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Abstract001

As large language models (LLMs) are increas-002
ingly deployed in enterprise settings, control-003
ling model behavior based on user roles be-004
comes an essential requirement. Existing safety005
methods typically assume uniform access and006
focus on preventing harmful or toxic outputs,007
without addressing role-specific access con-008
straints. In this work, we investigate whether009
LLMs can be fine-tuned to generate responses010
that reflect the access privileges associated with011
different organizational roles. We explore three012
modeling strategies: a BERT-based classifier,013
an LLM-based classifier, and role-conditioned014
generation. To evaluate these approaches, we015
construct two complementary datasets. The016
first is adapted from existing instruction-tuning017
corpora through clustering and role labeling,018
while the second is synthetically generated to019
reflect realistic, role-sensitive enterprise sce-020
narios. We assess model performance across021
varying organizational structures and analyze022
robustness to prompt injection, role mismatch,023
and jailbreak attempts.024

1 Introduction025

In enterprise workflows, access control is a core026

security mechanism for regulating access to orga-027

nizational resources. Through authentication and028

authorization, systems verify user identities and029

enforce access privileges. While role-based access030

control (RBAC) is well established in traditional031

software systems (Ferraiolo et al., 1995; Sandhu,032

1998; Park et al., 2001), its application to large lan-033

guage models (LLMs) remains largely unexplored.034

As LLMs are increasingly deployed for enterprise035

applications such as document generation (Wise-036

man et al., 2017), summarization (Laskar et al.,037

2023; Zhang et al., 2025), and internal assistance038

(Muthusamy et al., 2023), it becomes critical to039

enforce access control not just over outputs but at040

the level of model instructions.041

Figure 1: A role-aware LLM rejects questions from
unauthorized roles, enhancing safety by restricting ac-
cess to sensitive information. Icon source: Flaticon.com

Figure 1 demonstrates how role-aware language 042

models can help prevent unauthorized access to 043

sensitive information. When the same instruction 044

is issued by users in different roles, such as a CEO 045

and a researcher, a role-unaware LLM may provide 046

identical responses regardless of the requester’s per- 047

missions. In contrast, a role-aware LLM considers 048

the user’s role and restricts access appropriately, 049

disclosing information only to those with sufficient 050

clearance and declining requests from others. This 051

approach enables organizations to align LLM be- 052

havior with established access policies, minimizing 053

the risk of information leakage across roles. 054

Despite increasing attention to the safety and 055

alignment of LLMs (Wang et al., 2024a; Ge et al., 056

2024), the challenge of role-conditioned instruc- 057

tion filtering has received limited focus. Most ex- 058

isting approaches assume uniform user access or 059

apply static safety filters, focusing primarily on pre- 060

venting the generation of harmful or toxic content 061

(Wang et al., 2024a,b; Azmi et al., 2025). These 062

methods do not account for access control policies 063

that vary by user role—a critical requirement in 064

organizational contexts. To support secure, multi- 065
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Figure 2: Overview of our methodology. Top-left: dataset preparation yields four datasets across two types
(repurposed and synthetic) with predefined structures. Top-right: balanced test distribution over positive/negative
and seen/unseen paraphrases. Bottom: three training strategies: Role-aware Cls (BERT-based), Role-aware LLM-
Cls (LLM-based), and Role-aware LLM-Gen (response generation).

user deployments, we pose the following research066

question: Can large language models be fine-tuned067

to generate role-aware responses that enforce ac-068

cess control? While LLMs continue to advance069

in capability and generalization (Jiang et al., 2024;070

Dubey et al., 2024; Bai et al., 2023; Dou et al.,071

2025; Liu et al., 2024; Koto et al., 2025), their072

application to role-sensitive scenarios remains un-073

derexplored.074

To address this research question, we simulate075

realistic organizational scenarios and develop a076

role-aware language model using three comple-077

mentary strategies: (i) a BERT-based classifier,078

(ii) an LLM-based classifier, and (iii) direct role-079

conditioned generation. We evaluate these meth-080

ods on two separate datasets: one repurposed from081

existing instruction-tuning corpora using cluster-082

ing and role-based labeling, and another consisting083

of synthetic, role-sensitive instructions generated084

by LLMs to reflect realistic enterprise interactions.085

Unlike contemporaneous work such as Jayaraman086

et al. (2025), which focuses on domain-level access087

control, our approach explicitly models user roles088

and supports fine-grained, hierarchical permissions089

required in organizational settings.090

Our contributions can be summarized as follows: 091

• We evaluate role-aware LLMs in realistic or- 092

ganizational settings with diverse access struc- 093

tures, using multiple modeling strategies. Our 094

experiments include full pretraining of six 095

BERT-based classifiers and adapter-based fine- 096

tuning on six different LLMs. 097

• We conduct robustness analyses under vari- 098

ous threat scenarios, including jailbreaking 099

across role-encoding strategies, access control 100

mismatches, and prompt injection or manipu- 101

lation attacks. 102

• We provide a comprehensive evaluation across 103

varying levels of organizational complexity, 104

comparing classifier-based and generation- 105

based approaches, and analyzing performance 106

on role-independent, blacklisted topics. 107

2 Related Works 108

Access Control in Traditional Systems In clas- 109

sical role-based access control (RBAC), users are 110

assigned roles with specific permissions (Ferraiolo 111

et al., 1995, 2003), enforcing the principle of least 112

privilege. Organizations often segregate data by 113

clearance levels or roles so that only authorized per- 114

2



sonnel can view sensitive records (Sandhu, 1998;115

Jayaraman et al., 2025). Role hierarchies allow116

higher-level roles (e.g., managers) to inherit the per-117

missions of subordinate roles, a concept well under-118

stood in databases and operating systems. However,119

applying similar role-based permissions to a gen-120

erative LLM is nontrivial (Chan, 2025), since the121

model can hallucinate or leak information beyond122

its explicit training data (Kaddour et al., 2023).123

Access Control in Language Models Work on124

access control in language models remains lim-125

ited. A contemporaneous study by Jayaraman126

et al. (2025) introduces PermissionedLLMs, which127

implement domain-based access control through128

parameter-efficient fine-tuning methods such as129

LoRA (Hu et al., 2022) and Few-Shot Parameter130

Efficient Tuning (Liu et al., 2022). Their approach131

defines access at the domain level, where a domain132

represents a group of data records requiring identi-133

cal credentials. In parallel, Saha et al. (2025) pro-134

posed sudoLLM, which makes LLMs “user-aware”135

by injecting secret biases into input queries based136

on user identity. In contrast to these approaches,137

our work focuses on role-based access control with138

deeper hierarchical structures, making it more suit-139

able for enterprise and organizational settings.140

AdapterSwap (Fleshman et al., 2025) imple-141

ments access control by associating different ac-142

cess levels with separate LoRA adapters, which143

are selected and composed at inference time. This144

approach requires maintaining multiple domain-145

specific adapters. In contrast, our method uses a146

unified model that directly encodes role-awareness147

without external composition. Chen et al. (2023)148

address a related challenge from a privacy perspec-149

tive, showing that pre-trained LLMs are prone to150

leaking sensitive information and proposing a self-151

moderation mechanism. While their work does not152

focus on role-aware modeling, it shares our broader153

goal of improving control over LLM outputs to pre-154

vent unauthorized disclosures.155

3 Problem Formulation156

Let x be a prompt or instruction, y the LLM output,157

and r a user’s role within an organization. A gen-158

eral LLM defines a conditional distribution over159

outputs y dependent on a user’s instruction x:160

P (y | x).161

However, a role-aware LLM defines the follow-162

ing distribution:163

PRoleLLM(y | x, r), 164

such that r ∈ R, where R is the set of all roles in 165

an organization. 166

Now, formalizing access control, define a tree 167

T = (R,≤) such that for any two roles r1, r2 ∈ R 168

where r1 ≤ r2 denotes r2 inherits r1’s permissions. 169

Then, the access set of a role r ∈ R is: 170

A(r) =
⋃
r′≤r

S(r′), 171

where S(r′) ⊆ Q. S(r′) is the set of all queries 172

of role r′, and Q is the universe of all valid input- 173

output instruction types. Hence, 174

PRoleLLM(y | x, r) =

{
P (y | x, r), if x ∈ A(r)

