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Abstract

We study piece-wise constant signals corrupted by additive Gaussian noise over a
d-dimensional lattice. Data of this form naturally arise in a host of applications,
and the tasks of signal detection or testing, de-noising and estimation have been
studied extensively in the statistical and signal processing literature. In this paper
we consider instead the problem of partition recovery, i.e. of estimating the parti-
tion of the lattice induced by the constancy regions of the unknown signal, using
the computationally-efficient dyadic classification and regression tree (DCART)
methodology proposed by [14]. We prove that, under appropriate regularity condi-
tions on the shape of the partition elements, a DCART-based procedure consistently
estimates the underlying partition at a rate of order σ2k∗ log(N)/κ2, where k∗ is
the minimal number of rectangular sub-graphs obtained using recursive dyadic
partitions supporting the signal partition, σ2 is the noise variance, κ is the minimal
magnitude of the signal difference among contiguous elements of the partition and
N is the size of the lattice. Furthermore, under stronger assumptions, our method
attains a sharper estimation error of order σ2 log(N)/κ2, independent of k∗, which
we show to be minimax rate optimal. Our theoretical guarantees further extend
to the partition estimator based on the optimal regression tree estimator (ORT) of
[12] and to the one obtained through an NP-hard exhaustive search method. We
corroborate our theoretical findings and the effectiveness of DCART for partition
recovery in simulations.

1 Introduction

Suppose we observe a noisy realization of a structured, piece-wise constant signal supported over a
d-dimensional square lattice (or grid graph) Ld,n = {1, . . . , n}d. Data that can be modeled in this
manner arise in several application areas, including in satellite imagery [e.g. 30, 37], computer vision
[e.g. 6, 38], medical imaging [e.g. 26, 23], and neuroscience [e.g. 16, 32]. Our goal is to estimate the
constancy regions of the underlying signal. Specifically, we assume that the data y ∈ RLd,n are such
that, for each coordinate i ∈ Ld,n,

yi = θ∗i + εi, (1)
where (εi, i ∈ Ld,n) are i.i.d. N (0, σ2) noise variables and the unknown signal θ∗ ∈ RLd,n is
assumed to be piece-wise constant over an unknown rectangular partition of Ld,n. We define a subset
R ⊂ Ld,n to be a rectangle if R =

∏d
i=1[ai, bi], where [a, b] = {j ∈ Z : a ≤ j ≤ b}, a, b ∈ Z.

A rectangular partition of Ld,n, P , is a collection of disjoint rectangles {Rl} ⊂ Ld,n, satisfying
∪R∈PR = Ld,n. To each vector in Ld,n, there corresponds a (possibly trivial) rectangular partition.
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Figure 1: Rectangular partitions associated to a vector are not necessarily unique.

Definition 1 A rectangular partition associated with a vector θ ∈ RLd,n is a rectangular partition
{Rl}l∈[1,k] of Ld,n, such that θ takes on constant values over each Rl. For a vector θ ∈ RLd,n , we let
k(θ) be the smallest positive integer such that there exists a rectangular partition with k(θ) elements
and associated with θ.

In this paper, we are interested in recovering a rectangular partition associated with the signal θ∗ in (1).
A complication immediately arises when d ≥ 2: the rectangular partition associated with a given
θ is not necessarily unique. This fact is illustrated in Figure 1, where the left-most plot depicts the
lattice supported vector θ, consisting of a rectangle of elevated value (in grey) against a background
(in white). For such θ, we show three possible rectangular partitions, each of which comprised of
five rectangles (the second, third and fourth plots). In fact, the partition recovery problem is well
defined, as long as we consider coarser partitions comprised by unions of adjacent rectangles instead
of individual rectangles: see Definition 2 below for details. We remark that this issue does not occur
in the univariate (d = 1) case, for which the partition recovery task has been thoroughly studied in
the change point literature; see section 1.3 below. Thus, we assume that d ≥ 2.

For the purpose of estimating the rectangular partition associated with θ∗ (or, more precisely, its
unique coarsening as formalized in Definition 2), we resort to the dyadic classification and regression
tree (DCART) algorithm of [14]. This is a polynomial-time decision-tree-based algorithm developed
for de-noising purposes for signals over lattices, and is a variant of the classification and regression
trees (CART) [7]. See Section 1.1 below for a description of DCART. The optimal regression trees
(ORT) estimator, recently proposed in [12], further builds upon DCART and delivers sharp theoretical
guarantees for signal estimation while retaining good computational properties – though we should
mention that in our experiments we have found DCART to be significantly faster. Both DCART and
its more sophisticated version ORT can be seen as approximations to the NP-hard estimator

