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ABSTRACT

In MRI, variations in scan parameters, sequence, or hardware can lead to dis-
crepancies in image appearance, even for the same subject. These inconsisten-
cies, known as domain shifts, can hinder image analysis and degrade the perfor-
mance of deep learning models trained on data from specific source domains.
MRI harmonization aims to address these issues by aligning target domain im-
ages to the source images while preserving anatomical structures. However, most
existing harmonization methods require access to both source and target domain
data, making data sharing essential and potentially compromising the data privacy
that is critical in medical domain. To address this, we propose BboxHarmony,
the first harmonization framework tailored for black-box settings, where requires
neither data sharing nor access to downstream task model parameters. Our ap-
proach estimates the source domain style by searching the manifold of MRI do-
main style constructed via a disentanglement-based generator using Bayesian op-
timization guided by black-box model performance. We evaluated our method on
brain tissue segmentation task across multiple institutes and demonstrated that
it effectively harmonizes target images into source images, leading to improved
downstream task performance of a black-box model. By enabling harmonization
under strict data-sharing and model-access constraints, BboxHarmony opens an
uncharted area of privacy-preserving harmonization in clinical applications.

1 INTRODUCTION

Magnetic resonance imaging (MRI) is a prevalent medical imaging modality, serving a pivotal role
in disease diagnosis, monitoring, and treatment planning. Recent advances in deep learning have
significantly enhanced automated MRI image analysis, facilitating more accurate and robust ap-
proaches. However, one of the major obstacles for deploying these models in a real-world clinical
setting is the domain shift problem: MRI data exhibits substantial variations across different vendors,
scanners, and scan parameters even when imaging the same subject (Cai et al., 2021). Consequently,
a model trained on one domain (referred to a source domain), often demonstrates significantly de-
graded performance when applied to data from the other domains (referred to a target domain). Here,
we adopt the terminology from the domain adaptation literature, where model is trained on source
domain while the target domain refers to unseen domain.

Several approaches have been proposed to address this domain shift problem. Traditional trans-
fer learning through fine-tuning utilizes paired images and labels from the target domain to adapt
pre-trained models (Tajbakhsh et al., 2016). Domain adaptation techniques offer an alternative by
aligning feature distributions between source and target (Ben-David et al., 2006; Long et al., 2015),
but these methods frequently fail to preserve essential anatomical information — a non-negotiable
requirement in medical applications. Furthermore, fine-tuning and domain adaptation approaches
depend on access to the model parameters (Tab. 1), which can leak sensitive information about the
data used to train the model through model inversion attacks (Haim et al., 2022; Yang et al., 2025).

Harmonization has emerged as a promising strategy that aligns images from target domains to match
a specific source domain, removing domain-specific biases while preserving biological information
such as anatomical structure. Importantly, harmonization operates without requiring access to the
parameters of pre-trained models, instead functioning by mapping target data distributions toward
the source domain. Conventional harmonization methods span from traditional approaches like his-
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Table 1: Comparison between our task formulation, existing domain shift reduction methods, and
Black-box harmonization in terms of i) data sharing requirements and ii) access to pre-trained task
model parameter. An additional column, black-box constraint, indicates whether both requirements
are absent. Methods satisfying this condition are marked with ✓, while those requiring either data
sharing or parameter access are marked with ✗.

Setting Data sharing Model parameter Black-box
accessibility constraints

Fine-tuning (Tajbakhsh et al., 2016) not required required ✗

Domain adaptation (Ben-David et al., 2006; Long et al., 2015) required required ✗

Conventional harmonization (Dewey et al., 2019; Modanwal et al.,

2020; Liu et al., 2021a; Jeong et al., 2023; Beizaee et al., 2025; Roca et al., 2025)
required not required ✗

Black-box harmonization (ours) not required not required ✓

togram matching and statistical normalization to advanced deep learning-based techniques. For ex-
ample, DeepHarmony (Dewey et al., 2019) uses paired data from traveling subjects scanned across
domains, while unsupervised methods like CycleGAN (Zhu et al., 2017) eliminate this need but still
require access to both source and target domain data (Modanwal et al., 2020; Liu et al., 2021a).
More recently, target-free harmonization methods (Jeong et al., 2023; Beizaee et al., 2025) have
been introduced. Despite recent advances, a key challenge remains that most existing harmonization
methods require data sharing or exportation for model development (Tab. 1). This compromises data
privacy issues, which is critical in the medical domain.

A practical examples including various domain shift reduction scenarios illustrates in Fig. 1. If the
hospital has access to a sufficiently large labeled dataset, it can train its own task network (Fig. 1a).
In cases where labeled dataset is small, transfer learning of a model trained on a large dataset may be
employed (Fig. 1b), but this typically requires data sharing, which can raise data privacy concerns.
Conventional harmonization methods offer an alternative by training a harmonization network to
align their own data to the source domain data (Fig. 1c), yet they still depend on access to both source
and target domain data. However, in many clinical settings under strict regulations (e.g., HIPAA,
GDPR), deep learning models are often deployed as privacy-preserving black-box (e.g., via APIs or
fixed software), which restrict access to internal parameters and prevent data sharing (Price, 2018;
Price & Nicholson, 2014). Consequently, existing domain gap reduction methods cannot be applied
in such black-box environments. This motivates us to consider a more realistic scenario, where a
hospital performs harmonization using only its own data, without sharing it externally (Fig. 1d).

To address this challenge, we proposed BboxHarmony, the first MRI data harmonization framework
designed for black-box models under strict data sharing constraints. Our approach requires only the
target domain data and operates without any access source domain data. This approach marks a fun-
damental shift from existing harmonization methods to privacy-preserving method. BboxHarmony
employs a disentanglement-based MRI style generator capable of synthesizing a diverse spectrum
of MRI styles while preserving anatomical information. Then, we search the latent space of the gen-
erator to estimate unknown source domain style guided by optimal performance from the black-box
model. Given the high cost of querying the black-box model and the high dimensionality of gener-
ator’s latent space, which requires capturing rich domain-specific variations, we employ a Bayesian
optimization that enables efficient search. Our key contributions are as follows:

• We present the first harmonization method specifically designed for privacy-preserving
black-box settings, addressing a critical requirement in clinical environment.

• We develop a disentanglement-based generative framework that enables diverse style ma-
nipulation while preserving important anatomical information of MRI images.

• Our method demonstrates the efficacy of Bayesian optimization for navigating complex
latent style spaces using only black-box performance feedback.

