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ABSTRACT

As Large Language Models (LLMs) are integrated into safety-critical applica-
tions involving sequential decision-making in the real world, it is essential to
know when to trust LLM decisions. Existing LLM Uncertainty Quantification
(UQ) methods are primarily designed for single-turn question-answering formats,
resulting in multi-step decision-making scenarios, e.g., LLM agentic system, be-
ing underexplored. In this paper, we introduce a principled, information-theoretic
framework that decomposes LLM sequential decision uncertainty into two parts:
(i) internal uncertainty intrinsic to the current decision, which is focused on exist-
ing UQ methods, and (ii) extrinsic uncertainty, a Mutual-Information (MI) quan-
tity describing how much uncertainty should be inherited from preceding deci-
sions. We then propose UProp, an efficient and effective extrinsic uncertainty
estimator that converts the direct estimation of MI to the estimation of Point-
wise Mutual Information (PMI) over multiple Trajectory-Dependent Decision
Processes (TDPs). UProp is evaluated over extensive multi-step decision-making
benchmarks, e.g., AgentBench and HotpotQA, with state-of-the-art LLMs, e.g.,
GPT-4.1 and DeepSeek-V3. Experimental results demonstrate that UProp sig-
nificantly outperforms existing single-turn UQ baselines equipped with thought-
ful aggregation strategies. Moreover, we provide a comprehensive analysis of
UProp, including sampling efficiency, potential applications, and intermediate
uncertainty propagation, to demonstrate its effectiveness.

1 INTRODUCTION

Large Language Models (LLMs) (Zhao et al., 2023) are increasingly deployed in real-world applica-
tions that involve sequential decision-making, such as Agentic AI (Wang et al., 2024b), where LLMs
interact with environments across multiple steps. Many of these applications, including multi-round
medical consultations (Zhou et al., 2023) and autonomous robotic control (Zeng et al., 2023; Duan
et al., 2022), are safety-critical. Given that LLMs are prone to hallucinations and errors (Huang
et al., 2025), it is crucial to assess the reliability of their decisions and understand when these de-
cisions can be trusted. Uncertainty quantification (UQ) estimates the degree of uncertainty or lack
of confidence that a model has in its predictions, essentially reflecting how unsure it is about the
“correctness” of its output (Gawlikowski et al., 2023). It has proven to be a promising method for
quantifying the reliability of LLM decisions, such as in hallucination detection and correction (Yin
et al., 2024).

Current LLM UQ methods primarily focus on single-step question-answering tasks (Malinin &
Gales, 2020), where LLMs are expected to respond to a query. These methods (Kuhn et al., 2023;
Duan et al., 2024a; Lin et al., 2024b; Qiu & Miikkulainen, 2024) quantify uncertainty by measuring
the semantic diversity of LLM output space. While these “single-step” methods offer reliable uncer-
tainty estimations at each step, in the multi-step decision-making scenarios, they fail to capture the
propagation of uncertainty within a decision trajectory. SAUP (Zhao et al., 2024) trains a Hidden
Markov Model (HMM) to predict the aggregation weights of per-step uncertainty within a decision
trajectory. However, it requires the ground-truth labels from the test domain and does not investigate
uncertainty propagation in a principled manner. In this paper, we study how the uncertainty of the
current decision should be influenced by preceding decisions?
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Task: Could you pleas help me to find the executable
file "echo-love" from my computer?

Environment

LLM Agent

OS Wikipedia ...

Decision Trajectory Uncertainty Propagation: 

Reason: I can try which 
command to locate it.
Action: bash 
"bash which echo-love"

OS (Environment): 
[empty]

Reason: It means it is 
not in PATH. I should try 
the find command. 
Action: bash 
"bash find / -type f -name 
"echo-love" 2>/dev/null"

OS (Environment): 
/f1/echo-love
/f1/f2/echo-love
/f1/f2/f3/f4/echo-love
…

Reason: After the executable-
checking with command test,
I should return the rest files. 
Action: 
answer(/f1/echo-love, 
/f1/f2/echo-love, ...)

Intrinsic 
Uncertainty

Intrinsic 
Uncertainty

observationdecision

AgentBench-OS

StrategyQA

Figure 1: The pipeline of uncertainty propagation of LLMs in multi-step agentic decision-making.

We approach LLM multi-step decision-making from a Bayesian perspective and develop an
information-theoretic framework to analyze its uncertainty propagation. Specifically, we decom-
pose the LLM’s uncertainty at each decision step into (i) Intrinsic Uncertainty (IU), which reflects
the internal uncertainty dependent solely on the current state, e.g., observation the LLM is facing,
and (ii) Extrinsic Uncertainty (EU), which represents the uncertainty introduced by (or “inherited
from”) the variability of preceding decisions. Among the two components, intrinsic uncertainty can
be reliably estimated, as it is convenient to sample from the decision distribution from LLMs for un-
certainty estimation (Malinin & Gales, 2020). In contrast, estimating extrinsic uncertainty is more
challenging because it is described as the Mutual Information (MI) between the current decision dis-
tribution and each of the preceding decision distributions (Cover, 1999). This becomes intractable as
MI necessitates the decision distributions at each step of the reasoning process. Even from a Monte
Carlo (MC) sampling perspective, the multi-step decision making demands the exploration of an
exponentially expanding decision space (Kraskov et al., 2004), which is computationally infeasible.

We propose UProp, an efficient and effective estimator of extrinsic uncertainty. In general, UProp
complies with the MC approximation idea, which first samples decision processes from the decision
space and then estimates per-process uncertainty propagation. Specifically, UProp (1) first conducts
Trajectory-Dependent Decision Process (TDP) sampling from the exponential decision space: each
TDP sample results in a complete decision trajectory (from beginning to end) along with multiple
samples at each step. (2) Then, for each TDP, UProp estimates the uncertainty propagation by
approximating the more feasible Pointwise MI (PMI). With convergence analysis, we prove that
the Trajectory-Dependent PMI approximation converges to the actual MI in the LLM multi-step
decision-making scenario, under a mild local smoothness assumption.

UProp is evaluated in extensive LLM multi-step decision-making scenarios including the Operat-
ing System Agent split in AgentBench (Liu et al., 2023) and multi-hop benchmarks such as Hot-
potQA (Yang et al., 2018) and StrategyQA (Geva et al., 2021) bound with a Wikipedia engine, over
powerful LLMs, such as GPT-4.1-Nano (Achiam et al., 2023), GPT-3.5-Turbo (Brown et al., 2020),
and DeepSeek-V3 (DeepSeek-AI et al., 2024). We compare UProp with state-of-the-art single-
turn UQ methods, including Semantic Entropy (SE) (Kuhn et al., 2023), Deg (Lin et al., 2024b),
SAR (Duan et al., 2024a), Semantic Density (SD) (Qiu & Miikkulainen, 2024), G-NLL (Aichberger
et al., 2025), etc., equipped with thoughtful step aggregation strategies. Experimental results demon-
strate that UProp significantly outperforms these baselines (by 2.3% ∼ 11% AUROC). We further
characterize UProp from the perspective of sampling efficiency, selective prediction, and interme-
diate uncertainty propagation. Our results indicate that extrinsic uncertainty plays an important role
in the uncertainty quantification of LLM sequential decision-making. Our contributions are:

• We provide an information-theoretic framework that decomposes the uncertainty of LLM sequen-
tial decision into intrinsic and extrinsic uncertainty. We highlight the necessity of propagating
extrinsic uncertainty along the LLM decision chain for more accurate uncertainty quantification.

• We provide UProp, an efficient and effective extrinsic uncertainty estimator. UProp approxi-
mates the Mutual Information (MI) between decision distributions by expectating the Pointwise
Mutual Information (PMI) among trajectory-dependent samplings.

