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Abstract

Recent text-to-image diffusion models trained on large-scale data achieve remark-
able performance on text-conditioned image synthesis (e.g., GLIDE, DALL·E-2,
Imagen, Stable Diffusion). This paper introduces a simple method to use stochastic
text-to-image diffusion models as zero-shot image editors. Our method, CycleDif-
fusion, is based on the finding that when all random variables (or “random seed”)
are fixed, two similar text prompts will produce similar images. The core of our
idea is to infer the random variables that are likely to generate a source image
conditioned on a source text. With the inferred random variables, the text-to-image
diffusion model then generates a target image conditioned a target text. Our experi-
ments show that CycleDiffusion outperforms SDEdit and the ODE-based DDIB
method, and it can be further improved by Cross Attention Control.1

1 Introduction

It has been observed that given a fixed random seed, a text-to-image diffusion model will generate
similar images when conditioned on two similar text prompts. In this paper, we show how to exploit
this finding to make stochastic text-to-image diffusion models zero-shot image-to-image editors,
without any assumptions on the model architecture.

We first formalize “random seeds” by defining the Gaussian latent codes z of stochastic diffusion
models (as opposed to the ODE-based deterministic ones) as the concatenation of all Gaussian noises
in the denoising process. We then propose DPM-Encoder to infer z from a real image x. Finally,
we propose CycleDiffusion, a method for zero-shot image editing. Given a pretrained text-to-image
diffusion model, CycleDiffusion requires no finetuning to achieve this task. It first encodes the source
image x as z using DPM-Encoder, conditioned on the source text t; then it decodes z into the target
image x̂ with the text-to-image diffusion model conditioned on the target text t̂.

Our experiments compared CycleDiffusion with SDEdit [6] and the ODE-based DDIB [16]. We
simulated hyperparameter search and random trials for each sample, which is quite common for
text-to-image diffusion models, and used the directional CLIP score as the criterion. Results show
that CycleDiffusion outperforms SDEdit and DDIB. We also demonstrate that CycleDiffusion can be
combined with the Cross Attention Control [2] to further preserve the image structure.

2 Method

2.1 Formalizing “Random Seeds” of Stochastic Diffusion Models

We first formalize the “random seeds” of stochastic diffusion probabilistic models (DPMs), such as
DDPMs [3], non-deterministic DDIMs [14], and score-based SDEs [15]. These models generate
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Algorithm 1: CycleDiffusion for zero-shot image editing

Input: source image x := x0; source text t; target text t̂; encoding step Tes ≤ T
1. Sample noisy image x̂Tes = xTes ∼ q(xTes |x0)
for t = Tes, . . . , 1 do

2. xt−1 ∼ q(xt−1|xt,x0)

3. εt =
(
xt−1 − µT (xt, t|t)

)
/σt

4. x̂t−1 = µT (x̂t, t|t̂) + σt � εt
Output: x̂ := x̂0

images with a Markov chain structure. Given xT ∼ N (0, I), the image x := x0 is generated through
xt−1 ∼ N (µT (xt, t),diag(σ

2
t )). We can define the latent code z and the mapping x = G(z) as

z :=
(
xT ⊕ εT ⊕ · · · ⊕ ε1

)
∼ N (0, I), xt−1 = µT (xt, t) + σt � εt, t = T, . . . , 1, (1)

where⊕ is concatenation. Here, z has dimension d = dI× (T +1), where dI is the image dimension.

2.2 DPM-Encoder: an Encoder for Diffusion Models

To edit real images, we propose DPM-Encoder to infer z from the image x. For each image x := x0,
a stochastic DPM have a predefined posterior q(x1:T |x0) [3, 14]. Based on q(x1:T |x0) and Eq. (1),
we can directly derive z :=

(
xT ⊕ εT ⊕ · · · ⊕ ε2 ⊕ ε1

)
∼ DPMEnc(z|x, G) as

x1, . . . ,xT−1,xT ∼ q(x1:T |x0), εt =
(
xt−1 − µT (xt, t)

)
/σt, t = T, . . . , 1. (2)

2.3 CycleDiffusion: Image-to-Image Translation with DPM-Encoder

Since DPM-Encoder can infer z from a given real image x, we use it to build our zero-shot image-to-
image translation method CycleDiffusion. Let Gt be a text-to-image diffusion model conditioned
on text t. The task input is a source image x, a source text t describing the source image x, and a
target text t̂ describing the target image x̂ to be generated. Like the GAN-based UNIT method [5],
CycleDiffusion encodes x as z with DPM-Encoder and decodes it as x̂ = Gt̂(z). Formally, we have

z ∼ DPMEnc(z|x, Gt), x̂ = Gt̂(z). (3)

Inspired by the realism-faithfulness tradeoff in SDEdit [6], we can truncate z towards a specified
encoding step Tes ≤ T . The full algorithm of CycleDiffusion with truncation is shown in Algorithm 1.

