying alert escalation. Further review
showed active exploitation in the wild shortly thereafter, confirming the “Critical” perspective.
This case underscores how misaligned standards induce unstable predictions by conflicting risk
signals in CTI-driven forecasting.

Misaligned standards (2.5) in ❹ mitigation. Mitigation is perhaps the most directly affected by
misaligned standards. Defensive recommendations often depend on mappings between observed
TTPs, vulnerabilities, and standardized mitigation catalogs (e.g., NIST, MITRE ATT&CK mitigations,
vendor advisories). When standards differ (such as one framework emphasizing patching order by
CVSS scores, while another emphasizes sector-specific asset criticality) conflicting guidance arises.
For instance, a vulnerability may be labeled as high-priority patching in NVD, but a vendor advisory
may downplay its urgency, creating contradictory recommendations for SOC teams. Summarization
or playbook generation techniques then risk producing inconsistent or misleading instructions, either
overwhelming defenders with unnecessary actions or under-preparing them for critical exploits. The
root cause is the lack of harmonization between security scoring systems and defensive taxonomies,
which propagates inconsistencies directly into operational decision-making.

Counteracting generation (2.6) in ❶ contextualization (Why not influential). Counteracting
CTI generation and LLM alignment has minimal influence at the contextualization stage. Here, the
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primary task is enrichment — mapping raw observations (e.g., logs, IOCs, alerts) to known identifiers
like CVEs or ATT&CK TTPs. Because this process relies largely on retrieval, topic modeling,
and knowledge base mapping, contradictions across sources tend to surface as co-mention bias or
temporal conflict rather than as direct misalignment of the model’s reasoning process. LLMs can still
ground outputs in retrieved evidence, even if that evidence is noisy. In other words, contextualization
errors usually inflate or distort context but rarely cause the model’s generation logic itself to become
unstable or self-counteracting.

Counteracting generation (2.6) in ❷ attribution. In attribution, counteracting CTI generation
manifests strongly. Contradictory or conflicting reports of actor identities, infrastructure reuse, or
campaign affiliations directly challenge the alignment of an LLM fine-tuned to classify or link entities.
For instance, one source may attribute an intrusion set to APT29, while another insists on APT28,
forcing the LLM to reconcile irreconcilable evidence. During training, these conflicting signals
weaken gradient alignment, creating internal tension where the model oscillates between incompatible
actor labels. At inference time, relation extraction or event graph construction may generate unstable
outputs — e.g., merging distinct campaigns into a single actor cluster, or switching attribution mid-
response. The root cause lies in the inability of LLM alignment processes to disentangle contradictory
ground truths when adversarial or incomplete evidence coexists in CTI corpora.

Case Study. In our attribution dataset, we observed a conflict surrounding CVE-2020-0796
(SMBGhost / SMBv3 remote code execution vulnerability) where two report clusters described
overlapping infrastructure and payloads but assigned divergent actor labels. One internal CTI
source traced the campaign to Actor Beta based on reused command-and-control domain naming
conventions, while another equally plausible source assigned it to Actor Gamma citing similar
malware module signatures. When an LLM-based attribution module attempted to reconcile the
evidence, it oscillated between Actor Beta and Actor Gamma at different points in the generated
response, and in one case merged both actor clusters into a single ambiguous actor node. Forensic
cross-checks revealed that the two clusters employed distinct lateral propagation chains and
targeting regions, indicating they were separate campaigns. This instance demonstrates how
conflicting intelligence signals (i.e. counteracting generation) can destabilize the attribution
process and provoke spurious merges or label flipping, consistent with the root cause.