• UProp is evaluated over extensive LLM sequential decision-making scenarios, involving pow-
erful LLMs and state-of-the-art baseline methods. Experimental results demonstrate that UProp
significantly outperforms best-performing baselines in LLM multi-step decision-making scenar-
ios.
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2 PRELIMINARY

2.1 UNCERTAINTY QUANTIFICATION IN AUTO-REGRESSIVE GENERATIONS

From the Bayesian perspective, UQ measures the uncertainty within the predictive probability dis-
tribution pθ(y|x) over the LLM output space Y , given a parameterized LLM fθ and instruction x.
One of the most popular UQ methods is quantifying the total uncertainty of the predictive distri-
bution (Gawlikowski et al., 2023) by calculating its Predictive Entropy (PE). However, considering
that the analytic form of LLM predictive distributions is intractable, i.e., do not have access to all
possible |V |k k-length generations in the LLM output space (where V is the vocabulary size), a
more convenient way is approximating via Monte-Carlo (MC) sampling (Malinin & Gales, 2020):

PE(x) = H(y|x) =
∫

pθ(y|x) log(pθ(y|x)) dy ≈ − 1

N

N∑
i

log pθ(y
(i)|x), y(i) ∼ pθ(y|x),

where N is the number of samples and pθ(y
(i)|x) =

∏Li

i pθ(zi|z<i,x) is the generative probability
of y(i) with length Li. zi is the i-th token of y(i). Length-normalization is also commonly applied
to mitigate the length sensitivity: LN -PE(x) ≈ − 1

N

∑N
i

1
Li

log pθ(y
(i)|x). Furthermore, Kuhn

et al. (2023) proposes that PE may overestimate output uncertainty due to the existence of semantic
clusters, i.e., different generations may share the same semantics. To mitigate this, Semantic Entropy
(SE) calculates the cluster-wise predictive entropy with MC approximation:

SE(x) ≈ − 1

C

C∑
i

log(pθ(ci|x)), pθ(ci|x) =
∑
y∈ci

pθ(y|x),

where C is the number of semantic clusters and ci is the i-th cluster consisting of generations yi

sharing the same semantics. Following the semantic consistency, a series of UQ methods, includ-
ing Deg (Lin et al., 2024b), SAR (Duan et al., 2024a), and SD (Qiu & Miikkulainen, 2024), are
proposed.

2.2 LLM MULTI-STEP AGENTIC DECISION-MAKING

LLM multi-step agentic decision-making (Liu et al., 2023; Duan et al., 2024b) is usually modeled
as a stochastic Markov Decision Process (MDP) (fθ,O,Y, T ), where LLM fθ interacts with the
environment continuously. O and Y are observation space and decision space, respectively. T :
Y∗ → O is the deterministic observation transition function of the environment, where Y∗ denotes
a finite sequence of decisions. Assume at the t-th decision step, the decision yt ∈ Y is sampled by

yt ∼ pθ(yt|ot−1,yt−1, · · · ,o1,y1,x),

where oi ∈ O is the observation at i-th step and x is the instruction. We assume the observation
transition function is deterministic when the preceding decisions Y∗ = [yi]

t−1 are determined,
i.e., the decision distribution yt is solely dependent on preceding decisions. Thus, we omit all the
observation conditions in the following notations, i.e., yt ∼ pθ(yt|y1:t−1,x).

3 METHODOLOGY

3.1 PREDICTIVE UNCERTAINTY PROPAGATION IN LLM MULTI-STEP DECISION-MAKING

In the LLM multi-step decision-making process, UQ quantifies the uncertainty within the predictive
distribution pθ(y|x). Without loss of generality, we quantify the uncertainty at the t-th step pre-
dictive distribution yt ∼ pθ(yt|x). By marginalizing preceding decisions, we obtain the following
decomposition (see Section A.1 for detailed procedures):

pθ(yt|x) =
∫

pθ(yt|yt−1,x)p(yt−1|x)dyt−1

=

∫
pθ(yt|y1:t−1,x)︸ ︷︷ ︸

Intrinsic Uncertainty

∏t−1

i
pθ(yi|y1:i−1,x)︸ ︷︷ ︸

Extrinsic Uncertainty

dy1dy2 · · · dyi−1.
(1)
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We show that the total uncertainty at step t could be described in Intrinsic Uncertainty (IU) and Ex-
trinsic Uncertainty (EU): (1) IU refers to the expected variance of yt given all preceding decisions,
i.e., Ey1:t−1

[
Varyt

(yt|y1:t−1,x)
]
. It captures the uncertainty within the predictive distribution it-

self and corresponds to what “single-step” UQ methods typically estimate; (2) EU quantifies the
variance of yt introduced by prior decisions, expressed as Vary1:t−1

(
Eyt

[yt|y1:t−1,x]
)
, which is

the uncertainty that should be propagated from preceding decisions.

By the chain rule of conditional entropy, entropy H(yt|x) could be expressed as the following (see
Section A.2 for detailed procedures):

H(yt|x) = Ey1:t−1∼p(y1:t−1|x)[H(yt|y1:t−1,x)] +
∑t−1

i
(H(yt|x)−H(yt|yi,x))

= Ey1:t−1∼p(y1:t−1|x)[H(yt|y1:t−1,x)]︸ ︷︷ ︸
Intrinsic Uncertainty

+
∑t−1

i
I(yt;yi|yi+1:t−1,x)︸ ︷︷ ︸

Extrinsic Uncertainty

, (2)

where I(yt;yi|yi+1:t−1,x) is Mutual Information (MI). The total uncertainty of the decision pro-
cess P = (y1,y2, · · · ,yt) ∼ pθ(P|x) becomes:

H(P) = EP∼P

[
− log pθ(P |x)

]
= EP∼P

[
−

∑
i

log pθ(yi|y1:i−1,x)
]
, (3)

Within the decomposition in Equation (2),

• Intrinsic Uncertainty could be conveniently MC approximated by first sampling multiple genera-
tions from pθ(yt|y1:t−1,x) and then aggregating with existing algorithms, such as PE, SE, and
SAR.

• Extrinsic Uncertainty is characterized by the cumulative MI between yt and all preceding deci-
sions y1:t−1. It reflects the extent to which uncertainty in yt is reduced as each prior decision is
resolved, i.e., knowledge uncertainty (Malinin, 2019). In this sense, extrinsic uncertainty quanti-
fies the degree of “increased determinism” in yt that arises from conditioning on y1:t−1.

However, directly calculating extrinsic uncertainty is intractable, as it requires an awareness of pre-
dictive distributions. Even from the perspective of MC approximation or density estimation, the
estimation of I(yt;yi|yi+1:t−1,x) is still challenging as it necessarily explores an exponentially
spanned decision space: outer sampling from preceding decision distributions y<t with inner sam-
pling from yt. Moreover, in the LLM decision-making scenarios, this exponential interaction with
the environment becomes harder to afford. Please refer to Section A.3 for more discussion.

3.2 UPROP : ESTIMATE EXTRINSIC UNCERTAINTY WITH TRAJECTORY-DEPENDENT
POINTWISE MI

We propose UProp as an efficient and effective estimator of EU. In general, UProp complies with
the MC approximation idea, which first samples decision processes from the decision space and then
estimates per-process uncertainty propagation. Specifically, it converts the direct estimation of MI
to the estimation of Pointwise Mutual Information over Trajectory-Dependent Decision Processes:

Trajectory-Dependent Decision Process (TDP) Sampling Starting from the beginning decision
step (t = 1), we first sample N decisions {y(1)

t ,y
(2)
t , · · · ,y(N)

t } ∼ pθ(yt|x); then, we randomly
select one sample y

(k)
t by probability, as the preceding realization of the (t + 1)-th step; then,

we sample N decisions from yt+1 ∼ pθ(yt+1|y1:t = y
(k)
1:t ,x). We repeat this protocol until y(k)

T
achieves an end decision at step T , e.g., the decision to return the final answer. In this way, each
TDP will be expressed as:

TDPz = {< y
(k)
1 , {y(n)

1 }Nn,n̸=k >,< y
(k)
2 , {y(n)

2 }Nn,n̸=k >, · · · , < y
(k)
T , {y(n)

T }Nn,n̸=k >},

consisting of one complete decision trajectory: {y(k)
1 ,y

(k)
2 , · · · ,y(k)

T }, and multiple samplings con-
ditioned on preceding trajectories at each step: {{y(n)

1 }Nn,n̸=k, {y
(n)
2 }Nn,n̸=k, · · · , {y

(n)
T }Nn,n̸=k}.

Pointwise Mutual Information (PMI) in TDP We study the uncertainty propagation over TDPs.
Conditioned on the realizations within TDP, MI I(yt;yt−1|x) over TDP at step t becomes a PMI:

PMI(yt;yt−1 = y
(k)
t−1|x) = DKL(pθ(yt|y(k)

t−1,x) ∥ pθ(yt|x)). (4)
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Then, combining Equations (2) and (4) the MC approximated total uncertainty of TDP, PTDP ∼
pθ(PTDP|x), becomes

H(PTDP) ≈
1

Z

Z∑
z

Tz∑
t

(
H(yt|y(k)

1:t−1,x) +

t−1∑
i

PMI(yt;y
(k)
i |y(k)

i+1:t−1,x)
)
, (5)

where Z is the sampling number of TDP and Tz is the number of steps within the z-th TDP, i.e., the
length of the z-th TDP’s decision trajectory.

