
Fine-grained Semantic Alignment with Transferred Person-SAM
for Text-based Person Retrieval

Yihao Wang
wangyh357@mail2.sysu.edu.cn
School of Computer Science and

Engineering, Sun Yat-Sen University
Guangzhou, Guangdong, China

State Key Laboratory of Integrated
Services Networks, Xidian University

Xi’an, Shaanxi, China
Key Laboratory of Machine
Intelligence and Advanced

Computing (SYSU), Ministry of
Education,

Guangzhou, Guangdong, China

Meng Yang∗
yangm6@mail.sysu.edu.cn

School of Computer Science and
Engineering, Sun Yat-Sen University

Guangzhou, Guangdong, China
State Key Laboratory of Integrated

Services Networks, Xidian University
Xi’an, Shaanxi, China

Key Laboratory of Machine
Intelligence and Advanced

Computing (SYSU), Ministry of
Education,

Guangzhou, Guangdong, China

Rui Cao
cr@nwu.edu.cn

School of Information Science and
Technology, State-Province Joint

Engineering and Research Center of
Advanced Networking and Intelligent

Information Services, Northwest
University

Xi’an, Shaanxi, China

Abstract
Addressing the disparity in description granularity and information
gap between images and text has long been a formidable challenge
in text-based person retrieval (TBPR) tasks. Recent researchers tried
to solve this problem by random local alignment. However, they
failed to capture the fine-grained relationships between images and
text, so the information and modality gaps remain on the table.
We align image regions and text phrases at the same semantic
granularity to address the semantic atomicity gap. Our idea is first
to extract and then exploit the relationships between fine-grained
locals. We introduce a novel Fine-grained Semantic Alignment
with Transferred Person-SAM (SAP-SAM) approach. By distilling
and transferring knowledge, we propose a Person-SAM model to
extract fine-grained semantic concepts at the same granularity from
images and texts of TBPR and its relationships. With the extracted
knowledge, we optimize the fine-grained matching via Explicit
Local Concept Alignment and Attentive Cross-modal Decoding
to discriminate fine-grained image and text features at the same
granularity level and represent the important semantic concepts
from both modalities, effectively alleviating the granularity and
information gaps. We evaluate our proposed approach on three
popular TBPR datasets, demonstrating that SAP-SAM achieves
state-of-the-art results and underscores the effectiveness of end-to-
end fine-grained local alignment in TBPR tasks.
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1 Introduction
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Figure 1: The granularity and information gaps make it dif-
ficult for previous methods to consider the details of fine-
grained tasks. Our approach, SAP-SAM, first obtains the rela-
tionships of fine-grained features by Person-SAM and then
exploits them from two perspectives: fine-grained matching
via explicit local concept alignment and informative concept
representing via attentive cross-modal decoding.
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Text-Based Person Retrieval (TBPR) [7, 33, 42, 49] is a fine-
grained cross-modal retrieval task, which aims to search for images
corresponding to a given textual description in a person gallery.
Compared to traditional image-based Person Re-Identification (Re-
ID) [11, 19, 53, 60–62, 74, 76], TBPR retrieves images in a cross-
modal manner by only requiring text descriptions that are easier
to obtain and more lenient, expanding its usage scenarios. As a
fine-grained sub-task of image-text retrieval, TBPR focuses on the
perception of human beings, one of the most important research ob-
jects, benefiting various significant applications of personal albums,
surveillance, and public safety.

To realize such a flexible and accurate image-text retrieval algo-
rithm, it is necessary to address the intra-identity variations present
in images and textual descriptions, which have been extensively
studied in the vision and language communities and have achieved
exciting progress. For the fine-grained cross-modal TBPR task, it
is much more crucial to address the unique challenges, such as
the granularity gap (e.g., as shown in the right of Figure 1, images
provide detailed descriptions at the quantitative and pixel level,
while textual descriptions are more conceptualized and coarse) and
the information gap (e.g., as shown in the top of Figure 1, there are
some focuses in the textural descriptions but not in the image).

The granularity gap results in the fineness misalignment of se-
mantic concepts due to the difficulty of extracting the fine-grained
feature in the same granularity, preventing the effective cross-modal
feature matching between text descriptions and images. Manymeth-
ods struggle to extract local features (e.g., dividing images into
patches straightforwardly [7, 16, 67], using pose estimation [26],
performing an auxiliary attribute segmentation [63] and employing
sentence analysis tools [43]) or implicitly learn the relationships be-
tween cross-modal local parts after extracting their features through
deep networks [14, 24, 52, 54, 71, 72]. These methods ignore the
granularity gap between text partition (e.g., phrases) and image
partition (e.g., image patches). Even if the text is sliced into much
smaller units (e.g., words), they still have a larger granularity than
an image region corresponding to a specific phrase. For example, a
“shirt" is a coarser semantic concept than a specific region of “red
wool shirt." The explicit image and text local features in existing
methods are not semantically accurate enough, and the implicit
alignment methods cannot guarantee that local features, such as im-
age patches and text words, are of the same granularity, preventing
further fine-grained alignment learning.

The information gap results in an exact misalignment of semantic
concepts due to the characteristic of vision and language, where the
former has an overall and redundant visual representation, but the
latter has focal and abstract text descriptions. Early studies [32, 33]
employed contrastive learning for cross-modal matching, but the
information gap is still significant due to the separate encodings
of the image and text. The emergence of the vision-language pre-
training model has generally alleviated the information gap be-
tween images and texts, and variants of contrastive representation
learning [17, 37, 73] have been proposed for the task of TBPR. Even
through contrastive learning is applied to the cross-modal data, the
focal and meaningful semantic concept has not been well extracted
from images. The information gap still hinders the effective cross-
modal alignment between important semantic concepts of vision
and language.

A straightforward idea to overcome these gaps is to extract and
align image and text features at the same granularity level, and
generate an informative cross-modal attention for exact semantic
concepts of vision and language. Following this idea, we proposed
a novel Fine-grained Semantic Alignment with Transferred Person-
SAM (SAP-SAM) for Text-Based Person Retrieval.

With the idea of distilling knowledge from large pre-trained
models (e.g., SAM [28], BLIP [30]) and transferring the knowledge to
person retrieval, our approach first captures fine-grained semantic
concept relationships in the same granularity from images and texts.
To address the granularity gap, we designed Person-SAM, a person
segmentation model driven by the text phrase, which is fine-tuned
on a human parsing dataset with fine-grained annotations distilled
from an off-the-shelf pretrained multi-modal model. Immediately
after that, we slice the text in TBPR into fine-grained phrases, and
then transfer the trained Person-SAM to extract the segmentation
regions corresponding to these fine-grained phrases. It is worth
noting that we only apply Person-SAM offline in the training phase,
and the inference phase is consistent with existing methods.

By exploiting these fine-grained semantic pairs in the same gran-
ularity and focusing more on important semantic concepts, we
design fine-grained semantic alignment via Explicit Local Concept
Alignment (ELCA) module and Attentive Cross-Modal Decoding
(ACMD) method, respectively. The former pushes the model via
cross-modal attention to distinguish whether there is a match be-
tween two fine-grained cross-modal concepts. The latter forces
the model to predict the selected fine-grained conceptual content
with a multi-modal context. We validate our approach on three
mainstream benchmarks with state-of-the-art results, and these
experiment results demonstrate the effectiveness of our approach.
Our contribution consists of the following three points.