Counteracting generation (2.6) in ❸ prediction. Prediction tasks amplify this vulnerability because
they rely heavily on temporal modeling and statistical consistency. Contradictory knowledge (such as
exploitability assessments that are both “confirmed weaponized” and “no evidence of exploitation”
across sources) feeds into EPSS-like forecasting or campaign escalation modeling. When these
inconsistencies are incorporated into LLM fine-tuning or inference prompts, the model’s predictive
logic counteracts itself: one reasoning path projects high exploit likelihood, another projects neg-
ligible risk. This tension destabilizes alignment objectives that prioritize consistency, leading to
incoherent forecasts (e.g., fluctuating risk scores or internally contradictory justifications). Unlike
contextualization, where noise merely inflates context, prediction magnifies contradictions because
probabilistic reasoning depends on stable and non-conflicting event histories.

Counteracting generation (2.6) in ❹ mitigation. Mitigation is also deeply impacted by coun-
teracting CTI generation and alignment. Conflicting reports about patch effectiveness, bypass
proofs-of-concept, or mitigation success create alignment conflicts in LLMs fine-tuned for defensive
recommendations. For example, one dataset labels a patch as effective, while another includes
verified exploit bypasses; the LLM’s training gradients pull in opposite directions, undermining
its ability to converge on stable defensive advice. At inference time, this misalignment appears as
contradictory recommendations (e.g., suggesting both to apply a patch and to consider it ineffective),
undermining trust in automated response playbooks. Summarization models trained on contradictory
mitigation corpora may even blend conflicting advice into incoherent instructions. The core issue
is that mitigation depends on aligning outputs with actionable truth, but contradictions in defensive
knowledge force the LLM into unstable compromise states.

Distributional bias (3.1) in ❶ contextualization. Distributional bias arises most visibly during
contextualization because this stage depends heavily on retrieval and enrichment of raw threat data.
The corpora used to train retrieval models, event extractors, or knowledge base mappers are often
skewed toward particular regions, languages, or reporting sources. For instance, CTI feeds may be
dominated by English-language advisories from North American vendors, while reports from smaller
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regions or niche industry sectors remain underrepresented. As a result, contextualization pipelines
learn to prioritize patterns, entities, or CVEs that appear frequently in this skewed distribution, while
overlooking less-reported threats. Topic modeling might cluster threats disproportionately around
well-documented malware families, and knowledge base mapping might fail to align entities when
they originate from underrepresented ecosystems. This distributional imbalance causes models
to generalize poorly, enriching raw observations with context that reflects majority patterns but
misses critical minority cases (e.g., region-specific campaigns, IoCs from less-visible actors). Thus,
contextualization is the primary CTI stage where distributional bias manifests as a root cause of
vulnerabilities.

Case Study. In our CTI contextualization logs, we observed a case tied to CVE-2023-23397
(Microsoft Outlook elevation of privilege / information disclosure) in which the enrichment
pipeline failed to surface contextual linkage information because the CVE had sparse coverage in
English-language reporting. Specifically, although a few localized reports in Eastern European
and Southeast Asian languages described exploitation of CVE-2023-23397 with associated infras-
tructure and campaign details, our retrieval and KB mapping modules did not effectively index
or map those non-English sources. Consequently, when processing raw IOC references to that
CVE, the system enriched them only with generic Microsoft advisories and common attack cam-
paign metadata, missing region-specific attribution details (e.g. unique malware variants, domain
registrants, local threat actor groups). Because the contextualization module overly prioritized
cues from the majority (English, widely reported CVEs), it generated weaker context for this
vulnerability in our dataset, possibly leading downstream modules to misjudge its significance or
misalign attribution/mitigation decisions.

Distributional bias (3.1) in ❷ attribution (Why not influential). Attribution relies less on broad
population-level distributions and more on linking observed TTPs, infrastructure, and stylistic features
to known actor profiles. While biases in contextualization may already propagate upstream, attribution
itself is not directly driven by skewed distributions in the training corpus. Instead, its errors tend
to stem from relation extraction and graph construction mistakes, or from contradictory knowledge
between sources. Distributional bias is not a first-order effect here, because attribution decisions focus
on specific co-occurrence signals (e.g., malware reused by an actor) rather than frequency-based
generalizations from an imbalanced corpus.