θ1 = arg minθ∈RLd,n

{
2−1‖y − θ‖2 + λk(θ)

}
, (2)

where k(θ) is given in Definition 1, ‖ · ‖ is the vector (or Euclidean) `2-norm and λ > 0 a tuning
parameter. DCART modifies the above, impractical optimization problem by restricting only to
dyadic rectangular partitions. This leads to significant gains in computational efficiency without
sacrificing on the statistical performance. Indeed, decision-tree-based algorithms have been shown to
be optimal under various settings for the purpose of signal estimation; see [12, 20]. In this paper, we
further demonstrate their effectiveness for the different task of partition recovery. In particular, we
show how simple modifications of the DCART (or ORT) estimator yield practicable procedures for
partition recovery with good theoretical guarantees and derive novel localization rates.

Note that, there is a wide array of applications focusing on detecting the regions rather than estimating
the background signals, especially in surveillance and environment monitoring. Our work is motivated
by all the applications/problems considered in the large literature on biclustering, where the underlying
signal is assumed to be piecewise constant. Estimating the boundary of the partition is the most
refined and difficult task in these settings. Thus, any of the many scenarios in which biclustering is
relevant can be used to motive our task. An analogous observation holds also for the more general
problem of identifying an anomalous cluster (sub-graph) in a network, a problem that has been tackled
(for testing purposes only) by [4], the reference therein provide numerous examples of applications.
On a high-level, the relationship between the partition and signal recoveries can be thought of the
relationship between the estimation consistency and support consistency in a high-dimensional linear
regression problems. They can be done by almost identical algorithms but the theoretical results rely
on different sets of conditions.

The paper is organized as follows. In the rest of this section we formalize the problem settings
and the task of partition recovery, and describe the DCART procedure. We further summarize our
main findings and discuss related literature. Section 2 contains our main results about one- and
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two-sided consistency of DCART and its modification. In Section 2.3 we derive a minimax lower
bound stemming from the case of one rectangular region of elevated signal against pure background.
Illustrative simulations corroborating our findings can be found in Section 3. The Supplementary
Material contains the proofs.

Notation
We set N = nd, the size of the lattice Ld,n, where we recall that d ≥ 2 is assumed fixed throughout.
For any integer m ∈ N∗, let [m] = [1,m]. Given a rectangular partition Π of Ld,n, let S(Π) be
the linear subspace of RLd,n consisting of vectors with constant values on each rectangle in Π
and let OS(Π)(·) be the orthogonal projection onto S(Π). For any R ⊂ Ld,n and θ ∈ RLd,n , let
θ̄R = |R|−1

∑
i∈R θi, where | · | is the cardinality of a set. Two rectangles R1, R2 ∈ Π are said to be

adjacent if there exists l ∈ [d] such that R1 and R2 share a boundary along el and one is a subset of
the other in the hyperplane defined by el, the lth standard basis vector in Rd. See Definition S1 for
a rigorous definition. This concept of adjacency is specifically tailored to – and in fact only valid
for – dyadic (and hierarchical, in the sense specified by [12]) rectangular partitions, which are most
relevant for this paper. For any subsets A,B ⊂ Ld,n, define dist(A,B) = mina∈A,b∈B ‖a − b‖.
Throughout this paper, we will use the `2-norm as the vector norm.

1.1 Problem setup

We begin by introducing two key parameters for the model specified in (1) and a well-defined notion
of rectangular partition induced by θ∗.

Definition 2 (Model parameters, induced partitions) Let θ∗ as in (1) and {R∗j}j∈[m] be a rectan-
gular partition of Ld,n associated with θ∗. Consider the graphG∗ = (E∗, V ∗), where V ∗ = [m] and
E∗ = {(i, j) : θ̄∗R∗

i
= θ̄∗R∗

j
, R∗i and R∗j are adjacent}. Let {C∗l }l∈[L] be all connected components

of G∗ and define Λ∗ = Λ∗(θ∗) = {∪j∈C∗
1
R∗j , . . . ,∪j∈C∗

L
R∗j} as the partition (not necessarily

rectangular) induced by θ∗. We say that the union of rectangles ∪j∈C∗
s
R∗j and ∪j∈C∗

t
R∗j , s, t ∈ [L],

s 6= t, are adjacent, if and only if there exists (i, j) ∈ C∗s × C∗t such that R∗i and R∗j are adjacent.

Let κ and ∆ be the minimum jump size and minimal rectangle size, respectively, formally defined as

κ = min
a∈A,b∈B, A,B∈Λ∗, θ∗a 6=θ∗b

|θ∗a − θ∗b | and ∆ = min
j∈[m]

|R∗j |.