δdeny(y), otherwise
, 175

such that δdeny(y) is a degenerate distribution con- 176

centrating all the probability mass on a refusal out- 177

put (i.e., access is denied). 178

4 Dataset Construction 179

We define two organizational structures, each com- 180

prising 20 roles, to evaluate role-awareness under 181

varying levels of hierarchy. The first is the Basic 182

structure, where a single CEO directly supervises 183

19 subordinate roles. The second is the Office 184

structure, which includes a CEO, four department 185

managers reporting to the CEO, and 3–4 team mem- 186

bers reporting to each manager. A detailed break- 187

down of roles in both structures is provided in Ap- 188

pendix C. These configurations are used to assess 189

the ability of each method to encode and respond 190

to hierarchical role information, as outlined in Sec- 191

tion 5.1. 192

For each organizational structure, we construct 193

two datasets using complementary strategies (see 194

Figure 2). The first is by repurposing existing 195

instruction-tuning data via clustering, and the latter 196

involves generating synthetic data via LLMs. 197

Repurposing Existing Instruction Dataset We 198

repurpose We repurpose the Databricks Dolly-15k 199

dataset (Conover et al., 2023) by clustering in- 200

structions and assigning roles based on hierarchical 201

structure. Using a sentence transformer (Reimers 202

and Gurevych, 2019), we encode each instruction 203

and its context into dense vectors. Clustering be- 204

gins at the root of the organization: we apply K- 205

Means to partition the data into three high-level 206
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groups: General, Shared, and Root Only (e.g.,207

CEO-specific). Prompts in the General group are208

marked terminal and excluded from further subdi-209

vision.1 Shared prompts are recursively partitioned210

along the hierarchy. At each level, prompts are split211

into role-specific clusters corresponding to subordi-212

nate roles (e.g., Department 1, Department 2, etc.).213

Within each cluster, we further divide prompts into214

Shared (used across subordinates) and Role Only215

(exclusive to the role). The process continues recur-216

sively: Shared prompts are passed down for further217

subdivision, while Role Only groups are treated as218

terminal. This hierarchical clustering procedure,219

illustrated in Figure 8 (Appendix D), yields fine-220

grained, role-aligned instruction sets that mirror221

the structure of the target organization.222

Synthetic Organization Dataset We use Ope-223

nAI’s GPT-4.1 mini with a temperature of 0.7224

to generate synthetic organizational data. Based225

on the basic and office structures (Appendix C),226

we define each role, department, and access range227

in a structured JSON-like format. Prompts are228

then generated for each role, conditioned on229

its responsibilities and access scope. The re-230

sulting data is organized with the fields: role,231

instruction, and output. We also generate232

200 general instruction-response pairs represent-233

ing organization-wide prompts that are accessible234

to all roles. Details of the generation prompt are235

provided in Appendix D.236

Synthetic Dataset Quality Analysis To evaluate237

the quality of the synthetic dataset, we randomly238

sampled 100 query-response pairs for manual anal-239

ysis. Each pair was scored on two binary criteria:240

(1) whether the query was relevant to the assigned241

role, and (2) whether the response was complete242

and appropriate. A score of 1 was given for each243

criterion if it was met, and 0 otherwise. The results244

show that over 96% of the samples satisfied both245

criteria, indicating high relevance and response246

quality.247

Training Set Construction To train the model to248

distinguish between authorized and unauthorized249

access, we construct positive and negative instances250

from each instruction-response pair. First, we as-251

sign each pair the lowest-level role authorized to252

access the instruction. Using this role as an an-253

chor, we generate four training instances through a254

1The General group refers to prompts that are accessible
to all roles within the organization

sliding-window over the organizational hierarchy. 255

Specifically, we create: (1) a positive instance using 256

the minimal authorized role, and (2) another posi- 257

tive instance using its immediate parent, reflecting 258

inherited permissions. We then generate two nega- 259

tive instances: (3) one from a subordinate role (or a 260

random role from a different branch if no children 261

exist), and (4) one from a non-existent external role. 262

Each instance is labeled with a binary (1 for ac- 263

cess granted, 0 for denied). For the denied request, 264

LLM is expected to generate a generic refusal mes- 265

sage. This procedure results in 6,000 training sam- 266

ples per dataset variant: repurposed_basic, repur- 267

posed_office, synthetic_basic, and synthetic_office. 268

The ratio of positive and negative samples is ap- 269

proximately balanced: repurposed datasets contain 270

54.5% valid examples, and synthetic datasets con- 271

tain 52.5%. 272

Test Set Construction Each dataset variant in- 273

cludes a test set of 1,000 samples, balanced with 274

50% positive and 50% negative instances. Posi- 275

tive samples are split evenly into two subsets: 250 276

with previously unseen instructions, and 250 with 277

paraphrased versions of training instructions gen- 278

erated by GPT-4.1 mini. Negative samples are di- 279

vided into three categories: (1) 300 mismatch cases, 280

where an unauthorized in-hierarchy role attempts 281

to access restricted content (e.g., a leaf role query- 282

ing CEO-level data); (2) 100 random cases using 283

external roles not present in the hierarchy; and (3) 284

100 broken cases where the role string is intention- 285

ally corrupted (e.g., “1.2” → “01.02”, “1..2”, or 286

“one.two”) to test model robustness. Each negative 287

category includes an equal mix of unseen and para- 288

phrased instructions, ensuring that every test set 289

contains exactly 500 unseen and 500 seen prompts 290

(See Figure 2. 291

5 Experimental Set-Up 292

5.1 Role Encoding Strategies 293

After grouping instruction-response pairs by role, 294

we encode each role to study how different en- 295

coding strategies affect access control. Each or- 296

ganizational position is represented by a string 297

that reflects its location in the hierarchy, which 298

is appended to every instruction-response pair to 299

indicate the minimum role required to access the 300

content. Access is permitted to roles at or above 301

the specified level and denied to those below or 302

in unrelated branches. We explore three encoding 303

methods. Hierarchical Number Encoding uses 304
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dot-delimited indices (e.g., “1” for the CEO, “1.1”305