Distributional bias (3.1) in ❸ prediction (Why not influential). Prediction tasks, including estimat-
ing exploit likelihood or forecasting campaign escalation, are typically modeled using temporal trends,
event correlations, or statistical/graph forecasting methods. These processes are less vulnerable to
raw data distributional imbalance, since they focus on dynamics over time rather than sheer frequency
across corpora. Failures in prediction are more often tied to unseen patterns from emerging threats
(3.2) or overfitted reasoning (3.3) rather than distributional skew. Therefore, while contextualization
may introduce bias into the upstream data, prediction systems themselves are not intrinsically exposed
to distributional bias as a root cause.

Distributional bias (3.1) in ❹ mitigation (Why not influential). Mitigation involves mapping
observed vulnerabilities or TTPs to defensive actions, ranking candidate countermeasures, and
generating structured recommendations. These outputs are guided by standards (e.g., CVSS), expert-
validated mappings, or structured rule sets such as YARA. Because mitigation strategies are less
dependent on the global distribution of training data and more on explicit mappings between threats
and responses, distributional bias has minimal direct impact here.

Unseen patterns (3.2) in ❶ contextualization (Why not influential). Unseen patterns from emerging
threats are less problematic at the contextualization stage. This stage primarily involves collecting raw
indicators, mapping them to known entities, and enriching observations with structured taxonomies
(e.g., CVEs, MITRE ATT&CK). Since the process focuses on retrieval, normalization, and alignment
with established knowledge bases, its outputs remain bounded by what is already recorded in CTI
repositories. While contextualization may miss completely novel attack primitives (e.g., a new exploit
chain not yet in ATT&CK), it does not typically generate spurious reasoning about unseen patterns,
instead, it simply fails to retrieve or map them. Thus, the absence of emerging threat knowledge
affects coverage rather than causing misleading generalization errors.

Unseen patterns (3.2) in ❷ attribution. Attribution is more vulnerable to unseen patterns because it
requires linking threat behaviors to known adversary profiles. Emerging campaigns may adopt novel
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TTP combinations, infrastructure setups, or linguistic styles that diverge from historical actor profiles.
Relation extraction and graph construction tools, trained on prior threat data, attempt to force these
novel behaviors into existing schemas, leading to brittle or incorrect actor assignments. For instance,
a new APT might blend techniques previously seen in multiple groups, confusing classifiers that
rely on canonical actor–TTP associations. The root cause lies in attribution models’ dependence on
closed-world assumptions: when novel tactics appear, they are often misclassified into the closest
known actor archetype rather than recognized as new.

Case Study. In our attribution dataset, we observed a campaign exploiting CVE-2022-30190
(Follina Microsoft Office Remote Code Execution) whose behavioral signature combined
TTPs typical of both Group X and Group Y (e.g. custom VBA macro infection + unusual DNS
tunneling), yet also introduced a new lateral movement module not seen before. The attribution
model forced the campaign into Group Y because the overlapping macro artifacts and DNS
patterns had been heavily associated with Group Y in training. However, deeper analysis of
payload internals and command semantics showed the lateral movement logic was markedly
different from any known Group Y campaign and the targeting region also diverged. Because the
attribution system attempted to ”fit” the new pattern into the nearest known actor schema rather
than flagging it as novel, the campaign was misattributed. This case illustrates how unseen pattern
adoption can lead attribution models to overcommit to the nearest known archetype, thereby
misclassifying new or hybrid campaigns.

Unseen patterns (3.2) in ❸ prediction. Prediction tasks are especially sensitive to unseen patterns,
since they rely on temporal correlations and trend extrapolation from historical data. Emerging threats
often introduce entirely new exploit vectors (e.g., chaining vulnerabilities across cloud microservices)
or target previously untapped sectors. Forecasting models built on past timelines cannot anticipate
such discontinuities, leading to underestimation of risk or misidentification of targets. For example,
EPSS-like scoring frameworks may assign low exploitability probability to a vulnerability because
similar CVEs had no known exploitation, only to be proven wrong when a novel exploit technique
emerges. Here, the root cause is distributional shift: the statistical regularities captured by time series
or graph neural networks no longer hold when threat actors innovate outside historical baselines.

