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ABSTRACT

We address the problem of feature attribution for skew-symmetric preference
functions in dueling data settings, using the cooperative game-theoretic concept
of Shapley values. Building on Pref-SHAP[Hu et al. (2022)], we propose Gen-
eralized Pref-SHAP, a framework that extends its applicability to a broader class
of preference functions. Our method leverages a simple neural network to model
arbitrary feature mappings while exploiting the canonical block structure inherent
to skew-symmetric functions, enabling more meaningful explanations. Addition-
ally, we explore foundational questions about Pref-SHAP, including its relation-
ship with the block decomposition structure of skew-symmetric generalized pref-
erence function (GPM)[Hu et al. (2022)]. We perform experiments on a range of
synthetic datasets to demonstrate the effectiveness and efficiency of our approach.

1 INTRODUCTION

Pairwise preference learning, often modeled via dueling data, plays a central role in ranking, recom-
mender systems, sports tournaments, voting, online games etc. A common framework for modeling
such pairwise data involves skew-symmetric preference functions, i.e., the function f(u, v) satisfies
f(u, v) = −f(v, u), representing the preference for item u over item v, where u, v ∈ Rd. We
can represent such functions using the following canonical form[Rajkumar et al. (2021),Veerathu &
Rajkumar (2021)]:

f(u, v) = u⊤Av, (1)

where, d is even and A ∈ Rd×d is a block-diagonal matrix composed of d/2 skew-symmetric

2 × 2 rotation matrices
[
0 −1
1 0

]
. This bilinear structure naturally arises in modeling utilities and

comparisons, and is particularly amenable to analysis due to its algebraic simplicity and geometric
structure. While modeling preference functions has received considerable attention[Negahban et al.
(2015),Rajkumar & Agarwal (2016),Chen & Joachims (2016),Makhijani & Ugander (2019),Bower
& Balzano (2020)], explaining their predictions, that is, attributing the model’s output to individual
input features, remains less explored. Recent work, notably Pref-SHAP[Hu et al. (2022)], extends
the classical Shapley value[Shapley et al. (1953)] to the setting of pairwise comparisons, assigning
feature-level attributions to preference decisions using a game-theoretic lens. We aim to investigate
both the theoretical and practical behaviors of Pref-SHAP in non-parametric model setting based on
the canonical form.

1.1 MAIN CONTRIBUTIONS

• Block Structure Consistency: We analyze whether Pref-SHAP respects the block struc-
ture inherent in the canonical form. This reveals how well the Shapley attributions align
with the inherent feature pairing in the model.

• Theoretical Analysis Under Canonical Form: We derive closed-form expressions for
Pref-SHAP values when f(u, v) = u⊤Av, focusing on the two-feature case for clarity. We
explore how the attributions are affected by distributional properties like feature variance,
constancy, and independence. Our analysis identifies unintuitive behaviors that arise from
interaction effects and the symmetry axiom in Shapley values, and suggests that interaction-
aware explanations may be necessary in some cases.
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• Generalization to Arbitrary Feature Mappings[2]: We extend Pref-SHAP to work with
nonlinear or learned feature maps ϕ, proposing Generalized Pref-SHAP. This new frame-
work preserves the interpretability of Shapley decompositions while leveraging the struc-
ture in A, enabling explanations in complex models with deep representations.

2 BACKGROUND MATERIALS

2.1 PREFERENCE LEARNING

We consider a more general class of skew-symmetric functions of the form:

f(u, v) = ⟨ϕ(u), Aϕ(v)⟩, (2)

where u, v ∈ Rk, ϕ : Rk → Rd is a feature mapping(possibly nonlinear) with even d, and
A ∈ Rd×d. Any skew-symmetric function can be represented in this form, where ϕ is the identity
function and k = d. The likelihood function used for such models, especially in pairwise preference
scenarios, often takes the form:

p(y | u, v) = σ(y · f(u, v)) = 1− p(y | v, u), (3)

where σ(x) = 1
1+e−x is the sigmoid function and y ∈ {−1, 1} indicates the preference label.

2.2 SHAPLEY VALUE

The purpose of this paper is to study the local explainability of predictions based on preference
functions using the Shapley value[Shapley et al. (1953)], a concept from cooperative game theory. It
is basically a credit allocation method where a subset of k players is assigned a value function based
on their contribution to a game ν : [0, 1]k → R. The Shapley value for player j in game ν is given
by:

Φj(ν) =
∑

S⊆Ω\{j}

|S|!(d− |S| − 1)!

d!
[ν(S ∪ {j})− ν(S)] ,

where, Ω = {1, . . . , d} is the set of d players.

It satisfies several desirable uniqueness axioms such as efficiency(6), symmetry, null player property,
linearity. The use of this concept in explainable ranking context helps in finding feature attribution in
a model prediction by creating a correspondence between the concept of players and item features.
In particular, linearity ensures that for a linear ensemble of models, the Shapley value of a feature is
the corresponding linear combination of individual model Shapley values.

2.3 PREF-SHAP

In the Pref-SHAP framework[Hu et al. (2022)], the value function is adapted to model the pairwise
preference setting.