1. Using the idea of knowledge distillation and transfer, we pro-
pose the Person-SAM model for capturing fine-grained feature
relationships in TBPR, effectively alleviating the granularity gap in
feature extraction.

2. We design an Explicit Local Concept Alignment (ELCA) mod-
ule to discriminate fine-grained similar features across modalities,
effectively alleviating the granularity gap in model learning.

3. We propose an Attentive Cross-Modal Decoding (ACMD)
method to understand the important fine-grained context based on
information from different modalities, effectively overcoming the
information gap.

2 Related Work
2.1 Global Alignment in TBPR
Early research primarily involved extracting features from texts
or images using neural networks, followed by feature aggregation
and straightforward cross-modal alignment [7, 32]. Some meth-
ods [51, 52, 54] utilize refined single-modality pre-trained models,
such as ViT [13], BERT [10], and DeiT [56], at the text and image
data, respectively, and align global representations of these mod-
els. Others [24, 36] utilize pre-trained multi-modal models, such
as CLIP [46], or pre-trained for pedestrian contrast learning, such
as UniPT [50], and then fine-tuned on TBPR tasks. However, these
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methods need more exact image-text feature interaction or fine-
grained cross-modal feature alignment, making it challenging to
address the modality gap in TBPR.

Previous research frequently relied on loss functions such as
Triple Loss [16], Ranking Loss [27, 41], and Instance Loss [82] for
the alignment of text-image representation. However, these method-
ologies have proven insufficient to address the information-gap and
granularity-gap challenges inherent to TBPR. As a response, some
researchers [5, 6, 20, 63] have explored innovative approaches that
leverage contrastive losses [44]. Additionally, concepts like KL di-
vergence and label smoothing have been introduced by the follow-
ing studies [23, 24, 79]. While these refinements in loss functions
have indeed boosted the performance, they remain predominantly
focused on global alignment, which falls short of meeting the de-
mands of fine-grained tasks such as TBPR.

2.2 Local Alignment in TBPR
Researchers have used local information for fine-grained alignment.
To varying degrees, we classify these methods into two categories:
explicit and implicit methods. The former [7, 8, 42, 43, 80] usu-
ally possesses obvious correspondences in the data domain, i.e., it
pushes an embedding of image part to be similar to an embedding
of the text part, which corresponds to meaningful visual regions.
Subsequent studies have attempted to utilize hyperpixels like key-
points [12, 29] and additional information like pose [26, 63] for
slicing. However, these methods, which tend to be fine-grained at
the image level, are not fine-grained at the text level. Meanwhile,
due to the limited accuracy and insufficient samples, the image divi-
sion, hyper-pixels, and pose information are practically challenging
to accommodate the multi-scale information in the person concept.

The implicit methods, on the contrary, utilize learnable neural
networks to focus on data parts and enhance the local similarity
across modalities. Some implicit methods [14, 54, 59, 72] utilize
neural networks for local feature correspondence in the embedding
space, while still borrowing knowledge (e.g., posture, position, or
color) from the explicit data. However, lack of labeling data causes
their alignment to be inefficient. Others [24, 51, 52, 64, 71] have
adopted a completely implicit feature learning approach, i.e., com-
pletely discard this explicit information or prior knowledge. These
methods lack a relationship between textual descriptions and image
concepts, which causes them to be agnostic. There are also several
approaches [15, 24] that borrow ideas from some generalized meth-
ods, such as mask language modeling and mask image modeling.
However, it is still being determined whether the network in these
methods utilizes the corresponding portion of one modality in the
reconstruction process of the other modality.

3 Method
3.1 Overview
We seek a new way to resolve the granularity and information gaps
mentioned above between person images and text descriptions. To
address the granularity gap, we innovatively learn an enhanced
fine-grained feature extraction model with distilling knowledge
from SAM and transfer the model to extract fine-grained image-
text relationships for TBPR, which are then discriminated in a
fine-grained manner across modalities. Moreover, we make the
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Figure 2: We demonstrate SAP-SAM’s workflow. First, we
train Person-SAM using the transformed dataset. Then, we
obtain the fine-grained image regions corresponding to the
sliced TBPR phrases. Finally, we train the retrieval model
using these one-to-one relationships.

model focus on the informative image and text semantic concept
representation to address the information gap.

Following this idea, we proposed a novel model of Fine-grained
SemanticAlignmentwith TransferredPerson-SAM (SAP-SAM) for
explicitly extracting, aligning and focusing on fine-grained image
and text features as shown in Fig. 2. Specifically, we first designed
Person-SAM to capture the fine-grained one-to-one relationships
between text phrases and image regions, which is the first step. Our
Person-SAM is driven by entirely fine-grained texts, not several
words or coarse semantic categories, i.e., ‘white shirt with blue
band trim’ rather than ‘shirt’ or one-hot vector. Due to needing
such a fine-grained dataset, we transformed the existing human-
parsing dataset for training Person-SAM. In the second step, we
transfer the trained Person-SAM to the TBPR dataset according
to knowledge distillation and transferring while obtaining image
regions corresponding to fine-grained phrases of TBPR. In the third
step, we explicitly use these relationships to propose the design
of Explicit Local Concept Alignment and Attentive Cross-modal
Decoding for these exact local details to push the model’s learning
of fine-grained semantic concepts, respectively. To the best of our
knowledge, we are the first to completely extract and align the
fine-grained features of both text and images in TBPR.

Let I and T denote the image and text modalities, respectively.
Given a pair of person image and text I and T, we further let 𝑆𝑖
and 𝐴𝑖 denote the 𝑖-th fine-grained image region and attribute
description in the same granularity.

3.2 Person-SAM for fine-grained feature
extraction

It is very challenging to extract fine-grained semantic concept re-
lationships in TBPR. SAM shows a strong segmentation ability in
universal tasks but performs poorly in fine-grained text-region se-
mantics learning of TBPR. Based on SAM,we introduce text encoder
and image region prediction modules and realize an end-to-end
text-driven segmentation model to directly obtain one-to-one rela-
tionships from phrases to regions. This change allows us to extract
relationships at the same semantic granularity, simultaneously ad-
dressing the granularity gap.
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For training such a fine-grained feature extraction model for
TBPR, there are still numerous challenges, one of the most signif-
icant being the unavailability of a training dataset. Here, we bor-
rowed the idea of knowledge distillation, transformed the dataset
from approximate domains to a usable form, designed Person-SAM,
and transferred the trained model to the TBPR training data. As
shown in Table 1, we achieved this by adding only a small number
of training parameters. Finally, we use only the relationships ex-
tracted by Person-SAM in the training phase, while we do not use
Person-SAM and any relationships in the validation phase.

Table 1: Trainable Parameters of our method in different
phases.