Unseen patterns (3.2) in ❹ mitigation. Unseen patterns also impair mitigation, particularly in the
design of defensive playbooks and countermeasure recommendations. When attackers deploy new
TTPs or exploit methods absent from training data, mitigation mapping systems may fail to suggest
effective countermeasures. For example, an LLM-guided playbook generator may recommend
patching or firewall rules aligned with familiar techniques, but overlook mitigations needed for an
entirely new lateral movement strategy. Similarly, mitigation efficacy predictors struggle because
they assume the space of attack vectors is known and represented in past cases. The root cause here
is defensive brittleness: mitigation frameworks generalize from established mappings, and emerging
patterns invalidate those assumptions, leading to incomplete or misaligned recommendations.

Overfitted reasoning (3.3) in ❶ contextualization (Why not influential). Overfitted reasoning is
less relevant in contextualization because this stage primarily focuses on enriching raw observations
with metadata and aligning them to structured identifiers. Techniques like topic modeling or informa-
tion retrieval operate on co-occurrence and similarity rather than predictive inference, meaning they
are less prone to the memorization-driven brittleness characteristic of overfitting. Errors at this stage
are more often due to spurious correlations or semantic conflicts, not reinforcement of memorized
reasoning paths.

Overfitted reasoning (3.3) in ❷ attribution. Overfitted reasoning becomes prominent in attribution
when models repeatedly learn shallow associations between specific indicators and adversary labels.
For instance, if relation extraction and entity linking pipelines are disproportionately trained on a
limited set of well-documented campaigns, the system may memorize that certain infrastructure
patterns (e.g., recurring domains or malware family strings) always belong to a specific actor profile.
When new reports mention similar but unrelated infrastructure, the model may reflexively attribute
them to the memorized actor without properly considering alternative explanations. This overreliance
on memorized co-occurrences results from insufficient exposure to diverse attribution cases, leading
to brittle classification of actors and campaigns.
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Case Study. In our attribution result logs, we discovered a case linked to CVE-2020-1472
(Netlogon Elevation of Privilege Vulnerability, aka Zerologon) where the attribution model
incorrectly assigned a campaign to “Actor Alpha” purely because of reused domain naming
conventions and IP subnets that had earlier been heavily associated with Actor Alpha in training
data. In reality, forensic investigation showed that the campaign used distinct command-and-
control servers, payload variants, and targeting patterns, inconsistent with Actor Alpha’s known
modus operandi. Because the model had overly internalized the co-occurrence of those domains
and subnets with Actor Alpha in its limited training corpus, it defaulted to attributing new instances
to that actor without hypothesizing alternate actors or considering the evidence diversity. This
mismatch exposes how overfitted reasoning can lead to misattribution in real-world CTI pipelines.

Overfitted reasoning (3.3) in ❸ prediction. In prediction, overfitted reasoning manifests when
forecasting models generalize poorly beyond historical data. Temporal modeling and event correlation
techniques often capture strong patterns within past campaigns, such as the escalation of a vulnera-
bility class into active exploitation. However, if these forecasting models are overly tuned to such
repeated sequences, they may incorrectly predict the same escalation dynamics for future, unrelated
vulnerabilities. For example, the model might overestimate exploitation probability simply because
prior vulnerabilities of a similar type were exploited, even though current conditions differ. This
bias reflects overfitting to observed sequences, where models memorize recurring attack trajectories
instead of reasoning about underlying causal drivers of exploitation.