2.4 PREFERENTIAL VALUE FUNCTION FOR ITEMS[HU ET AL. (2022); CHAU ET AL.
(2022B),GRÜNEWÄLDER ET AL. (2012)]

Definition 1. Given a preference function f ∈ H, and a pair of items (xl, xr) ∈ X × X ,X ⊆ Rd,
the preferential value function ν : X × X × [0, 1]k ×H → R for computing Shapley values (Φ) in
Pref-SHAP is defined as the following conditional expectation:

νxl,xr,S(f) = Er

[
f
(
{X l

S , X
l
Sc}, {Xr

S , X
r
Sc}
)∣∣∣X l

S = xl
S , X

r
S = xr

S

]
, (4)

where S ⊆ {1, . . . , k} is a subset of feature indices, and X is the input random vector. The notation
XS denotes the subvector of features indexed by S, and Sc is the complement of S. The pair
{XS , XSc} refers to the full input vector X formed by concatenation. The reference distribution r
is defined as:

r = r
(
X l

Sc , Xr
Sc | X l

S = xl
S , X

r
S = xr

S

)
.
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2.5 GENERALIZED PREFERENTIAL KERNEL[CHAU ET AL. (2022A)]

Definition 2. Given a kernel k : X × X → R, defined on the original feature space X ⊆ Rd, the
Generalized Preferential Kernel kE is defined as:

kE
(
(xl

i, x
r
i ), (x

l
j , x

r
j)
)
= k(xl

i, x
l
j) · k(xr

i , x
r
j)− k(xl

i, x
r
j) · k(xr

i , x
l
j), (5)

where the skew-symmetric function f is assumed to lie in the Reproducing Kernel Hilbert Space
(RKHS) HkE

associated with kE .

2.6 BLOCK STRUCTURE OF SHAPLEY VALUES

One of the key properties satisfied by Shapley values, and more importantly for our purposes by Pref-
Shap, is the efficiency axiom which states that the sum of all feature attributions equals the overall
preference score. In particular, for a feature space of dimension d where features are grouped into
d/2 disjoint consecutive blocks of size 2, we have the following equation w.r.t. Pref-SHAP (Φ)(8):

d/2∑
i=1

(Φ2i−1 +Φ2i) =

d/2∑
i=1

(u2i−1v2i − u2iv2i−1) = u⊤Av, (6)

where, u, v ∈ Rd, d is even, and A ∈ Rd×d is a block-diagonal matrix composed of d/2 skew-

symmetric 2 × 2 rotation matrices
[
0 −1
1 0

]
as defined in (1). Each block corresponds to an anti-

symmetric interaction between two consecutive features. A natural question that arises is whether
Pref-SHAP also satisfies a finer-grained block decomposition property at the level of individual 2-
dimensional feature blocks. That is, for each odd index i ∈ {1, 3, . . . , d − 1}, does the following
hold?

Φi +Φi+1 = uivi+1 − ui+1vi = u⊤Ai:i+1v, for i mod 2 ̸= 0, (7)

where Ai:i+1 ∈ Rd×d is a matrix whose only nonzero entries lie in a 2×2 skew-symmetric submatrix
spanning rows and columns i and i+1, and zeros elsewhere. Thus, the full matrix A can be written
as a sum of these block-local matrices: A =

∑d/2
i=1 A2i−1:2i. Here, A2i−1:2i denotes the 2 × 2

submatrix of A corresponding to rows and columns 2i − 1 and 2i. This structure leads us to ask:
under what conditions does Pref-SHAP decompose additively over such blocks, preserving the local
attribution property in Eq. equation 7?

3 DOES PREF-SHAP OBEY THE BLOCK PATTERN?

Proposition 1 (Block Decomposition of Conditional Pref-SHAP under Independence). Consider
a skew-symmetric preference function f : X × X → R (Definition 1) defined on feature vectors
u, v ∈ Rd, where the d features are partitioned into d/2 disjoint consecutive blocks: Bj = {2j −
1, 2j}, j = 1, . . . , d

2 . Assume one of the following:

• Full independence: All features {X1, . . . , Xd} are mutually independent, or

• Blockwise independence: Features within each block Bj may be dependent, but blocks are
mutually independent, i.e., XBi

⊥ XBj
for all i ̸= j, where XBj

denotes the features in
block Bj .

The preference function decomposes additively over blocks: f(u, v) =
∑d/2

j=1 fj(uBj
, vBj

), where
each fj depends only on features in block Bj .

Pref-SHAP for feature i ∈ [d] is analytically computed as

Φi :=
∑

S⊆[d]\{i}

|S|!(d− 1− |S|)!
d!

[
ν(S ∪ {i})− ν(S)

]
, (8)

where the conditional value function is, ν(S) := E
[
f(u, v) | (uk, vk)k∈S

]
.

3
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Then, under the above assumptions,
∑

i∈Bj
Φi = fj(uBj

, vBj
), for all j = 1, . . . , d

2 . Moreover,
the individual Pref-SHAP values Φi generally depend on the full feature set due to the global con-
ditioning in ν, but their sum over each block recovers the exact blockwise preference contribution.
If the features are correlated across blocks (i.e., the blockwise independence assumption fails), then
this additive decomposition of the Pref-SHAP values does not generally hold.

Proof Sketch. Consider features partitioned into blocks B1, . . . , Bm. Pref-SHAP values are com-
puted via differences of conditional expectations. Under full or blockwise independence, conditional
expectations of features outside a block reduce to constants independent of conditioning subsets.
Consequently, cross-block terms appear symmetrically in the Shapley difference terms and cancel
out. This implies that Pref-SHAP values decompose additively over blocks, with each block’s at-
tribution depending only on its own features. In contrast, when features are arbitrarily correlated
across blocks, these cancellations no longer occur, and the decomposition fails. The complete proof
is provided in the appendix B.

3.1 CAN OTHER SHAPLEY VARIANTS RECOVER BLOCK PATTERN(7)?

A natural question is whether using other value functions can help Pref-SHAP respect the canonical
block structure in cases where the original conditional value function leads to violation. Specifically:

Off-manifold / Interventional / Marginal Shapley values[Janzing et al. (2020)] evaluate features
outside the data distribution, which may help remove interdependencies across blocks. However,
such approaches lack robustness[Slack et al. (2020)] because they evaluate the model on unrealistic
samples, potentially making the explanations unreliable and vulnerable to adversarial manipulation.