Method In-context
Learning

Fine-
Tuning

Trainable
Parameters

BiLMa[15] 220 M
BLIP-2 (Section 3.2.2) 0

Person-SAM (Section 3.2.1) 5 M
Alignment (Section 3.3) 195 M

3.2.1 Person-SAM Framework.
We first introduce our proposed Person-SAM and how to train

it., i.e., Step: 01 Person-SAM Training. An ideal situation would be
if we could have a one-to-one mapping of text phrases to image

regions, i.e., (𝐴𝑖 , I)
𝜃−→ 𝑆𝑖 , where 𝐴𝑖 is the text prompt, 𝑆𝑖 is the

segmented image region, 𝜃 is the mapping to be learned. For the
implementation of 𝜃 , we build a segmentation model based on SAM
with text input (that is, 𝐴𝑖 ) instead of coarse class labels (e.g., using
“red plaid shirts" instead of “clothing"). Person-SAMComponents.
We utilize the ViT model 𝜃vit in vanilla SAM [28] to encode the
image I into the image feature 𝑓I. At the same time, we freeze
all parameters of the image encoder. To capture fine-grained text
features completely, we discard the dense prompt encoder in vanilla
SAM and carefully design the text encoder in our Person-SAM. We
keep the decoder 𝜃dec in the vanilla SAM, trainable, and decode the
segmentation mask corresponding to the text features.

Text PromptDesign. Encoding text by introducingWord2Vec [40]
can only work for coarse-grained words. Therefore, we introduce
a language model, for example, BERT, to enable vanilla SAM to

encode textual phrase prompts, that is,𝐴𝑖 . We freeze the parameters
of the language model while keeping some learnable parameters
𝑓𝑝 after the language model to adapt to the changing fine-grained
semantic features in the text. Here, the learnable parameters 𝑓𝑝 act
as a class-agnostic prototype to push the language model to adapt
to the domain-specific information in these phrases. (We describe
more details in the Appendix.)

Image Region Prediction.As shown in Figure 3, we set a Multi-
head Cross-Attention (MCA) layer and make 𝑓𝑝 as the query𝑄 and
text features as the values 𝐾 ,𝑉 , i.e., 𝑓𝐴𝑖

= 𝜃MCA
(
𝑓𝑝 , 𝑓𝐴𝑖

, 𝑓𝐴𝑖

)
. Then

the image region 𝑆 ′
𝑖
predicted from the attribute phrase 𝐴𝑖 through

the Transformer decoder is denoted as 𝑆 ′
𝑖
= 𝜃dec

(
𝑓I, 𝑓𝐴𝑖

)
.

Similar to vanilla SAM [28], we also train our Person-SAM by the
Dice loss.However, we need a fine-grained text-region dataset that
can train Person-SAM. Therefore, we considered training Person-
SAM by transforming other task datasets of a similar domain.

3.2.2 Fine-grained Text Description Generation. Here, we describe
how to transform an existing dataset to train Person-SAM. We
propose to generate a fine-grained semantic concept of the person
using the available human-parsing dataset[38, 39] and multimodal
generative model. However, there are two challenges related to the
granularity gap in utilizing the existing dataset and the generative
model for generating the fine-grained semantic concept. The first
obstacle is that the provided category (denoted by 𝐶𝑖 for the 𝑖-th
image region) is coarser than the image region in the human-parsing
data. For instance, the category is ‘hair’ regardless of the hair types
of 𝑆𝑖 , like ‘blonde curly’ and ‘short black hair.’ The second obstacle
is that the generative model cannot distinguish the granularity
of image regions in the human-parsing dataset. For instance, the
image region 𝑆𝑖 is recognized as ‘leg’ regardless of the ‘left leg’ or
‘right leg.’

To solve these obstacles, we propose merging the body parts on
both sides (e.g., ‘left leg’ and ‘right leg’) as a single image region
and using the multi-modal generative model to generate the fine-
grained attribute description. In addition, we purify this part of
the image rather than using key points or other visual prompts for
phrase generation. We asked the model about the image content
based on the category 𝐶𝑖 of the merged image region and designed
diverse textural prompts (an example of 𝑃𝑖 is: ‘Question: What kind
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of hat is this? Answer: It is’ , Note:We describe these details in the
Appendix.),

𝐴𝑖 = BLIP-2((merge(𝑆𝑖 , 𝑆𝑖′ )), 𝑃𝑖 ) (1)

where merge is the merging operation optional for 𝑆𝑖 and its other
side 𝑆𝑖′ and 𝑃𝑖 is the predefined textural prompt with 𝐶𝑖 for 𝑆𝑖 , as
shown in the left part of Figure 3. 𝐴𝑖 is the obtained fine-grained
attribute description corresponding to the image region 𝑆𝑖 .

Finally, we choose BLIP-2 [30] as the generative model. More-
over, we blur the human-parsing image to mitigate the stylistic
gap between it and TBPR. In this way, we transformed the human-
parsing dataset into an image-text one-to-one fine-grained concep-
tual dataset for Person-SAM training.

3.2.3 Concept Relation Extraction. We then describe how to trans-
fer Person-SAM to TBPR data, i.e., Step: 02 Person-SAM Trans-
ferring. Before extracting fine-grained local correspondences from
TBPR data using the pre-trained Person-SAM, it is necessary to
extract fine-grained phrase descriptions from the TBPR text. We
extract text phrase segmentation from the TBPR text utilizing a
simple language model with grammar rules like those of previous
methods [43, 52].

For each sentence, as shown in Figure 4, we extract the set of
phrases

{
𝐴𝑖

}
|𝑁atr
𝑖=1 corresponding to the TBPR sentence, with 𝑁atr

representing the number of phrases. Then, we take these phrases
as prompts and feed them into the trained Person-SAM separately,
along with the person images I. Finally, we get the local part 𝑆𝑖
corresponding to each phrase 𝐴𝑖 , that is, 𝑆𝑖 = Person-SAM

(
I, 𝐴𝑖

)
.

The outputs of the model are paired as matched fine-grained image-
text relationships Φ =

{(
𝐴𝑖 , 𝑆𝑖

)}
|𝑁atr
𝑖=1 . These concept pairs and the

original sample pairs will be used as training inputs. We show some
Person-SAM extracted examples in Figure 6.

3.3 Fine-grained Semantic Alignment
Finally, we describe how to utilize these relationships, i.e., Step: 03
Fine-grained Alignment. Obviously, as shown in Fig. 4, aligning
the cross-modal fine-grained concept Φ generated by Person-SAM

still faces two challenges: Irregular Segment Shape and Varying
Token Numbers. The former leads to the problem of representing
the image segmentation, while simply aggregating all patches will
miss image details. The latter leads to the challenge of representing
the text phrase and measuring the cross-modal similarity between
local features across modalities.

Unlike existing methods, we propose to solve these challenges
by inputting the tokens of image segmentation and text phrase to
a cross-modal attention module, in which the cross-modal inter-
action between image and text will focus on essential parts and
generate a fused feature indicating the matching information. This
novel approach can deal with irregular image segmentation and
different token numbers, effectively aligning the fine-grained lo-
cal concept across image and text at the same granularity level.
Finally, we corrupt those parts of the text that contain full local
semantics and push the model to learn the focal and important
image representation via reconstructing these parts. Compared to
previous approaches, we are fine-grained in the textual perspective,
effectively overcoming the information gap.