2 RELATED WORKS

2.1 MRI HARMONIZATION

The harmonization of MR images from different sources has become a crucial technique for miti-
gating domain shifts. Early approaches relied on techniques such as histogram matching (Shinohara
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(a) Developing hospital’s own task network

(b) Using pre-trained task network by sharing own data

Hospital

Large data B Task network B

Large data A Task network A

HospitalTask network provider

Small data BSmall data B

Train

Domain alignment

Data sharing

Trainable

Frozen

Black-box

(c) Conventional harmonization network setting by sharing provider’s data

(d) Proposed BboxHarmony setting without data sharing

Hospital

Small data B

Harmonization
networkSmall data A

Task network A

Large data A Task network A

Task network provider Hospital

Small data B Task network AHarmonization
network

Large data A Task network A

Task network provider

Large data A Task network A

Task network provider

Figure 1: Overview of domain adaptation and harmonization settings in clinical environment. (a)
A hospital with a large dataset can train its own task network. (b) With limited data, it can adapt a
pre-trained network via transfer learning, but requiring data sharing. (c) Conventional harmonization
enables using pre-trained network without fine-tuning but requires sharing of task network’s training
data. (d) Our proposed method trains a harmonization network using only small amount of in-house
data, without data sharing or access to the task network’s parameters, addressing practical constraints
like data privacy and scarcity in medical field.

et al., 2014; Nyúl et al., 2000; Papamakarios et al., 2021) and statistical normalization (Fortin et al.,
2017; Pomponio et al., 2020; Shinohara et al., 2017), which primarily adjust contrast and inten-
sity. With the advent of deep learning, more sophisticated harmonization methods have emerged.
Supervised approaches such as DeepHarmony (Dewey et al., 2019) and unsupervised style transfer
methods (Modanwal et al., 2020; Liu et al., 2021a; Roca et al., 2025) have shown promising re-
sults, but they all require access to both source and target domain datasets, introducing practical data
privacy challenges. More recently, target-free harmonization methods (Beizaee et al., 2025; Jeong
et al., 2023) have been introduced, reducing data acquisition costs by eliminating the need for target
domain data. However, these approaches are often feasible only from the model developer’s per-
spective, where the source data used in model training are available, and thus remain impractical for
data-holding hospitals that lack such access.

2.2 DISENTANGLED REPRESENTATION LEARNING

Disentangled representation learning has emerged as a powerful paradigm for separating domain-
invariant content from domain-specific style (Bengio et al., 2013; Gatys et al., 2016). In medical
imaging, such disentanglement has been employed to isolate anatomical structures from varying
domain styles, allowing controlled image manipulation while preserving biologically relevant infor-
mation (Pei et al., 2021; Yang et al., 2019). A primary application includes cross-modality synthe-
sis (Reaungamornrat et al., 2022; Wang & Zheng, 2021), data augmentation (Gu et al., 2023; Cai
et al., 2025). Disentanglement learning has also been incorporated into MRI harmonization (Zuo
et al., 2021a;b; Liu & Yap, 2024; Dewey et al., 2020). By learning distinct latent representations
for anatomical structure and imaging contrast, methods like CALAMITI (Zuo et al., 2021a;b) en-
able fine-grained control over harmonized image attributes, successfully preserving content while
modifying only style during harmonization.

2.3 BAYESIAN OPTIMIZATION

Bayesian optimization (BO) is a framework for optimizing objective functions that are expensive
to evaluate (Brochu et al., 2010). It leverages a probabilistic surrogate model, typically a Gaussian
Process (GP), to approximate the objective function and quantify the associated uncertainty (Snoek
et al., 2012; Frazier, 2018). With the trained surrogate model, an acquisition function guides the
next evaluation point selection by balancing exploration and exploitation (Jones et al., 1998; Kush-
ner, 1964; Srinivas et al., 2010). This allows efficient optimization when evaluation of the objective
function is costly. Recent work has extended BO to high-dimensional problems by using dimen-
sionality reduction or structured kernels to enhance optimization performance (de Freitas & Wang,
2013; Kandasamy et al., 2015; Moriconi et al., 2020; Letham et al., 2020; Nayebi et al., 2019;
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(c) Analysis of black-box performance and domain difference
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(b) Estimating unknown source domain style

𝑟𝑠 = 0.637

𝑝 < 0.01

Target image

Black-box model performance

Source domain style
(unknown)

Sampled style

Bayesian Optimization

Target image Harmonized images

If 𝑍𝑠
′ represents: domain A domain B

𝑍𝑐

𝑍𝑠 ~𝑍𝑠
′MRI style  

generator
Harmonized image

domain C

(a) Overall pipeline of BboxHarmony

Encode Decode

Figure 2: (a) We design a generator trained via disentanglement learning to preserve anatomical
content zc while generating diverse MRI domain styles zs. This enables harmonization by synthe-
sizing images in various domain styles. enabling harmonization by sampling z′s corresponding to
specific domains. (b) To estimate the unknown source domain style in a black-box setting, Bayesian
optimization explores the generator’s latent space guided by black-box model performance. (c) Em-
pirical analysis shows a positive correlation between Dice score (black-box performance) and image
SSIM (source-target domain image similarity), supporting our assumption that higher black-box
performance reflects greater similarity between input and source domain.

Wilson et al., 2016). Moreover, BO has also been explored in domain adaptation, specifically for
optimizing hyperparameters that control the domain adaptation process (Muratore et al., 2021; Li &
He, 2020). While BO has been applied to various domain adaptation tasks, its application to MRI
harmonization remains underexplored.

3 METHOD

3.1 MOTIVATION: BLACK-BOX PERFORMANCE AS A PROXY FOR DOMAIN ESTIMATION

In a black-box harmonization scenario, we cannot access to information of source domain, hindering
application of any of the previously proposed harmonization approaches. In this scenario, the only
observable indication of the unknown source domain is the performance of the black-box model
itself, which is trained on the data from source domain. This constraint led us to hypothesize that
performance degradation of the black-box model may be related to the magnitude of domain shift
between the source and target distributions. Formally, let T denote the target domain, S represent
the unknown source domain, and xt ∈ T be an image from the target domain. We denote the
black-box model trained on S as Mbbox, and the task performance of Mbbox on an input image x as
P (x;Mbbox). We assume that the black-box task performance on a target image xt can be modeled
in relation to the performance on the source domain, P (x;Mbbox), and the domain shift ∆(xt,x)
between xt and x with a task-dependent sensitivity coefficient α:

P (xt;Mbbox) ≈ P (x;Mbbox)− α ·∆(xt,x). (1)

We empirically verified Eq. (1) through a controlled pilot experiment using traveling subject data
from four MRI domains (one for source, and the others for targets). For the black-box model Mbbox,
we trained a brain tissue segmentation network with the source domain. For each pair of the do-
mains, we computed the image similarity between source and target domain images using SSIM,
and evaluated the black-box model performance with the Dice score (Dice, 1945). The results in
Fig. 2c revealed a positive correlation between the source and target image similarity and the black-
box performance.