ManifoldSHAP[Taufiq et al. (2023)] attempts to stay on the data manifold by estimating it via kernel
density estimators or score models. Since Pref-SHAP involves estimating conditional expectations
from a distributional perspective, Kernel Mean Embeddings could serve as a tool for implementing
ManifoldSHAP if applied in the Pref-SHAP context.

Causal Shapley values[Heskes et al. (2020)] incorporate the underlying causal graph and account
for structural dependencies between features. This allows feature attribution to reflect true causal
contributions, thereby improving interpretability over interventional or marginal approaches in the
presence of feature correlation.

As an illustration, consider the Gaussian setup:
X = [Xa, Xb]

T
= [X2, X4, X1, X3]

T
, where Xa = {X2, X4}, and Xb = {X1, X3}.

Assume X ∼ N (µ,Σ). The conditional expectation and covariance of Xa given Xb are as follows:
E[Xa|Xb] = µa +ΣabΣ

−1
bb (xb − µb), Σa|b = Σaa − ΣabΣ

−1
bb Σba.

Notably, the conditional mean does not depend on Σaa. This implies that even if features within
a block (e.g., Xa) are highly correlated, their internal dependency does not affect the conditional
expectation as long as Xb is fixed. However, dependency across blocks will break the block decom-
position property under the conditional value function.

Hence, while conditional value functions capture statistical dependence, they may cause Pref-SHAP
to violate canonical structure, leading to unintuitive or biased attributions, especially when sensitive
features are involved. In such cases, alternative value functions like causal or manifold-based ones
may provide more reliable and fair explanations.

3.2 CAN WE LEARN A FEATURE MAPPING TO RESTORE BLOCK STRUCTURE(7)?

We investigate whether it is possible to map the original features to a transformed space, such as an
eigenspace defined by the covariance matrix so that the Pref-SHAP values exhibit a block structure
in the transformed coordinates. Specifically, we consider an orthonormal linear transformation W ∈
Rd×d such that x = WTu, y = WT v, where u, v ∈ Rd are original feature vectors, and x, y ∈ Rd

are transformed features. W =


w11 w21 · · · wd1

w12 w22 · · · wd2

...
...

. . .
...

w1d w2d · · · wdd

 , u = Wx, v = Wy are the inverse

4
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transformations .
Each transformed feature is, xi =

∑d
j=1 wjiuj , yi =

∑d
j=1 wjivj , ∀i = 1, . . . , d.

Example: Skew-Symmetric Function with 4 Features Consider the skew-symmetric preference
function f(u, v) = u1v2 − u2v1 + u3v4 − u4v3, which exhibits a natural block structure with two
blocks: {1, 2} and {3, 4}.

Expressing f in the transformed space,

f(u, v) = f(Wx,Wy) = (Wx)1(Wy)2 − (Wx)2(Wy)1 + (Wx)3(Wy)4 − (Wx)4(Wy)3

=

d∑
i,j=1

(wi1wj2 − wi2wj1 + wi3wj4 − wi4wj3) (xiyj − xjyi).

Rearranging terms into differences of products (to maintain skew-symmetry), f(x, y) =∑
i<j cij(xiyj − xjyi), where, cij = wi1wj2 − wi2wj1 + wi3wj4 − wi4wj3.

Due to the linear mixing by W , the original block structure (only interactions within blocks
{1, 2} and {3, 4}) generally disappears. Instead, f becomes a fully connected skew-symmetric
form involving all pairs (i, j) of transformed features, where all cij can be nonzero. Hence, the
model in the transformed space no longer decomposes into independent blocks. Consequently,
the Pref-SHAP values computed on transformed features will not obey the block pattern seen in
the original features. This observation generalizes to higher dimensions and nonlinear models
with interaction terms: the orthonormal transform W mixes all features, distributing interactions
across transformed features. Nonlinear terms (e.g., products of features from different blocks) are
generally not diagonalized by W . Therefore, block independence is a property of the function
structure, not solely the feature covariance. Shapley values are generally not linear in the features
or their transformations, except for models based on a single item features. For such functions
that act on a single item, f(u) = βTu, transforming features linearly as x = WTu yields
f(u) = βTu = βTWx = β̃Tx, and Shapley values transform linearly: ϕuj =

∑
i wjiϕxi . For

pairwise preference models with feature interactions, this linearity breaks, and Shapley values of
original features cannot be represented as linear combinations of transformed features’ Shapley
values.

Remark: Mapping features to an eigenspace or another orthonormal basis does not, in general,
preserve the block independence structure of nonlinear interaction models like skew-symmetric
preference functions. Consequently, Pref-SHAP values computed in the transformed space will
reflect fully coupled feature interactions and fail to obey the original block pattern.

4 STUDY OF PREF-SHAP PROPERTIES IN THE TWO-FEATURES SETTING

When there are only two features, the analytical expression for Pref-SHAP(8) reduces to:

Φ1 =
1

2
[(u1v2 − u2v1) + u1E[Y2|Y1 = v1]− v1E[X2|X1 = u1]

− v2E[X1|X2 = u2] + u2E[Y1|Y2 = v2]− E[X1]E[Y2] + E[Y1]E[X2]]

Φ2 =
1

2
[(u1v2 − u2v1)− u1E[Y2|Y1 = v1] + v1E[X2|X1 = u1]

+ v2E[X1|X2 = u2]− u2E[Y1|Y2 = v2]− E[X1]E[Y2] + E[Y1]E[X2]] (9)

Since E(Xi) = E(Yi) ∀i ∈ {1, 2}, the last two terms vanish.