Theorem 1 (Convergence of the TDP Sampling) With sufficiently large TDP sampling, the total
uncertainty of TDP converges to the total uncertainty H(P) (Equation (3)): H(PTDP) → H(P),
when Z → ∞ .

Please refer to Section A.4 for the proof of Theorem 1. Instead of directly estimating MI over the
exponential decision space, UProp first samples linear-spanning decision processes and then uses
the more feasible PMI over each TDP as the approximation of the total uncertainty H(P).

3.3 SPREADING DECISION DISTRIBUTIONS BY PRECEDING VARIANCE

Given a TDP Pz , we consider approximating PMI by spreading from the known conditional dis-
tribution, under a mild local smoothness assumption. Specifically, without loss of generality, we
consider the MC approximation of PMI(yt;y

(k)
t−1|x):

PMI(yt;yt−1 = y
(k)
t−1|x) = Eyt

[
log

pθ(yt|y(k)
t−1,x)

pθ(yt|x)

]
≈ 1

N

N∑
n

log
pθ(y

(n)
t |y(k)

t−1,x)

pθ(y
(n)
t |x)

, (6)

where y
(n)
t is the n-th sample from TDP’s t-step samples and pθ(y

(n)
t |y(k)

t−1,x) is calculated and
saved during TDP sampling. In terms of pθ(y

(n)
t |x), we approximate it by spreading the preceding

semantic variance with “neighborhood-weighted” average:

p̂θ(yt|x) =
N∑
n

pθ(yt|y(k)
t−1,x) ·KN (d(y

(n)
t−1,y

(k)
t−1)), (7)

where Kτ (x) =
(

1√
2π

e(−
x2

2 )
)τ

is a Gaussian Kernel with τ controls its sharpness. d(y1,y2) is a
distance measurement between the two decisions. We take s = N to highlight those samples close
to y

(k)
t−1, i.e., the extrinsic uncertainty is dominated by its surroundings. In this way, the PMI is

approximated as:

P̂MI(yt;y
(k)
t−1|x) =

1

N

N∑
n

log
pθ(y

(n)
t |y(k)

t−1,x)

p̂θ(y
(n)
t |x)

= − log

N∑
n

KN (d(y
(n)
t−1,y

(k)
t−1)). (8)

Heuristically, spreading by preceding semantic variance indicates that a low-uncertainty preceding
decision distribution introduces less uncertainty to the current step. Extremely, a degenerate preced-
ing distribution introduces no uncertainty to follow-up decisions. It is worth noting that Equation (7)
simplifies the propagation of uncertainty by using a neighborhood-weighted average, which primar-
ily captures local similarities in the prior step decision space. In Section A.6, we illustrate that this
design choice is both principled and practical.

Theorem 2 (Convergence of the PMI Approximation) Assume that pθ(yt|yt−1,x) satisfies a lo-
cal smoothness with respect to yt−1, i.e., for any fixed context x, there exists a sufficiently small
neighborhood around yt−1 such that for all points y′

t−1 within this neighborhood:

∀ϵ > 0, ∃β > 0 : |yt−1 − y′
t−1| < β, then |pθ(yt|yt−1,x)− pθ(yt|y′

t−1,x)| < ϵ.

Then, the PMI estimation (Equation (8)) spreading from the preceding variance converges to the
actual MC approximation of PMI (Equation (4)): P̂MI(yt|yt−1,x) → PMI(yt|yt−1,x).

5
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Please refer to Section A.5 for the proof of Theorem 2 and further discussion. The local smooth-
ness assumption is natural and practical and has been widely conducted in existing LLM analy-
sis (Malinovskii et al., 2024). Combining the total uncertainty convergence (Theorem 1) and PMI
convergence (Theorem 2), the total uncertainty (Equation (3)) approximation is derived (combin-
ing Equations (5) and (8)) as:

H(P) = H(P|x) ≈ H(PTDP|x) =
1

Z

Z∑
z

1

λz

Tz∑
t

(
H(yt|y(k)

1:t−1,x) +

t−1∑
i

P̂MI(yt;y
(k)
i |y(k)

i+1:t−1,x)
)
,

(9)
where 1

λz
is an additional “step length-normalization” item:

Step Length-Normalization Similar to “length-normalization” (Malinin & Gales, 2020), due to
the accumulation over P̂MI(yt;y

(k)
i |y(k)

i+1:t−1,x), Equation (9) implies the Step Length Bias: longer
decision steps encodes higher extrinsic uncertainty. The total uncertainty of a TDP is normalized

by λz =
∑Tz

t σt =
∑Tz

t (1 + EU
IU ) = Tz +

∑Tz

t

∑t−1
i P̂MI(yt;y

(k)
i |y(k)

i+1:t−1,x)

H(yt|y(k)
1:t−1,x)

, where σt indicates the

relative inflation of the uncertainty at step t due to extrinsic contributions. In this way, the step bias
is mitigated, and different TDPs with varying lengths become comparable.

Equation (9) estimates the overall uncertainty of decision distributions P . However, in some scenar-
ios, e.g., hallucination detection, one may care more about the uncertainty of a specific prediction
y∗, i.e., the uncertainty of the maximum probability class. Given model output y∗, e.g., the greedy
generation, its uncertainty could be approximated as:

H(y∗|x) = H(Py∗ |x) ≈ H(PTDP,y∗ |x), (10)

where Py∗ is a decision process distribution consisting of decision processes ending with decision
y∗, and PTDP,y∗ is a TDP distribution consisting of TDPs ending with decision y∗.

In our implementation, we calculate PE as the estimation of intrinsic uncertainty. In the rest of this
paper, we denote UProp to be H(PTDP,y∗ |x) by default. For decision distance measurement d, we
use the simple string fuzzy matching from thefuzz (SeatGeek, 2020) as the distance measurement.
In Section A.7, we provide further discussion and comparison to other alternatives such as Natural
Language Inference (NLI) (He et al., 2020).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Environments and Benchmarks We evaluate UProp over both multi-step decision-making and
multi-step reasoning benchmarks:

• Multi-Step Decision-Making: we consider AgentBench-OS, the Operating System (OS) Agent
benchmark in AgentBench (Liu et al., 2023). In AgentBench-OS, the LLM Agent is instructed
to finish a task by interacting with a Linux OS, e.g., find an executable file named echo-love
(see Section B.1 for demonstrations and prompt templates).

• Multi-Step Reasoning: we consider the popular multi-hop question-answering benchmarks: Hot-
potQA (Yang et al., 2018) and StrategyQA (Geva et al., 2021). In these benchmarks, LLMs are
tasked to answer a question requiring multi-hop reasoning. LLM is prompted in a ReAct (Yao
et al., 2022) style: Reasoning-Action-Observation, where each action will provide a keyword to a
Wikipedia engine for retrieval (see Section B.2 for demonstrations and prompt templates).

LLMs and Sampling We consider state-of-the-art commercial LLMs (GPT-4.1-Nano-2025-04-
14 (Achiam et al., 2023), GPT-3.5-Turbo-0125 (Brown et al., 2020)) and open-source LLMs
(QWen2.5-72b-Instruct (Yang et al., 2024), DeepSeek-V3 (DeepSeek-AI et al., 2024), and Gemma-
2-27b-it (Riviere et al., 2024)) as backbones. For generative hyperparameters, we use greedy search
to generate responses for correctness evaluation and multinomial search with a temperature set to
0.8 for MC sampling. For all the generations, we set the maximum number of new tokens to be 512.
By default, the trajectory sample number Z and the per-step sample number N are set to 10.

UQ Baselines We consider 7 popular single-step LLM UQ methods: Perplexity (PPL), Lexical
Similarity (LS) (Fomicheva et al., 2020), PE (Malinin & Gales, 2020), SE (Kuhn et al., 2023),

6
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Table 1: AUROC results over AgentBench-Operating System and StrategyQA benchmarks. For
single-turn baseline UQ methods, uncertainties are aggregated by averaging over all steps.