Denote the image and text encoders by 𝜃𝑣 and 𝜃𝑡 , respectively.
We first use an image encoder to get the image features 𝑓𝑣 ={
𝑣 [CLS] , 𝑣1, . . . , 𝑣𝑁𝑖𝑚𝑔

}
of image I, where 𝑣𝑖 represents the feature of

𝑖-th patch in I, where 𝑁𝑖𝑚𝑔 represents the patch number. Similarly,
we can obtain the text features 𝑓𝑡 =

{
𝑡 [CLS] , 𝑡1, . . . , 𝑡𝑁𝑡𝑒𝑥𝑡

}
of text

T, where 𝑁𝑡𝑒𝑥𝑡 represents the length of the text sequence.

3.3.1 Explicit Local Concept Alignment. We propose the Explicit
Local Concept Alignment (ELCA) module to reduce the granular-
ity gap by pushing the model to distinguish whether fine-grained
concepts match. In detail, we first directly obtain the features of
each fine-grained semantic concept pair without additional compu-
tation. Denote X𝐴𝑖

and Y𝑆𝑖 the indices of the text phrase and image
segmentation in the text feature sequence 𝑓𝑡 and the image fea-
ture sequence 𝑓𝑣 , respectively. The phrase and image segmentation
can then be encoded as 𝑓 𝑖𝑡 = 𝑓𝑡

[
X𝐴𝑖

]
=

{
𝑡𝑖 |𝑖 ∈ X𝐴𝑖

, 𝑡𝑖 ∈ 𝑓𝑡
}
and
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𝑓 𝑖𝑣 =

{
𝑣𝑖 |𝑖 ∈ Y𝑆𝑖 , 𝑣𝑖 ∈ 𝑓𝑣

}
. We then design an explicit local concept

alignment task to discriminate fine-grained similar features across
modalities, alleviating the granularity gap in model learning.

As shown in Figure 4, we design a cross-modal attention (CMA)
module by using image local feature 𝑓 𝑖𝑣 as Query, and the text local
feature 𝑓 𝑗𝑡 as Key and Value

𝑓 𝑖, 𝑗 = CMA(𝑓 𝑖𝑣 , 𝑓
𝑗
𝑡 , 𝑓

𝑗
𝑡 ) (2)

Let 𝑓 𝑖, 𝑗1 be the first token of the cross-modal attention result. For
a semantic concept pair, (𝑖, 𝑗) ∈ POS, 𝑓 𝑖, 𝑗1 is the cross-modal in-
teraction at the same granularity level, indicating the matching
information. For the local feature with the index 𝑖 of a given modal-
ity, we randomly select another fine-grained localization 𝑗 of the
other modality as a negative sample and compute 𝑓 𝑖, 𝑗1 , denoted by
(𝑖, 𝑗) ∈ NEG. Then we use a linear classifier, P, to predict whether
the fused feature comes from a matched pair

L𝑚𝑎𝑡𝑐ℎ = −
POS∑︁
(𝑖, 𝑗 )

𝑙𝑜𝑔(P(𝑓 𝑖, 𝑗1 )) −
NEG∑︁
(𝑖, 𝑗 )

𝑙𝑜𝑔(1 − P(𝑓 𝑖, 𝑗1 )) (3)

3.3.2 Attentive Cross-Modal Decoding.
To overcome the information gap, instead of using a random mask
in cross-modal decoding, we proposed an attentive mask to ensure
informative representation in the modalities of image and text.

Random mask: In conventional cross-modal decoding [15, 24], a
randomized mask is utilized to predict the masked text words from
the image. However, random decoding equal for all words would
contain many task-irrelevant words (e.g., “is", “this", “he", “and",
etc.) that contribute little to the task.

Attentive mask: Given the index X𝐴 of the text phrases con-
tained in each person description T, the idea is to perturb these
task-relevant fine-grained parts more, i.e., the attention mask prob-
ability for local concept 𝑝𝑎 is much larger than the random mask
probability 𝑝𝑟 for common words. Denote the attentive mask by
Mask𝑎 . By destroying and decoding these key details at X𝐴 more
frequently, we push the model to learn those semantic details that
are truly meaningful,

𝑓𝑡 = CMA(Mask𝑎 (𝑓𝑡 ,X𝐴, 𝑝𝑎, 𝑝𝑟 ), 𝑓𝑣, 𝑓𝑣) s.t. 𝑝𝑎 > 𝑝𝑟 (4)

where Mask𝑎 (𝑓𝑡 ,X𝐴, 𝑝𝑎, 𝑝𝑟 ) is the masked text features and 𝑓𝑡 is
the fused feature using a cross-attention block based on the image
features. Finally, the text decoding loss L𝑑𝑒𝑐-𝑡 is conducted via the
cross-entropy loss between the predicted words from 𝑓𝑡 and the
ground-truth T.

3.3.3 Optimization Loss Function. We choose L𝑆𝐷𝑀 proposed by
[24] to optimize the global feature similarity of our model, which
constrains the similarity of image and text global features to be
consistent with the actual distribution through bidirectional KL
divergence, i.e., L𝑆𝐷𝑀 = KL(simt2i | |𝑦𝑡2𝑖 ) +KL(simi2t | |𝑦𝑖2𝑡 ), where
simt2i/𝑦𝑡2𝑖 and simi2t/𝑦𝑖2𝑡 represent the text-to-image and image-to-
text similarity/truth distributions, respectively. We train our model
via minimizing the multi-task loss L as shown in Equation 5.

L = L𝑚𝑎𝑡𝑐ℎ + L𝑑𝑒𝑐-𝑡 + L𝑆𝐷𝑀 (5)

4 Experiments
4.1 Settings
We validate the performance of the proposed method using publicly
available datasets that are frequently used in TBPR tasks, includ-
ing CUHK-PEDES [33], ICFG-PEDES [12], RSPTReid [84] and ATR
Dataset [38, 39]. More datasets information are shown in the Ap-
pendix.

4.2 Evaluation metrics
Following the established practice, we use the Rank-𝑘 metrics (𝑘 =

1, 5, 10) for evaluation. Given a caption from a query sentence, the
model retrieves a corresponding person in the image gallery. If any
image of the corresponding person is in the top-𝑘 retrieved images,
we call it a successful search.

4.3 Main Results
We show the results of ourmethod on the three popular benchmarks
in Tables 2,3,4, respectively. We train the baseline using Encoder
and SDM loss [24].

Table 2: Main result of our SAP-SAM on CUHK-PEDES.