It is important to emphasize the difference between a partition associated with θ∗, as described in
Definition 1, which may not be unique, and the partition Λ∗ induced by θ∗ of Definition 2, which is
instead unique and thus describes a well-defined functional of θ∗. The parameters κ and ∆ capture
two complementary aspects of the intrinsic difficulty of the problem of estimating Λ∗; intuitively, one
would expect the partition recovery task to be more difficult when κ and ∆ are small (and σ is large).
Below, we will prove rigorously that this intuition is indeed correct. When d = 1, both parameters,
along with σ, have in fact been shown to fully characterize the change point localization task: see,
e.g., [36, 35].

The partition recovery task can therefore be formulated as that of constructing an estimator Λ̂ of Λ∗,
the induced partition of θ∗, such that, as the sample size N grows unbounded and with probability
tending to one,

|Λ̂| = |Λ∗| and ∆−1dHaus(Λ̂,Λ
∗) = ∆−1 max

A∈Λ∗
min
B∈Λ̂
|A4B| → 0, (3)

where A4B is the symmetric difference between A and B. We refer to dHaus(Λ̂,Λ
∗) as the

localization error for the partition recovery problem.

The dyadic classification and regression trees (DCART) estimator. In order to produce a compu-
tationally efficient estimator of Λ∗ satisfying the consistency requirements (3), we deploy the DCART
procedure [14], which can be viewed as an approximate solution to the problem in (2). Instead of
optimizing over all vectors in RLd,n , DCART minimizes the objective function only over vectors asso-
ciated with a dyadic rectangular partition, which is defined as follows. LetR =

∏
i∈[d][ai, bi] ⊂ Ld,n

be a rectangle. A dyadic split of R chooses a coordinate j ∈ [d], l the middle point of [aj , bj ], and
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splits R into

R1 =
∏

i∈[j−1]

[ai, bi]× [aj , l]×
∏

i∈[j+1,d]

[ai, bi] and R2 =
∏

i∈[j−1]

[ai, bi]× [l+1, bj ]×
∏

i∈[j+1,d]

[ai, bi],

with [0] = [c2, c1] = ∅, c2 > c1. Assuming that n is a power of 2, starting from Ld,n itself, we
proceed iteratively as follows. Given the partition {Ru}u∈[k], one chooses a rectangle Ru and
performs a dyadic split on Ru that leads to the largest reduction in the objective function. Any
partition constructed through a sequence of such steps is called a dyadic rectangular partition. With a
pre-specified λ > 0, the DCART estimator is

θ̃ = OS(Π̃)(y), where Π̃ ∈ arg min
Π∈Pdyadic,d,n

{
2−1‖y −OS(Π)(y)‖2 + λ|Π|

}
, (4)

where Pdyadic,d,n is the set of all dyadic rectangular partitions of Ld,n. As shown in [14] and [12],
the DCART estimator can be obtained via dynamic programming with a computational cost of O(N).
Given any solution to (4), a natural (though, as we will see, sub-optimal) estimator of the induced
partition of θ∗ is Π̃, the partition associated with the resulting DCART estimator θ̃. Importantly, by
the property of DCART, and using the fact that the Gaussian errors have a Lebesgue density, Π̃ is in
fact a dyadic-rectangular partition and is unique with probability one, and thus the resulting estimator
is well-defined. (Equivalently, the partition associated with θ̃ and the one induced by θ̃ coincide.)

1.2 Summary of our results

We briefly summarize the contributions made in this paper.

One-sided consistency of DCART. Though DCART is known to be a minimax rate-optimal es-
timator of θ∗ [12], for the task of partition recovery its associated partition Π̃ has sub-optimal
performance. Indeed, due to the nature of the procedure, it is easy to construct cases in which the
DCART over-partitions. See Figure 2. In these situations, DCART falls short with respect to the
target conditions for consistency described in (3). Nonetheless, it is possible to prove a weaker
one-sided consistency guarantee, in the sense that every resulting DCART rectangle is almost con-
stant. In detail, let R = {Rl}l∈[m̃] be the rectangular partition defined by Π̃ in (4). Then, we
show in Section 2.1 that, for any Ri ∈ R, there exists Si ⊂ Ri such that θ∗t = θ∗u, u, t ∈ Si,
and

∑
i∈[m̃] |Ri\Si| . κ−2σ2kdyad(θ∗) log(N). Throughout, the quantity kdyad(θ∗) refers to the

smallest positive integer k such that there is a k-dyadic-rectangular-partition of Ld,n associated
with θ∗.