These results led to the key insight that the black-box task performance implicitly encodes informa-
tion about the domain shift magnitude between the target and unknown source domain distribution.
By treating the black-box task performance as a proxy for domain alignment quality, we can guide
the harmonization process without direct access to the source domain. Our approach transforms
harmonization into an optimization problem:

x∗ = argmax
x∈G

P (x;Mbbox). (2)

Here, G represents the manifold that represents the characteristics of diverse MRI domains, and x∗

denotes the harmonized image that best approximates the unknown source domain in terms of black-
box task performance. This formulation enables the search for an unknown source domain through

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

iterative optimization guided by black-box network performance, establishing a novel paradigm
for black-box harmonization. To facilitate this, we need to construct the manifold space G, and
explore it efficiently. The following sections describe the design of BboxHarmony, which meets
these requirements through an MRI style generator via disentanglement and Bayesian optimization.

3.2 GENERATING A MANIFOLD REPRESENTING STYLES OF DIVERSE MRI DOMAINS

Disentanglement-based Generator. To construct the manifold that captures the characteristics
of diverse MRI domains, we adopt disentangled representation learning to separate domain-specific
style from domain-invariant content (Fig 2a). Here, we define domain-invariant content as the under-
lying anatomical structures in MRI images, while domain-variant style as image appearance factors
that contribute to inter-domain variation, such as contrast, blur, and noise (Kushol et al., 2023).

Our generator adopts a content-style disentanglement framework (Gatys et al., 2016), composed of a
content encoder (Ec), style encoder (Es), and decoder (D). Given an input MRI image x, the content
and style encoders extract a content vector zc = Ec(x) and a style vector zs = Es(x), respectively.
These vectors are concatenated and passed to the decoder to reconstruct the image x̂:

x̂ = D(zc, zs) = D(Ec(x), Es(x)). (3)
For generation of synthetic MRI image with diverse style, the decoder takes the content vector of
the input MRI image and a randomly sampled style vector from the Gaussian distribution as:

x′ = MG(z
′
s; zc) = D(Ec(x), z′s), z′s ∼ N (0, I), (4)

where MG is the generator and x′ is a generated image from a randomly sampled style z′s.

For training, we construct a paired dataset consists of an original MRI image and its synthetically
perturbed counterpart. Perturbations include random combinations of contrast adjustment, blurring,
and noise injection, reflecting common targets of the MRI image variability (Kushol et al., 2023).
These perturbations alter the style while preserving anatomical structure, providing natural supervi-
sion for content-style disentangling. The detailed training objectives are provided in the Appendix A.

Strategies to Increase Generator Expressiveness. The use of perturbed pairs allows the style
encoder to learn from synthetic variations. To further enhance the expressiveness of the style space,
we incorporate MRI images from three different scanners during training. Details of training dataset
are described in Sec. 4. For each domain, we generate perturbed image pairs and train the gener-
ator with a shared style encoder, embedding all images into a unified latent space. These domains
exhibit realistic style differences arising from variations in scan parameters and hardware, therefore
allowing the style encoder to generalize across a wider range of MRI image styles. While exhaustive
coverage of all domain styles is not guaranteed, this multi-domain training scheme encourages the
model to capture a broader spectrum of plausible MRI styles beyond those represented by synthetic
perturbations alone. It is important to note that no source domain data is used during the generator
training. The generator serves as the foundation of our harmonization framework, enabling searching
an unknown source domain style from the latent space of it via BO, as described in Sec. 3.3.

3.3 BAYESIAN OPTIMIZATION FOR ESTIMATING UNKNOWN SOURCE DOMAIN STYLE

To discover the best approximation of the unknown source domain style vector, we adopt BO from
two complementary perspectives: (i) efficiency in querying a black-box model during inference, and
(ii) scalability in exploring the high-dimensional style space of our generator.

Problem Formulation. In our scenarios, we define an objective function f(·) that maps each
sampled MRI style vector to the observed black-box model performance. This function reflects how
closely a given style vector approximates the unknown source domain (Fig. 2b). Specifically, we
evaluate f(·) by averaging the black-box performance over a batch of target-domain content images:

f(z′s) =
1

|Xtrain|
∑

x∈Xtrain

P
(
Mbbox

[
MG(z

′
s; zc)

])
, (5)

where Xtrain denotes a set of original input MR images from multiple style samples. Conclusively,
we aim to solve z′s⋆ = argmaxz′

s∈G f(z′s), identifying a style vector that produces harmonized
images most aligned with the unknown source domain.

5
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(a) Disentanglement results on traveling subjects

Content image
Style image
(reference)

(b) Disentanglement results on unpaired subjects

Synthesized
output

Content image
Style image
(reference)

Synthesized
output

Figure 3: Qualitative evaluation of disentanglement. Each column shows a content image (top),
synthesized output (middle), and style reference (bottom). (a) Paired setting with traveling subjects:
same anatomy, different style. (b) Unpaired setting: different anatomy and style. In both cases, out-
puts reflect the reference style while preserving anatomical structure.

Algorithm 1 BO search for source-like style vector
Require: generator MG, black-box Mbbox, training images

X , init N0, objective function f(·), budget T , trade-off
β

1: (init) Sample N0 style vectors z′s
(i) ∼ N (0, I), i ∈

[0:N0−1], and set B = {(z′s
(i)
, f(z′s

(i)
))}

2: for t = 1 to T do
3: Fit GP surrogate on B

// GP-UCB acquisition function
4: Select z′s

(t) ← argmaxz′s [µt−1(z
′
s) + βσt−1(z

′
s)]

5: Evaluate yt = f(z′s
(t)

)

6: B ← B ∪ {(z′s
(t)

, yt)}
7: end for
8: return z′s

⋆
= arg max

(z′s, y)∈B
y

Optimization Procedure. To estimate the
optimal MRI style vector z′s⋆, we implement
BO with a GP surrogate model, initially trained
on random style vectors and their black-box
performance. After initialization of the GP
model, we iteratively select new candidate style
vectors and evaluate using GP-UCB acquisition
function (Srinivas et al., 2010). Then, the most
promising candidate is selected for querying the
black-box model. The candidate and its corre-
sponding black-box performance are then in-
corporated into the GP training set to update the
surrogate model. This process is repeated until
convergence. This strategy enables efficient op-
timization under limited query budgets by fo-
cusing evaluations on informative style vectors.
The complete optimization process is outlined
in Algorithm 1.

4 EXPERIMENTAL RESULTS

Experimental Setup. For the experiments, we performed brain tissue segmentation as a down-
stream task of a black-box model. For the black-box network architecture, a U-Net (Ronneberger
et al., 2015) was used. We utilized T1-weighted images from the OASIS-3 dataset (LaMontagne
et al., 2019), which consists of images from several vendors and scanners. The ground-truth labels
of brain tissue masks were generated using FSL FAST (Jenkinson et al., 2002). Total of five Siemens
scanners from Siemens were employed for our experiments, where four were designated as target
domains (Domain A, B, C, and D), and the other as the source domain. For the generator training,
we excluded target domain D to assess whether the generator can perform harmonization on a do-
main it has not encountered during training. To further assess the generalization capability of our
approach, we also evaluated on MRI data from vendors not used in training (e.g., GE and Philips),
thereby testing the robustness of the method across scanner manufacturers beyond Siemens (See
Appendix G). To train the black-box segmentation model, 1,380 subjects from the source domain
were used, while BboxHarmony only utilized five subjects per target domain. Each subject had 50
slices. All images were resampled to a uniform voxel size (1.2 × 1.2 × 1 mm3) and underwent per-
centile normalization at the slice level. The harmonization network was trained for 2D slices. More
detailed data information is in the Appendix B.