Method Ref. Type R@1 R@5 R@10

RaSa [1] IJCAI23 I. 57.60 78.09 84.91
SUM [64] KBS22 I. 59.22 80.35 87.60
ISANet [72] arXiv22 I. 63.92 82.15 87.69
SRCF [54] ECCV22 I. 64.04 82.99 88.81

CM-LRGNet [83] KBS23 I. 64.18 82.97 89.85
CAIBC [65] MM22 I. 64.43 82.87 88.37

AXM-Net [14] AAAI22 I. 64.44 80.52 86.77
LGUR [51] MM22 I. 65.25 83.12 89.00
IVT [52] ECCVW22 I. 65.59 83.11 89.21
LC𝑅2S[70] MM23 I. 67.36 84.19 89.62
VGSG[22] TIP23 I. 67.52 84.37 90.26
PLIP[85] arXiv23 E. 68.16 85.56 91.21
UniPT [50] ICCV23 E. 68.50 84.67 90.38
PDG[68] TCSVT23 E. 69.47 87.13 92.13
CFine [71] arXiv22 I. 69.57 85.93 91.15
CSKT[36] arXiv24 I. 69.70 86.92 91.8
IRRA [24] CVPR23 I. 73.38 89.93 93.71
BiLMa [15] ICCV23 I. 74.03 89.59 93.62

SAP-SAM (Our) — E. 75.05 89.93 93.73

CUHK-PEDESWe first evaluate the proposed method on the
most common benchmark, CUHK-PEDES. As shown in Table 2,
our method outperforms all state-of-the-art methods, achieving
75.05% Rank-1 accuracy, 89.93% Rank-5 accuracy and 93.73% Rank-
10 accuracy, respectively.We have characterized how thesemethods
use local features, where “—" means not used with “E" standing
for explicit methods and “I" for implicit methods. The results show
that our methods surpass previous explicit methods and also recent
implicit methods, in particular, 1.67% and 1.02% Rank-1 outperform
compared to IRRA [24] and BiLMa [15], respectively. The results
indicate that explicitly learning these fine-grained relationships of
local features is beneficial. Compared to APTM [75], we are still
1.48% behind on R-1, mainly because APTM built a training dataset
of over 1, 500𝐾 images and used this large dataset for training, while
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CUHK-PEDES only has 34𝐾 image data for training (more than
40× times smaller). Nevertheless, even so, our SAP-SAM still leads
on R-5 and R-10.

Table 3: Main result of our SAP-SAM on ICFG-PEDES.

Method Ref. Type R@1 R@5 R@10
SSAN [65] arXiv21 E. 54.23 72.63 79.53
IVT [52] ECCVW22 I. 56.04 73.60 80.22
SRCF [54] ECCV22 I. 57.18 75.01 81.49
PDG[71] TCSVT23 E. 57.69 75.79 82.67

ISANet [72] arXiv22 I. 57.73 75.42 81.72
LC𝑅2S[70] MM23 I. 57.93 76.08 82.40
CSKT[36] arXiv24 I. 58.90 77.31 83.56
LGUR[51] MM22 I. 59.02 75.32 81.56
UniPT [50] ICCV23 E. 60.09 76.19 82.46
VGSG[22] TIP23 I. 60.34 76.01 82.01
CFine[71] arXiv22 I. 60.83 76.55 82.42
IRRA [24] CVPR23 I. 63.46 80.25 85.82
BiLMa [15] ICCV23 I. 63.83 80.15 85.74

SAP-SAM (Our) — E. 63.97 80.84 86.17

ICFG-PEDES The performance of the ICFG-PEDES dataset is
shown in Table 3. Likewise, the proposed method outperforms all
existing methods reported on ICFG-PEDES, achieves Rank-1 of
63.97%, Rank-5 of 80.84% and Rank-10 of 86.17%. We still gained
some improvement in all metrics compared to previous random-
ized [24] or explicit [50] methods.

Table 4: Main result of our SAP-SAM on RSTPReid.

Method Ref. Type R@1 R@5 R@10
DSSL [84] MM21 I. 39.05 62.60 73.95
SUM [64] KBS22 I. 41.38 67.48 76.48
SSAN [12] arXiv21 E. 43.50 67.80 77.15
LBUL [66] MM22 I. 45.55 68.20 77.85
IVT [52] ECCVW22 I. 46.70 70.00 78.80

CAIBC [65] MM22 I. 47.35 69.55 79.00
CFine [71] arXiv22 I. 50.55 72.50 81.60
UniPT [50] ICCV23 E. 51.85 74.85 82.85
LC𝑅2S[70] MM23 I. 54.95 76.65 84.70
IRRA [24] CVPR23 I. 60.20 81.30 88.20
BiLMa [15] ICCV23 I. 61.20 81.50 88.80

SAP-SAM (Our) — E. 62.85 82.65 89.85

RSTPReid We also validate the effectiveness of our method
on a newly proposed dataset, RSTPReid. As shown in Table 4, our
method achieves Rank-1 of 62.85%, Rank-5 of 82.65% and Rank-
10 of 89.85%, respectively, outperforming previous explicit and
implicit methods. In particular, compared to the recently proposed
BiLMA [15], a SOTA method, ours outperforms 1.65%, 1.15% and
1.05% the Rank-1, Rank-5, and Rank-10 leads, respectively.

Collectively considering the results of three datasets with dif-
ferent scales, sizes, and focuses, our method outperforms previous
methods and achieves state-of-the-art results, once again proving
our approach is practical and robust. In contrast to IRRA, we no
longer randomize but introduce attentive mask based on the rela-
tionships of text phrases, and these results demonstrate the effec-
tiveness of exploiting textual relationships. Compared to BiLMa, we
introduce ELCA, and the better results illustrate the importance of

Table 5: Ablation studies on SAP-SAM components.

Method Components R-1 R-5 R-10L𝑚𝑎𝑡𝑐ℎ L𝑑𝑒𝑐-𝑡 L𝑑𝑒𝑐-𝑖
Baseline 70.42 86.73 92.04
+L𝑚𝑎𝑡𝑐ℎ ✓ 73.59 89.51 93.55
+L𝑑𝑒𝑐-𝑡 ✓ 73.49 89.78 93.67
+L𝑑𝑒𝑐-𝑖 ✓ 72.69 86.23 93.67

+L𝑚𝑎𝑡𝑐ℎ+L𝑑𝑒𝑐-𝑖 ✓ ✓ 74.30 90.25 93.70
+L𝑚𝑎𝑡𝑐ℎ+L𝑑𝑒𝑐-𝑡+L𝑑𝑒𝑐-𝑖 ✓ ✓ ✓ 74.19 89.93 93.42

+L𝑚𝑎𝑡𝑐ℎ+L𝑑𝑒𝑐-𝑡 ✓ ✓ 75.05 89.93 93.73

exploiting cross-modal fine-grained conceptual relations, providing
new ideas for future methods.

4.4 Ablation Study
4.4.1 Ablations on model components. As shown in Table 5, the
results (‘+L𝑚𝑎𝑡𝑐ℎ ’ 𝑣𝑠. ‘Baseline’, ‘+L𝑚𝑎𝑡𝑐ℎ + L𝑑𝑒𝑐-𝑡 ’ 𝑣𝑠. ‘+L𝑑𝑒𝑐-𝑡 ’,
‘+L𝑚𝑎𝑡𝑐ℎ + L𝑑𝑒𝑐-𝑖 ’ 𝑣𝑠. ‘+L𝑑𝑒𝑐-𝑖 ’) demonstrate the effectiveness
of our proposed ELCA method (Section 3.3.1), with a significant
improvement of 3.17%, 2.78%, 1.51%, in all metrics compared to the
baseline with the addition of only the fine-grained local alignment
method. These results demonstrate the effectiveness of explicitly
learning relationships between fine-grained semantics.