4.1 IMPACT OF FEATURE VARIANCE ON PREF-SHAP

Let us consider this analytically. Suppose the features are independent, then the Pref-SHAP values
simplify to:

Φ1 = 1
2

[
(u1v2 − u2v1) + (u1E(Y2))− (v1E(X2))− (v2E(X1)) + (u2E(Y1))

]
Φ2 = 1

2

[
(u1v2 − u2v1)− (u1E(Y2)) + (v1E(X2)) + (v2E(X1))− (u2E(Y1))

]
(10)

5
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Now, suppose, Var(X1) = Var(Y1) = 100 and Var(X2) = Var(Y2) = 1. Consider an instance
where u1 = 100, v1 = −100, u2 = 1, v2 = −1. In this case, the first-order terms involving
u1 and v1 dominate, so Φ1 could be significantly larger than Φ2. However, for another instance with
opposite signs (e.g., u1 = −100, v1 = 100, u2 = −1, v2 = 1), Φ2 could become larger than Φ1.

Therefore, while individual Pref-SHAP values may be affected by the variance in the features, this
effect can cancel out when averaging over many samples. In other words, the global (dataset-level)
Pref-SHAP attributions are not directly biased by feature variance in expectation under indepen-
dence. Hence, Pref-SHAP with conditional value functions represents the true conditional expecta-
tion of the model output. Thus, it does not directly encode feature variance. However, the uncer-
tainty in prediction caused by high feature variance (especially in correlated settings) may influence
the attribution in an indirect way. This distinction aligns with insights from information-theoretic
approaches to attribution [Watson et al. (2024)], where variance influences model uncertainty but
not necessarily marginal attributions unless the model or attribution method explicitly encodes that
dependency.

4.2 EFFECT OF CONSTANT FEATURES ON PREF-SHAP

The full discussion with analysis is deferred to the appendix C due to space constraints. Briefly, even
if a feature is constant across item pairs, it may still receive non-zero attribution under Pref-SHAP
feature correlations. However, under certain independence assumptions and symmetry axiom, such
features may yield equal attributions due to model structure.

Case Baseline Form Φ1(9)
1 z = u+v

2 (Pair-specific baseline) 1
2 (u1v2 − u2v1 + u1u2 − v1v2)

2 z = E[Z] (Global baseline) 1
2 (u1v2 − u2v1 + (u1 − v1)E[Z2]− (v2 − u2)E[Z1])

Figure 1: Comparison of Baseline Shapley Forms

Figure 2: Generalized Pref-SHAP architecture using a simple neural network

4.3 PREF-SHAP VS. BASELINE SHAPLEY[SUNDARARAJAN & NAJMI (2020)]

Baseline z = (z1, z2) =

(
u1 + v1 + · · ·

n
,
u2 + v2 + · · ·

n

)
=
(
E[Z1],E[Z2]

)
(11)

In Case 1(Fig. 1), when features are equal, attribution vanishes. In Case 2, even equal features may
have non-zero attribution if they deviate from the global baseline E[Z]. Pref-SHAP resembles Case
2 and better accounts for meaningful deviations from population averages.

6
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Figure 3: Quadratic feature mappings {x2
0, x

2
1, x0x1, x0x2}. Generalized Pref-SHAP is abbreviated as GPref-

SHAP; IG = Integrated Gradients, BO = Block Original, BN = Block DeepNN, and PO = Pref-SHAP Original.
IG:BO means the rank correlation between them. The terms Pref-SHAP DeepNN and Block DeepNN are used
interchangeably to refer to GPref-SHAP. Terms in the captions represent the mapped features.

(a) x2
0, x1x2, sin(x3), cos(x0), sin(x1 + x2), x

2
3 (b) Test RMSE (fold 0)

Figure 4: (a)hybrid mapping of features, (b) ReLU network (4 input features, 6 mapped features, 4 hidden
layers, 16 nodes in each layer).

5 GENERALIZED PREFERENTIAL KERNEL(5) INSIGHT:

Given the bilinear form of the Generalized Preferential kernel[Chau et al. (2022a)]:
n∑

i=1

αiKE((xi, yi), (xtest, ytest)) = x⊤
test

(
n∑

i=1

αi(xiy
⊤
i − yix

⊤
i )

)
ytest. (12)

the model output becomes a bilinear form over input pairs with weights represented by a skew-
symmetric matrix i.e.

∑n
i=1 αi(xiy

⊤
i −yix

⊤
i ) in a transformed space. This naturally aligns with the

linear kernel as the base kernel (instead of RBF kernel), which is both expressive and computation-
ally efficient in this context, i.e. in cases where the feature map ϕ is the identity function.

Effective Feature Space for Pref-SHAP: In this formulation, the prediction function is linear in
the space of effective features, which are formed as pairwise interactions of the original features.
As each pair of features (xi, xj) contributes an interaction term, the number of effective features
becomes

(
d
2

)
, significantly expanding the representational capacity. The final prediction is thus:

f(u, v) =
∑

i<j αij(uivj − ujvi), where αij are the learned coefficients associated with each

7
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(a) ReLU network (4 input features, 6 mapped features, 4 hidden
layers, 16 nodes in each layer)

(b) Linearity of Pref-SHAP variants (fold
0, feature x0)

Figure 5: ReLU network

interaction. This formulation allows us to attribute importance to each original feature based on the
strength and frequency of its interactions across data instances.

6 PROPOSED FRAMEWORK: GENERALIZED PREF-SHAP (2)

Algorithm 1 Generalized Pref-SHAP
Input: Pairwise item data {Xl, Xr, Y } with features X ∈ Rd, number of blocks k for feature
mapping.

1. Learn the unknown feature mapping ϕ = (ϕ1, ϕ2, . . . , ϕk)(2) using the neural net-
work shown in Figure 2, where the predicted output is: f(xl, xr) = ϕ(xl)

TAϕ(xr) =∑k/2
i=1 (ϕ2i−1(xl)ϕ2i(xr)− ϕ2i(xl)ϕ2i−1(xr)) .