An analysis for image similarity with fixed z. This part analyzes how the fixed z helps bound
image distances. Suppose the text-to-image model has the following two properties:

1. Conditioned on the same text, similar noisy images lead to similar enough mean predictions.
Formally, µT (xt, t|t) is Kt-Lipschitz, i.e., ‖µT (xt, t|t)− µT (x̂t, t|t)‖ ≤ Kt‖xt − x̂t‖.

2. Given the same image, the two texts lead to similar predictions. Formally, ‖µT (x̂t, t|t)−
µT (x̂t, t|t̂)‖ ≤ St. Intuitively, a smaller difference between t and t̂ gives us a smaller St.

Let Bt be the upper bound of ‖xt − x̂t‖2 at time step t when the same latent code z is used for
sampling (i.e., x0 = Gt(z) and x̂0 = Gt̂(z)). We have BT = 0 because ‖xT − x̂T ‖2 = 0, and
B0 is the upper bound for the generated images ‖x− x̂‖2. The upper bound Bt can be propagated
through time, from T to 0. Specifically, by combining the above two properties, we have

Bt−1 ≤ (Kt + 1)Bt + St. (4)
3 Experiments

This section provides experiments for zero-shot image-to-image translation. Following Section 2.3,
we curated a set of 150 triplets (x, t, t̂) for this task, where x is the source image, t is the source text
(e.g., “an aerial view of autumn scene.” in Figure 1), and t̂ is the target text (e.g., “an aerial view of
winter scene.”). The target image to be generated is denoted as x̂.
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Figure 1: Text-to-image diffusion models can be zero-shot image-to-image editors. Source images x
are displayed with a purple margin; the others are generated target images x̂. Overlapping text spans
are marked in purple in source texts t and abbreviated as [. . .] in target texts t̂.

Metrics: To evaluate the faithfulness to source images, we reported PSNR and SSIM. To evaluate
the authenticity to the target text, we used the CLIP score, i.e., the cosine similarity between CLIP
embeddings: SCLIP(x̂|t̂) = cos

〈
CLIPimg(x̂),CLIPtext(t̂)

〉
. We also reported directional CLIP score

[8], i.e., the cosine similarity between the differences of CLIP embeddings:

SD-CLIP(x̂|x, t, t̂) = cos
〈

CLIPimg(x̂)− CLIPimg(x),CLIPtext(t̂)− CLIPtext(t)
〉
. (5)

Baselines: The baselines include SDEdit [6] and DDIB [16]. We used the same hyperparameters
(and hyperparameter trials) for the baselines and CycleDiffusion whenever possible (see Appendix A).

Pre-trained text-to-image diffusion models: We experimented with two models: (1) LDM-400M,
a 1.45B-parameter model trained on LAION-400M [13], (2) SD-v1-4, a 0.98B-parameter Stable
Diffusion model trained on LAION-5B [12].

Table 1: Quantitative evaluation for zero-shot image editing. We did not use a fixed combination of
hyperparameters, and neither did we plot the trade-off curve. The reason is that every input can have
its best combination of hyperparameters and even random seed. Instead, for each input, we ran 15
trials for each combination of hyperparameters and report the one with the highest SD-CLIP. For a fair
comparison, different methods share the same set of combinations of hyperparameters if possible,
detailed in Appendix A.

Method SCLIP↑ SD-CLIP↑ PSNR↑ SSIM↑

LDM-400M
SDEdit [6] 0.332 0.264 13.68 0.390
DDIB [16] 0.324 0.195 15.82 0.544
CycleDiffusion w/ DDIM (η = 0.1; ours) 0.333 0.275 18.72 0.625

SD-v1-4
SDEdit [6] 0.344 0.258 15.93 0.512
DDIB [16] 0.331 0.209 18.10 0.653
CycleDiffusion w/ DDIM (η = 0.1; ours) 0.334 0.272 21.92 0.731
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Results: Table 1 shows the results for zero-shot image-to-image translation. CycleDiffusion excels
at being faithful to the source image (i.e., PSNR and SSIM); by contrast, SDEdit and DDIB have
comparable authenticity to the target text (i.e., SCLIP), but their outputs are much less faithful. For
all methods, we find that the pre-trained weights SD-v1-1 and SD-v1-4 have better faithfulness
than LDM-400M. Figure 1 provides samples from CycleDiffusion, demonstrating that CycleDiffusion
achieves meaningful edits that span (1) replacing objects, (2) adding objects, (3) changing styles, and
(4) modifying attributes. See Figure 3 (Appendix B) for qualitative comparisons with the baselines.

Figure 2: Cross Attention Control (CAC) [2] helps CycleDiffusion when the intended structural
change is small. For instance, when the change is color (left), CAC helps CycleDiffusion preserve the
background; when the change is horse→ elephant (right), CAC makes the elephant look like a horse.