For ACMD component (Section 3.3.2), we add both fine-grained
text phrases ( ‘+L𝑑𝑒𝑥-𝑡 ’ 𝑣𝑠. ‘Baseline’, ‘+L𝑚𝑎𝑡𝑐ℎ +L𝑑𝑒𝑐-𝑡 ’ 𝑣𝑠. ‘+
L𝑚𝑎𝑡𝑐ℎ ’) and fine-grained image regions (‘+L𝑑𝑒𝑥-𝑖 ’ 𝑣𝑠. ‘Baseline’,
‘+L𝑚𝑎𝑡𝑐ℎ + L𝑑𝑒𝑐-𝑖 ’ 𝑣𝑠. ‘+ L𝑚𝑎𝑡𝑐ℎ ’) to the decoding brought signifi-
cant benefits, yet performance slightly decreased when combining
these two approaches (‘+L𝑚𝑎𝑡𝑐ℎ + L𝑑𝑒𝑐-𝑡 + L𝑑𝑒𝑐-𝑖 ’ 𝑣𝑠. ‘+L𝑚𝑎𝑡𝑐ℎ +
L𝑑𝑒𝑐-𝑖 ’, ‘+L𝑚𝑎𝑡𝑐ℎ + L𝑑𝑒𝑐-𝑡 + L𝑑𝑒𝑐-𝑖 ’ 𝑣𝑠. ‘+L𝑚𝑎𝑡𝑐ℎ + L𝑑𝑒𝑐-𝑡 ’). We
hypothesize that images contain a more homogeneous information
density than text. Text, on the other hand, contains more informa-
tion only for key phrases due to morphological differences in the
data source itself.

4.4.2 Ablations on Person-SAM relationships. We used the relation-
ships extracted by Person-SAM on the LGUR[51] and SSAN[12]
methods to verify whether these relationships are valid for other
methods. The LGUR and the SSANmethods learn fixed fine-grained
conceptual divisions, whereas an improvement is obtained when
using our relations.

Table 6: Ablation of Person-SAM Relationships for other
Methods on CUHK-PEDES dataset.

Method R@1 R@5 R@10

SSAN [12] 61.37 80.15 86.73
SSAN+Person-SAM 62.63 81.32 87.91

LGUR[51] 65.25 83.12 89.00
LGUR+Person-SAM 66.47 84.19 89.22

Baseline(Our) 70.42 86.73 92.04
Baseline+Person-SAM(Our) 75.05 89.93 93.73

As shown in Table 6, the results show that adding the relations
extracted by Person-SAM can bring an R-1 improvement of 1.22%
to LGUR and an R-1 improvement of 1.37% to SSAN, which demon-
strates that our Person-SAM can effectively drive the model’s align-
ment of fine-grained features.
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Table 7: Ablation of Attentive Mask.

Method R@1 R@5 R@10
Random 72.81 89.31 93.39

Attentive (Our) 73.49 89.78 93.67

88.95
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Figure 5: Ablation study of mask prob 𝑝𝑎

4.4.3 Ablations on text mask probability. We explored whether
the Attentive mask worked on the CUHK-PEDES dataset. Table 7
compares our original and attentive randommasks. This experiment
proves that masking themore important parts works in fine-grained
tasks. We also explored the effect of the mask probability 𝑝𝑎 . The
results are shown in Figure 5. We started with the probability 𝑝𝑎 =

0.15 and gradually increased the size of 𝑝𝑎 by 0.05 as a step. We
obtain the best score when 𝑝𝑎 = 0.35. Furthermore, performance
will drop as 𝑝𝑎 increases. We hypothesize that this is due to a
high masking probability that can make it difficult for the model
to understand the meaning of these key parts of the word, thus
impairing performance.

4.5 Example of Person-SAM Transferred.
We visualize some segmentation results of Person-SAM, as shown
in Fig. 6. The phrases on top of the figure drive these results. Al-
though there are some pixel-level deviations in the Person-SAM
produced by TBPR compared to those of the exact image segmen-
tation data, these regions roughly contain the blocks where the
objects are present. Person-SAM achieves good results in these
examples, whether they are long text phrases (such as the leftmost
example at the bottom), small examples (such as the hair, shoes, or
bag in the figure), or confusing examples (such as the rightmost
example at the top). Admittedly, these results still have some flaws,
but they are fine for TBPR.

4.6 Case Study
Figure 7 illustrates an example of Top-10 retrieval results for our
SAP-SAM and the baseline. As a comparison, our method retrieves
more accurate results when the baseline model fails. Further, we
found that our approach can capture even small fine-grained se-
mantic concepts. Fine-grained semantic matches can be retrieved
even in the wrong cases, as shown by the boxes in the figure. This
phenomenon further illustrates the effectiveness of aligning at a
fine-grained semantic level and proves that learning the relation-
ship between fine-grained cross-modal semantics is crucial.

Figure 6: We randomly show some transferring results of
Person-SAM on the TBPR dataset.
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Figure 7: Retrieval example of our method on the CUHK-
PEDES.

5 Conclusion
We propose a novel Fine-grained Semantic Alignment with Trans-
ferred Person-SAM (SAP-SAM) method to address the granularity
and information gaps in TBPR. First, with knowledge distillation
and transferring, we successfully trained the proposed Person-SAM
and exactly captured the relationships between fine-grained con-
cepts. Then, in the fine-grained feature matching, our designed
Explicit Local Concept Alignment (ELCA) effectively enhances
the model’s discrimination of fine-grained features, addressing
the granularity gap in previous approaches. In addition, our pro-
posed Attentive Cross-Modal Decoding (ACMD) has enhanced
the model’s understanding of fine-grained content, addressing the
information gap in previous approaches. We have validated and
achieved optimal result on three existing benchmarks, proving our
method’s effectiveness. The success of utilizing fine-grained cross-
modal conceptual relationships also provides new ideas for future
research.
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Table 8: The list of semantic merges performed, with the orig-
inal semantic categories shown on the left and the right side
showing which of the other ones we merged these semantic
categories with.

Origin Merged

hair hair, face
sun-glass sun-glass, face
left-shoe left-shoe, right-shoe, left-leg, right-leg

A Experiment Details
A.1 Dataset and Settings
We validate the performance of the proposed method using publicly
available datasets that are frequently used in TBPR tasks, including
CUHK-PEDES [33], ICFG-PEDES [12], RSPTReid [84] and ATR
Dataset [38, 39].

CUHK-PEDES[33] is a classical TBPR dataset with 40, 206 im-
ages and 80, 412 textual descriptions for 13, 003 identities. The pedes-
trian image of CUHK-PEDES comes from five existing person re-
identification datasets, CUHK03 [35], Market-1501 [81], SSM [69],
VIPER [18], and CUHK01 [34]. The training and testing sets com-
prise 11, 003/1, 000 personswith 34, 054/3, 074 images and 68, 108/6, 156
sentence descriptions, respectively.

ICFG-PEDES [12] contains 54, 522 pedestrian images of 4, 102
different identities with more fine-grained text descriptions. The
images in ICFG-PEDES are collected from the MSMT17 database
[67]. The training set contains 34, 674 image-text pairs from 3, 102
pedestrians, while the test set contains 19, 848 image-text pairs for
the remaining 1, 000 pedestrians.

RSPTReid[84] is a real scenario text-based person re-identification
dataset based on MSMT17 [67]. It contains 20, 505 images of 4, 101
persons from 15 cameras in total. The training set consists of 3, 701
people, 18, 505 images, and 37, 010 sentence descriptions. The test
set includes 1, 000 images and 2, 000 textual descriptions of 200
pedestrians.