2. Construct k/2 datasets, each corresponding to a blockwise pairwise interaction of mapped
features using ϕ.

3. For each block dataset, apply Kernel Ridge Regression (KRR) to learn a component func-
tion.

4. Compute the residual between the original label Y and the sum of predictions from all k/2
component models. Apply KRR to this residual dataset.

5. Compute Pref-SHAP values for each of the k/2 blocks and the residual component, giving
a k × (k/2 + 1) matrix of attributions.

6. Aggregate feature attributions by summing across columns (i.e., summing attributions
across blocks for each feature).

Output: Final Pref-SHAP value for each original input feature.

In standard Pref-SHAP, the model approximates the skew-symmetric function of the mapped fea-
tures using Kernel Ridge Regression(KRR) but does not learn the mapping ϕ(2) explicitly. Con-
sequently, it cannot exploit the canonical block structure inherent to skew-symmetric functions. In
contrast, our proposed Generalized Pref-SHAP explicitly learns the feature mapping ϕ(2), enabling
a structured decomposition of the preference function into interpretable blocks. This decomposition
preserves the block structure of the underlying function and facilitates more accurate and meaning-
ful feature attributions. By jointly learning the feature representation and maintaining block-wise
interpretability, Generalized Pref-SHAP improves the transparency and faithfulness of the attribu-
tion process, aligning explanations more closely with the structure of the learned model.
The network takes as input a pair of items represented using their original features and learns the
feature mappings of each item via weight sharing. The learned mappings are then passed into a
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module which computes the skew-symmetric preference function for these mapped features. The
detailed explanation of the algorithmic steps are described in appendix A.

7 EXPERIMENTS

In this section, we describe our experimental setup and results on both synthetic and real-world
datasets. We have conducted experiments mainly on carefully generated synthetic data because
the motivation behind Generalized Pref-SHAP is rooted in the design of feature mappings ϕ(2), and
real-world datasets rarely provide a ground truth for global feature importance. However, in domains
where expert knowledge about feature relevance exists, real-data experiments can help identify the
more interpretable model. It is quite possible that the explicit features in the real data get mapped
to some hidden space before applying the skew-symmetric preference function instead of directly
contributing to the preferences and this phenomenon can be better explained through our proposed
method.

7.1 SYNTHETIC AND REAL-WORLD EXPERIMENTS

We conduct experiments using synthetic data consisting of n = 100 items, where each item’s fea-
tures are sampled from a 4-dimensional Gaussian distribution with mean zero and identity covari-
ance: xi ∼ N (0, I) for i = 1, . . . , 100. We construct preference labels using various differentiable
feature mappings ϕ, including:
Polynomial mappings: quadratic expansions, Sinusoidal mappings: combinations of sin(·), cos(·)
applied to linear projections, Hybrid mappings: combinations of polynomial and sinusoidal trans-
formations, Neural network mappings: small feedforward networks with ReLU activations and
varying depth/width.
The preference labels are generated by applying the skew-symmetric function f to transformed
features. We evaluate the feature importance scores computed using four methods: Pref-SHAP:
the original method using conditional Shapley values on learned KRR models. Generalized Pref-
SHAP (Ours): learns each skew-symmetric component block via neural networks, then aggregates
their Shapley values. Integrated Gradients (Baseline): standard attribution baseline for differen-
tiable models. Block-Original: a reference method that trains separate KRR models per block and
aggregates block-level Pref-SHAP values.

For the ground truth, we compute the global feature importance scores with respect to the feature
mapping function using Integrated Gradients, and then propagate those scores to the canonical skew-
symmetric preference function. Since each block in the canonical form contains exactly two terms,
with each feature appearing once per term, the importance score of each feature is doubled per block.
As the blocks are disjoint, the final feature importance is obtained by summing these contributions
across blocks. This enables comparison using rank-based metrics. We use all

(
100
2

)
unique pairs

for training and evaluation, as the task is regression-based whereas our real-world experiment is
based on classification of pairwise preferences. The pairwise comparisons with labels are split into
training (80%), validation (10%), and test (10%) sets and the experiments are averaged over 5 folds.
Feature attribution is computed on a randomly selected subset of the pairwise data. For Kernel Ridge
Regression, hyperparameter tuning is performed via gradient-based optimization using the Falkon
library. For the neural network setup, we fix two hidden layers and employ Bayesian optimization
using Optuna with 100 trials to tune the hyperparameters: the number of hidden nodes (shared
across layers) is selected from the set {32, 64, 96, 128}, while the learning rate and weight decay
are sampled from logarithmic ranges [10−4, 10−1] and [10−6, 10−2] respectively. We use the mean
squared error (MSE) loss and optimize using the Adam optimizer with a batch size of 64 and early
stopping based on validation loss. Real-world experiment (6) is based on classification, so Kernel
Logistic Regression (KLR) is used for modeling the pairwise preferences and the concept of residue
modeling is not applicable here. We have used the publicly available dataset Pokemon(Nguyen
Van Anh (2021)) for the same.The 25 features are mapped into 4 hidden features and applied the
skew symmetric function separately on the 2 blocks generated from the mapped features.

Evaluation Metrics: We report three types of plots for each setup: Bar plots: Global feature im-
portance scores (averaged absolute attribution values across test samples) for each method. Spear-
man and Kendall Tau rank correlations between each method’s global feature importance scores
and the ground truth (or baseline Integrated Gradients) are computed. Linearity plots: Scatter-

9
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Figure 6: Pokemon dataset with 25 given features [’HP’, ’Attack’, ’Defense’, ’Sp. Atk’, ’Sp. Def’,
’Speed’, ’Legendary’, ’Bug’, ’Dark’, ’Dragon’, ’Electric’, ’Fairy’, ’Fighting’, ’Fire’, ’Flying’, ’Ghost’, ’Grass’,
’Ground’, ’Ice’, ’Normal’, ’Poison’, ’Psychic’, ’Rock’, ’Steel’, ’Water’], ’Speed’(x5) is the most important fea-
ture in both methods.

plots comparing predicted Pref-SHAP attributions to the sum of block-wise learned component
attributions(Block-Original, Generalized Pref-SHAP), validating linearity. RMSE curves: Test error
convergence (RMSE) across optimization iterations in the KRR model. As the Falkon library used
in Pref-SHAP uses a gradient descent based hyperparameter optimization, hence for each iteration,
the plot represents RMSE value between the original skew-symmetric labels and the learned labels
for each algorithm. Sanity check: In cases where only a subset of features is used to generate the
label, we verify that inactive features are assigned near-zero importance. The corresponding plots
are provided in the appendix D.1.