CycleDiffusion + Cross Attention Control: Besides fixing the random seed, [2] shows that fixing
the cross attention map (this operation is called Cross Attention Control, or CAC) also improves the
similarity between synthesized images. CAC is applicable to CycleDiffusion: in Algorithm 1, we can
apply the attention map of µT (xt, t|t) to µT (x̂t, t|t̂). However, we cannot apply it to all samples
because CAC puts requirements on t and t̂ (i.e., the target text is a subsequence of the source one, or
the two texts differ in only one token [2]). Figure 2 shows that CAC helps CycleDiffusion when the
intended structural change is small. For instance, when the intended change is color but not shape
(left), CAC helps CycleDiffusion preserve the background; when the intended change is horse→
elephant, CAC makes the generated elephant to look more like a horse in shape.

4 Related Work

Several recent methods for text-to-image synthesis are built upon diffusion probabilistic models
(DPMs), such as GLIDE [7], DALL·E 2 [9], Imagen [11], Stable Diffusion [10]. It has been observed
that when using the same random seed, text-to-image DPMs tend to generate similar images given
two similar text prompts. It holds for both stochastic DPMs [3, 14] and deterministic DPMs [14, 15].
Based on the finding for deterministic DPMs, [16] proposed dual diffusion implicit bridge (DDIB)
for unpaired image translation, and our CycleDiffusion is an extension of it to stochastic DPMs.

Besides random seeds, a concurrent work [2] found that fixing the cross-attention map in Transformer-
based text-to-image DPMs further improves the similarity between images. To fix the cross-attention
map for two text prompts, they proposed Cross Attention Control (CAC). To edit real images, they
combined CAC with DDIB [16] or mask heuristics because “how to infer random seeds” for stochastic
DPMs is non-trivial. In our experiments, we show that CAC can be applied to CycleDiffusion to
improve the structural preservation of the image.

Two concurrent works, Imagic [4] and UniTune [17], showed that zero-shot image editing can also
be achieved by finetuning the text-to-image DPM on the source image to be edited. Different from
these two works, our CycleDiffusion is an optimization-free method that does not need finetuning the
large text-to-image DPMs. Similar optimization-free methods include the Cross Attention Control
[2] discussed above and DiffEdit [1], which automatically infers a mask before editing.

5 Conclusions

This paper proposes CycleDiffusion, a simple method for zero-shot image editing with pretrained
text-to-image DPMs without optimization. Different from several works that use deterministic DPMs
for this task, CycleDiffusion shows that stochastic DPMs can also be used for zero-shot image
editing. Besides the promising results, we also analyze how the fixed z helps bound image distances.
However, an analysis on needs further exploration.
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A Experimental Details

CycleDiffusion and the baselines for zero-shot image-to-image translation have some shared hyper-
parameters; each method also has its own unique hyperparameters. For both CycleDiffusion and
the baselines, we can enumerate some of these parameters and select the best per sample based on a
certain criterion. Moreover, for stochastic methods such as SDEdit and our CycleDiffusion, one may
run several trials. In this section, we provide these details.

Per sample selection criterion: For each test sample, we allow each method to enumerate some
combinations of hyperparameters (detailed below). To select the best combination for each sample,
we used the directional CLIP score SD-CLIP as the criterion (higher is better).

DDIB: Since DDIB only applies to deterministic DPMs, we used the deterministic DDIM sampler
with 100 steps. We set the classifier-free guidance of the encoding step as 1; we enumerated the
classifier-free guidance of the decoding step as {1, 1.5, 2, 3, 4, 5}.
SDEdit: For SDEdit, we used the DDIM sampler (η = 0.1) with 100 steps. We enumerated the
classifier-free guidance of the decoding step as {1, 1.5, 2, 3, 4, 5}; we enumerated the SDEdit step as
{15, 20, 25, 30, 40, 50}; we ran 15 trials for each hyperparameter combination.

CycleDiffusion: For our CycleDiffusion, we used the DDIM sampler (η = 0.1) with 100 steps.
We set the classifier-free guidance of the encoding step as 1; we enumerated the classifier-free
guidance of the decoding step as {1, 1.5, 2, 3, 4, 5}; we enumerated the early stopping step Tes as
{15, 20, 25, 30, 40, 50}; we ran 15 trials for each hyperparameter combination.

B Additional Results for Zero-Shot Image-to-Image Translation

Figure 3 provides a qualitative comparison for zero-shot image-to-image translation. Compared with
SDEdit and the ODE-based DDIB, CycleDiffusion improves the faithfulness to the source image.
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Figure 3: Samples for zero-shot image-to-image translation. Notations follow Figure 1. Compared
with DDIB and SDEdit, CycleDiffusion greatly improves the faithfulness to the source image.
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