Two-sided consistency of DCART: A two-step estimator. In order to resolve the unavoidable over-
partitioning issue with the naive DCART partition estimator and in order to prevent the occurrence
of spurious clusters, we develop a more sophisticated two-step procedure. In the first step we use a
variant of DCART that discourages the creation of rectangles of small volumes. In the second step,
we apply a pruning algorithm merging rectangles when their values are similar and the rectangles
are not far apart. With probability tending to one as N → ∞, the final output Λ̂ satisfies (3) with
dHaus(Λ̂,Λ

∗) ≤ κ−2σ2kdyad(θ∗) log(N). This result is the first of its kind in the setting of lattice
with arbitrary dimension d ≥ 2. This is shown in Section 2.2.

Optimality: A regular boundary case. In Section 2.3, we consider the special case in which, for
each rectangle in the rectangular partitions induced by θ∗ only has O(1)-many rectangles within
distance of order σ2κ−2kdyad(θ∗) log(N). While more restrictive than the scenarios we study in
Sections 2.1 and 2.2, this setting is broader than the ones adopted in the cluster detection literature
[e.g. 2, 1]. In this case, with probability approaching one as N →∞, the estimator Λ̂ satisfies (3) and
dHaus(Λ̂,Λ

∗) ≤ κ−2σ2 log(N). This error rate is shown to be minimax optimal, with a supporting
minimax lower bound result in Proposition 3.

1.3 Related and relevant literature

The problem at hand is closely related to several recent research threads involving detection and
estimation of a structured signal. When d = 2, our settings can be viewed as a generalization of
those used for the purpose of biclustering, i.e. detection and estimation of sub-matrices. Though
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relatively recent, the literature on this topic is extensive, and the problem has been largely solved,
both theoretically and methodologically. See, e.g., [28], [21], [10], [25], [31], [24], [5], [11], [9],
[17], [18], [13] and [28].

In the more general settings postulating a structured signal supported over a graph (including the
grid graph), sharp results for the detection problem of testing the existence of a sub-graph or cluster
in which the signal is different from the background are available in the literature: see, [3], [2], [1].
Concerning the estimation problem, [34], [29], [12], [15] and others, focused on de-noising the data
and upper-bounding ‖θ̂ − θ∗‖∗, where θ̂ is an estimator of θ∗ and ‖ · ‖∗ is some vector norm. In yet
another stream of work [e.g. 19, 8, 22] concerned with empirical risk minimization, the problem is
usually formulated as identifying a single subset. More discussions can be found in Section S1.

What sets our contributions apart from those in the literature referenced above, which have primarily
targeted detection and signal estimation, is the focus on the arguably different task of partition
recovery. As a result, the estimation bounds we obtain are, to the best of our knowledge, novel as
they do not stem directly from the existing results.

It is also important to mention how the partition recovery task can be cast as a univariate change
point localization problem. Indeed, when d = 1, the two coincide; see [36, 35]. However, the case
of d ≥ 2 becomes significantly more challenging due to the lack of a total ordering over the lattice.
Consequently, our results imply also novel localization rates for change point analysis in multivariate
settings.

2 Consistency rates for the partition recovery problem

In this section, we investigate the theoretical properties of DCART and of a two-step estimator also
based on DCART for partition recovery. We remark that instead of DCART, it is possible to deploy
the ORT estimator [12] or the NP-hard estimator (2) in our algorithms. Our theoretical results still
hold by simply replacing the term kdyad(θ∗), in both the upper bound and the choice of tuning
parameters, with the smallest k such that there is a k-hierarchical-rectangular-partition (khier(θ

∗))
or k-rectangular-partition (k(θ∗)) of Ld,n associated with θ∗, respectively. Thus, using these more
complicated methodologies that scan over larger classes of rectangular partitions will result in smaller
upper bounds in Theorems 1, 2 and 4. See [12] for details about the relationship of k(θ∗), kdyad(θ∗)
and khier(θ

∗).

2.1 One-sided consistency: DCART

As illustrated in Figure 2, the DCART procedure will produce too fine a partition in many situations,
even if the signal is directly observed (i.e., there is no noise). Thus, the naive partition estimator
based on the constancy regions of the DCART estimator θ̃ as in (4) will inevitably suffer from the
same drawback. Nonetheless, it is still possible to demonstrate a one-sided type of accuracy and even
consistency for such a simple and computationally-efficient estimator. Specifically, in our next result
we show that in every dyadic rectangle supporting the DCART estimator, θ∗ has almost constant
mean. The reverse does not hold however, as there is no guarantee that every rectangle in the partition
induced by the true signal θ∗ is mostly covered by one dyadic DCART rectangle.