Evaluation of the Disentanglement-Based Generator. To evaluate our generator for disentan-
glement, a synthesized image was generated from the content and style vectors from the content and
reference style images, respectively. This evaluation was conducted in two settings: a paired travel-
ing subject setting with identical anatomy but different styles, and an unpaired subject setting with
differing anatomy and style. As shown in Fig. 3, our generator successfully preserved anatomical
structures of the content image while adapting the style from the style image in both settings. PSNR

6
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and SSIM between the output and the style images in the paired setting supported effectiveness of
our generator’s disentanglement (See the Appendix C for the results).

tSNE_1

tS
N

E_
2

Generator output
Target A Target B Target C
Target D Source

Figure 4: t-SNE visualization based on an
MRI domain classifier. Real MRI target do-
mains form distinct clusters, while images
generated from our model are more widely dis-
persed even covering parts of unseen source
domain.

To visualize the coverage of generated images in a em-
bedding space, we trained an auxiliary MRI domain
classifier and applied t-SNE to its intermediate features
from real and generated images. As shown in Fig. 4,
real images from the four domains (A, B, C, and D)
formed domain-specific clusters, while generated im-
ages were more broadly distributed, indicating success-
ful coverage of diverse MRI styles.

Evaluation of Source Domain Style Estimation
with Bayesian Optimization. We evaluated whether
BO can efficiently identify MRI style vectors that
align with an unknown source domain. To validate
its effectiveness in navigating the generator’s high-
dimensional style space, we compared BO against ran-
dom search (Bergstra & Bengio, 2012). We tracked
the black-box model’s performance with the sampled
style vectors by the two methods over time. To assess
whether the optimization also translates into improved
harmonization quality, SSIM between harmonized target and paired source images from validation
dataset is also tracked. As shown in Fig. 5, BO reached higher-performing regions faster than ran-
dom search, both in task performance and image similarity.
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(a) Black-box model performance over wall-clock time

8x speed up

15x speed up

(b) Output-target image similarity over wall-clock time

Figure 5: Bayesian optimization (BO, blue) versus random search (RS, orange). (a) Black-box
model performance (Dice Score) as a function of wall-clock time. (b) Image similarity (SSIM)
between output and source over the same time span. BO reaches higher performance earlier than
RS, illustrating its faster convergence in both Black-box model performance and image similarity.

Evaluation of Harmonization via Inferred Source Domain Style. To evaluate BboxHarmony,
we applied the estimated source style to target images from traveling subjects and compared the re-
sults with corresponding source images. As baselines, we included manual perturbation (random
combinations of contrast, blur, and noise tuned for the target domain) and prior harmonization
methods including DeepHarmony (Dewey et al., 2019), style transfer (Liu et al., 2021a), Blind-
Harmony (Jeong et al., 2023), Harmonizing flows (Beizaee et al., 2025), and IGUANe (Roca et al.,
2025). PSNR and SSIM were used for quantitative comparison. As shown in Tab. 2, all harmoniza-
tion methods improved the image similarities except for BlindHarmony, which requires substan-
tial source dataset to learn data distribution. BboxHarmony outperformed the manual perturbation,
while DeepHarmony achieved the highest similarity thanks to the using of paired training data.
Fig. 6 presents qualitative comparisons across the methods. The results of other domains are in
Appendix E. The manual perturbation resulted in visible discrepancies from the source image, indi-
cating its limited ability to account for complex domain shifts. DeepHarmony achieved close visual
alignment with the source. However, it produced overly smoothed outputs, which is a known artifact
of a U-Net-based architecture. Our proposed method successfully harmonized target image without
accessing to the source data.
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Style
transfer

Domain A 

Domain B 

Target
BboxHarmony

(Ours)
SourceDeepHarmony
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Figure 6: Visual comparison of harmonization results across two target domains (A and B) using
different methods (see Appendix E for results on other domains). Methods marked in red require
domain sharing, while those in green–including ours do not.

Tab. 3 and Fig. 7 summarize segmentation performance following the application of various har-
monization methods (the results of other domains are in Appendix E). Without harmonization, the
black-box model experienced a substantial performance drop due to domain shift. Most harmoniza-
tion approaches mitigated this issue, with the exception of DeepHarmony. Despite utilizing paired
source-target data, DeepHarmony tended to produce overly blurred outputs, likely due to its archi-
tectural design, which ultimately degraded segmentation performance. These results demonstrate
that the our method improves the performance of the black-box model on unseen target domain.

Table 2: Quantitative metrics of image similarity (PSNR and SSIM) between source and target im-
ages before (no harmony) and after harmonization using different methods (DeepHarmony, Style
transfer, BlindHarmony, Harmonizing flows, IGUANe, manual perturbation, and BboxHarmony)
across four target domains. Notably, BboxHarmony achieves performance comparable to source
data-required methods without using source data.

Methods Data sharing Domain A Domain B Domain C Domain D
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

No harmony - 17.8 ± 1.2 0.883 ± 0.022 13.9 ± 1.7 0.844 ± 0.061 15.7 ± 2.6 0.907 ± 0.045 18.4 ± 2.3 0.909 ± 0.042

DeepHarmony (Dewey et al., 2019) required 23.6 ± 1.8 0.936 ± 0.019 19.0 ± 1.6 0.887 ± 0.053 20.2 ± 1.9 0.933 ± 0.035 20.8 ± 2.2 0.924 ± 0.035

Style transfer (Liu et al., 2021a) required 20.5 ± 1.3 0.915 ± 0.012 17.4 ± 1.6 0.871 ± 0.020 18.6 ± 1.6 0.903 ± 0.016 19.7 ± 2.0 0.910 ± 0.018

BlindHarmony (Jeong et al., 2023) required 10.1 ± 1.6 0.755 ± 0.047 11.3 ± 1.8 0.799 ± 0.079 12.2 ± 3.0 0.855 ± 0.081 11.9 ± 2.9 0.831 ± 0.074

Harmonizing flows (Beizaee et al., 2025) required 18.6 ± 1.1 0.889 ± 0.018 16.6 ± 2.1 0.865 ± 0.064 18.5 ± 2.1 0.923 ± 0.042 18.4 ± 3.0 0.911 ± 0.043

IGUANe (Roca et al., 2025) required 18.6 ± 1.9 0.908 ± 0.023 17.0 ± 2.0 0.861 ± 0.064 18.6 ± 1.6 0.922 ± 0.045 19.4 ± 2.4 0.911 ± 0.044