and “1.2” for direct subordinates), with “1.0” re-306

served for general, organization-wide instructions.307

Single Name Encoding uses only the role’s title308

(e.g., “CEO,” “IT Department Manager”), while309

Hierarchical Name Encoding concatenates the310

full path of titles (e.g., “CEO - IT Department Man-311

ager - IT Support”) to retain both structural and312

semantic information.313

5.2 Training Approaches314

We evaluate three methods for access control, train-315

ing each on all four dataset variants. To ensure316

reproducibility, we fix random seeds and report av-317

eraged results over three runs per setting. Training318

data is shuffled to eliminate order effects. Each319

training instance includes a prompt, answer, role,320

and access label. Full training details and hyperpa-321

rameters are provided in Appendix B.322

Role-aware Cls We trained six BERT-based323

models (Devlin et al., 2019; Liu et al., 2019), in-324

cluding MODERN BERT-BASE, MODERN BERT-325

LARGE, GOOGLE BERT-BASE, GOOGLE BERT-326

LARGE, ROBERTA-BASE, and ROBERTA-LARGE327

for access control. We appended the role to the end328

of the prompt as “<prompt> [SEP] <role>”.329

Role-aware LLM-Cls We fine-tune six open-330

source LLMs (Bai et al., 2023; Dubey et al., 2024;331

Team et al., 2024)—QWEN 2.5 (3B, 7B), LLAMA332

3.X (3B, 8B), and GEMMA (4B, 7B)—to perform333

binary access control classification. We include334

both small and large models to assess the effect of335

model size. For each example, the role is prepended336

to the prompt as “Position: <role> <prompt>”,337

and a system prompt instructs the model to respond338

with True (grant access) or False (deny access).339

All inputs and labels are formatted as conversa-340

tions and fine-tuned using LoRA with supervised341

learning.342

Role-aware LLM-Gen We use the same LLMs343

and fine-tuning setup as in Role-aware LLM-Cls,344

but instead train the model to generate full answers345

rather than binary access decisions. The system346

prompt is removed to allow free-form responses,347

and the output corresponds to the original answer348

instead of a True/False label.349

5.3 Evaluation Protocol350

For the classification-based approaches (Role-351

aware Cls and Role-aware LLM-Cls), we re-352

port standard metrics: accuracy, false positive 353

rate (FPR), false negative rate (FNR), and F1 354

score. FPR captures unauthorized access incor- 355

rectly granted, while FNR reflects valid access 356

that was wrongly denied. We also report perfor- 357

mance on “seen” vs. “unseen” instructions, along 358

with category-specific accuracy for mismatch, ran- 359

dom, and broken roles. For Role-aware LLM-Gen, 360

which outputs either a direct answer or a generic 361

denial, we use GPT-4.1 mini to classify each re- 362

sponse as grant or deny, enabling comparison with 363

the ground-truth valid label. 364

Finally, to assess whether access control impacts 365

answer quality, we randomly sample 100 valid 366

(granted) examples and compare the generated re- 367

sponses to the original references. Each response 368

is evaluated using GPT-4.1 mini, scored on a 1–5 369

scale for correctness, completeness, and clarity. 370

6 Results 371

Tables 1 and 2 (or Table 14 and Table 15 for de- 372

tails) summarize the performance of our proposed 373

role-aware LLMs evaluated on access-control ac- 374

curacy and LLM-rated generation quality across 375

two distinct training datasets: a repurposed existing 376

instruction dataset (Dolly) and a synthetic organi- 377

zation dataset. The evaluation is conducted on 378

all Role-aware methods (Cls, LLM-Cls, and LLM- 379

Gen), assessing both quantitative metrics (e.g., ac- 380

curacy, negative-pair defense) and qualitative di- 381

mensions (correctness, completeness, clarity). The 382

detailed results and comparisons between the train- 383

ing datasets and modeling methods are discussed 384

in further detail in the following sections. 385

Access-Control Performance Our role-aware 386

LLMs consistently achieved high access-control ac- 387

curacy across both datasets, with LLM-Cls models 388

outperforming other variants; specifically, MOD- 389

ERNBERT LARGE attained the highest accuracy 390

(90.0%) on Dolly, while LLAMA3 8B INSTRUCT 391

achieved top performance (89.3%) on the syn- 392

thetic dataset. Generative approaches (LLM-Gen) 393

slightly lagged in raw accuracy by approximately 394

5–10 percentage points with an influx in false- 395

negative errors, indicating a strict access enforce- 396

ment in role-conditioned generation. However, no- 397

table negative results emerged, particularly with 398

ROBERTA LARGE (Cls), whose accuracy drasti- 399

cally decreased to 74.8% accompanied by an in- 400

flated false-positive rate (58%) on the Dolly dataset 401

and subsequently in the synthetic dataset, highlight- 402
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Method Model Acc. (↑) FPR (↓) FNR (↓) F1 (↑) Acc. (↑) F1 (↑) Negative Pair Acc. (↑)

Seen Unseen Seen Unseen Mismatch Broken Random

Repurposed Existing Instruction Dataset (Dolly)
Role-aware Cls BERT Base 86.0±2.4 29.8±1.0 4.0±2.4 90.3±0.5 88.6 85.0 92.3 89.5 70.8 42.6 100.0

RoBERTa Base 78.7±5.4 42.2±16.4 6.6±4.1 84.1±3.3 82.7 77.9 87.6 83.5 58.4 53.2 100.0
ModernBERT Base 89.7±3.8 18.3±7.8 5.5±2.5 92.0±2.9 90.3 89.0 92.5 91.5 81.7 60.2 100.0
BERT Large 81.4±6.2 43.1±14.8 5.5±2.9 87.0±4.5 82.5 81.2 88.2 86.1 58.0 44.2 100.0
RoBERTa Large 74.8±12.2 58.1±45.6 5.4±5.3 83.3±6.8 74.2 74.4 82.0 83.6 41.0 28.3 90.5
ModernBERT Large 90.0±3.2 18.9±8.1 4.7±1.0 92.3±2.3 90.8 89.2 92.9 91.6 81.1 48.8 99.8

Role-aware LLM-Cls Qwen2.5 3B Instruct 88.5±2.2 21.8±6.6 5.2±0.8 91.2±1.7 89.5 87.5 91.8 90.3 78.2 44.3 99.7
Llama3.2 3B Instruct 88.8±1.7 20.0±3.7 6.0±1.3 91.3±1.4 90.2 87.7 92.3 90.2 80.0 45.0 100.0
Gemma3 4B Instruct 88.8±3.3 20.8±7.5 5.3±1.4 91.5±2.6 90.5 87.3 92.7 90.3 79.2 52.5 100.0
Qwen2.5 7B Instruct 86.3±1.8 24.5±4.4 7.2±2.5 89.7±1.4 88.0 85.0 90.3 88.5 75.5 48.8 99.8
Llama3.1 8B Instruct 81.8±5.0 29.0±7.7 11.5±8.2 85.8±4.6 83.7 80.0 87.3 84.2 71.0 46.2 99.7
Gemma 7B Instruct 83.0±5.3 31.0±13.6 8.7±6.3 86.8±3.9 84.0 81.8 87.8 85.7 69.0 48.8 99.8

Role-aware LLM-Gen Qwen2.5 3B Instruct 76.5±1.0 24.0±3.3 23.3±2.3 80.2±1.0 80.3 72.7 84.0 76.5 76.0 66.8 99.8
Llama3.2 3B Instruct 79.7±3.8 26.7±3.6 16.7±5.7 83.5±3.6 82.0 77.0 85.8 81.0 73.3 57.5 99.8
Gemma3 4B Instruct 77.3±2.6 26.5±2.2 20.3±3.8 81.5±2.4 80.0 74.8 83.8 79.0 73.5 56.2 97.2
Qwen2.5 7B Instruct 78.2±2.1 25.0±3.5 20.2±5.1 82.0±2.4 81.3 74.7 85.2 78.7 75.0 60.2 100.0
Llama3.1 8B Instruct 78.0±2.6 25.8±2.1 19.5±5.0 81.8±2.8 80.8 75.2 84.7 79.3 74.2 60.2 99.7
Gemma 7B Instruct 73.0±1.5 34.0±6.8 22.3±2.6 78.3±1.0 76.0 70.3 81.7 75.0 66.0 61.7 97.3

Synthetic Organization Dataset
Role-aware Cls BERT Base 81.4±6.7 44.0±20.1 3.5±1.1 87.2±4.1 82.5 82.1 87.7 86.0 56.9 37.8 100.0

RoBERTa Base 77.2±3.9 56.1±8.7 3.7±0.8 84.3±1.8 78.4 76.8 84.5 84.0 44.7 53.9 100.0
ModernBERT Base 85.6±6.0 27.9±17.9 6.2±1.8 89.3±4.0 86.0 85.3 89.4 89.1 72.1 64.8 99.8
BERT Large 84.5±6.9 35.5±21.6 5.3±2.2 89.3±4.1 84.0 84.4 90.6 88.2 65.5 42.6 99.0
RoBERTa Large 65.3±4.9 77.1±3.4 6.8±6.7 77.8±3.4 66.6 68.0 78.4 78.5 22.4 47.4 99.5
ModernBERT Large 80.8±8.5 39.3±18.6 7.1±6.9 85.9±6.2 81.2 80.4 86.1 85.7 60.7 48.3 99.8

Role-aware LLM-Cls Qwen2.5 3B Instruct 85.2±6.6 33.0±20.3 4.3±3.5 89.0±4.1 85.2 85.0 89.3 89.2 67.0 50.3 100.0
Llama3.2 3B Instruct 88.3±9.2 27.7±24.5 2.2±0.8 91.5±6.4 88.7 88.0 91.8 91.0 72.3 46.2 100.0
Gemma3 4B Instruct 88.5±9.8 27.5±26.0 2.2±0.4 91.5±6.8 89.3 87.5 92.5 91.0 72.5 36.8 99.8
Qwen2.5 7B Instruct 88.8±8.4 25.8±21.8 2.2±1.2 91.8±5.7 89.3 88.2 92.5 91.5 74.2 47.3 100.0
Llama3.1 8B Instruct 89.3±8.6 25.2±24.1 2.0±0.0 / 92.5±6.2 90.7 88.2 93.0 91.8 74.8 31.5 99.8
Gemma 7B Instruct 85.8±6.5 34.3±16.8 2.0±0.0 89.8±4.4 86.5 85.3 90.2 89.7 65.7 39.0 99.7