ATR Dataset[38, 39] is a human parsing dataset with 17, 706
images and 18 semantic categories. The images in ATR come from
diverse sources. Each image is assigned several semantic categories
and labeled with fine pixel-level annotations. We randomly split
the ATR dataset into the train, valid, and test sets with the ratio of
8 : 1 : 1.

A.2 Implementation Details
We loaded the pre-trained CLIP-B/16 for the text and image en-
coders and randomly initiated the rest of the modules. During train-
ing and testing, all images are uniformly scaled to 384×128, and the
maximum length of the text is set to 77. We train the model using
the Adam optimizer and set the learning rate of the pre-training
module to 1𝑒-5 with the cosine decay strategy. For the other mod-
ules, we set the learning rate 5𝑒-5. The mask probability 𝑝′ is set
to 0.35. The size of the image patch is 16. For the training of the
segmentation model, we use SAM-Base and BERT-base-uncased
for the text model. We freeze the base encoder and train only the
decoder and other parameters. We set the learning rate to 1𝑒-4, and

train 20 epochs. The image input size of the model is 1024 × 1024,
and the maximum length of each phrase is 16.

B Details of Person-SAM Tuning
B.1 Semantic Merging in Person-SAM
We performed a semantic merging on the ATR dataset when train-
ing Person-SAM in the main text, and here we explain in detail why
we conducted this operation. First, the original ATR data consists
of 18 categories (including the background). At the same time, it
contains, for example, categories with positional information such
as “left-shoe" and “right-shoe," as shown in Fig. 8. These categories
usually appear in entirely different shapes due to the masking
of the parts. As shown in the three left columns of Figure 8, we
demonstrate some masked semantic classes that are unfavorable
for training text-driven semantic segmentation. Therefore, we need
to merge these similar semantics to mitigate some of the effects
due to masking. In addition to this, for example, as shown in the
two right columns of Figure 8, smaller regions, such as glasses, are
challenging to achieve detailed generation of linguistic descriptions
when used alone, whereas the generative model can work well
when merged with the face. Finally, as shown in Table 8, we will
merge the semantic classes. Instead of merging, we generate the
phrases corresponding to these regions separately for the rest of
the semantic classes.

In addition to this, inspired by some recent research on visual
prompts[9, 57, 77], we still tried to utilize some visual prompts
to directly generate descriptions of the corresponding regions, as
shown in Fig. 9. We attempted to use visual prompts for points,
regions, and boxes, respectively, and asked for the content of the
corresponding regions via text. However, this result was not satis-
factory, and these attempts invariably produced very noisy results
while still generating many errors when confronted with those fine
semantic classes. Therefore, we directly filter as much irrelevant
interference as possible during the actual generation process and
target the prompts for each semantic class.

B.2 Text Prompt for Phrase Generation
After merging the semantic classes and processing the image re-
gions, we next need to design the textual prompts tomake themodel
output fine-grained phrases as correctly as possible. Some existing
research also suggests that textual prompts[3, 4, 25, 45, 47, 55], even
some punctuation marks that seem small to humans, may contain
very unique semantic information to the model. Therefore, we need
to design these linguistic prompts very carefully. We take a natural
language perspective, keeping sentences as fluent as possible, and
ask questions about the current semantic class. This operation aims
to narrow down the model’s choices of what to output so that the
model outputs more accurate results than without containing the
current semantic class word. Taking hair as an example, we show
the design of some semantic classes, as shown in Table 9. Finally,
we manually evaluate the generation quality of each text prompt on
several samples and select the most accurate one for the template.
We perform this operation for each semantic class, and finally, we
get the specific text prompt templates for all semantic classes as
shown in Table 10.
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Image

Text 

Phrase

SunglassesLeft-ShoeRight-Shoe SunglassesRight-ShoeSemantic

ice cream knife a slide
A piece of 

chocolate.
toys

Figure 8: When the object is occluded or very small, the generated model can easily misclassify it. The three columns on the
left show examples where BLIP-2 produced an error after the object occluded. The two columns on the right show examples
where the generated results are erroneous when the objects are very small.

Visual 

Prompt

Text 

Prompt

Phrase

Mask Region Bounding Box Edge Point Filter (Our)

What kind of 

clothes is this?

What style of 

clothing is the 

covered area in the 

picture?

What is the style of 

the framed dress in 

the picture?

Origin Image

What kind of 

clothes is this 

woman wearing?

The picture is of a 

woman wearing 

black shoes and a 

white shirt

It's a woman.

It's a woman 

wearing a black 

skirt and a white 

blouse

What kind of 

clothes is this 

woman wearing?

It's a woman 

standing there.

It is a shirt with a 

belt

Crop

Figure 9: From left to right, visual region processing includes the original image (prompted by text only), mask enhancement,
localization box enhancement, keypoint enhancement, and irrelevant region filtering. In several other methods, more or less
irrelevant or erroneous bits of content are produced.

C Ablations on Image Mask
Section 4.3 of the main text ablates the attentive cross-modal de-
coding module. We include an L𝑑𝑒𝑐-𝑖 that needs to be mentioned
in the main text. The L𝑑𝑒𝑐-𝑖 stands for masking the image features
and then, in a similar way to the text, improving the model’s under-
standing of the fine-grained features by introducing cross-modal
reconstruction. Unlike text, however, current research is still not
unified on how to model masked images, so we have tried two main
types of approaches: discrete (as used by BeiT [2], for example) and
linear (as used by MAE [21], for example).

(1) For discrete, we follow BeiT and quantize the image using
a pre-trained VQ-VAE[58] (we chose the DALLE[48] pre-trained

one), i.e., ids = VQ-VAE(I). Then, similarly to text, we mask the im-
age patches to obtain the masked features 𝑓 ′𝑣 . Next, we decode these
masked tokens using the textual features 𝑓𝑡 , i.e., 𝑓 ′𝑣 = MCA(𝑓 ′𝑣 , 𝑓𝑡 , 𝑓𝑡 ).
Finally, similarly to text, we find these masked parts and then
predict the ids that these features initially corresponded, that is,
L𝑑𝑒𝑐-𝑖 = ℓ𝐶𝐸 (MLP(𝑓 ′𝑣 ), ids).

(2) During the experiment, we find that amore significant portion
of the vectors acquired by VQ-VAE belong to the background (about
31%, i.e., ids𝑖 = 0). To avoid the category imbalance problem, we
ignore these backgrounds and reconstruct only the other tokens
ids′ = {𝑥 ≠ 0|𝑥 ∈ ids}, i.e., L𝑑𝑒𝑐-𝑖 = ℓ𝐶𝐸 (MLP(𝑓 ′𝑣 ), ids′).
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Table 9: Ablation studies on Text Prompt for BLIP-2.

Prompt Response

None A black shell.

What object is in this picture? Answer: This picture has a piece of dark chocolate.

What’s in this picture? Answer: There’s a headset in the picture

Question: What’s her hairstyle? Answer: short

Question: What kind of hair she has? Answer: She has short, curly hair.

Question: What kind of hair is this? Answer: The kind of hair she has is short.

Question: What kind of hair is she? Answer: She has short, curly hair

Table 12: Results of Different Person-SAM Text Prompt
Methos.