Theorem 1 Suppose that the data satisfy (1) and that θ̃ is the DCART estimator (4) obtained with
tuning parameter λ = Cσ2 log(N), where C > 0 is a sufficiently large absolute constant. Let
{Rj}j∈[k(θ̃)] be the associated partition. For any j ∈ [k(θ̃)], let Sj ⊂ Rj be the largest subset of Rj
such that θ∗ is constant on Sj . Then there exist absolute constants C1, C2, C3, C4, C5 > 0 such that,
with probability at least 1− C1 exp{−C2 log(N)}, the following hold:

• global one-sided consistency:∑
j∈[k(θ̃)]

|Rj\Sj | ≤ C3κ
−2σ2kdyad(θ∗) log(N); (5)

• local one-sided consistency: for any j ∈ [k(θ̃)], if Rj \ Sj 6= ∅, then

|Rj\Sj | ≤ C4κ
−2
j σ2kdyad(θ∗Rj

) log(N), (6)
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Figure 2: The left panel is the true signal. The first dyadic split always cuts a rectangle into two and
ends up with over-partitioning, with the right panel as an example.

where κj = mins,t∈Rj : θ∗s 6=θ∗t |θ
∗
s − θ∗t |; and

• control on over-partitioning:

k(θ̃) ≤ 2kdyad(θ∗) + C5. (7)

We remark that k(θ̃) = kdyad(θ̃) due to the construction of θ̃. Theorem 1 consists of three results. We
have mentioned the over-partitioning issue of DCART. The bound (7) shows that the over-partitioning
is upper bounded, in the sense that the size of the partition induced by DCART is in fact of the same
order of the size of the dyadic rectangular partition associated with θ∗.

For each resulting rectangle Rj , (6) shows that it is almost constant, in the sense that if the signal
possesses different values in Rj , then Rj includes a subset Sj which has constant signal value and
the size |Rj \ Sj | is upper bounded by κ−2

j σ2kdyad(θ∗Rj
) log(N), where κj is the smallest jump size

within Rj . We note that since kdyad(θ∗Rj
) ≤ kdyad(θ∗), if kdyad(θ∗) is assumed to be a constant as

in the cluster detection literature [e.g. 4], then for general d ∈ N∗, (6) has the same estimation error
rate as that in the change point detection literature [e.g. 36, 35].

The result in (6) provides an individual recovery error, with the individual jump size κj , while
paying the price kdyad(θ∗Rj

). In (5) we show that globally, when we add up the errors in all resulting
rectangles, the overall recovery error is of order κ−2σ2kdyad(θ∗) log(N). When d = 1, [35] shows
the minimax rate of the L1-Wasserstein distance between the vectors of true change points and of
the change point estimators is of order κ−2σ2K, where K is the true number of change points.
Comparing with this result, (5) can be seen as delivering a “one-sided” nearly optimal rate, saving for
a logarithmic factor.

In the change point localization case, i.e. when d = 1, one can show that k(θ∗Rj
) ≤ 3 [see, e.g. 36]

just assuming mild conditions on ∆. However, as soon as d ≥ 2 this is no longer the case. As an
illustration, consider the left plot of Figure 2, where the whole rectangle is Rj and the white one in
the middle is Sj . Without further constraints on each component, having only conditions on ∆ will
not prevent a very fragmented boundary, which can increase the term kdyad(θ∗Rj

) in (6).

2.2 Two-sided consistency: A two-step estimator

As we have seen in Section 2.1, despite having the penalty term λ|Π| to penalize over-partitioning in
the objective function (4), since the optimization of DCART only restricts to all dyadic partitions,
the naive DCART estimator still suffers from over-partitioning. To address this issue, we propose a
two-step estimator which builds upon DCART and merges the corresponding rectangles if they are
close enough and if their estimated means are similar. The procedure will not only be guaranteed to
return, with high probability, the correct number of rectangles in the partition induced by the signal
θ∗, but also fulfill the target for (two-sided) consistency specified in (3).

The two-step estimator. Our two-estimator starts with a constrained DCART, prohibiting splits
resulting in rectangles that are too small. The first step estimation is defined as

θ̂ = OS(Π̂)(y), with Π̂ ∈ arg min
Π∈Pdyadic,d,n(η)

{
2−1‖y −OS(Π)(y)‖2 + λ1|Π|

}
, (8)

where λ1, η > 0 are tuning parameters and Pdyadic,d,n(η) is the set of rectangular partitions where
every rectangle is of size at least η.