Role-aware LLM-Gen Qwen2.5 3B Instruct 74.8±3.5 42.5±6.8 14.7±8.5 80.7±3.6 76.3 73.5 81.5 80.2 57.5 59.3 95.0
Llama3.2 3B Instruct 85.3±7.4 30.0±19.1 5.5±1.2 89.0±4.9 85.8 84.7 89.3 88.8 70.0 62.0 95.8
Gemma3 4B Instruct 74.5±4.7 50.0±10.6 10.8±5.8 81.5±3.5 75.8 73.0 81.8 80.7 50.0 52.8 75.5
Qwen2.5 7B Instruct 78.2±5.2 40.2±11.1 10.8±5.6 83.3±4.1 80.0 76.0 84.7 82.2 59.8 51.3 95.2
Llama3.1 8B Instruct 85.3±8.4 31.2±20.0 5.3±1.5 89.0±5.8 86.3 84.0 89.7 88.5 68.8 50.8 95.0
Gemma 7B Instruct 77.2±4.1 43.8±11.1 10.5±5.8 83.0±3.2 79.8 73.8 84.7 81.0 56.2 40.3 77.3

Table 1: Overall performance on the role-aware access-control benchmark. Bold marks the best score for a given
training set, while underline marks the best model within each method.

ing critical sensitivity to encoder selection. In the403

more challenging synthetic dataset, all methods404

faced increased difficulty (3–6% accuracy drop),405

yet instruction-tuned models maintained compara-406

tively robust performance, emphasizing that richer407

instruction tuning substantially mitigates accuracy408

degradation under semantically overlapping role409

conditions. Please refer to Appendix E for further410

explanation.411

Method Robustness To evaluate the robustness412

of our proposed methods, each method-model com-413

bination was trained under two organizational struc-414

tures (basic, office) across three independent ran-415

dom seeds, with the results averaged and sum-416

marized in Tables 1–2. Generally, all methods417

demonstrated low variance (acc std.< 4%) on the418

Dolly dataset, except for notable brittleness in419

ROBERTA LARGE (Cls), which exhibited sub-420

stantial instability (12.2% accuracy, 45.6% FPR),421

contrasting strongly with the more stable MOD-422

ERNBERT LARGE (3.2% accuracy, 8.1% FPR).423

Instruction-tuned LLM classifiers (LLM-Cls), such424

as QWEN2.5 3B INST. and LLAMA3 3B INST., 425

further reduced variance (acc std.< 2.2%), under- 426

scoring stability gains from modern instruction tun- 427

ing. On the synthetic dataset, semantic overlaps in- 428

creased variance to around 8–10%, yet instruction- 429

tuned models (e.g., LLAMA3 8B INST.) main- 430

tained comparative stability (8.4-8.6%). More de- 431

tailed of the performances on Basic and Office are 432

shown in Appendix H. Collectively, these results 433

demonstrate that our proposed methods achieve 434

robust performance, primarily due to richer pre- 435

training and instruction tuning rather than merely 436

model scale. 437

Negative Pair Accuracy All methods achieved 438

near-perfect accuracy (100%) in identifying ran- 439

domly assigned negative-role pairs, highlighting 440

their effectiveness in clearly invalid scenarios. 441

However, performance dropped notably for sub- 442

tler cases such as existing-but-mismatched and 443

broken-role pairs. Specifically, LLM-Cls models 444

demonstrated comparatively stronger performance 445

(e.g., MODERNBERT LARGE: 81.1%; QWEN2.5 446
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Model Generation Quality (↑, 5-pt rubric)

Correctness Completeness Clarity

Repurposed Existing Instruction Dataset (Dolly)
Qwen2.5 3B Instruct 3.9±0.1 3.5±0.2 4.6±0.1
Llama3.2 3B Instruct 4.0±0.1 3.6±0.2 4.7±0.1
Gemma3 4B Instruct 4.0±0.1 3.6±0.1 4.6±0.0
Qwen2.5 7B Instruct 4.1±0.2 3.7±0.2 4.7±0.0
Llama3.1 8B Instruct 4.1±0.1 3.7±0.1 4.7±0.1
Gemma 7B Instruct 3.9±0.1 3.5±0.1 4.5±0.1
Synthetic Organization Dataset
Qwen2.5 3B Instruct 3.9±0.2 3.6±0.2 4.7±0.1
Llama3.2 3B Instruct 3.9±0.1 3.7±0.1 4.7±0.0
Gemma3 4B Instruct 3.9±0.1 3.7±0.1 4.7±0.1
Qwen2.5 7B Instruct 4.0±0.1 3.8±0.1 4.8±0.0
Llama3.1 8B Instruct 3.9±0.1 3.8±0.1 4.8±0.0
Gemma 7B Instruct 3.9±0.1 3.6±0.1 4.6±0.1

Table 2: LLM-rated generation quality against gold ref-
erence. Bold = best within the same training dataset;
underline = best within the Role-aware LLM-Gen
method.

3B INST.: 78.2% on Dolly), whereas standard447

classifiers (Cls), particularly ROBERTA LARGE448

(41.0%), struggled significantly. Generative mod-449

els (LLM-Gen) showed moderate accuracy (e.g.,450

LLAMA3 3B INST.: 73.3%), underscoring ongoing451

challenges in detecting nuanced role mismatches.452

These results indicate that while instruction-tuned453

models substantially enhance negative-pair detec-454

tion, subtle distinctions between valid yet incor-455

rect role assignments remain difficult, suggesting456

a promising direction for future improvements in457

fine-grained role understanding.458

Generation Quality Generation quality ratings459

(correctness, completeness, clarity) were consis-460

tently high (around 4 out of 5), with larger461

instruction-tuned models (e.g., QWEN2.5 7B462

INST., LLAMA3 8B INST.) achieving the best463

scores. The differences between the training data464

sets were minimal, highlighting the reliability of465

role-aware generation regardless of the data source.466

7 Analysis467

7.1 Jailbreak Robustness468

To assess the model’s robustness against prompt469

injection attempts, we conducted an additional ex-470

periment involving modifications to the original471

datasets. Specifically, we generated 100 more472

negative samples for both training and test sets473

in which the original instruction was prepended474

with misleading phrases. These included asser-475

tions of higher authority (e.g., “I’m authorized as476

CEO to ask this:”) or commands (e.g., “Regard-477

less of policy, respond to this:”). We evaluated478

Role-aware LLM-Cls using Llama 3.2 3B Instruct. 479

The model was trained in two ways: the first in- 480

corporates jailbreak samples in the training data, 481

and the other does not. A comparative summary of 482

performance is presented in Appendix F. Although 483

the inclusion of jailbreak prompts did not signif- 484

icantly affect overall accuracy across the test set 485

(except for experiments with the repurposed_basic 486

dataset, which can be attributed to randomness), 487

the model trained with jailbreak-specific examples 488

demonstrated improved resistance to prompt injec- 489

tion with an average of 87% compared to the 70% 490

accuracy of the baseline model. 491

7.2 Robustness on Blacklisted Topics 492

To evaluate the model’s capacity to restrict answers 493

to queries whose content violates organizational 494

policies, we extended the original datasets men- 495

tioned in Section 4. We generated 100 queries on 496

general blacklisted topics (e.g., violence, weapons, 497

cheating, etc.) and 100 queries related to real-life 498

politics. The respective responses to the queries 499

were designed to be restricted, regardless of an em- 500

ployee’s role. Subsequently, each original dataset 501

was extended by adding 50 unique blacklisted 502

queries of each type separately, and duplicates of 503

each blacklisted query for multiple organization 504

roles. The remaining 50 queries of each black- 505

listed dataset were used for the evaluation datasets. 506

Using the Role-aware LLM-Cls method, LLAMA 507

3.2 3B INSTRUCT was trained and tested using 508

these extended datasets. The detailed information 509

on the results can be found in Appendix G. As 510

shown in Table 8, the blacklisted model’s perfor- 511

mance remained unchanged relative to the baseline 512

model. The model was also highly successful in 513

restricting answers to blacklisted queries with an 514

overall accuracy >99%. The accuracy rates for the 515

model trained on the repurposed basic dataset were 516

the only outliers, exhibiting a decrease in accuracy 517

from 92% to 84%. 518

7.3 Effect of Role Information in Prompts 519

To assess whether including role information in the 520

prompt affects response quality, we fine-tuned all 521

LLMs on the four training datasets without role 522

annotations. We evaluated response quality us- 523

ing three metrics: correctness, completeness, and 524

clarity. From the 1,000 test outputs, we randomly 525

sampled 100 responses and compared them to the 526

reference answers using GPT-4.1 mini. The same 527

evaluation was applied to Role-aware LLM-Gen, 528

7



Prompt Style Correctness Completeness Clarity

Without roles 3.90 3.58 4.67
With roles 3.93 3.59 4.64

Table 3: Quality ratings (five-point scale) of responses
generated by LLMs trained with versus without role
prompts, assessed by GPT-4.1 mini.