No. Prompt Feature mIoU
1) 𝑓

[CLS]
𝐴𝑖

56.31
2) 𝑓𝐴𝑖

59.27
3) 𝑓

[CLS]
𝐴𝑖

· 𝑓I 58.01
4) 𝜃MCA

(
𝑓𝑝 , 𝑓𝐴𝑖

, 𝑓𝐴𝑖

)
61.55

Table 10: Prompts corresponding to all semantic classes used
for BLIP-2.

Semantic Prompt

hat Question: What kind of hat is this? Answer: It is

hair Question: What kind of hair is she? Answer: She has

glasses Question: What kind of glasses is this? Answer: It is

clothes Question: What kind of clothes is this? Answer: It is

skirt Question: What kind of skirt is this? Answer: It is

pants Question: What kind of pants is this? Answer: It is

dress Question: What kind of dress is this? Answer: It is

shoes Question: What shoes is she wearing? Answer: She is wearing

bag Question: What kind of bag is this? Answer: It is

Table 11: Ablations on Image Decoding.

No. Method R-1 R-5 R-10
1) discrete 69.54 85.21 92.65
2) discrete w/o background 69.77 85.63 92.74
3) linear & after PE 72.69 86.23 93.67
4) linear & after ViT 71.56 85.97 93.01

We also have two strategies for linear features: (3) First, the
image I is masked immediately after Patch Embedding and the
masked tokens are fed to the subsequent attention layer in ViT.

(4) The other is to mask the image features 𝑓𝑣 acquired by ViT.
Unlike the discrete strategy, both strategies use MSE loss ℓ𝑀𝑆𝐸 to
compute the decoding loss L𝑑𝑒𝑐-𝑖 . In addition to that, the rest of
the masking and decoding strategies remain unchanged.

The results of these strategies are shown in Table 11, with strat-
egy (3) achieving the best results. Although image cross-modal
decoding alone is effective, performance impairment occurs when
combining text cross-modal decoding with image cross-modal de-
coding, as shown in the main text. How to solve this problem is
also part of our subsequent research.

D Discussion of Person-SAM Structure
In the design of Person-SAM, we introduced a text encoder to ac-
commodate text-driven prompts to generate exactly corresponding
fine-grained regions. We explored a few ways to use the text fea-
tures, and the segmentation result in the ATR dataset is shown in
Table 12, and we used mAP as the evaluation criterion.

We then briefly describe these methods. Method 𝑓 [CLS]
𝐴𝑖

means
using the [CLS] token feature of the text𝐴𝑖 as text prompt.Method
𝑓𝐴𝑖

meas using dense text features (i.e., features of all 𝐴𝑖 tokens.
Method 𝑓 [CLS]

𝐴𝑖
· 𝑓I means using dot products between dense textual

prompts with image features as prompts for the decoder. Method
𝜃MCA

(
𝑓𝑝 , 𝑓𝐴𝑖

, 𝑓𝐴𝑖

)
, which we used, means using Multi-head Cross-

Attention(MCA) to obtain the fused textual features between some
learnable tokens 𝑓𝑝 and the dense textual features as input to the
decoder’s prompts.

As shown in Table 12, method 𝜃MCA
(
𝑓𝑝 , 𝑓𝐴𝑖

, 𝑓𝐴𝑖

)
is better than

the other methods, so we use this method in the Person-SAM struc-
ture. The reason for this phenomenon is that fine-grained features
require an exact representation, so methods with dense features 𝑓𝐴𝑖

are better than methods using 𝑓 [CLS]
𝐴𝑖

. At the same time, the learn-
able parameters provide domain adaptation, which helps Person-
SAM to focus more easily on details related to pedestrians.

E Discussion on Alignment Strategy.
In addition to the alignment strategies described in Section 3.3.1,
inspired by previous work, like GLIP[31], X-VLM[78], we still ex-
plored some other alignment strategies. Method ‘avgPool’ means
using average pooling to aggregate each local feature, i.e., 𝑓 𝑖𝑣 =

avgPool
(
𝑓 𝑖𝑣

)
and 𝑓 𝑖𝑡 = avgPool

(
𝑓 𝑖𝑡

)
, and then employing the In-

foNCE loss to constrain the cosine similarity between image and
text local features. Method ‘Conv1D’ means using 1-𝑑 convolu-
tion network instead of average pooling in method ‘avgPool’ with
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Table 13: Results of Different Alignment Strategy.

No. Method R-1 R-5 R-10
w/o matching 70.42 86.73 92.04

1) avgPool 32.96(↓) 55.10 65.53
2) Conv1D 53.87(↓) 76.49 83.35
3) MHSA 68.99(↓) 87.33 92.07
4) ELCA (Our) 73.59 89.51 93.55

the rest remaining unchanged. Method ‘MHSA’ means utilizing
a multi-head self-attention (MHSA) module to aggregate text and
image features, i.e., 𝑓 𝑖𝑣 = MHSA

( [
𝑣, 𝑓 𝑖𝑣

] )
and 𝑓 𝑖𝑡 = MHSA

( [
𝑡, 𝑓 𝑖𝑡

] )
,

then using the InfoNCE loss to constrain the cosine similarity be-
tween the [CLS] feature of 𝑓 𝑖𝑣 and 𝑓 𝑖𝑡 , where 𝑣 and 𝑡 are learnable
parameter token, [·] is concatenated operation. Method ‘ELCA’ is
our explicit local concept alignment method described in Section
3.3.1.

Table 13 shows the influence of different matching approaches.
The benefit of retaining features for all tokens compared to aggre-
gated features, such as ‘avgPool’, suggests that the aggregated fea-
tures lose some fine-grained information that is trivial in traditional
tasks but critical in TBPR. Our ELCA can push the model more
strongly to discriminate semantic differences between localizations
by interacting with fine-grained features. This result demonstrates
the specificity of the TBPR task, i.e., it is a fine-grained task, and
the importance of aligning fine-grained semantic features.

F Scaling on larger model

Table 14: Main result of our SAP-SAM using larger backbone
on CUHK-PEDES.

Method Backbone R@1 R@5 R@10

Baseline CLIP (ViT/B-16) 70.42 86.73 92.04
SAP-SAM (Our) CLIP (ViT/B-16). 75.05 89.93 93.73

Baseline CLIP (ViT/L-14) 72.13 87.15 92.71
SAP-SAM (Our) CLIP (ViT/L-14). 76.28 90.87 94.75

We still trained SAP-SAM on a larger backbone network, such
as CLIP(ViT/L-14), and the results are shown in Table 14. Our SAP-
SAM achieved better results, but we did not use this result in the
text for a fair comparison.

G Limitations
We mainly propose a fine-grained local feature alignment method
for images and text to improve the quality of the model’s rep-
resentation of cross-modal features through fine-grained feature
identification and understanding, thus improving the model’s per-
formance in downstream tasks. We focus on some problems in
the TBPR task from a fine-grained perspective. However, due to
resource constraints, our approach still has some problems:

• In Person-SAM transfer, due to the limited computational
resources, the model we chose is small, which may limit
some of the model’s capabilities and lead to less fine-grained
results obtained.

• Since there are still some domain differences between the
ATR and TBPR datasets in the transfer process, this problem
still exists even though we have performed some data style
transformations.

• Since we retained all the feature blocks, the computation
process took up more time during the learning process of
fine-grained features.

In the future, we will also investigate how to learn this relationship
faster.
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