The second step merges rectangles in the partition associated with the estimator from the first step
to overcome over-partitioning. To be specific, let {Rl}l∈[k(θ̂)] be a rectangular partition of Ld,n
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associated by θ̂. For each (i, j) ∈ [k(θ̂)]× [k(θ̂)], i < j, let z(i,j) = 1 if

dist(Ri, Rj) ≤ η (9)

and
1

2

∑
l∈Ri

(Yl − ȲRi)
2 +

∑
l∈Rj

(Yl − ȲRj )2

+ λ2 >
1

2

∑
l∈Ri∪Rj

(Yl − ȲRi∪Rj )2, (10)

where λ2 > 0 is a tuning parameter; otherwise, we let z(i,j) = 0. With this notation, letE = {(i, j) ∈
[k(θ̂)]× [k(θ̂)] : z(i,j) = 1} and let {Ĉl}l∈[L] be the collection of all the connected components of
the undirected graph ([k(θ̂)], E). The final output can be written as

Λ̂ =
{
∪j∈Ĉ1Rj , . . . ,∪j∈ĈLRj

}
. (11)

Notice that the main computational burden is to find the DCART estimator which has a cost of
O(N). From the output of DCART, the computation of the quantities in (9) and (10) can be done in
O(k(θ̂)2). Before describing the favorable properties of the estimator, we state our main assumption.

Assumption 1 If A,B ∈ Λ∗ with A 6= B and θ̄∗A = θ̄∗B , then we have that

dist(A,B) ≥ ckdyad(θ∗)κ−2σ2 log(N), (12)

for some large enough constant c > 0. Furthermore, we assume that

κ2∆ ≥ ckdyad(θ∗)σ2 log(N). (13)

Assumption 1 simply states that if two elements of Λ∗ have the same signal values then they should
be sufficiently apart from each other. Assumption 1 also specifies a signal-to-noise ratio type of
condition. When d = 1, it is well known in the change point literature [e.g. 36] that the optimal
signal-to-noise ratio for localization is of the form κ2∆ & σ2 log(N). The condition in (13) has an
additional kdyad(θ∗) factor. It is an interesting open problem to determine whether this additional
term can be avoided when d ≥ 2.

Theorem 2 Assume that Assumption 1 holds. Suppose that the data satisfy (1) and Λ̂ is the two-step
estimator, with tuning parameters λ1 = C1σ

2 log(N), λ2 = C2kdyad(θ∗)σ2 log(N) and

c1kdyad(θ∗)σ2κ−2 log(N) ≤ η ≤ ∆/c2, (14)

where c1, c2, C1, C2 > 0 are absolute constants. Then with probability at least 1−N−c, it holds that

|Λ̂| = |Λ∗| and dHaus(Λ̂,Λ
∗) ≤ Cσ2κ−2kdyad(θ∗) log(N), (15)

where c, C > 0 are absolute constants.

Theorem 2 shows that the two-step estimator overcomes the over-partitioning issue of DCART and is
consistent for the partition recovery problem provided that κ−2σ2kdyad(θ∗) log(N)/∆ → 0. The
resulting estimation error is of order at most κ−2σ2kdyad(θ∗) log(N).

In view of Assumption 1 and Theorem 2, intuitively speaking, (14) ensures that if there are two
separated regions where the true signal takes on the same value, then the they should be far apart;
otherwise, our algorithm would not be able to tell if they should be merged together or keep separated.
Eq. (15) requires that the signal strength is large enough. Technically speaking, if (14) is changed to
another quantity, denoted by w, then the final result of Theorem 2 would be

dHaus(Λ̂,Λ
∗) ≤ C

{
(w ∧∆) ∨ σ2κ−2kdyad(θ∗) log(N)

}
,

where the term w ∧∆ is due to the definition of ∆. This means that the final rate in Theorem 2 is
determined jointly by Assumption 1 and an optimal rate.

There are three tuning parameters required by the two-step estimator. Practical guidance on how to
pick them will be provided in Section S6.2. The tuning parameter λ1 in (8) is the same as the one in
(4) and their theoretical rates are determined by the maximal noise level of a Gaussian distribution
over all possible rectangles using a union bound argument. The tuning parameter λ2 is used in
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the merging step (10), penalizing over-partitioning. Since the candidate rectangles in (10) are the
estimators from the first step, these rectangles carry the estimation error from the first step. An
intermediate result from the proof of Theorem 2 unveils a similar result to Theorem 1, that for each
Rj involved in (10), there exists a subset Sj ⊂ Rj having constant signal values satisfying that∑

j∈[k(θ̂)]

|Rj\Sj | . κ−2σ2kdyad(θ∗) log(N).

This suggests that the right choice for λ2 should be able to counter this extra kdyad(θ∗) factor. Finally,
the tuning parameter η appears twice in the estimation procedure: as a lower bound on the size
of the rectangles obtained in first step as (8) and as an upper bound on the distance between two
rectangles in (9); see (14). The value of η should be at least as large as the one-sided upper bound on
the recovery error, in order to ensure that over-partitioning cannot occur. As the same time, it should
not be chosen too large, or otherwise the procedure may erroneously prune small true rectangles. By
this logic, η should not exceed the minimal size of the true rectangles; this is indeed the upper bound
in condition (14). Finally, we would like to point out that, similar conditions are even necessary in
some change point localization (d = 1) procedures, see [e.g. 36].