Manual perturbation not required 19.8 ± 1.5 0.912 ± 0.022 16.9 ± 2.2 0.823 ± 0.067 17.7 ± 2.1 0.915 ± 0.045 19.0 ± 2.4 0.909 ± 0.050

BboxHarmony (ours) not required 20.2 ± 1.3 0.923 ± 0.019 17.5 ± 1.7 0.869 ± 0.062 18.4 ± 1.9 0.922 ± 0.044 19.3 ± 2.4 0.911 ± 0.043

5 DISCUSSION

In this paper, we proposed BboxHarmony, a novel privacy-preserving harmonization method de-
signed for a black-box setting where both data sharing and access to model parameter are inaccessi-
ble. By leveraging a disentanglement-based generator, our approach successfully separates domain-
invariant anatomical content from domain-variant imaging style enabling to only convert the MRI
style component to another domain (Fig. 3). Notably, our generator demonstrated the ability to syn-
thesize images that more closely resemble unseen source domain styles when provided with their
style representations, despite having no access to those domains during training. This observation
suggests a potential for generalization beyond the training domains (see the Appendix C).

BboxHarmony benefits from the expressive capacity of the learned MRI style manifold. Our gener-
ator captures domain-specific styles, as evidenced by a higher quantitative metric (Tab. 2), enabling
effective harmonization across diverse MRI domains. Leveraging this expressiveness, BO efficiently
estimates the source domain style solely through black-box performance feedback, without requiring
access to source domain data or model parameters (Fig. 5, 6; Tab. 2). This black-box compatibility
marks a notable advancement over prior harmonization methods, enabling improved downstream
segmentation performance (Fig. 7 and Tab. 3). Improved image similarity and downstream task per-
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Figure 7: Brain tissue segmentation results on target images from two domains (A and B) applying
different harmonization methods (results on other domains are in Appendix E). Without harmoniza-
tion (no harmony), performance drops due to domain shift, while harmonization methods generally
improves performance. BboxHarmony successfully segments brain tissues, which demonstrate that
our method enables the black-box models achieve better performance on an unseen target domain.

formance on data acquired from unseen vendors (e.g., Philips and GE), which were not used during
training, also demonstrate a degree of generalizability of our method (see Appendix G).

Although our method does not require data sharing, it requires a small amount of the labeled target
data. We explored training task networks directly on target data without harmonization, but observed
performance degradation when small amount of data were used due to overfitting (see Appendix F).
In clinical settings, such labels may be scarce or costly to obtain. Therefore, these findings highlight
the continued importance of harmonization under practical constraints.

Despite these strengths, BboxHarmony has several limitations. First, our experimental evaluation
is restricted to a limited set of domains drawn from the training dataset, and may not fully capture
the diversity of real-world MRI protocols. Moreover, our framework lacks an explicit mechanism to
constrain or quantify the coverage of the learned MRI style manifold. Future work should evaluate its
robustness on a broader range of imaging conditions, including different acquisition sequences (e.g.,
T2-weighted) and modalities (e.g., CT, PET). Lastly, our experiments primarily involved healthy
subjects. It remains unclear whether the generator preserves clinically relevant features when applied
to pathological data, such as lesions. Validation on diverse and pathological datasets is crucial to
ensure the clinical reliability of BboxHarmony in real-world diagnostic applications.

Table 3: IoU and Dice scores for brain tissue segmentation before (no harmony) and after harmo-
nization using various methods (DeepHarmony, Style transfer, BlindHarmony, Harmonizing flows,
IGUANe, Manual perturbation, BboxHarmony) across four target domains (Domain A, B, C, D).

Methods Data sharing Domain A Domain B Domain C Domain D
IoU↑ Dice↑ IoU↑ Dice↑ IoU↑ Dice↑ IoU↑ Dice↑

No harmony - 0.711 ± 0.034 0.830 ± 0.023 0.750 ± 0.067 0.852 ± 0.049 0.772 ± 0.076 0.861 ± 0.064 0.822 ± 0.033 0.900 ± 0.023

DeepHarmony (Dewey et al., 2019) required 0.790 ± 0.030 0.882 ± 0.019 0.651 ± 0.058 0.784 ± 0.053 0.710 ± 0.056 0.822 ± 0.054 0.704 ± 0.064 0.823 ± 0.046

Style transfer (Liu et al., 2021a) required 0.751 ± 0.035 0.856 ± 0.024 0.749 ± 0.051 0.853 ± 0.038 0.720 ± 0.063 0.828 ± 0.059 0.775 ± 0.036 0.871 ± 0.027

BlindHarmony (Jeong et al., 2023) required 0.448 ± 0.135 0.588 ± 0.131 0.637 ± 0.082 0.763 ± 0.072 0.635 ± 0.095 0.759 ± 0.077 0.658 ± 0.105 0.781 ± 0.082

Harmonizing flows (Beizaee et al., 2025) required 0.790 ± 0.038 0.881 ± 0.024 0.787 ± 0.053 0.877 ± 0.038 0.774 ± 0.069 0.863 ± 0.061 0.804 ± 0.034 0.889 ± 0.024

IGUANe (Roca et al., 2025) required 0.806 ± 0.037 0.890 ± 0.024 0.806 ± 0.054 0.890 ± 0.040 0.799 ± 0.065 0.879 ± 0.059 0.827 ± 0.029 0.903 ± 0.020

Manual perturbation not required 0.764 ± 0.057 0.864 ± 0.040 0.804 ± 0.085 0.886 ± 0.076 0.792 ± 0.084 0.873 ± 0.072 0.822 ± 0.036 0.900 ± 0.026

BboxHarmony (ours) not required 0.830 ± 0.024 0.906 ± 0.023 0.825 ± 0.034 0.902 ± 0.023 0.805 ± 0.068 0.884 ± 0.060 0.830 ± 0.033 0.905 ± 0.023

6 CONCLUSION

We presented BboxHarmony, the first MRI harmonization framework designed for privacy-
preserving black-box settings, which operates without data sharing nor access to the downstream
task network parameters. Our method leverages disentangled representation learning to construct an
MRI style manifold that captures domain-specific variations while preserving anatomical content.
Using Bayesian Optimization, BboxHarmony efficiently estimates the source domain style within
this latent space and harmonizes target images successfully. This approach significantly broadens the
applicability of harmonization in real-world clinical environments under strict privacy constraints.
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Appendix

A IMPLEMENTATION DETAILS

Disentanglement-based generator. The architecture of our generator is illustrated in Fig. S1. The
content encoder consists of three convolutional layers followed by instance normalization (Ulyanov
et al., 2017) and four residual blocks (He et al., 2016). The style encoder includes three convolutional
layers, a global average pooling layer, and a fully connected layer, producing a 32-dimensional style
vector. The decoder comprises three upsampling and convolutional layers. To effectively inject style
information, we integrate residual blocks with adaptive instance normalization (AdaIN) (Huang &
Belongie, 2017) during decoding.