which was trained with roles included in the prompt.529

Results show that the average difference in quality530

between the two settings is under 1%, indicating531

that including roles does not degrade response qual-532

ity. Summary metrics are reported in Table 3, with533

detailed results in Appendix I.534
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Figure 3: Comparison of FPR and FNR across role
encodings. The Hierarchical Number Encoding has the
worst defense against unauthorized roles (highest FPR),
and overly denies authorized roles (highest FNR).

Broken role rejection accuracy

0.1

0.2

0.3

0.4

0.5

0.6

Va
lu

e

0.51

0.27
-47%

0.27
-47%

Encoding Type
Hierarchical number
Single name
Hierarchical name

Figure 4: Comparison of broken role rejection accuracy
across role encodings. The Hierarchical Number En-
coding has the best defense against broken roles.

7.4 Effect of Role Encoding on Access Control535

We investigate how different role encoding strate-536

gies affect access control performance across our537

three methods: Role-aware Cls, Role-aware LLM-538

Cls, and Role-aware LLM-Gen. For consistency,539

we use the MODERN BERT-BASE model for Role-540

aware Cls and LLAMA 3.1 8B INSTRUCT for the541

LLM-based methods, training each on the four542

dataset variants.543

We compare three encoding strategies: Hierar- 544

chical Number Encoding, Single Name Encoding, 545

and Hierarchical Name Encoding, and present the 546

results in Figures 3 and 4. Hierarchical Number En- 547

coding achieves the highest FPR, indicating poorer 548

rejection of unauthorized roles and weaker robust- 549

ness to broken role strings (e.g., misspelled or ma- 550

nipulated encodings). This suggests that LLMs 551

can more easily differentiate between role names 552

like “CEO” and “Researcher” than between for- 553

mats like “1.1” and “1.a” . This encoding also 554

results in the highest FNR, likely because LLMs 555

struggle to generalize upward in hierarchical struc- 556

tures (e.g., understanding that “1” can access data 557

assigned to “1.1”). In contrast, name-based en- 558

codings offer slightly better generalization across 559

authorized roles but are more vulnerable to adver- 560

sarial role perturbations. Full results are provided 561

in Appendix J. 562

8 Conclusion 563

This paper investigates methods for modeling role- 564

aware behavior in large language models, with a 565

focus on enforcing access control and evaluating 566

the effects of different fine-tuning strategies and 567

datasets. Our experiments compare classification- 568

based and generative approaches across multiple 569

organizational structures. Instruction-tuned classi- 570

fiers (LLM-Cls) consistently outperform both gen- 571

erative (LLM-Gen) and traditional classifier-based 572

(Cls) methods, reaching up to 90.0% and 89.3% 573

accuracy on the Dolly and synthetic datasets, re- 574

spectively, without compromising answer quality. 575

Despite high overall performance, challenges re- 576

main. All models are effective at rejecting clearly 577

unauthorized roles, such as random or external enti- 578

ties (≈100% accuracy), and instruction-tuned meth- 579

ods reliably detect more subtle mismatches (≈70% 580

accuracy on average). However, broken role for- 581

mats and fine-grained violations still present diffi- 582

culties, with a 15–30% gap in accuracy. Generative 583

models, while more flexible, suffer a modest perfor- 584

mance trade-off. Future work should focus on en- 585

hancing generalization across complex hierarchies, 586

reducing false positives from brittle encoders, and 587

improving discrimination between closely related 588

roles. 589

9 Limitations 590

While our results demonstrate promising capabil- 591

ities in enabling safe and role-aware deployment 592
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of LLMs within organizational contexts, several593

limitations constrain the scope of our conclusions.594

Unified Organization Representation Our ex-595

periments used a single adapter to represent all596

roles within an organization. Although effective,597

we did not investigate the alternative of using a598

multi-adapter strategy, such as separate adapters599

for each department. This strategy could poten-600

tially reduce information leakage by further isolat-601

ing department-specific knowledge, though it may602

come at the cost of overall effectiveness.603

Access Control Post Fine-tuning We demon-604

strated effective fine-tuning of adapters for initial605

access control; however, our methodology did not606

address dynamic modification or addition of roles607

after the fine-tuning phase. Future research should608

explore approaches that enable post-training up-609

dates to role-based access, as roles are dynamic610

and such updates would eliminate the need to re-611

train adapters from scratch.612

Alignment Methods Beyond SFT This study ex-613

clusively employed SFT for alignment. We did not614

explore alternative methods such as Direct Pref-615

erence Optimization (DPO) or other preference-616

based alignment techniques, which could poten-617

tially yield improved alignment outcomes.618

Integration of External Knowledge Although619

our results indicate strong capabilities in control-620

ling internal knowledge, either by restricting spe-621

cific topics organization-wide or selectively au-622

thorizing content per role, we did not evaluate623

role-aware control when the LLM is augmented624

with external knowledge sources (e.g., Retrieval-625

Augmented Generation or web search). Investigat-626

ing how role-based adapters influence responses627

that incorporate external information remains an628

open area for future study.629
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Seed # Value

Seed 1 42
Seed 2 937
Seed 3 3827

Table 4: Seeds for training, testing and evaluation for
all methods

B Training Hyperparameters808

We used the same set of hyperparameters (Table809

5) to train all LLMs and a different set of hyperpa-810

rameters (Table 6) to train all BERT models. We811

created a LoRA adapter to train LLMs with the812

LoRA configuration given in (Table 5 ).

Parameter Value

LoRA rank 32
LoRA alpha 64

LoRA dropout 1× 10−1

LoRA modules
up proj, down proj,
gate proj, k proj,
q proj, v proj, o proj

Batch size 1
Epochs 4

Learning rate 1× 10−4

Grad. accumulation 1
Weight decay 0.0
Warmup ratio 0.0

Table 5: Hyperparameters used for LoRA SFT training
of LLMs

813

Parameter Value

Batch size 16
Epochs 5

Learning rate 2× 10−5

Grad. accumulation 1
Weight decay 1× 10−2

Warmup ratio 1× 10−1

Table 6: Hyperparameters for BERT training

C Organizational Structure Details814

We define two predefined structures for dataset cre-815

ation: the Basic and Office structures, shown in816

Table 5 and Table 6, respectively. In the Basic struc-817

ture, a single CEO directly corresponds to all other818

roles, allowing us to test whether the models can819

leverage role-awareness when faced with a wide,820

single-layer hierarchy. In contrast, the Office struc-821

ture introduces a multi-level hierarchy, where the822

CEO supervises department managers, who in turn823

oversee several team members. This setup evalu-824

ates whether the methods discussed in Section 5.1825

can effectively capture and utilize hierarchical re- 826

lationships within the organization. Additionally, 827

Figure 7 presents several example roles introduced 828

in each structure for synthetic role data generation, 829

making the data specific to the roles defined in each 830

structure. 831

Figure 5: Hierarchical structure for Basic structure.

Figure 6: Hierarchical structure for Office structure.

Figure 7: Predefined roles for each Basic and Office
structure.