In practice, one may be tempted to abandon the tuning parameter η, and only prune the DCART
output using (10). If one still wants the result to satisfy (3), then stronger conditions are needed
and worse localization rates are obtained. We include this result in Section S4 in the supplementary
material.

2.3 Optimality in the regular boundary case

We use a two-step procedure to improve the partition recovery performances of DCART and show
the error is of order κ−2σ2kdyad(θ∗) log(N). A natural question in order is whether one can further
expect to improve this rate. In Proposition 3, we show a minimax lower bound result.

Proposition 3 Let {yi}i∈Ld,n
satisfy (1) and

θ∗i = κ, if i ∈ S; θ∗i = 0, if i ∈ Ld,n \ S, (16)

where S ⊂ Ld,n is a rectangle and |S| = ∆ > 0. Let PNκ,∆,σ denote the corresponding joint
distribution. Consider the class of distributions

PN =
{
PNκ,∆,σ : ∆ < N/2, κ2∆/σ2 ≥ log(N)/6

}
.

Then forN ≥ 26, it holds that inf Ŝ supP∈PN
EP
{
|Ŝ4S|

}
≥ σ2κ−2 log(N)/36, where the infimum

is over all estimators Ŝ of S.

Theorem 3 shows that when the induced partition of θ∗ consists of one rectangle and its comple-
ment, i.e. when kdyad(θ∗) = O(1), the minimax lower bound on the estimation error is of order
κ−2σ2 log(N). Recalling the estimation errors we derived for DCART and the two-step estimator in
Theorems 1 and 2, when kdyad(θ∗) = O(1), the results thereof are minimax optimal.

The assumption kdyad(θ∗) = O(1) is fairly restrictive, though, using our notation, the case of
|Λ∗| = 2 is in fact used in the cluster detection literature [4, 3]. In fact, in order to achieve the optimal
estimation rate indicated in Theorem 3, we only need a boundary regularity condition, in the sense
that for every rectangle in the partition induced by θ∗, there are only O(1)-many other rectangles
nearby. This condition is formally stated in Assumption 2.

Assumption 2 There exists constant C, c > 0 such that for any A ∈ Λ∗ it holds that∣∣{B ∈ Λ∗\{A} : dist(A,B) ≤ cσ2κ−2kdyad(θ∗) log(N)
}∣∣ ≤ C.

Assumption 2 asserts that within cκ−2σ2kdyad(θ∗) log(N) distance, each element of Λ∗ only has
O(1)-many elements nearby. This condition shares the same spirit of requiring the cluster boundary
to be a bi-Lipschitz function in the cluster detection literature [e.g. 2].
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Table 1: Performance evaluations over 50 repetitions under different scenarios. The performance
metrics dist1 and dist2 are defined in the text. The numbers in parenthesis denote standard errors.

Setting dist1 dist2 Setting dist1 dist2
σ Λ̂ TV-based Λ̂ TV-based σ Λ̂ TV-based Λ̂ TV-based

1 0.5 35.8(12.2) 51.6(21.9) 0.0(0.0) 0.1(0.3) 2 0.5 462.6(637.7) 418.6(246.9) 0.2(0.4) 0.4(0.6)
1 1.0 196.1(401.8) 582.3(2429.5) 0.0(0.2) 0.3(0.5) 2 1.0 2617.7(4047.7) 8630.6(6049.3) 0.7(0.6) 1.4(0.7)
1 1.5 298.0(878.7) 4513.6(5970.9) 0.1(0.3) 0.5(0.5) 2 1.5 4706.7(5213.7) 11477.3(5213.6) 1.2(0.9) 1.9(0.4)
3 0.5 62.1(231.4) 123.0(44.1) 0.0(0.1) 0.2(0.4) 4 0.5 86.3( 231.1) 52.8(21.7) 0.2(0.4) 0.3(0.4)
3 1.0 150.8(227.3) 1012.7(752.5) 0.1(0.3) 0.7(0.5) 4 1.0 119.6(189.3) 87.8(82.0) 0.2(0.4) 1.1(1.1)
3 1.5 270.8(479.0) 12732.6(3296.8) 0.2(0.5) 1.9(0.4) 4 1.5 399.3(437.1) 217.6(233.5) 0.4(0.7) 1.4(1.1)