Models Success Rate PPL LS PE SE Deg G-NLL SD sentSAR UProp (ours)

Benchmark: AgentBench-Operating System

GPT-4.1-Nano 0.307 0.725 0.756 0.768 0.770 0.757 0.763 0.779 0.775 0.781
GPT-3.5-Turbo 0.275 0.747 0.750 0.782 0.765 0.765 0.745 0.749 0.777 0.791
Gemma-2-27b-it 0.289 0.747 0.636 0.760 0.755 0.652 0.787 0.766 0.755 0.814
DeepSeek-V3 0.310 0.729 0.636 0.724 0.716 0.655 0.767 0.717 0.722 0.767
Qwen2.5-72B-Instruct 0.508 0.625 0.620 0.707 0.687 0.631 0.671 0.678 0.678 0.704

Average 0.338 0.715 0.679 0.748 0.738 0.692 0.747 0.738 0.741 0.771

Benchmark: StrategyQA

GPT-4.1-Nano 0.691 0.512 0.492 0.542 0.503 0.528 0.502 0.499 0.527 0.544
GPT-3.5-Turbo 0.611 0.593 0.438 0.623 0.611 0.440 0.608 0.600 0.607 0.604
Gemma-2-27b-it 0.777 0.698 0.615 0.669 0.624 0.622 0.759 0.640 0.667 0.766
DeepSeek-V3 0.790 0.573 0.548 0.559 0.558 0.575 0.583 0.574 0.563 0.607
Qwen2.5-72B-Instruct 0.796 0.500 0.495 0.573 0.573 0.493 0.556 0.567 0.563 0.617

Average 0.733 0.575 0.518 0.593 0.574 0.526 0.606 0.576 0.585 0.628
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Figure 2: Comparing the sampling efficiency of UProp with baselines.

Deg (Lin et al., 2024b), SD (Qiu & Miikkulainen, 2024), sentSAR (Duan et al., 2024a), and G-
NLL (Aichberger et al., 2025). For a fair comparison and also a straightforward adaptation, baselines
are calculated over the same TDP samples. Specifically, for each TDP sample, baseline methods first
(1) calculate per-step uncertainty by their design. Then, (2) the TDP total uncertainty is aggregating
all these per-step uncertainties by either average or Root Mean Square (RMS). Eventually, (3) the
final uncertainty is the averaging of TDPs’ total uncertainties. Apart from these UQ baselines,
in Section D, we present broader adaptions that compare UProp with baselines using a single
greedy trajectory or last decision only to quantify uncertainty, with alternative naive baselines such
as mean (or max) token entropy.

Evaluation Metric Following existing work (Kuhn et al., 2023) in this domain, we evaluate UQ by
assessing how well it predicts the correctness of the model’s generated answers for a given question,
with the metric Area Under the Receiver Operating Characteristic Curve (AUROC). In Section C.1,
we also provide the hallucination detection performance of UProp and baselines evaluated by ac-
curacy and F1.

4.2 PERFORMANCE ON MULTI-STEP DECISION-MAKING BENCHMARKS

We report the general performance (Success Rate) of LLMs and the AUROC of baselines and
UProp, over AgentBench-Operating System (OS) and StrategyQA datasets. The performance of
baselines aggregated by averaging is reported in Table 1 (please refer to Section C.2 for RMS ag-
gregation comparison). It is shown that UProp achieves the best UQ performance in most settings,
compared to both average and RMS aggregation. It significantly outperforms existing methods in
general, e.g., UProp outperforms baselines by 2.3% ∼ 9.2% AUROC in AgentBench-OS and 3.5%
∼ 11% AUROC in StrategyQA.
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4.3 SAMPLING EFFICIENCY

To quantify the sampling efficiency, we compare the AUROC of sampling-based baselines and
UProp over various TDP sampling numbers, i.e., Z ∈ [2, 10], and per-step sampling numbers
within each TDP, i.e., N ∈ [2, 10] (we only vary one of the sampling numbers at each time and
fix the other sampling numbers to be 10). Results are summarized in Figure 2. It is shown that
UProp outperforms baselines in most sampling configurations, including when very few trajectory
samplings or per-step samplings are available. It implies that UProp is effective and efficient in
LLM multi-step UQ.

4.4 ABLATION STUDY Table 2: Ablation study of IU and EU in UProp.

Model UProp w/o EU w/o IU
GPT-4.1-Nano 0.781 0.726 (-5.5%) 0.770 (-1.1%)
GPT-3.5-Turbo 0.791 0.747 (-4.4%) 0.717 (-7.4%)
Gemma-2-27b-it 0.813 0.765 (-4.8%) 0.794 (-1.9%)
DeepSeek-V3 0.767 0.700 (-6.7%) 0.733 (-3.4%)
Qwen2.5-72B-Instruct 0.704 0.652 (-5.2%) 0.684 (-2.0%)

IU vs. EU We investigate the effective-
ness of IU and EU individually. In Table 2,
we provide the AUROC when removing each
of these components from UProp, over the
AgentBench-OS benchmark. In general, both
IU and EU contribute to the performance im-
provement. However, w/o EU brings larger performance drops than IU, indicating that EU is an
essential component in uncertainty quantification.

Table 3: The evaluation of selective prediction with AUARC.

Models PPL LS PE SE Deg sentSAR SD UProp

GPT-4.1-Nano 67.2 62.9 68.2 66.6 63.8 67.2 66.7 68.5
GPT-3.5-Turbo 64.1 54.0 67.2 65.1 54.1 64.6 64.6 66.8
Gemma-2-27b-it 84.5 79.7 83.2 81.8 80.2 83.1 82.2 86.0
DeepSeek-V3 77.5 76.1 78.6 78.4 77.9 78.6 79.2 79.7
Qwen2.5-72B-Instruct 74.1 75.7 78.4 78.5 76.2 78.2 77.5 81.1
Average 73.5 69.7 75.1 74.1 70.4 74.3 74.0 76.4

Selective Prediction Reject-
ing response by uncertainty is an
important UQ application, e.g.,
hallucination detection in LLMs.
In Table 3, we report the se-
lective prediction performance
comparison, evaluated by metric
Area Under Accuracy-Rejection
Curve (AUARC) (Nadeem et al., 2009) over the StrategyQA benchmark. We show that UProp
substantially outperforms baselines in most cases, e.g., UProp outperforms baselines by up to 2.6%
AUARC. This indicates that UProp retains better performance in rejecting incorrect answers.
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Qwen2.5-72B-Instruct

Figure 3: Uncertainty as the correctness indicator
for improved LLM performance.

Uncertainty as Correctness Indicator Un-
certainty could serve as the indicator of cor-
rectness, which is one of the potential appli-
cations of UQ. We study the effectiveness of
baselines and UProp in identifying correct an-
swers from multiple generations. Specifically,
for each question, we first sample 10 genera-
tions and then select the one with the lowest
uncertainty (estimated by various UQ methods)
as the final answer. We calculate the general
performance, i.e., success rate (SR), of these fi-
nal answers. We conduct this experiment over
AgentBench-OS and the results are reported
in Figure 3. We show that UQ effectively im-
proves SR, and UProp achieves the best performance among all the baselines.

EU Significantly Correlates to Correctness To quantify the utility of the introduced EU, we
calculate the estimated EU for each decision-making trajectory and provide the correctness vs. EU
scatters in Figure 4. A stronger negative correlation indicates that EU is an effective estimation of
the correctness of trajectories. We conduct experiments with Gemma-2-27b-it, DeepSeek-V3, and
QWen2.5-72B-Instruct over the AgentBench-OS task. It is shown that EU is significantly correlated
to correctness, demonstrating the practical utility of EU and UProp.

UProp in Long-Step Decision-Making To compare the performance of UProp when dealing
with short and long trajectories, we report the Excess AUARC Geifman et al. at each trajectory
group. The reason we choose Excess AUARC rather than AUROC is that (1) longer trajectories are
inherently more challenging than shorter ones. This variation in difficulty places AUROC values
on incomparable scales across trajectory groups; (2) Excess AUARC calculates the pure gain by
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Figure 4: Quantify the correlation between EU and correctness. It is shown that the EU is negatively
correlated with the correctness, indicating that the introduced uncertainty propagation effectively
estimates the correctness of LLM trajectories.
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Figure 5: The percentage of intrinsic and extrinsic uncertainty at each step. The Red shadow area is
the percentage of IU and the Blue shadow area is the percentage of EU.

rejecting uncertain answers, which is a fair evaluation metric regarding the utility of UQ methods.
Please refer to Section C.4 for more details. Results are summarized in Table 4. It is shown that
Excess AUARC is stable at different numbers of steps, indicating that UProp is still effective on
questions requiring longer trajectories.

4.5 INTERMEDIATE UNCERTAINTY PROPAGATION ANALYSIS

Table 4: Evaluate UProp in long-step trajecto-
ries with Excess AUARC.

Models 2 Steps 6 Steps 10 Steps

Gemma-2-27b-it 0.098 0.043 0.062
DeepSeek-V3 0.037 0.031 0.029

To understand how uncertainty is propagated
along decision trajectories and identify the con-
tributions of IU and EU individually, we provide
the uncertainty percentage of IU and EU, i.e.,

IU
IU+EU and EU

IU+EU , at each decision step. Re-
sults are summarized in Figure 5 (the detailed
per-model results are provided in Section C.3).
We observe that (1) IU usually contributes sig-
nificantly to the first few decision steps while EU
dominates the rest. As the decision step grows, EU heavily affects the total uncertainty of the de-
cision step, highlighting the significance of EU in uncertainty propagation; (2) GPT-4.1-Nano em-
braces a relatively smaller EU percentage compared to other LLMs at the later decision steps, e.g.,
EU and IU share closer percentages at the end step in StrategyQA. This indicates that GPT-4.1-Nano
has more stable and less uncertain decisions.