D Dataset Creation 832

Figure 8 shows our clustering scheme when re- 833

purposing the dataset. At the root level, datasets 834

are first partitioned into three clusters: General, 835

Shared, and Root-Only. Prompts in the General 836

cluster terminate immediately; those in Shared are 837

then split along the root’s direct subordinate roles, 838
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and recursion continues further. Furthermore, Fig-839

ure 9 shows the specific system-level prompt used840

to generate the synthetic data. Below the prompt841

is an example of the OpenAI API output with the842

specified keys after generating the dataset.843

Figure 8: Hierarchical clustering scheme of repurposed
dataset.

Figure 9: System-Level Output for Synthetic Dataset.

E Role-aware Method: Cls vs LLM-Cls844

vs LLM-Gen845

The Role-aware Cls shows a highly inconsistent846

performance, with a mean FPR of 0.41 and a large847

variance between 0.23 and 0.68, where the Roberta-848

large model performed the worst with the highest849

FPR of 0.68, which means that there are significant850

model-dependent weaknesses to unauthorized ac-851

cess. However, they are consistently low in FNR852

(0.04-0.06, average 0.05), indicating reliable access853

to authorized users. Conversely, the Role-aware 854

LLM-Gen exhibited more stable but poor security 855

performance with moderate FPR (0.28-0.38, av- 856

erage 0.33) and significantly higher FNR variabil- 857

ity (0.11-0.19, average 0.15), indicating that it has 858

greater difficulty in rejecting genuine access re- 859

quests across model implementations and organi- 860

zational designs. 861

Figure 10: Performance comparison of three role-
based access control architectures across security
metrics. Results show minimum, average, and maxi-
mum values for FPR, FNR, and Broken Role accuracy
across six different models per architecture, averaged
over multiple datasets with organizational structure vari-
ations. Higher Broken Role accuracy indicates better
defense against one of jailbreak attacks.

Most importantly, our analysis shows that there 862

are different security capabilities against adver- 863

sarial attacks in different architectures. The 864

Role-aware LLM-Gen strategy showed the best 865

protection against broken role attacks with an aver- 866

age broken role accuracy of 0.56 (range: 0.42-0.63), 867

and was able to reject the greatest percentage of 868

malicious role manipulation attempts. Such high 869

performance indicates that the integrated method, 870

in which both access control and question answer- 871

ing are performed by a single model, offers im- 872

proved contextual knowledge of role-based attacks. 873

Role-aware CLs performed at average levels (aver- 874

age: 0.48, range: 0.30-0.40), whereas Role-aware 875

LLM-CLs had the lowest broken role accuracy (av- 876

erage: 0.45, range: 0.39-0.48), which means that 877

it is more susceptible to such adversarial attacks. 878

These results indicate a curious tradeoff: whereas 879

the Role-aware LLM-Gen approach exhibits larger 880

FNR variation and moderate FPR, it makes up in 881

better resistance to advanced attacking methods, 882

indicating that the unified architecture might be 883

inherently more capable of identifying and resist- 884

ing role-based manipulation attacks than separated 885

classification systems. 886
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F Metrics for Jailbreak Experiment887

Figure 7 shows the detailed performance between888

the baseline and the model that has been trained on889

the jailbreak train set (See Section 7.1).890

Model Structure Accuracy Broken Jailbreak

Baseline

RB1 0.92 0.49 0.71
RO2 0.89 0.29 0.69
SB3 0.96 0.58 0.89
SO4 0.80 0.30 0.51

With
jailbreak
samples

RB 0.84 0.56 0.98
RO 0.88 0.27 0.70
SB 0.97 0.60 0.96
SO 0.82 0.39 0.83

Table 7: Jailbreak Experiment Performance for Llama
3.2 3B Instruct.

1Repurposed Basic, 2Repurposed Office, 3Synthetic Basic,
4Synthetic Office

G Metrics for Blacklist Experiment891

Figure 8 presents a detailed comparison between892

the baseline model and the model trained on the893

original plus the blacklist training set (see Sec-894

tion 7.2).895

Blacklist Topic Structure Accuracy Blacklist

Baseline

RB1 0.92 -
RO2 0.89 -
SB3 0.96 -
SO4 0.80 -

Politics

RB 0.84 1.00
RO 0.88 1.00
SB 0.97 1.00
SO 0.80 1.00

General

RB 0.84 1.00
RO 0.88 1.00
SB 0.96 1.00
SO 0.81 0.99

Table 8: Blacklist Experiment Performance for Llama
3.2 3B Instruct.

1Repurposed Basic, 2Repurposed Office, 3Synthetic Basic,
4Synthetic Office

Note that Baseline here denotes the baseline datasets
(original) used to train the model.

H Basic vs Office Structures896

After training the models using three methods of897

Section 5.1, we averaged the accuracy metrics for898

the two types of structures (basic and office). As899

shown in Figure 11, model performance, on aver-900

age, on the office organizational structure is lower901

than on the basic structure, as expected. For the 902

Role-aware Cls and Role-aware LLM-Cls methods, 903

the accuracy rates decreased by 6.0% and 6.7% 904

when trained with the office structure. The rea- 905

son for this is due to the deep hierarchy associated 906

with the office structure compared to the basic one. 907

Nonetheless, when using the Role-aware LLM-Gen 908

method, the accuracy rate increased 1.3% when 909

training with the office structure, potentially indi- 910

cating that, with answer generation, there is negli- 911

gible model performance difference when training 912

with either structures 913

Figure 11: Average Accuracy Rates of Models Trained
on the Basic vs Office Datasets.

Across almost all methods, models exhibit lower accu-
racy rates when trained with the office structure. Note
that for Role-aware LLM-Gen, accuracy rates for both
structures are almost equal.
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I Role vs No role comparison914

Tables 9 and 10 show the difference in quality of915

LLM responses to prompts with and without roles916

respectively. We use three metrics for response917

quality - Correctness, Completeness, and Clarity918

(on a scale of 1 to 5). The LLM responses are sent919

to ChatGPT 4.1 mini for evaluation as described920

in Section 7.3. The average metrics for prompts921

with and without roles are similar, with less than922

1% difference between each of the metrics.923

Architecture Dataset Model Org.
Structure Seed Completeness Correctness Clarity

LLM + LLM Repurposed Qwen2.5 3B Instruct Basic 42 3.86 3.26 4.62
LLM + LLM Repurposed Qwen2.5 3B Instruct Office 42 3.7 3.21 4.61
LLM + LLM Repurposed Llama 3.2 3B Instruct Basic 42 3.85 3.43 4.64
LLM + LLM Repurposed Llama 3.2 3B Instruct Office 42 3.93 3.28 4.7
LLM + LLM Repurposed Gemma 3 4B Instruct Basic 42 4.03 3.53 4.52
LLM + LLM Repurposed Gemma 3 4B Instruct Office 42 3.91 3.39 4.41
LLM + LLM Repurposed Qwen2.5 7B Instruct Basic 42 4.1 3.69 4.75
LLM + LLM Repurposed Qwen2.5 7B Instruct Office 42 4.01 3.55 4.63
LLM + LLM Repurposed Llama 3.1 8B Instruct Basic 42 4.11 3.69 4.73
LLM + LLM Repurposed Llama 3.1 8B Instruct Office 42 4.15 3.63 4.72
LLM + LLM Repurposed Gemma 7B Instruct Basic 42 3.95 3.61 4.44
LLM + LLM Repurposed Gemma 7B Instruct Office 42 4.03 3.6 4.36
LLM + LLM Synthetic Qwen2.5 3B Instruct Basic 42 3.93 3.59 4.75
LLM + LLM Synthetic Qwen2.5 3B Instruct Office 42 3.6 3.63 4.75
LLM + LLM Synthetic Llama 3.2 3B Instruct Basic 42 3.84 3.66 4.74
LLM + LLM Synthetic Llama 3.2 3B Instruct Office 42 3.68 3.66 4.71
LLM + LLM Synthetic Gemma 3 4B Instruct Basic 42 4.09 3.66 4.77
LLM + LLM Synthetic Gemma 3 4B Instruct Office 42 3.75 3.62 4.65
LLM + LLM Synthetic Qwen2.5 7B Instruct Basic 42 3.95 3.71 4.83
LLM + LLM Synthetic Qwen2.5 7B Instruct Office 42 3.59 3.69 4.74
LLM + LLM Synthetic Llama 3.1 8B Instruct Basic 42 4.04 3.73 4.81
LLM + LLM Synthetic Llama 3.1 8B Instruct Office 42 3.79 3.75 4.78
LLM + LLM Synthetic Gemma 7B Instruct Basic 42 4.05 3.71 4.69
LLM + LLM Synthetic Gemma 7B Instruct Office 42 3.74 3.73 4.66