Observations: Generalized Pref-SHAP consistently produces more meaningful and interpretable
global feature importance scores than Pref-SHAP, particularly when the true feature importance is
sparse or block-structured. Linearity plots show that both Pref-SHAP and our method yield highly
correlated local feature attributions, verifying the block-decomposability of attributions in prac-
tice. RMSE plots show that Generalized Pref-SHAP models achieve comparable or better function
approximation performance relative to Pref-SHAP and Block-Original. Overall, the experiments
demonstrate that Generalized Pref-SHAP is more aligned with ground-truth structure in synthetic
data and offers improved interpretability while maintaining the theoretical properties of the original
method.

8 CONCLUSION

In this work, we introduced Generalized Pref-SHAP, a principled extension of Pref-SHAP designed
to provide faithful feature attributions for pairwise preference models that involve rich, nonlinear
feature mappings. We analyzed the theoretical properties of Pref-SHAP and showed that under inde-
pendence or blockwise independence, Pref-SHAP decomposes additively over feature blocks, high-
lighting its interpretability in structured models. Our synthetic experiments demonstrate that Gen-
eralized Pref-SHAP recovers global feature importance more accurately, aligns better with ground-
truth structure, and satisfies desirable attribution properties such as linearity and sparsity in inactive
features whereas the real data experiment shows that Generalized Pref-SHAP has comparable per-
formance with Pref-SHAP while explaining the important features for the paiwise preferences.

10
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A APPENDIX

Detailed Explanation of the Algorithm Steps:

1. Learning the Feature Mapping ϕ: The algorithm begins by learning a feature mapping
ϕ = (ϕ1, ϕ2, . . . , ϕk) via a neural network architecture (illustrated in Figure 2). This net-
work takes as input a pair of items (xl, xr) with original features in Rd, and outputs their
transformed features. The learned mapping ϕ is structured to reflect the block-wise decom-
position, where each pair (ϕ2i−1, ϕ2i) corresponds to a canonical 2 × 2 skew-symmetric
block. This decomposition explicitly encodes the skew-symmetric structure in the feature
space.

2. Constructing Blockwise Datasets: After learning the feature mappings, the dataset is
partitioned into k/2 separate block datasets, each corresponding to the pairwise interaction
between the mapped features ϕ2i−1 and ϕ2i. These datasets isolate the contribution of each
skew-symmetric block to the overall preference prediction.

3. Fitting Kernel Ridge Regression (KRR) Models: For each block dataset, Kernel Ridge
Regression is applied to learn a component function that models the preference contribu-
tion from that specific block. KRR allows flexible, nonparametric fitting that captures the
potentially complex relationships within each block.

4. Modeling the Residual: The sum of predictions from all blockwise KRR models provides
a partial reconstruction of the original preference function. This approximation may not
capture all nuances of the data, particularly nonlinearities or interactions not aligned with
the learned blocks. We compute the residual as the difference between the true labels Y
and the aggregated predictions from the blockwise models, thereby capturing information
not explained by the canonical blocks. A separate KRR model is then fit to this residual
dataset, enabling the method to recover additional signal beyond what is captured by the
blockwise decomposition.

5. Computing Pref-SHAP Values: Pref-SHAP values are computed individually for each of
the k/2 block component models and the residual model. This yields a matrix of attribu-
tions of size k × (k/2 + 1), where each column corresponds to a block (or residual), and
each row corresponds to one of the k mapped features. These attributions represent the
contribution of each mapped feature within its block to the preference prediction.

6. Aggregating Feature Attributions: Finally, to obtain the attributions for the original in-
put features, the algorithm sums the Pref-SHAP values across all blocks and the residual
for each original feature. This aggregation consolidates the blockwise contributions and
residual effects into a single attribution score per feature, reflecting the overall importance
of each input feature in driving the preference decisions.

B PROPOSITION 1

Proof. We prove the proposition in three steps: base case d = 4, generalization to arbitrary even d,
and failure of decomposition under correlation.

Step 1: Base case (d = 4)

12
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Partition features into two blocks:

B1 = {1, 2}, B2 = {3, 4}.

By assumption, the preference function decomposes additively:

f(u, v) = f1(uB1 , vB1) + f2(uB2 , vB2).

For feature i = 1, the Pref-SHAP value is

Φ1 =
∑

S⊆{2,3,4}

w(S)
[
ν(S ∪ {1})− ν(S)

]
, w(S) :=

|S|!(3− |S|)!
4!

.

By linearity of expectation,

ν(S) = E
[
f(u, v) | (uk, vk)k∈S

]
= E[f1 | S] + E[f2 | S].

Blockwise independence implies that conditioning factorizes:

E[fj | S] = E[fj | S ∩Bj ], j = 1, 2.

Since 1 ∈ B1, the marginal contribution satisfies

ν(S ∪ {1})− ν(S) =
[
ν1((S ∪ {1}) ∩B1)− ν1(S ∩B1)

]
+ 0,

because (S ∪ {1}) ∩B2 = S ∩B2 and f2 does not change.

Decompose S as S = S1 ∪ S2, where

S1 = S ∩B1 ⊆ {2}, S2 = S ∩B2 ⊆ {3, 4}.