To train the generator, we use a pair of MRI images x and its perturbed image x̃, where perturbations
are applied to encourage content-style disentanglement. Specifically, x̃ is generated by applying ran-
dom combinations of three perturbations in opencv (Bradski, 2000), which are contrast adjustment
with α ∈ [0.5, 1.5] and β ∈ [−20, 60], Gaussian blurring with σ ∈ [0, 0.7], and Gaussian noise
injection with σ ∈ [0, 0.01]. The overall training objective (Ltotal) is a weighted sum of reconstruc-
tion loss (Lrecon), disentanglement loss (Ldisent), adversarial loss (Ladv), and KL-divergence loss
(LKL):

Ltotal = λreconLrecon + λdisentLdisent + λadvLadv + λKLLKL, (S1)
Lrecon = ∥x−D (zc, zs)∥1 + ∥x−D (z̃c, zs)∥1 + ∥x−D (Ec (D (z̃c, zs)) , zs)∥1 , (S2)

Ldisent =
∥∥zc − z̃c

∥∥
1
+

∥∥zc − Ec
(
D(zc, z̃s)

)∥∥
1
+

∥∥zs − Es
(
D(z̃c, zs)

)∥∥
1
, (S3)

Ladv = −
[
logDis(x) + log[1− Dis

(
D(zc, z̃s)

)
] + logDis(x̃) + log[1− Dis

(
D(z̃c, zs)

)
]
]
, (S4)

LKL = DKL(zs ∥N (0, 1)) +DKL

(
Es
(
D(z̃c, zs)

) ∥∥N (0, 1)
)
, (S5)

where λrecon, λdisent, λadv , and λKL are weights for reconstruction, disentanglement, adversarial,
and KL-divergence losses. Ec, Es, and D represent content, style encoder, and decoder. The encoders
extract a content vector zc = Ec(x), z̃c = Ec(x̃) and a style vector zs = Es(x), z̃s = Es(x̃), which
are recombined by D. Additionally, Dis(·) is the discriminator to provide adversarial feedback.

AdaIN Reconstructed
image (ොx)

Content
encoder

(ℰ𝑐)

Style
encoder

(ℰ𝑠)

Decoder
(𝒟)

MRI image (x)

𝑧𝑐

𝑧𝑠

Figure S1: The architecture of the disentanglement-based generator.

Bayesian optimization for harmonization. To implement Bayesian optimization (BO), we model
the black-box objective f(·) in Eq. (5) with an exact Gaussian Process (GP) in gpytorch (Gard-
ner et al., 2018). We adopt an automatic-relevance-determination radial basis function kernel (Ras-
mussen & Williams, 2006), customized for our 32-dimensional candidate style vector, z′s, z

′′
s ∈R32

as follows:

k(z′s, z
′′
s ) = σ2 exp

(
− 1

2

32∑
d=1

(z′d − z′′d )
2

ℓ2d

)
, (S6)

where z′d, z′′d respectively denoting the d-th coordinate of two style vectors. The dimension-specific
length-scales ℓd enable the GP to attenuate the influence of irrelevant style directions.
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We initially train the GP with 100 random style vectors drawn from the generator manifold G and
fit parameters of GP model for 50 iterations with the Adam optimizer (Kingma, 2014) (learning rate
0.1) by maximizing the marginal log-likelihood. At each BO iteration t, we sample a candidate set
randomly {z′s

(t,j)}100j=1 ⊂ G and choose the next sample via GP-UCB (Srinivas et al., 2010):

z′s
(t)

= arg max
1≤j≤100

[
µt−1(z

′
s
(t,j)

) + β σt−1(z
′
s
(t,j)

)
]
, (S7)

where µt−1 and σt−1 are the GP posterior mean and standard deviation, and β balances exploration
and exploitation. The new observation is then appended to the training data for GP model, and the
GP model is re-optimized before the next step. We repeat this loop for 100 iterations and finally
select the style vector, z′s⋆, yielding the highest black-box performance, as follows:

z′s⋆ = arg max
t∈{0,...,99}

f
(
z′s

(t))
. (S8)

Compute time and retargets. All experiments were run on a single NVIDIA L40S GPU. Training
the disentanglement-based generator takes about 35 hours and 32 GB of GPU memory, whereas each
sampling with Bayesian optimization takes about 240 seconds and 3.7 GB of GPU memory.

Code availability. The target code has been submitted separately as part of the Supplementary
material. We will release the full code publicly upon acceptance of the paper. The code for the
generator is adapted from MUNIT (Huang et al., 2018)1 with modifications.

B EXPERIMENTS SETUP

B.1 DATASET DESCRIPTION FOR EXPERIMENTS

For BboxHarmony training and evaluation, we used the OASIS-3 dataset (LaMontagne et al., 2019).
The source domain was set as the Siemens TIM Trio 3T MR scanner. Four other scanners were used
as target domains: Siemens Sonata 1.5T (Domain A), Siemens Vision 1.5T (Domain B), Siemens
Magnetom Vida 3T (Domain C), and Siemens BioGraph mMR 3T (Domain D). To standardize
resolution, all images were resampled to 1.2 × 1.2 × 1 mm3 and 50 top slices per scan were se-
lected. Acquisition scan parameter details are provided in Tab. S1. For generator training, we used
360 subjects across domains A, B, and C. Note that Domain D was excluded from training and
used for evaluation to assess the generator’s generalization ability (see Appendix C). For Bayesian
optimization-based harmonization, only five labeled subjects from each target domain were utilized.
The black-box segmentation network was trained on 1,380 subjects from the source domain.

Table S1: Data descriptions of five domains in OASIS-3 dataset.

Methods source domain Domain A Domain B Domain C Domain D

Manufacturer Siemens Siemens Siemens Siemens Siemens
Scanner TIM Trio Sonata Vision Magnetom Vida BioGraph mMR

Magnetic field strength (T) 3 1.5 1.5 3 3
Matrix size 176 × 256 × 256 160 × 256 × 256 128 × 256 × 256 176 × 240 × 256 176 × 240 × 256
TR/TI (s) 2.4/1 1.9/1.1 9.7/unknown 2.3/unknown 2.3/0.9
TE (ms) 3.2 3.9 4.0 3.0 3.0

Flip angle(◦) 8 15 10 9 9

B.2 COMPARISON METHODS SETUP.

To evaluate the performance of BboxHarmony, we compared it against both a manual perturba-
tion approach and previous deep learning-based harmonization methods (Fig. 6, Fig. 7, Tab. 2, and
Tab. 3).

Manual perturbation. This baseline applies a combination of random perturbations, including
contrast adjustment, blurring, and noise injection, optimized individually for each target domain.
Specifically, we randomly applied perturbations to the training set of each target domain over 100
iterations and selected the parameter set that yielded the highest black-box model performance.