Overfitted reasoning (3.3) in ❹ mitigation (Why not influential). Mitigation tasks also exhibit
limited vulnerability to overfitted reasoning. While mitigation mapping and efficacy ranking involve
inference, they generally rely on explicit rule associations or empirical evaluations of patch effective-
ness. Summarization and playbook generation are shaped by aggregation of defensive knowledge
rather than predictive modeling of future adversarial behavior. Consequently, errors in this stage
stem more from contradictions in data sources or co-mention bias in countermeasure lists than from
overfitting to historical reasoning trajectories.

Environmental unawareness (3.4) in ❶ contextualization (Why not influential). Environmental
unawareness is less prominent during contextualization because this stage focuses on gathering
and aligning observable facts (e.g., IOCs, vulnerability references, or malware labels) rather than
reasoning about the environment where attacks unfold. The techniques employed (topic modeling,
event extraction, knowledge base mapping, retrieval) primarily enrich raw data without needing to
adapt to host- or sector-specific conditions. Since contextualization tasks are mostly descriptive
and taxonomy-driven, the absence of local system or organizational environment data does not
strongly distort their outputs. As a result, contextualization is not significantly affected by this type
of vulnerability.

Environmental unawareness (3.4) in ❷ attribution. In attribution, environmental unawareness
manifests when models ignore the operational or deployment context in which infrastructure is
reused. For instance, relation extraction or event graph construction may connect domains, malware
families, or command-and-control servers across multiple incidents, but fail to recognize that one
set of infrastructure belongs to a staging environment while another is tied to production systems
in a different sector. Without environmental cues, models over-attribute incidents to the same actor
or campaign, producing inflated linkages. Similarly, behavioral classification often overlooks local
defender responses or system baselines that would otherwise clarify whether repeated TTPs reflect
adversary persistence or benign background activity. The root cause is that attribution pipelines
assume global uniformity of threat behavior while overlooking environment-specific nuances that
separate true operational reuse from coincidental overlap.

Environmental unawareness (3.4) in ❸ prediction. In prediction tasks, environmental unawareness
becomes more pronounced because forecasting inherently requires understanding the conditions
under which threats evolve. Temporal modeling or graph neural networks may detect sequences
of exploits but fail to adjust for environmental variables such as patch adoption rates, geographic
regulatory differences, or sector-specific exposure. As a result, a vulnerability exploited in one
industry may be wrongly forecast as high-risk for another, even though the latter has stronger baseline
defenses or different system architectures. Similarly, probability estimates for exploitation (e.g.,
EPSS-like scoring) may ignore localized security controls or asset configurations, leading to overly
broad or inaccurate risk forecasts. The root cause is the assumption that historical global patterns
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can be applied uniformly, when in fact exploitability is mediated by local system and organizational
environments.

Environmental unawareness (3.4) in ❹ mitigation. In mitigation, environmental unawareness leads
to defensive strategies that are technically correct in general but ineffective in practice for specific
deployments. For instance, mitigation mapping may recommend a patch that is incompatible with
legacy systems, or propose firewall rules that disrupt legitimate sector-specific workflows. Mitigation
efficacy prediction models often rank countermeasures without considering resource constraints,
organizational processes, or compliance requirements, resulting in impractical prioritization. Summa-
rization modules may produce generic remediation steps that fail to address custom software stacks
or hybrid cloud deployments. The root cause is the lack of integration between CTI outputs and
real-world operational contexts, causing recommended actions to miss alignment with the defender’s
environment, and ultimately weakening the utility of CTI-driven defense.

Case Study. In our CTI-backed vulnerability-response dataset, we identified a representative
instance involving CVE-2021-44228 (Log4Shell) where mitigation suggestions failed to account
for environmental constraints. Specifically, a model-generated recommendation ranked upgrad-
ing to the latest Log4j version (2.16 or above) as the top-priority action. However, in certain
enterprise deployments, this upgrade conflicted with custom-built logging plugins and legacy
compatibility modules, resulting in logging failures and application crashes. Due to concerns
over business continuity, the organization delayed patch deployment despite the known severity
of the vulnerability. Additionally, the model suggested firewall rule updates to restrict inbound
JNDI traffic, which inadvertently disrupted legitimate cross-tenant log aggregation workflows in
a hybrid cloud environment. These misalignments between the recommended actions and the
operational realities led to non-adoption of the mitigation plan, illustrating how environmental
unawareness can undermine CTI-guided defense.