Corollary 4 Assume that Assumptions 1 and 2 hold. Suppose that the data satisfy (1) and Λ̂
is the two-step estimator defined in (11), with tuning parameters λ1 = C1σ

2 log(N), λ2 =
C2kdyad(θ∗)σ2 log(N) and c1κ−2kdyad(θ∗)σ2 log(N) ≤ η ≤ ∆/c2, where c1, c2, C1, C2 > 0

are absolute constants. Then with probability at least 1−N−c, it holds that |Λ̂| = |Λ∗| and

max
A∈Λ∗

min
Â∈Λ̂
|Â4A∗| ≤ Cσ2 log(N)

κ2
min

{
k(θ∗), max

B∈Λ∗, dist(A,B)≤cσ2κ−2kdyad(θ∗) log(N)
|B|/η

}
.

(17)
where c, C > 0 are absolute constants. In particular, if η � ∆ and |A| � ∆, for all A ∈ Λ∗, then

dHaus(Λ̂,Λ
∗) ≤ C σ2κ−2 log(N). (18)

Corollary 4 shows that even if kdyad(θ∗) is diverging as the sample size grows unbounded, one can
still achieve the minimax optimal estimation error rate κ−2σ2 log(N), with properly chosen tuning
parameters and additional regularity conditions on the partition. An interesting by-product in deriving
this rate is (17), which characterizes the effect of the number of nearby rectangles in the estimation
error for individual elements in Λ∗.

3 Experiments

In this section, we demonstrate in simulation the numerical performances of the two-step estimator for
the task of partition recovery. The code is by courtesy of the authors of [12] and all of our experiments
are done in a 2.3 GHz 8-Core Intel Core i9 machine. Our code can be found in https://github.
com/hernanmp/Partition_recovery. We focus on the naive two-step estimator detailed in
Section S4 and denoted here as Λ̂. The implementation details regarding choice of tuning parameters
are discussed in S6.2.

We adopt dist1 = dHaus(Λ̂,Λ
∗) and dist2 = ||Λ̂| − |Λ∗|| as the measurements. For each scenario

depicted in Figure 3, we report the mean and standard errors of dist1 and dist2 over 50 Monte Carlo
simulations.

As a competitor benchmark, we consider a similar pruning algorithm based on the total variation
estimator [27, 33], namely TV-based, instead of ours based on DCART. The implementation details
are discussed in Section S6.3.

For each scenario considered, we vary the noise level as σ ∈ {0.5, 1, 1.5} and set (d, n) = (2, 27).
In each instance, the data are generated as y ∼ N (θ∗, σ2ILd,n

). Detailed descriptions are in Section
S6.1, and visualizations of the signal patterns are in the second column in Figure 3, while the third
and fourth columns depict θ̃, the DCART estimator, and θ̂, our two-step estimator, respectively. We
can see that our two-step estimator correctly identifies the partition and improves upon DCART for
the purpose of recovery partition. It is worth noting that even when the partition is not rectangular, as
shown in the second row in Figure 3, our two-step estimator is still able to accurately recover a good
rectangular partition.

From Table 1 we see that in terms of the metric dist2 our two-step estimator outperforms TV-based
estimator in all cases. Furthermore, the same is also true for most cases in terms of the metric dist1.

9

https://github.com/hernanmp/Partition_recovery
https://github.com/hernanmp/Partition_recovery


−2

0

2

4

0.0

0.2

0.4

0.6

0.8

1.0

−4

−2

0

2

4

−1.0

−0.5

0.0

0.5

1.0

−4

−2

0

2

4

−1.0

−0.5

0.0

0.5

1.0

−4

−2

0

2

4

6

8

0

1

2

3

4

5

Figure 3: From top to bottom: Scenarios 1 to 4. From left to right: An instance of y, the signal θ∗,
DCART, and DCART after merging. In each case the data are generated with σ = 1.

4 Conclusions

In this paper we study the partition recovery problem over d-dimensional lattices. We show how
a simple modification of DCART enjoys one-sided consistency. To correctly identify the size of
the true partition and obtain better consistency guarantees, we further propose a more sophisticated
two-step estimator which is shown to be minimax optimal in some regular cases.

Throughout this paper, we discuss partition recovery on lattice grids. In fact, to deal with non
axis-aligned data, one can construct a lattice in the domain of the features, average the observations
within each cell of the lattice and ignore the cells without observations. More details can be found in
the supplementary materials.

Finally, an important open question remains regarding the necessity to include the factor kdyad(θ∗) in
the signal-to-noise condition (13) and in the estimation rates. We leave for future work to investigate
what the optimal estimation rates are in general when kdyad(θ∗) is allowed to diverge.

Supplementary material

The supplementary material contains all the technical details, additional simulation results and code
of this paper.
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