1https://github.com/NVlabs/MUNIT
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Previous Harmonization Methods. We also compared our method to two representative previ-
ous deep learning-based harmonization approaches: DeepHarmony (Dewey et al., 2019) and style
transfer method (Modanwal et al., 2020; Liu et al., 2021a). While these methods require access to
the source domain, which is feasible in black-box scenarios, the comparison demonstrates how ef-
fectively BboxHarmony operates even without any access to the source domain. DeepHarmony was
trained using paired traveling subject data from each paired source-target domain, while the style
transfer method used unpaired source domain data for training. Both methods were trained on five
target domain subjects, which is consistent with BboxHarmony.

C ADDITIONAL ANALYSIS OF DISENTANGLEMENT-BASED GENERATOR

We conducted additional experiments to assess whether our proposed generator effectively disentan-
gles anatomical content and style representations across MRI domains. To verify disentanglement,
we tested on source-target paired datasets. For each pair, the target domain image was used to extract
the content vector, while the source domain image provided the reference style vector. The decoder
then synthesized an output image from these two latent vectors. If disentanglement is successful,
the synthesized output should exhibit high visual similarity to the reference style image, preserv-
ing the original anatomical structure. This process was performed across all four target domains.
Qualitative results confirmed that the outputs resembled the style references (Fig. S2), and quantita-
tive evaluation using PSNR and SSIM showed improved similarity compared to the original target
images (Tab. S2). Notably, even for domain D, which was excluded during generator training (see
Appendix B.1), the results suggest that the generator may generalize beyond the training domains.

To further examine the latent space of the generator, we performed interpolation and extrapolation
between style vectors extracted from different MRI images. This experiment was conducted both
within the target domains A, B, and C, which were employed for the generator training, and between
source and target domains not seen during training. The results showed continuous changes in image
appearance while preserving anatomical structure, indicating successful disentanglement of content
and style (Liu et al., 2021b) (Fig. S4). This generator enables the synthesis of MRI images with
diverse styles, where each style can be viewed as representing a different domain. Fig. S3 illustrates
various generated images by combining randomly sampled style vectors with a fixed content vector
from the original image indicated by the red box. Notably, the generator is capable of producing
images that vary in brightness, contrast, noise level, and blur (Fig. S5).

Table S2: Quantitative similarity (PSNR, SSIM) between synthesized outputs and style reference
images across four target domains. Synthesized outputs were generated by combining content vec-
tors from target images with style vectors extracted from paired source domain images.

Domain A Domain B Domain C Domain D
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

target 17.8 0.883 13.9 0.844 15.7 0.907 18.4 0.909
Synthesized output 21.1 0.923 18.1 0.866 20.2 0.924 20.5 0.912
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Content
image

Style
image

(reference)

Synthesized
output

Domain A Domain B Domain C Domain D

Figure S2: Qualitative evaluation of the generator’s disentanglement capability. For each source-
target image pair, the target image provided the content representation, and the source image pro-
vided the reference style representation. The synthesized outputs resemble the style images while
preserving anatomical structure from the content images, demonstrating effective disentanglement.

Figure S3: MRI images generated by the disentanglement-based generator. The image marked with
the red box is the original image, and the others are generated by replacing its style vector with
randomly sampled style vectors, preserving anatomical structure while varying image appearance.
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Target AExtrapolation Interpolation Source Extrapolation

(a) Style interpolation and extrapolation between targets domains

(b) Style interpolation and extrapolation between targets and unseen source domain

Target B Source

Target AExtrapolation Interpolation Target B Extrapolation

Target B Target C

Target C Target A

Target C Source

Figure S4: Interpolation and extrapolation in the style latent space. Style vectors extracted from
two different images were interpolated and extrapolated to generate outputs. (a) shows results from
style vectors within target domains used during disentanglement-based generator training, while (b)
shows results between target domains and an unseen source domain. The synthesized images show
smooth transitions in appearance while maintaining consistent anatomical structure, demonstrating
effective disentanglement of the MRI image’s content and style.
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Contrast

Blur

Brightness

Noise

Figure S5: MRI images generated with controlled variations in brightness, contrast, blur, and noise.
For each property, a perturbation was applied to the original image to modify only the corresponding
attribute. Style vectors were extracted from the perturbed images and interpolated/extrapolated with
the original style vector, and combined with a fixed content vector to generate images. The results
show that our method can generate a broad spectrum of plausible MRI imaging styles.
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D ADDITIONAL ANALYSIS OF BAYESIAN OPTIMIZATION

To evaluate the effectiveness of Bayesian optimization, we plotted the black-box model performance
(Dice score) over 100 iterations (Fig. S6). The results show that the sampled style vectors led to
steadily improved black-box model performance, with reduced variance as the iterations progressed.
This indicates that the BO effectively identified high-performing style vectors over time, demonstrat-
ing its ability to balance exploration and exploitation. The convergence trend and the discovery of
the best-performing sample at iteration 39 further validate the reliability of the optimization process.

This convergence may be attributed to the GP-UCB strategy (Eq. (S7)). This acquisition function is
designed to initially explore uncertain regions and gradually shift toward exploitation as predictive
uncertainty decreases. Theoretical analysis (Srinivas et al., 2010) shows that the simple regret decays
at a rate of Õ(

√
γT /T ), where rT = f⋆−maxt≤T f(zt) and γT denotes the maximum information

gain. This implies that BO can identify near-optimal solutions with a relatively small number of
queries, even in high-dimensional settings. In our case, convergence was achieved in fewer than
100 iterations. Additionally, comparison with a random search (Fig. 5) further confirms the superior
sample efficiency of BO, highlighting its ability to rapidly focus on high-performing regions.
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Figure S6: Black-box model performance (Dice Score) over Bayesian optimization(BO) iterations.
BO converges toward the source domain, with saturation observed after 39 iterations.

E FURTHER EXPERIMENTAL RESULTS

We present additional qualitative results for both harmonization and segmentation performance on
all target domains (Domain A, B, C, and D). As illustrated in Figs. S7 and S8, our proposed method
successfully harmonizes target images and markedly improves segmentation performance, all with-
out requiring any access to the source domain.
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BboxHarmony

(Ours)
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Data sharing not requiredData sharing required

Figure S7: Visual comparison of harmonization results across all four target domains (Domain A, B,
C, and D) using different harmonization methods. Methods marked in red require access to source
domain data, while those in green do not. BboxHarmony successfully harmonizes target images
without requiring any access to the source data.
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Figure S8: Additional brain tissue segmentation results on target images from all four domains (Do-
main A, B, C, and D) applying different harmonization methods. Without harmonization (no har-
mony), performance drops due to domain shift, while harmonization methods generally improve per-
formance. BboxHarmony successfully segments brain tissues, which demonstrates that our method
enables the black-box models achieve better performance on an unseen target domain.
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F ADDITIONAL COMPARISON WITH SUPERVISED LEARNING ON LIMITED
TARGET LABELS

Although our method does not require any source domain data, it assumes access to a small amount
of labeled data from the target domain. In such a scenario, one might question whether simply train-
ing a supervised model on the labeled target data could outperform our harmonization approach,
especially when the amount of labeled data is sufficiently large. To investigate this, we conducted
an experiment comparing our method with fully supervised models trained solely on each target do-
main. Specifically, we trained U-Net (Ronneberger et al., 2015) models for brain tissue segmentation
using varying numbers of labeled subjects from each target domain: 5 (matching our harmonization
setting), 10, 20, and 40. The results, summarized in Tab. S3, reveal that when only 5 labeled sub-
jects were available, the supervised models consistently underperformed compared to our method,
and competitive performance was only reached after increasing the labeled data, with the required
number varying by domain, ranging from 10 to 40 subjects. These results highlight the risk of over-
fitting with small datasets and the practicality of harmonization in settings where labeled data is
scarce. Our method is especially beneficial in clinical environments where obtaining labels typically
requires expert knowledge and high costs.