Then,
Φ1 =

∑
S1⊆{2}

∑
S2⊆{3,4}

w(S1 ∪ S2)
[
ν1(S1 ∪ {1})− ν1(S1)

]
.

The marginal contribution depends only on S1, so

Φ1 =
∑

S1⊆{2}

[
ν1(S1 ∪ {1})− ν1(S1)

] ∑
S2⊆{3,4}

w(S1 ∪ S2)︸ ︷︷ ︸
weight sum

.

By the combinatorial properties of Shapley weights, the inner sum over S2 equals the Shapley weight
on block B1: ∑

S2⊆{3,4}

w(S1 ∪ S2) =
|S1|!(|B1| − 1− |S1|)!

|B1|!
=

|S1|!(1− |S1|)!
2!

.

Thus,

Φ1 =
∑

S1⊆{2}

|S1|!(1− |S1|)!
2!

[
ν1(S1 ∪ {1})− ν1(S1)

]
.

Applying the same argument to feature 2, and then summing Φ1 +Φ2 yields

Φ1 +Φ2 = f1(uB1
, vB1

).

Similarly, Φ3 +Φ4 = f2(uB2
, vB2

).

Step 2: Generalization to arbitrary even d

For i ∈ Bj , decompose any subset S ⊆ [d] \ {i} as

S = Sj ∪ S−j , Sj ⊆ Bj \ {i}, S−j ⊆ [d] \ (Bj ∪ {i}).

13
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Using linearity,

ν(S) =

d/2∑
m=1

νm(S ∩Bm).

By blockwise independence,

νm(S ∩Bm) = νm(Sj ∩Bm) if m = j,

and conditioning on S−j does not affect νj .

Hence,
ν(S ∪ {i})− ν(S) = νj(Sj ∪ {i})− νj(Sj).

Then,
Φi =

∑
Sj⊆Bj\{i}

∑
S−j

w(Sj ∪ S−j)
[
νj(Sj ∪ {i})− νj(Sj)

]
.

Marginal contributions depend only on Sj , so summing weights over S−j gives∑
S−j

w(Sj ∪ S−j) =
|Sj |!(|Bj | − 1− |Sj |)!

|Bj |!
,

the Shapley weight inside block Bj .

Therefore,

Φi =
∑

Sj⊆Bj\{i}

|Sj |!(|Bj | − 1− |Sj |)!
|Bj |!

[
νj(Sj ∪ {i})− νj(Sj)

]
.

Summing over all i ∈ Bj , ∑
i∈Bj

Φi = fj(uBj
, vBj

).

Special Case: Full Independence. When all features are mutually independent (i.e., each feature
forms its own block), the block decomposition reduces to:

f(u, v) =

d∑
j=1

fj(uj , vj),

with Bj = {j}. Since each block now contains only one feature, the Pref-SHAP attribution for
feature i becomes:

Φi = νi({i})− νi(∅) = fi(ui, vi),

because the Shapley value over a singleton block reduces to the full contribution of that feature.
Thus, Pref-SHAP values are fully local and additive over individual features, and the global attribu-
tion decomposes as:

d∑
i=1

Φi = f(u, v).

This recovers the case of full additivity and local interpretability under complete feature indepen-
dence.

Step 3: Necessity and failure under correlation

If features are correlated across blocks, the conditional expectation does not factorize:

E[fj | S] ̸= E[fj | S ∩Bj ].

Thus,
ν(S ∪ {i})− ν(S)

14
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depends on conditioning on features outside Bj .

This breaks the factorization of Shapley weights and the blockwise decomposition of Pref-SHAP
values fails.

Remark:
The Shapley value’s symmetry axiom ensures that features with identical marginal contributions
receive equal attribution, enabling cancellation of terms corresponding to conditioning on outside
blocks when independence holds.

Linearity of expectation and combinatorial properties of weights guarantee that summation over
subsets outside a block sums to one, allowing the reduction of sums to blockwise Shapley values.

This combination of linearity, independence, and symmetry underpins the blockwise decomposition
of Pref-SHAP values.

C STUDY OF PREF-SHAP PROPERTIES W.R.T THE CANONICAL FORM

C.1 EFFECT OF CONSTANT FEATURES ON PREF-SHAP

• Consider a skew-symmetric function with features u = [u1, u2], v = [v1, v2], where each
item is drawn from a bivariate Gaussian distribution with zero mean:

Z1 = [X1, Y1]
⊤, Z2 = [X2, Y2]

⊤, Z1, Z2 ∼ N (0,Σ).

From (10), as E[Xi] = E[Yi], ∀i, we find Φ1 ̸= Φ2 in general. Even if E[Xi] = E[Xj ] ∀
i, j, Φ1 and Φ2 differ unless additional constraints hold.

• Even when one feature is kept constant (e.g., u2 = v2), it may still receive a nonzero
Shapley value. For example:

Φ1 =
1

2
(u1 − v1)(u2 + E[X1]),Φ2 =

1

2
(u1 − v1)(u2 − E[X1]).

If u2 = v2 = E[X1], then Φ2 = 0, but Φ1 = f(u, v).
• If E[X1] = 0, then Φ1 = Φ2 = 1

2 (u1 − v1)u2. Thus, the Shapley values are equal, and
this equality is due to the symmetry axiom. The symmetry axiom states that two features
should receive equal Shapley values if they contribute equally across all coalitions. For the
two-feature case, if v({1}) = v({2}) ⇒ Φ1 = Φ2, even when one of the features is held
constant.

• To explore this further, define:

v({1}) = 1

2
(u1E[Y2 | Y1 = v1]− v1E[X2 | X1 = u1]) ,

v({2}) = 1

2
(v2E[X1 | X2 = u2]− u2E[Y1 | Y2 = v2]) .