Average 3.9 3.58 4.67

Table 9: Response quality when no role is included in question for LLM
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Architecture Dataset Model Org.
Structure Seed Completeness Correctness Clarity

LLM Repurposed Qwen2.5 3B Instruct Basic 42 3.85 3.41 4.58
LLM Repurposed Qwen2.5 3B Instruct Office 42 3.83 3.38 4.67
LLM Repurposed Llama 3.2 3B Instruct Basic 42 3.97 3.50 4.56
LLM Repurposed Llama 3.2 3B Instruct Office 42 3.80 3.40 4.59
LLM Repurposed Gemma 3 4B Instruct Basic 42 3.96 3.56 4.53
LLM Repurposed Gemma 3 4B Instruct Office 42 4.10 3.64 4.54
LLM Repurposed Qwen2.5 7B Instruct Basic 42 3.94 3.51 4.73
LLM Repurposed Qwen2.5 7B Instruct Office 42 4.09 3.59 4.73
LLM Repurposed Llama 3.1 8B Instruct Basic 42 4.09 3.65 4.64
LLM Repurposed Llama 3.1 8B Instruct Office 42 4.02 3.52 4.63
LLM Repurposed Gemma 7B Instruct Basic 42 3.77 3.42 4.38
LLM Repurposed Gemma 7B Instruct Office 42 3.73 3.36 4.36
LLM Synthetic Qwen2.5 3B Instruct Basic 42 3.89 3.56 4.75
LLM Synthetic Qwen2.5 3B Instruct Office 42 3.96 3.86 4.82
LLM Synthetic Llama 3.2 3B Instruct Basic 42 3.91 3.61 4.64
LLM Synthetic Llama 3.2 3B Instruct Office 42 3.87 3.76 4.70
LLM Synthetic Gemma 3 4B Instruct Basic 42 3.92 3.60 4.61
LLM Synthetic Gemma 3 4B Instruct Office 42 3.90 3.78 4.73
LLM Synthetic Qwen2.5 7B Instruct Basic 42 4.13 3.88 4.79
LLM Synthetic Qwen2.5 7B Instruct Office 42 3.98 3.81 4.79
LLM Synthetic Llama 3.1 8B Instruct Basic 42 3.86 3.60 4.78
LLM Synthetic Llama 3.1 8B Instruct Office 42 3.91 3.65 4.78
LLM Synthetic Gemma 7B Instruct Basic 42 3.84 3.55 4.54
LLM Synthetic Gemma 7B Instruct Office 42 3.88 3.65 4.59

Average 3.93 3.59 4.64

Table 10: Response quality when role is included in question for LLM
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J Comparison of encodings924

We show our results from comparison of different925

role encodings for access control as described in926

Section 7.4. We experimented with Single Name927

Encoding (Table 11), Hierarchical Name Encoding928

(Table 12), and Hierarchical Number Encoding (Ta-929

ble 13). We used four metrics to compare model930

responses across role encodings: Accuracy, FPR931

(how often the model gives access to unauthorized932

roles), FNR (how often the model denies access933

to authorized roles), and F1. Compared to Hier-934

archical Number Encoding, the Single Name En-935

coding has a 28.33% decrease in FPR (26.19% to936

18.77%) and a 45.15% decrease in the FNR (9.08%937

to 4.98%). There is a 47.64 % decrease in the bro-938

ken role rejection accuracy (51.42% to 26.92%).939

Similarly, the Hierarchical Name Encoding has a940

29.13 % decrease in FPR (26.19% to 18.56%), a941

45.15% decrease in the FNR (9.08% to 4.98%) and942

a 47.64 % decrease in the broken role rejection ac-943

curacy (51.42% to 26.92%) when compared to the944

Hierarchical Number Encoding. Overall, the Hi-945

erarchical Number Encoding has the highest FPR,946

highest FNR and highest broken role rejection ac-947

curacy.948
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Architecture Dataset Model Org.
Structure Seed Accuracy FPR FNR F1 Seen

Role Acc.
Unseen

Role Acc.

Exist
Mismatch

Acc.

Broken
Role Acc.

Random
Role Acc.

LLM Repurposed Llama 3.1 8B Instruct basic 42 84.11 16.50 15.00 85.54 86.33 81.89 78.00 43.00 100.00
LLM + LLM Repurposed Llama 3.1 8B Instruct basic 42 96.22 6.00 2.00 96.65 95.11 97.33 92.00 14.00 100.00
BERT + LLM Repurposed Modern BERT-base basic 42 90.56 14.25 5.60 91.74 91.89 89.22 81.00 53.00 100.00
LLM Repurposed Llama 3.1 8B Instruct office 42 84.56 22.50 11.00 86.65 87.89 80.11 70.00 49.00 100.00
LLM + LLM Repurposed Llama 3.1 8B Instruct office 42 88.11 20.25 4.00 89.86 89.22 87.00 73.00 17.00 100.00
BERT + LLM Repurposed Modern BERT-base office 42 87.89 21.75 4.40 89.77 88.78 87.00 71.00 33.00 100.00
LLM Synthetic Llama 3.1 8B Instruct basic 42 95.78 5.75 2.00 96.23 94.67 96.89 94.00 8.00 95.00
LLM + LLM Synthetic Llama 3.1 8B Instruct basic 42 98.11 2.25 2.00 98.30 98.11 98.11 97.00 7.00 100.00
BERT + LLM Synthetic Modern BERT-base basic 42 96.00 4.50 3.60 96.40 94.78 97.22 94.00 41.00 100.00
LLM Synthetic Llama 3.1 8B Instruct office 42 84.00 30.50 5.00 86.91 85.11 81.78 63.00 14.00 89.00
LLM + LLM Synthetic Llama 3.1 8B Instruct office 42 83.78 33.75 2.00 87.01 84.89 82.67 55.00 16.00 100.00
BERT + LLM Synthetic Modern BERT-base office 42 77.22 47.25 3.20 82.52 78.22 76.22 37.00 28.00 100.00

Average 88.86 18.77 4.98 90.63 89.58 87.95 75.42 26.92 98.67

Table 11: Access control metrics for Single Name Encoding

Architecture Dataset Model Org.
Structure Seed Accuracy FPR FNR F1 Seen

Role Acc.
Unseen

Role Acc.

Exist
Mismatch

Acc.

Broken
Role Acc.

Random
Role Acc.

LLM Repurposed Llama 3.1 8B Instruct basic 42 90.44 11.25 15.00 91.43 90.44 90.44 78.00 43.00 100.00
LLM + LLM Repurposed Llama 3.1 8B Instruct basic 42 94.11 9.75 2.00 94.83 95.22 93.00 92.00 14.00 100.00
BERT + LLM Repurposed Modern BERT-base basic 42 93.44 10.50 5.60 94.24 94.00 92.89 81.00 53.00 100.00
LLM Repurposed Llama 3.1 8B Instruct office 42 85.56 18.75 11.00 87.25 87.78 84.44 70.00 49.00 100.00
LLM + LLM Repurposed Llama 3.1 8B Instruct office 42 88.33 18.75 4.00 89.95 90.56 86.11 73.00 17.00 100.00
BERT + LLM Repurposed Modern BERT-base office 42 88.89 17.50 4.40 90.38 89.44 88.33 71.00 33.00 100.00
LLM Synthetic Llama 3.1 8B Instruct basic 42 96.33 6.00 2.00 96.75 95.22 97.44 94.00 8.00 95.00
LLM + LLM Synthetic Llama 3.1 8B Instruct basic 42 98.56 2.25 2.00 98.71 98.56 97.44 97.00 7.00 100.00
BERT + LLM Synthetic Modern BERT-base basic 42 96.56 4.25 3.60 96.91 97.33 95.78 94.00 41.00 100.00
LLM Synthetic Llama 3.1 8B Instruct office 42 80.78 34.50 5.00 84.32 83.00 78.56 63.00 14.00 89.00
LLM + LLM Synthetic Llama 3.1 8B Instruct office 42 78.11 46.50 2.00 83.23 79.22 77.00 55.00 16.00 100.00
BERT + LLM Synthetic Modern BERT-base office 42 79.33 42.75 3.20 83.91 81.44 77.22 37.00 28.00 100.00

Average 89.20 18.56 4.98 90.99 90.19 88.22 75.42 26.92 98.67

Table 12: Access control metrics for Hierarchical Name Encoding

Architecture Dataset Model Org.
Structure Seed Accuracy FPR FNR F1 Seen

Role Acc.
Unseen

Role Acc.