Table S3: Segmentation performance comparison between our method (BBoxHarmony) and fully
supervised models trained with varying numbers of labeled subjects (5, 10, 20, and 40) from each
target domain. Performance exceeding that of BBoxHarmony is underlined.

Methods Domain A Domain B Domain C Domain D
IoU↑ Dice↑ IoU↑ Dice↑ IoU↑ Dice↑ IoU↑ Dice↑

BboxHarmony 0.830 0.906 0.825 0.902 0.805 0.884 0.830 0.905

Supervised model (5 subjects) 0.669 0.790 0.758 0.841 0.546 0.684 0.727 0.838
Supervised model (10 subjects) 0.838 0.911 0.763 0.861 0.715 0.825 0.814 0.895
Supervised model (20 subjects) 0.838 0.911 0.798 0.882 0.771 0.862 0.828 0.903
Supervised model (40 subjects) 0.844 0.914 0.854 0.916 0.813 0.889 0.870 0.928

G GENERALIZATION TO UNSEEN SCANNER VENDORS

To assess cross-vendor robustness, we evaluated harmonization on two vendors (GE and Philips)
unseen during training. The results are summarized in Tab. S4. BboxHarmony consistently im-
proved image similarity (PSNR/SSIM) and downstream performance (IoU/Dice) compared to the
non-harmonized inputs. Even without any source-domain data or vendor-specific retraining, Bbox-
Harmony yields sizable gains on unseen scanners, indicating practical deployability in heteroge-
neous clinical environments.

Table S4: Harmonization on unseen vendor data (PSNR↑/SSIM↑/IoU↑/Dice↑).

Methods GE Philips

No harmonization 17.2/0.907/0.553/0.684 16.5/0.951/0.514/0.650
BboxHarmony (ours) 18.3/0.926/0.628/0.749 21.9/0.954/0.614/0.733

H ADDITIONAL DOWNSTREAM METRICS: SENSITIVITY, SPECIFICITY, AND
HAUSDORFF DISTANCE

Beyond IoU/Dice, we report sensitivity, specificity, and 95%-Hausdorff distance (HD) to offer a
more comprehensive view of segmentation quality under domain shift. The results are summarized
in Tables. S5, S6. Without harmonization, domain shift results in high sensitivity but low specificity.
Our method mitigates this imbalance while also reducing boundary errors (HD), improving down-
stream task performance. BboxHarmony improves specificity and boundary accuracy (HD) across
domains, while maintaining strong sensitivity.
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Table S5: Quantitative segmentation results using harmonization methods across domains (A,B),
reported as sensitivity↑/specificity↑/HD distance↓.

Methods source data Domain A Domain B
unnecessary Sens↑ Spec↑ HD↓ Sens↑ Spec↑ HD↓

No harmonization - 0.903 ± 0.024 0.944 ± 0.012 7.82 ± 1.56 0.991 ± 0.042 0.956 ± 0.017 8.39 ± 2.66

DeepHarmony ✗ 0.956 ± 0.016 0.963 ± 0.009 8.43 ± 1.50 0.859 ± 0.058 0.955 ± 0.016 8.54 ± 1.96

Style transfer ✗ 0.946 ± 0.014 0.955 ± 0.010 8.87 ± 1.81 0.946 ± 0.030 0.964 ± 0.011 7.20 ± 1.37

BlindHarmony ✗ 0.781 ± 0.100 0.873 ± 0.025 14.18 ± 10.39 0.965 ± 0.059 0.912 ± 0.040 14.67 ± 7.64

Harmonizing flows ✗ 0.907 ± 0.020 0.950 ± 0.009 7.71 ± 1.39 0.961 ± 0.039 0.969 ± 0.011 7.22 ± 1.39

IGUANe ✗ 0.971 ± 0.020 0.957 ± 0.011 7.38 ± 1.59 0.989 ± 0.037 0.970 ± 0.011 7.94 ± 1.83

Manual perturbation ✓ 0.945 ± 0.027 0.952 ± 0.020 8.31 ± 2.05 0.973 ± 0.078 0.970 ± 0.015 7.04 ± 2.04

BboxHarmony (ours) ✓ 0.986 ± 0.013 0.965 ± 0.007 7.21 ± 1.47 0.991 ± 0.012 0.973 ± 0.008 6.76 ± 1.53

Table S6: Quantitative segmentation results using harmonization methods across domains (C,D),
reported as sensitivity↑/specificity↑/HD distance↓.

Methods source data Domain C Domain D
unnecessary Sens↑ Spec↑ HD↓ Sens↑ Spec↑ HD↓

No harmonization - 0.992 ± 0.032 0.969 ± 0.011 8.73 ± 3.51 0.999 ± 0.006 0.972 ± 0.008 7.46 ± 1.48

DeepHarmony ✗ 0.911 ± 0.018 0.969 ± 0.011 8.07 ± 1.46 0.901 ± 0.041 0.963 ± 0.007 7.61 ± 1.31

Style transfer ✗ 0.943 ± 0.023 0.967 ± 0.011 8.42 ± 1.51 0.959 ± 0.012 0.968 ± 0.008 7.23 ± 1.32

BlindHarmony ✗ 0.951 ± 0.059 0.930 ± 0.041 16.55 ± 8.01 0.959 ± 0.055 0.923 ± 0.042 14.92 ± 7.22

Harmonizing flows ✗ 0.955 ± 0.054 0.974 ± 0.006 7.90 ± 1.70 0.980 ± 0.023 0.972 ± 0.008 7.42 ± 1.48

IGUANe ✗ 0.990 ± 0.017 0.975 ± 0.009 7.98 ± 1.96 0.995 ± 0.009 0.973 ± 0.007 7.75 ± 1.54

Manual perturbation ✓ 0.975 ± 0.045 0.975 ± 0.009 7.18 ± 1.91 0.989 ± 0.016 0.972 ± 0.009 7.29 ± 1.68

BboxHarmony (ours) ✓ 0.988 ± 0.020 0.977 ± 0.007 7.05 ± 1.60 0.993 ± 0.009 0.975 ± 0.007 6.91 ± 1.49
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