If the features are independent, the conditional expectations reduce to marginals, and equal-
ity v({1}) = v({2}) implies:

(u1 − v1)E[X2] = (v2 − u2)E[X1] (13)

If E[X1] = E[X2] = 0, then Φ1 = Φ2 always. But, if E[X1] = E[X2] ̸= 0, then
Φ1 = Φ2 =⇒ u1 − v1 = v2 − u2

=⇒ u1 + u2 = v1 + v2 (14)

• This may appear counterintuitive: the constant feature may get equal attribution even
though it does not vary. This is not an artifact of the conditional expectation but a con-
sequence of the symmetry axiom. Even if a feature is constant or non-informative in terms
of variation, Pref-SHAP may still assign it equal attribution simply due to how it appears
in the function and due to symmetry, unless the distribution is shifted. This suggests, Pref-
SHAP attributions are not just about feature importance in terms of variance or marginal
effect, but also about how the feature interacts structurally in the model and in the coali-
tional expectations.
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Figure 7: x2
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• The model function f(u, v) = u⊤Av involves pairwise products of features (e.g., u1v2 −
u2v1). Thus, the contribution of one feature depends on its interaction with the other. A
constant feature interacting with a varying one may still result in a nonzero attribution.

• This motivates the use of Pairwise Interaction Shapley values[Sundararajan et al.
(2020),Fumagalli et al. (2024)], which quantify pairwise contributions directly. Interaction
Shapley methods can attribute the output more intuitively in models where the output de-
pends primarily on feature interactions, as is the case in skew-symmetric functions. These
interactions are model-driven, and statistical correlation (e.g., in the Gaussian setting) fur-
ther modulates their effect when conditional value functions are used.

D ADDITIONAL SYNTHETIC DATA

We also conduct experiments using synthetic data consisting of n = 100 items, where each item’s
features are sampled from a 4-dimensional Gaussian distribution with zero mean and a covariance
matrix whose diagonal entries are 1 and off-diagonal entries are 0.7:

x(i) ∼ N (0,Σ), for i = 1, . . . , 100,

where Σjj = 1 and Σjk = 0.7 for j ̸= k.

Figures 14, 15 and 16 are the synthetic experiments conducted on such highly correlated
data. If we compare figures 16 and 17, we can see that when the features are highly correlated, the
dummy/inactive feature x3 gets more attribution than the case when the features are independent.

D.1 SANITY CHECK

Figures 17,18,19,20 are some experiments used for sanity check. In figure 17, the fourth/last feature
is not used for generating mapped features and hence the skew-symmetric function. In figures 18,
19 and 20 items are generated using a 6-dimensional Gaussian distribution with mean zero and
identity covariance: xi ∼ N (0, I) for i = 1, . . . , 100. , but only the first 4 features are used
for feature mapping and label generation, so the last two features act like dummy ones. We can
observe from these plots that the dummy features get zero attribution in case of Integrated Gradients
whereas Block Original and Generalized Pref-SHAP have nearly-zero or the lowest attribution for
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Figure 8: x2
0, x1x2, sin(x3), cos(x0)

Figure 9: sin(x0), cos(x1), sin(2x2), cos(2x3)
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Figure 10: sin(x0), cos(x1), sin(2x2), cos(2x3), sin(x0 + x1), cos(x2 − x3)

Figure 11: ReLU network(4 input features, 4 mapped features, 8 hidden layers, 16 nodes in each
layer)
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Figure 12: ReLU network(4 input features, 6 mapped features, 8 hidden layers, 8 nodes in each
layer)

Figure 13: ReLU network(4 input features, 4 mapped features, 16 hidden layers, 16 nodes in each
layer)
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Figure 14: ReLU network(4 input features, 4 mapped features, 8 hidden layers, 16 nodes in each
layer) for highly correlated data

Figure 15: x2
0, x

2
1, x

2
2, x

2
3 for highly correlated data
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Figure 16: x2
0, x

2
1, x0x1, x0x2 for highly correlated data

Figure 17: x2
0, x

2
1, x0x1, x0x2 with x3 as the inactive feature

such features in all of them. But in figure 18, Pref-SHAP has more attribution for the dummy feature
x5 than x0 which is an active feature in the function generation. Also, in figure 17, Pref-SHAP has
more feature attribution for x3 than that of x2.

E TEST RMSE AND LINEARITY SCATTER PLOTS FOR THE SYNTHETIC DATA

Figures 21,22,23,24 represent the plots for test RMSE and scatter plots for the synthetic datasets.
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Figure 18: x2
0, x1x2, sin(x3), cos(x0) with 2 inactive input features

Figure 19: ReLU network(4 active + 2 inactive input features, 6 mapped features, 4 hidden layers,
16 nodes in each layer)
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Figure 20: ReLU network(4 active + 2 inactive input features, 4 mapped features, 16 hidden layers,
16 nodes in each layer)

(a) Test RMSE (fold 4)
(b) Linearity of Pref-SHAP variants (fold 4, fea-
ture x1)

Figure 21: x2
0, x1x2, sin(x3), cos(x0), sin(x1 + x2), x

2
3
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(a) Test RMSE (fold 0)
(b) Linearity of Pref-SHAP variants (fold 0, fea-
ture x1)

Figure 22: ReLU network(4 input features, 4 mapped features, 8 hidden layers, 16 nodes in each
layer) with highly correlated features

(a) Test RMSE (fold 0)
(b) Linearity of Pref-SHAP variants (fold 0, fea-
ture x1)

Figure 23: x2
0, x

2
1, x0x1, x0x2 with independent features
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(a) Test RMSE (fold 0)
(b) Linearity of Pref-SHAP variants (fold 0, fea-
ture x0)

Figure 24: x2
0, x

2
1, x0x1, x0x2 with highly correlated features

F USE OF LLMS:

Chatgpt has been used to polish the writing of certain parts in the paper.
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