D.2 ADDITIONAL ANALYSES OF INTERTWINED VULNERABILITIES

In this subsection, we provide extended analyses to deepen our understanding of intertwined vulnera-
bilities in CTI modeling. We focus on three complementary aspects: (i) the sequential accumulation
of failures across CTI stages, (ii) the concurrent presence of multiple vulnerabilities in the threat
landscape, and (iii) detailed case studies that highlight how intertwined failures manifest in practice.

Accumulation across CTI stages. The CTI pipeline is inherently sequential, with outputs from early
modules serving as inputs for downstream reasoning. When an upstream stage introduces an error,
such as co-mention bias in event contextualization, this misinformation propagates forward as if it
were ground truth. In attribution, the model may then reinforce the biased linkage (e.g., mapping a
benign domain to a threat actor), while in prediction, it may extrapolate incorrect exploitability trends
based on the faulty assumption. Similarly, skewed source reliance during retrieval can lock later
stages into one-sided perspectives, preventing correction even when contradictory evidence emerges.
Over time, these sequentially inherited errors accumulate into cascades, where a single misstep at the
contextualization stage magnifies into systemic reasoning failures across attribution, prediction, and
mitigation.

Concurrent presence in the threat landscape. Beyond sequential propagation, vulnerabilities also
co-occur within the same analytical slice of a threat landscape. For example, constrained generaliza-
tion failures often combine: a distributional bias (e.g., defaulting to ransomware explanations) may
overlap with environmental unawareness (e.g., ignoring that the attack only targets Linux servers).
Likewise, unseen patterns from emerging threats frequently intersect with overfitted reasoning, as the
model forces novel evidence into familiar but inaccurate templates. These concurrent vulnerabilities
are not merely additive but entangled, since the existence of one (e.g., mislabeling the environment)
amplifies the harm of another (e.g., failure to adapt to an unseen pattern). This reflects the reality of
CTI data, where heterogeneous and incomplete sources naturally produce overlapping inconsistencies.
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Case Study: MOVEit vulnerability (CVE-2023-34362). Early co-mention bias linked unrelated
domains to the SQL injection campaign. Downstream, attribution models reinforced the false
linkage to a specific actor, while prediction modules forecasted incorrect exploitability based
on the assumed actor profile. The intertwined vulnerabilities spanned contextualization (bias),
attribution (confounding), and prediction (distributional overgeneralization).

Case Study: Cloud API exploitation (2024 campaign). Reports diverged semantically and
temporally, with some describing privilege escalation via API tokens and others treating it as
lateral movement. The model conflated these into a hybrid description (semantic conflict), while
also failing to recognize the pattern as novel (unseen pattern). Environmental unawareness
compounded the issue when the output generalized the vulnerability to all cloud services, despite
references limiting it to a specific provider.

These analyses show that intertwined vulnerabilities are not isolated anomalies but systemic conse-
quences of how CTI evidence is structured, consumed, and reasoned upon by LLM-based agents.
Recognizing their cumulative and concurrent nature is essential for designing defenses that target the
compounding rather than the individual failure.

E LARGE LANGUAGE MODEL (LLM) USAGE DISCLOSURE

Large language models were used only for minor grammar revision and sentence-level polishing
during manuscript preparation. They were not employed in ideation, methodological design, ex-
perimental execution, or result analysis. The scientific contributions, benchmarks, and evaluations
presented in this work were entirely conceived and developed by the authors. LLM involvement was
minimal in the research process.
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