5 RELATED WORK

Uncertainty Quantification (UQ) of LLMs Uncertainty Quantification (UQ) of LLMs In
LLMs, UQ quantifies the uncertainty within its prediction distribution (Malinin & Gales, 2020;
Aichberger et al., 2025). From the perspective of entropy, uncertainty could be measured by the
log probability of generations sampled from the output space (Gawlikowski et al., 2023). However,
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entropy may overestimate uncertainty due to the semantic clusters. To address this issue, Semantic
Entropy (SE) (Kuhn et al., 2023) clusters LLM outputs by semantics and then calculates cluster-
wise entropy as the uncertainty. Deg (Lin et al., 2024b) is specifically designed for black-box UQ
and it models output consistency by either node connectivity or eigenvalues of a semantic graph
(which is further extended by INSIDE (Chen et al., 2024) in LLM hidden space). SAR (Duan et al.,
2024a) reveals token-level and sentence-level semantic imbalance in LLM UQ. The token-level
semantic importance is further extended by CSL (Lin et al., 2024a). Semantic Density (SD) (Qiu
& Miikkulainen, 2024) calculates the density of a target generation within a semantic space as the
uncertainty. KLE (Nikitin et al., 2024) encodes semantic similarities of LLM outputs to mitigate the
“semantic overlapping” among semantic clusters.

LLM Multi-Step Decision-making It refers to sequential interactions between an LLM agent
and its environment (Wang et al., 2024b), spanning OS (Liu et al., 2023), Wikipedia, games (Duan
et al., 2024b), and robotics (Liu et al., 2024). Frameworks like ReAct (Yao et al., 2023) introduce a
think-act-observe loop, extended by Reflection (Shinn et al., 2023) and Rest (Aksitov et al., 2023)
with self-reflection (Ji et al., 2023). Q∗ (Wang et al., 2024a) incorporates deliberative planning,
while auxiliary modules (graphs (Wu et al., 2025), tools (Paranjape et al., 2023)) enhance reasoning.
Stepwise reasoning (Wang et al., 2025) further improves performance by referencing underused
information and reducing redundancy. While PlanU (Deng et al.) addresses uncertainty, it functions
primarily as a planning algorithm, utilizing MCTS and quantile regression to maximize task rewards
and guide exploration. In contrast, our approach is grounded in information theory, aiming not to
guide search but to provide a scalar reliability metric specifically for selective prediction and the
rejection of incorrect answers.

6 CONCLUSION

In this paper, we investigate the uncertainty propagation of LLMs in multi-step decision-making.
Specifically, we first provide a principled, information-theoretical framework that decomposes the
uncertainty into intrinsic uncertainty and extrinsic uncertainty. We then propose UProp, as an effi-
cient and effective estimator of extrinsic uncertainty. We conduct experiments over popular sequen-
tial decision-making scenarios and experimental results demonstrate the superior performance of
UProp compared to best-performing baselines. We further study the intermediate states of UProp,
such as the performance of UProp on long-step trajectories, the percentage of IU and EU at each
step, as well as the Pearson correlation between EU and the correctness of trajectories.

Limitations & Social Impacts The proposed UProp relies on MC sampling for MI estimation.
On the one hand, the estimation might be deviated due to insufficient sampling and unknown dis-
tribution from the LLM decision space. Moreover, sampling may result in latency in real-world
deployment. Also, our study involves closed-source commercial LLMs such as GPT-4.1 and GPT-
3.5-Turbo, which may suffer from reproducibility issues due to the continuous updating of these
models. We investigate the uncertainty quantification in LLMs, which is one of the most important
topics in trustworthy LLMs and responsible LLMs. We expect our method to improve hallucina-
tion detection in LLM sequential decision-making and could be used to correct LLM behaviors in
uncertain decision scenarios.

Ethics Statement While our study does not involve human subjects or sensitive personal data, we
acknowledge ethical considerations regarding the deployment of LLMs in real-world environments
such as medical consultation or robotics. Our method, UProp, is designed to improve uncertainty
estimation in LLMs. When applied in safety-critical domains, its use should be accompanied by
human oversight to avoid potential misuse. It can be used to quantify the confidence of LLMs
regarding its response, detect hallucination, as well as correct LLM behaviors.

Reproducibility Statement In Section 4.1 we provide detailed descriptions of datasets and bench-
marks (AgentBench-OS, HotpotQA, and StrategyQA), model backbones (GPT-4.1, GPT-3.5-Turbo,
DeepSeek-V3, Qwen2.5, Gemma-2-27B-IT), and evaluation metrics (AUROC, AUARC). The hal-
lucination detection accuracy and F1 results are further included in Section C.1. Complete prompt
templates and data processing pipelines are provided in Section B.1–B.2. All codes and configura-
tion scripts will be released upon the final decision of the paper to facilitate reproducibility
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Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information. Phys-
ical Review E—Statistical, Nonlinear, and Soft Matter Physics, 69(6):066138, 2004.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
uncertainty estimation in natural language generation. In The Eleventh International Conference
on Learning Representations, 2023.

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Contextualized sequence likelihood: Enhanced
confidence scores for natural language generation. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 10351–10368, 2024a.

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quan-
tification for black-box large language models. Transactions on Machine Learning Research,
2024b.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Yang Liu, Weixing Chen, Yongjie Bai, Xiaodan Liang, Guanbin Li, Wen Gao, and Liang Lin. Align-
ing cyber space with physical world: A comprehensive survey on embodied ai. arXiv preprint
arXiv:2407.06886, 2024.

Andrey Malinin. Uncertainty estimation in deep learning with application to spoken language
assessment. PhD thesis, 2019.

12

https://api.semanticscholar.org/CorpusID:218763134


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Andrey Malinin and Mark Gales. Uncertainty estimation in autoregressive structured prediction.
arXiv preprint arXiv:2002.07650, 2020.

Vladimir Malinovskii, Denis Mazur, Ivan Ilin, Denis Kuznedelev, Konstantin Burlachenko, Kai Yi,
Dan Alistarh, and Peter Richtarik. Pv-tuning: Beyond straight-through estimation for extreme
llm compression. Advances in Neural Information Processing Systems, 37:5074–5121, 2024.

Malik Sajjad Ahmed Nadeem, Jean-Daniel Zucker, and Blaise Hanczar. Accuracy-rejection curves
(arcs) for comparing classification methods with a reject option. In International Workshop on
Machine Learning in Systems Biology, 2009. URL https://api.semanticscholar.
org/CorpusID:15957014.

Alexander Nikitin, Jannik Kossen, Yarin Gal, and Pekka Marttinen. Kernel language entropy: Fine-
grained uncertainty quantification for llms from semantic similarities. Advances in Neural Infor-
mation Processing Systems, 37:8901–8929, 2024.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models.
arXiv preprint arXiv:2303.09014, 2023.

Xin Qiu and Risto Miikkulainen. Semantic density: Uncertainty quantification for large language
models through confidence measurement in semantic space. arXiv preprint arXiv:2405.13845,
2024.

Gemma Team Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, L’eonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ram’e, Johan Fer-
ret, Peter Liu, Pouya Dehghani Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Ku-
mar, Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stańczyk, Ser-
tan Girgin, Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam
Neyshabur, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison,
Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, An-
tonia Paterson, Ben Bastian, Bilal Piot, Boxi Wu, Brandon Royal, Charlie Chen, Chintu Ku-
mar, Chris Perry, Christoper A. Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov,
David Weinberger, Dimple Vijaykumar, Dominika Rogozi’nska, D. Herbison, Elisa Bandy, Emma
Wang, Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel
Rasskin, Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Pluci’nska,
Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stan-
way, Jetha Chan, Jin Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez,
Joost R. van Amersfoort, Josh Gordon, Josh Lipschultz, Joshua Newlan, Junsong Ji, Kareem
Mohamed, Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Ki-
ranbir Sodhia, Kish Greene, Lars Lowe Sjoesund, Lauren Usui, L. Sifre, Lena Heuermann, Leti
cia Lago, Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Mar-
tins, Machel Reid, Manvinder Singh, Mark Iverson, Martin Gorner, Mat Velloso, Mateo Wirth,
Matt Davidow, Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi,
Michael Moynihan, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khat-
wani, Natalie Dao, Nen shad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan,
Oscar Wahltinez, Pankil Botarda, Parker Barnes, Paul Barham, Paul Michel, Peng chong Jin,
Petko Georgiev, Phil Culliton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena
Jana, Reza Ardeshir Rokni, Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy,
Sarah Perrin, S’ebastien M. R. Arnold, Se bastian Krause, Shengyang Dai, Shruti Garg, Shruti
Sheth, Sue Ronstrom, Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan,
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A IMPLEMENTATION DETAILS AND RELATED PROOFS

In this section, we provide detailed proofs and procedures used in this paper. We will reuse the
notations we defined before.

A.1 UNCERTAINTY DECOMPOSITION

The joint distribution for a sequence of events y1:t, conditioned on x, follows the chain rule for
conditional probability:

pθ(y1:t|x) = pθ(y1|x)pθ(y2|y, 1x)pθ(y3|y1:2x) · · · pθ(yt|y1:t−1x). (11)
By marginalizing out previous decisions y1:t−1, the distribution pθ(yt|x) becomes:

pθ(yt|x) =
∫

pθ(yt|y1:t−1,x)pθ(y1:t−1|x)dy1:t−1

=

∫
pθ(yt|y1:t−1,x)

∏t−1

i
pθ(yi|y1:i−1,x)dy1dy2 · · · dyi−1

(12)

A.2 ENTROPY DECOMPOSITION

Based on conditional mutual information and iteratively applying it to each preceding decision yi,
we have the following decomposition:

H(yt|x) = H(yt|yt−1,x) + I(yt;yt−1|x)
= H(yt|yt−2:t−1,x) + I(yt;yt−2|yt−1,x) + I(yt;yt−1|x)
· · ·

= H(yt|y1:t−1,x) +
∑t−1

i
I(yt;yi|yi+1:t−1,x).

(13)

A.3 MI CALCULATION NECESSITIES EXPONENTIAL EXPLORATION

In a multi-step decision-making process, we denote by A the decision space at each step, the MI
between the n-th step distribution yn and the m-th step distribution ym (m > n), i.e., I(ym;yn)
requires the joint distribution pθ(ym,yn|x):

pθ(ym,yn|x) =
∫

· · ·
∫
Am−n−1

pθ(y1,y2, · · · ,yt, · · · ,ym|x)
∏

k∈{1,··· ,m}\{n.m}

dyk. (14)

Each of the (∆ = m− n− 1) intermediate steps introduces an independent integral over the entire
action domain A, turning the calculation into an ∆-fold (hyper-)integral whose effective cost grows
as O(|A|∆). Thus, the volume of the decision sub-space expands exponentially with the gap ∆.

A.4 PROOF OF THEOREM 1: CONVERGENCE OF THE TDP SAMPLING

Given a TDP z, based on Equation (9), the total uncertainty at step t is:

ĝt(z) = H(yt|y1:t−1,x) +

t−1∑
i

P̂MI(yt;y
(k)
i |y(k)

i+1:t−1,x)
)
, (15)

Taking the expectation of Equation (15), we obtain Ez∼Z [ĝt(z)] = H(yt|x). With independent
TDPs sampled Z = {z1, z2, · · · }, then

Ĥ(PTDP) =
1

|Z|

Z∑
z

Tz∑
t

ĝt(z),

where Tz is the length of the trajectory z. Similarly, taking the expectation over Z , we obtain

Ez∼Z [Ĥ(PTDP)] =

T∑
t

H(yt|x) = H(P). (16)
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Thus, we show the estimator is unbiased. With the law of large numbers, we have

Ĥ(PTDP) =
1

|Z|

Z∑
z

G(z) → Ez∼Z [G(z)] = H(P),

with N → ∞, where G(z) =
∑Tz

t ĝt(z).

A.5 PROOF OF THEOREM 2: CONVERGENCE OF THE PMI APPROXIMATION

We start from the definition of the PMI conditioned on x: PMI(yt;y
(k)
t−1|x) = log

p(yt|y(k)
t−1,x)

p(yt|x) ,

where y
(k)
t−1 is a realization. According to the local smoothness assumption, for any given y′

t−1

sufficiently close to the given y
(k)
t−1, it must hold that p(yt|y′

t−1,x) ≈ p(yt|y(k)
t−1,x). Consider the

marginalization over yt−1:

p(yt|x) =
∫

p(yt|y′
t−1,x)p(y

′
t−1|x)dy′

t−1. (17)

Under the smoothness assumption, within the kernel radius around y
(k)
t−1, we can write:

p(yt|x) ≈
∫

p(yt|y(k)
t−1,x)Kτ (dist(yyt−1

,y
(k)
t−1))p(yt−1|x)dyt−1 ➢ Local Smoothness Assumption

= p(yt|y(k)
t−1,x)

∫
Kτ (dist(yyt−1

,y
(k)
t−1))p(yt−1|x)dyt−1

≈ p(yt|y(k)
t−1,x)

N∑
i

Kτ (dist(y
(i)
t−1,y

(k)
t−1)) ➢ MC Approximation

= p̂(yt|x)
(18)

It is shown that as the sampling number N → ∞, p̂(yt|x) → p(yt|x), thus P̂MI(yt|yt−1,x) →
PMI(yt|yt−1,x).

A.6 NEIGHBORHOOD-WEIGHTED AVERAGE IN EQUATION (7)

Computing the exact marginal pθ(yt|x) requires integrating over all possible trajectories leading
to yt−1, which is intractable due to the exponential size of the decision space. The neighborhood-
weighted average provides an efficient MC-based approximation by leveraging local smoothness
in the model’s conditional distribution pθ(yt|yt−1,x) (akin to kernel density estimation), and is
widely accepted under mild continuity assumptions.

Equation (7) retains localized inter-step dependency by conditioning on semantically similar sam-
ples from the previous step. Specifically, it estimates the marginal pθ(yt|x) by spreading from the
conditional pθ(yt|yt−1,x), using a neighborhood-weighted average over sampled yt−1, reflecting
how variations in the prior decision impact the distribution at the current step. Although this does not
explicitly integrate over the entire decision history, it preserves localized decision influence critical
for uncertainty propagation. For other prior decisions y1:t−2, the influence of earlier steps is embed-
ded in the samples of yt−1. Each y

(n)
t−1 is generated as part of a full trajectory yn

1:t−1, meaning its
semantic content implicitly reflects past decisions. Therefore, the approximation does not discard
all past information; instead, it utilizes the semantic proximity of these yt−1 samples to account
for the cumulative effect of preceding decisions. The kernel weighting in Equation (7), controlled
by the hyperparameter τ , assigns higher weights to y

(n)
t−1 values that are closer to the anchor y(k)

t−1.
This ensures that the approximation of p(yt|x) is more sensitive to local neighborhoods, effectively
capturing how semantically similar or dissimilar prior decisions affect the uncertainty at the current
step.

While richer modeling of inter-step dependencies is possible (e.g., via trajectory-level variational
inference), such approaches introduce substantial computational overhead. Our goal is to provide
a general-purpose, efficient, and scalable UQ estimator, and the proposed neighborhood-weighted
strategy strikes a strong balance between fidelity and feasibility. We will leave the advanced sam-
pling and approximation strategies as future work.
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Table 5: The results of using the NLI model as the semantic similarity measurement.

Method d AgentBench-OS StrategyQA HotpotQA
UProp fuzzy matching 0.762 0.629 0.539
UProp Deberta-large-mnli 0.767 0.635 0.537

A.7 MEASURING DISTANCE BETWEEN LLM AGENTIC DECISIONS

In our decision-making environments, at each decision step, LLMs are prompted to provide a Rea-
soning output, then followed by an Action. Though the Reasoning output is long and versatile, the
generated Action is usually pre-defined to be short and concise, such as SEARCH(<keyword>)
and LOOKUP(<keyword>) in the ReAct agent. Moreover, considering the decision is largely rep-
resented by Action, the distance between Actions becomes an effective measurement of the decision
distance. In this way, string fuzzy matching is an efficient method to measure the distance between
short actions. Existing work usually applies auxiliary models such as Natural Language Inference
(NLI) (Kuhn et al., 2023) model and embedding models (Duan et al., 2024a).

Although we choose fuzzy matching as the distance measurement (due to its efficiency and suit-
ability for short action lengths in multi-step decision-making scenarios), our method can be conve-
niently extended to more advanced semantic similarity or natural language inference measurements.
To demonstrate this, we replace the fuzzy matching with the Deberta-large-mnli (He et al., 2020)
model to predict the entailment between two long sentences, which is proven to be effective in
comparing the semantics between reasoning responses. We conduct experiments on GPT-4.1-nano
and the results are summarized in Table 5. It is worth noting that we reduce the sampling numbers
(both step sampling numbers and trajectory sampling numbers) to 5 for computational efficiency.
It is shown that replacing with more advanced Deberta-large-mnli benefits Uprop in general. This
proves that UProp is a flexible framework that could be easily generalized to handle long responses.

B EXPERIMENTAL SETUP

B.1 AGENTBENCH-OPERATING SYSTEM BENCHMARK

The Operating System (OS) split in AgentBench (Liu et al., 2023) enables LLMs to interact with
and operate within real operating system (OS) environments through terminal commands, which
presents both an exciting opportunity and a significant challenge. It evaluates LLMs in genuine
bash environments (specifically, Ubuntu Docker containers using a suite of human-written tasks.
These tasks require either deterministic responses—such as querying the number of users without
home directories—or the execution of command sequences to achieve practical objectives—such as
recursively setting all directory files to read-only, excluding specific users. In this split, there are
144 questions in the testing set, with the expected interaction turns to be 1200.

Evaluation Metric: The performance is evaluated by Success Rate (SR): a task is deemed as a
success if the LLM returned answer matches the ground-truth label.

We follow the AgentBench codebase1 and use the official one-shot demonstration for each OS task.
The one-shot demonstration and one test task demonstration are provided as follows:

1https://github.com/THUDM/AgentBench
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One-Shot Demonstration

USER
You are an assistant that will act like a person, I’will play the role of linux(ubuntu) operating system.
Your goal is to implement the operations required by me or answer to the question proposed by me.
For each of your turn, you should first think what you should do, and then take exact one of the three
actions: ”bash”, ”finish” or ”answer”.
1. If you think you should execute some bash code, take bash action, and you should print like this:
Think: put your thought here.
Act: bash
“‘bash # put your bash code here “‘
2. If you think you have finished the task, take finish action, and you should print like this:
Think: put your thought here.
Act: finish
3. If you think you have got the answer to the question, take answer action, and you should print like
this:
Think: put your thought here.
Act: answer(Your answer to the question should be put in this pair of parentheses)
If the output is too long, I will truncate it. The truncated output is not complete. You have to deal with
the truncating problem by yourself. Attention, your bash code should not contain any input operation.
Once again, you should take only exact one of the three actions in each turn.
Now, my problem is:
tell me how many files are in the directory ”/etc”?
LLM Agent
Think: To count the files in /etc, I need to print all the files in it.
Act: bash
“‘bash ls /etc “‘
USER
The output of the OS: cpi cron.hourly fuse.conf iproute2 lvm networkd-dispatcher protocols selinux
tmpfiles.d [truncated because the output is too long]
LLM Agent
Think: The output has been truncated because it is too long, so I need to count files by script directly.
Act: bash
“‘bash ls -1 /etc — wc -l “‘
USER
The output of the OS: 220
LLM Agent
agent Think: Now I get the answer, it is 220.
Act: answer(220)
USER
Now, I will start a new problem in a new OS. My problem is: <Test Question>

Test Task Demonstration

USER
Tell me how many files can be executed in PATH.
LLM Agent
Think: To count the executable files in PATH, I need to list all directories in PATH and count the
executable files in each directory.
Act: bash
“‘bash for dir in $(echo $PATH — tr ’:’ ’ ’); do echo -n ”$dir: ” find $dir -maxdepth 1 -type f
-executable — wc -l done “‘
USER
The output of the OS:
echo -n “$dir: ” > find $dir -maxdepth 1 -type f -executable — wc -l > done /usr/local/sbin: 0
/usr/local/bin: 0 /usr/sbin: 109 /usr/bin: 446 /sbin: 0 /bin: 0
LLM Agent
Think: The total number of executable files in PATH is the sum of the counts in each directory.
Act: bash
“‘bash echo $((0 + 0 + 109 + 446 + 0 + 0)) “‘ user The output of the OS is empty. agent Think: The
total number of executable files in PATH is 555.
Act: answer(555)
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B.2 MULTI-STEP REASONING: HOTPOTQA AND STRATEGYQA

HotpotQA is a question-answering dataset featuring multi-hop questions: each question needs sup-
port from multiple facts. For instance, the question “What country of origin does House of Cosbys
and Bill Cosby have in common?” requires facts regarding “House of Cosbys” and “Bill Cosby”.
We follow the ReAct (Yao et al., 2023) experimental setting and randomly select 500 questions from
the test split and prompt LLMs in a “Reasoning-Action-Observation” manner:

Prompt Template

Solve a question answering task with interleaving Thought, Action, Observation steps. Thought can
reason about the current situation, and Action can be three types: (1) Search[entity], which searches
the exact entity on Wikipedia and returns the first paragraph if it exists. If not, it will return some
similar entities to search. (2) Lookup[keyword], which returns the next sentence containing keyword
in the current passage. (3) Finish[answer], which returns the answer and finishes the task. Here are
some examples. <Few-Shot Demonstration>

Few-Shot Demonstrations (HotpotQA)

Question: What is the elevation range for the area that the eastern sector of the Colorado orogeny
extends into?
Thought 1: I need to search Colorado orogeny, find the area that the eastern sector of the Colorado
orogeny extends into, then find the elevation range of the area.
Action 1: Search[Colorado progeny]
Observation 1: The Colorado orogeny was an episode of mountain building (an orogeny) in Colorado
and surrounding areas.
Thought 2: It does not mention the eastern sector. So I need to look up eastern sector.
Action 2: Lookup[eastern sector]
Observation 2: (Result 1 / 1) The eastern sector extends into the High Plains and is called the Central
Plains progeny.
Thought 3: The eastern sector of Colorado orogeny extends into the High Plains. So I need to search
High Plains and find its elevation range.
Action 3: Search[High Plains]
Observation 3: High Plains refers to one of two distinct land regions:
Thought 4: I need to instead search High Plains (United States).
Action 4: Search[High Plains (United States)]
Observation 4: The High Plains are a subregion of the Great Plains. From east to west, the High
Plains rise in elevation from around 1,800 to 7,000 ft (550 to 2,130 m).[3]
Thought 5: High Plains rise in elevation from around 1,800 to 7,000 ft, the answer is 1,800 to 7,000
ft.
Action 5: Finish[1,800 to 7,000 ft]

StrategyQA is also a popular multi-hop reasoning benchmark, which requires steps for answering
the question. It includes 2,780 examples, with a strategy question, decompositions, and evidence
paragraphs within each example. Similar to HotpotQA, we also randomly select 200 questions and
prompts LLMs in the ReAct manner with the following few-shot demonstrations.
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Table 6: Evaluate the accuracy of UProp from hallucination detection.

Model PPL LS PE SE Deg SD sentSAR UProp
GPT-4.1-Nano 0.766 0.766 0.781 0.795 0.759 0.802 0.788 0.790
Gemma-2-27b-it 0.762 0.711 0.800 0.785 0.725 0.770 0.777 0.837
DeepSeek-V3 0.777 0.722 0.793 0.777 0.722 0.769 0.777 0.786

Average 0.769 0.733 0.791 0.786 0.735 0.781 0.781 0.804

Table 7: Evaluate the F1 of UProp from hallucination detection.

Model PPL LS PE SE Deg SD sentSAR UProp
GPT-4.1-Nano 0.407 0.529 0.531 0.533 0.421 0.542 0.508 0.592
Gemma-2-27b-it 0.333 0 0.542 0.591 0.372 0.367 0.583 0.676
DeepSeek-V3 0.481 0.477 0.500 0.440 0.477 0.452 0.481 0.620

Average 0.407 0.335 0.524 0.521 0.423 0.454 0.524 0.629

Few-Shot Demonstrations (StrategyQA)

Question: Is Mixed martial arts totally original from Roman Colosseum games?
Thought 1: Mixed martial arts (MMA) does have some similarities to the ancient Roman games held
in the Colosseum, where gladiators would fight to the death as a form of entertainment. However, there
are also distinct differences between the two, such as rules, regulations, and cultural contexts.
Action 1: Search[Roman Colosseum games]
Observation 1: The Roman Colosseum, also known as the Flavian Amphitheater, was a huge arena
used for gladiatorial contests, animal hunts, executions, re-enactments of famous battles, and dramas.
The events held at the Colosseum were brutal displays of power and entertainment for the ancient
Romans.
Thought 2: I need to further check mixed martial arts.
Action 2: Lookup[Mixed martial arts]
Observation 2: Mixed martial arts is a full-contact combat sport that allows a wide variety of fighting
techniques and skills from a mixture of other combat sports to be used in competition. It involves
striking and grappling techniques, both standing and on the ground.
Thought 3: While both the Roman Colosseum games and modern mixed martial arts involve combat
sports, MMA is a regulated sport with rules and safety measures that were not present in the ancient
gladiatorial contests. The styles of fighting and the purposes of the two are different, with MMA
focusing more on competitive sportsmanship rather than the spectacle of bloodshed and death seen in
the Roman games.
Action 3: Finish[No]

For both HotpotQA and StrategyQA, we use the Wikipedia engine and the environment that takes
the retrieval command from LLM Agents and returns the required information.

C EXTENDED EXPERIMENTAL RESULTS

C.1 EVALUATION FROM HALLUCINATION DETECTION

we calculate the accuracy and F1 performance of hallucination detection with baselines and UProp.
Specifically, we split 20% of the tasks as the validation set to determine the threshold. We apply each
method on the validation set and obtain the threshold that maximizes the accuracy of hallucination
detection. We then apply this threshold to the rest 80% examples for accuracy and F1 calculation.
Results are summarized in Tables 6 and 7. It is shown that UProp achieves superior hallucination
detection performance under the evaluation of accuracy and F1.

C.2 AGGREGATING BASELINES WITH RMS

In Table 8, we compare UProp with baselines aggregated by Rooted Mean Square (RMS). RMS
aggregation is mainly used to address “outlier” trajectories such as exceptionally large steps and/or
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large uncertainties. It is shown that RMS aggregation is worse and simple averaging (Table 1) and
UProp is significantly better than it.

Table 8: AUROC results over AgentBench-Operating System and StrategyQA benchmarks. For
single-turn baseline UQ methods, uncertainties are aggregated by RMS over all steps.

Models Success Rate PPL LS PE SE Deg SD sentSAR UProp (ours)

Benchmark: AgentBench-Operating System

GPT-4.1-Nano 0.307 0.710 0.761 0.768 0.754 0.762 0.765 0.769 0.781
GPT-3.5-Turbo 0.275 0.722 0.739 0.772 0.756 0.752 0.739 0.774 0.791
Gemma-2-27b-it 0.289 0.731 0.639 0.750 0.739 0.653 0.755 0.754 0.814
DeepSeek-V3 0.310 0.704 0.621 0.711 0.693 0.631 0.691 0.705 0.767
Qwen2.5-72B-Instruct 0.508 0.604 0.614 0.695 0.668 0.627 0.644 0.641 0.704

Average 0.338 0.694 0.675 0.739 0.722 0.685 0.719 0.729 0.771

Benchmark: StrategyQA

GPT-4.1-Nano 0.691 0.516 0.505 0.551 0.506 0.520 0.502 0.539 0.544
GPT-3.5-Turbo 0.611 0.607 0.435 0.620 0.608 0.438 0.601 0.530 0.604
Gemma-2-27b-it 0.777 0.714 0.607 0.682 0.648 0.623 0.653 0.578 0.766
DeepSeek-V3 0.790 0.578 0.552 0.557 0.557 0.572 0.574 0.460 0.607
Qwen2.5-72B-Instruct 0.796 0.500 0.509 0.573 0.579 0.514 0.560 0.496 0.617

Average 0.733 0.583 0.521 0.597 0.580 0.533 0.578 0.521 0.628

C.3 UNCERTAINTY PERCENTAGE

In Figure 6, we provide the detailed uncertainty percentage at each model and benchmark.

C.4 UPROP IN LONGER SEQUENTIAL DECISION-MAKING

To mitigate the bias inherent in comparing performance across trajectories of varying
lengths—where increased length correlates with higher difficulty and inconsistent baseline suc-
cess rates—we adopt the Excess AUARC metric. Standard area-based metrics are often scale-
incomparable when the underlying difficulty of the inference groups differs. Therefore, we quantify
the marginal improvement of our uncertainty estimator over a blind baseline. Formally, Excess
AUARC is defined as:

Excess AUARC = AUARCmethod − AUARCrandom, (19)

where AUARCmethod represents the performance using the proposed uncertainty quantification (UQ)
estimator to prioritize rejection, and AUARCrandom denotes the performance of a random rejection
policy, which is equivalent to the model’s base success rate (accuracy). By subtracting this baseline,
we isolate the specific contribution of the UQ ranking quality from the model’s intrinsic predic-
tive capability, yielding a scale-consistent and unbiased metric for comparing trajectory groups of
heterogeneous lengths.

D BROADER ADAPTATION: COMPARISON WITH DIVERSE BASELINES

To verify the generality of UProp beyond our main setting, we compare against a broad spectrum
of uncertainty baselines: (i) logit-based and semantic-consistency methods computed on a single
greedy trajectory or the final answer; (ii) trajectory-based variants that aggregate uncertainty over
full rollouts; and (iii) last-step decision baselines that only use the final-step uncertainty. Across
these families, UProp consistently delivers strong AUROC, often outperforming the strongest base-
line within each family.

Evaluating baselines on a single greedy trajectory and last decision. We compare against Per-
plexity (PPL), Mean Token Entropy (MeanTE), Max Token Entropy (MaxTE), and G-NLL, com-
puted on the single greedy trajectory (ST) and on the final answer (FA). As shown in Table 9, UProp
outperforms these baselines on AgentBench-OS, HotpotQA, and StrategyQA.

Trajectory-based baselines We next compare step-level measures with their trajectory-level coun-
terparts, where uncertainty is aggregated over full rollouts. Table 10 shows that trajectory-based
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Table 9: Logit-based & semantic-consistency baselines vs. UProp (GPT-4.1-nano).

Method AgentBench-OS HotpotQA StrategyQA

PPL + ST 0.734 0.605 0.538
PPL + FA 0.738 0.619 0.527
MeanTE + ST 0.734 0.605 0.538
MeanTE + FA 0.738 0.619 0.527
MaxTE + ST 0.651 0.596 0.500
MaxTE + FA 0.666 0.626 0.475
G-NLL + ST 0.724 0.622 0.515
G-NLL + FA 0.763 0.644 0.528

UProp 0.781 0.651 0.544
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Figure 6: Detailed uncertainty percentage at each decision step.

baselines are generally weaker than step-based ones; importantly, UProp remains competitive or
stronger across datasets and models.

Table 10: Step- vs. trajectory-based baselines and UProp.

(AgentBench-OS) PE(step) PE(traj) SE(step) SE(traj) UProp

GPT-4.1-Nano 0.768 0.736 0.770 0.763 0.781
GPT-3.5-Turbo 0.782 0.730 0.765 0.745 0.791

(StrategyQA) PE(step) PE(traj) SE(step) SE(traj) UProp

GPT-4.1-Nano 0.542 0.539 0.503 0.529 0.544
GPT-3.5-Turbo 0.623 0.573 0.611 0.608 0.604

E BROADER DISCUSSION

E.1 PERMUTATION-INVARIANT TASKS

Permutation-invariant tasks mean the execution order of intermediate decisions within a decision
trajectory doesn’t affect the final outcome. We first concepturally illustrate that in permutation-
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invariant tasks, the variance of a decision-making step consists of two components: 1) model’s
confidence in the usefulness or relevance of decision; 2) implicit probability choosing this particular
permutation.

We denote by x the task or instruction, Y = {y1, y2, · · · , yT } the set of intermediate decisions
needed to solve x, π = (yπ(1), yπ(2), · · · , yπ(T )) a permutation (ordering) of these decisions, and
pθ(yt|y<t, x) the model probability of decision yt at step t conditioned on prior decisions. Then, in
a permutation-invariant task, we can decompose the model’s probability of choosing yt at step t as:

pθ(yt|y<t, x) ∝ pθ,useful(yt|x)pθ,perm.(πt|Y),

where pθ,useful(yt|x) reflects the model’s confidence in the usefulness or relevance of decision yt
for solving task x, independent of position in the sequence, and pθ,perm.(πt|Y), reflects the implicit
probability the model assigns to choosing this particular permutation/order, i.e., how likely it is to
select yt at position t among all valid orderings of Y .

The implicit permutation probability appears in both correct and incorrect permutation-invariant
tasks, which cancels the overestimation of uncertainty in the correct outcome (as incorrect outcomes
also experience this overestimation due to the existence of pθ,perm.(πt|Y)). Thus, the variance is
still an effective metric for the UQ of permutation-invariant tasks.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

For improved clarity and readability, we used OpenAI GPT-4o strictly as an editing aid. Its function
was limited to correcting grammar, refining style, and polishing language, much like conventional
grammar-checking tools or dictionaries. The model was not involved in generating scientific content
or ideas, and its use remains in line with common standards for manuscript preparation.
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