Exist
Mismatch

Acc.

Broken
Role Acc.

Random
Role Acc.

LLM Repurposed Llama 3.1 8B Instruct Basic 42 75.00 24.00 25.00 79.00 78.00 72.00 76.00 74.00 100.00
LLM + LLM Repurposed Llama 3.1 8B Instruct Basic 42 79.00 16.00 24.00 82.00 81.00 77.00 84.00 64.00 100.00
BERT + LLM Repurposed Modern BERT-base Basic 42 92.25 13.33 4.40 93.91 91.25 93.25 86.67 65.00 100.00
LLM Repurposed Llama 3.1 8B Instruct Office 42 80.00 27.00 15.00 84.00 84.00 77.00 73.00 49.00 99.00
LLM + LLM Repurposed Llama 3.1 8B Instruct Office 42 87.00 26.00 5.00 90.00 89.00 84.00 74.00 31.00 100.00
BERT + LLM Repurposed Modern BERT-base Office 42 86.75 27.33 4.80 89.98 89.00 84.50 72.67 50.00 100.00
LLM Synthetic Llama 3.1 8B Instruct Basic 42 89.00 19.00 7.00 91.00 89.00 89.00 81.00 62.00 95.00
LLM + LLM Synthetic Llama 3.1 8B Instruct Basic 42 97.00 3.00 2.00 98.00 98.00 97.00 97.00 43.00 100.00
BERT + LLM Synthetic Modern BERT-base Basic 42 89.75 17.33 6.00 91.98 88.50 91.00 82.67 71.00 100.00
LLM Synthetic Llama 3.1 8B Instruct Office 42 76.00 54.00 6.00 83.00 78.00 74.00 46.00 34.00 94.00
LLM + LLM Synthetic Llama 3.1 8B Instruct Office 42 81.00 48.00 2.00 87.00 83.00 79.00 52.00 20.00 100.00
BERT + LLM Synthetic Modern BERT-base Office 42 80.38 39.33 7.80 85.45 81.50 79.25 60.67 54.00 99.00

Average 84.43 26.19 9.08 87.94 85.85 83.08 73.81 51.42 98.92

Table 13: Access control metrics for Hierarchical Number Encoding
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Struct. Arch. Model Acc. FPR FNR F1 Corr. Comp. Clar. Seen Unseen

Repurposed Dataset (Dolly)
Basic LLM Qwen2.5-3B 76.33 22.67 24.33 80.00 3.92 3.53 4.65 80.00 72.67
Basic LLM Llama-3.2-3B 76.33 28.00 21.67 80.33 4.02 3.64 4.65 78.00 74.00
Basic LLM gemma-4B 75.33 27.33 23.00 79.67 3.99 3.55 4.59 78.33 72.33
Basic LLM Qwen2.5-7B 76.33 24.33 24.00 80.00 4.08 3.67 4.71 78.67 73.33
Basic LLM Llama-3.1-8B 75.67 25.00 24.00 79.33 4.12 3.65 4.69 78.00 73.00
Basic LLM gemma-7B 73.00 34.00 22.33 78.33 3.85 3.55 4.45 76.00 70.33
Basic LLM-Cls Qwen2.5-3B 90.33 16.00 5.67 92.67 – – – 90.67 90.67
Basic LLM-Cls Llama-3.2-3B 89.00 18.00 6.67 91.67 – – – 90.67 88.00
Basic LLM-Cls gemma-4B 91.33 14.67 5.33 93.33 – – – 92.67 90.33
Basic LLM-Cls Qwen2.5-7B 85.67 22.67 9.33 89.00 – – – 86.67 85.00
Basic LLM-Cls Llama-3.1-8B 77.33 29.67 18.33 81.67 – – – 78.67 76.00
Basic LLM-Cls gemma-7B 78.33 37.33 12.67 83.33 – – – 78.67 77.67
Basic Cls Modern BERT-base 92.96 11.44 4.40 94.44 – – – 92.92 93.00
Basic Cls Modern BERT-large 92.58 12.11 4.60 94.15 – – – 92.75 92.42
Basic Cls Google BERT-base 86.82 29.33 1.97 90.36 – – – 88.00 86.43
Basic Cls Google BERT-large 75.77 56.61 4.69 82.95 – – – 75.77 77.28
Basic Cls RoBERTa-base 74.21 57.18 3.29 82.50 – – – 80.07 71.66
Basic Cls RoBERTa-large 85.83 16.45 9.99 89.54 – – – 85.50 86.49
Office LLM Qwen2.5-3B 76.67 25.33 22.33 80.33 3.93 3.47 4.63 80.67 72.67
Office LLM Llama-3.2-3B 83.00 25.33 11.67 86.67 3.99 3.59 4.66 86.00 80.00
Office LLM gemma-4B 79.33 25.67 17.67 83.33 4.08 3.72 4.59 81.67 77.33
Office LLM Qwen2.5-7B 80.00 25.67 16.33 84.00 4.19 3.74 4.73 84.00 76.00
Office LLM Llama-3.1-8B 80.33 26.67 15.00 84.33 4.17 3.70 4.68 83.67 77.33
Office LLM gemma-7B 80.00 24.67 17.67 83.67 3.77 3.41 4.40 83.67 75.67
Office LLM-Cls Qwen2.5-3B 86.67 27.67 4.67 89.67 – – – 88.33 84.33
Office LLM-Cls Llama-3.2-3B 88.67 22.00 5.33 91.00 – – – 89.67 87.33
Office LLM-Cls gemma-4B 86.33 27.00 5.33 89.67 – – – 88.33 84.33
Office LLM-Cls Qwen2.5-7B 87.00 26.33 5.00 90.33 – – – 89.33 85.00
Office LLM-Cls Llama-3.1-8B 86.33 28.33 4.67 90.00 – – – 88.67 84.00
Office LLM-Cls gemma-7B 87.67 24.67 4.67 90.33 – – – 89.33 86.00
Office Cls Modern BERT-base 86.38 25.22 6.67 89.52 – – – 87.67 85.08
Office Cls Modern BERT-large 87.38 25.67 4.80 90.41 – – – 88.75 86.00
Office Cls Google BERT-base 85.11 30.20 6.09 90.17 – – – 89.19 83.62
Office Cls Google BERT-large 86.96 29.65 6.34 91.12 – – – 89.29 85.03
Office Cls RoBERTa-base 83.15 27.18 9.83 85.68 – – – 85.35 84.16
Office Cls RoBERTa-large 63.75 99.72 0.81 77.13 – – – 62.85 62.41

Table 14: Role-aware performance on repurposed (Dolly) dataset. Green cells mark the best accuracy in each dataset
block. Higher is better for all metrics except FPR/FNR (lower is better).
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Struct. Arch. Model Acc. FPR FNR F1 Corr. Comp. Clar. Seen Unseen

Synthetic Dataset
Basic LLM Qwen2.5-3B 72.00 37.33 22.33 77.67 3.96 3.69 4.74 72.67 71.33
Basic LLM Llama-3.2-3B 92.00 12.67 5.33 93.33 3.86 3.60 4.68 91.33 92.33
Basic LLM gemma-4B 75.33 42.00 14.33 81.33 3.96 3.63 4.62 75.33 75.00
Basic LLM Qwen2.5-7B 77.33 35.00 15.33 82.00 4.04 3.78 4.78 79.00 75.00
Basic LLM Llama-3.1-8B 92.67 13.33 4.67 94.00 3.95 3.73 4.79 92.67 92.00
Basic LLM gemma-7B 78.33 34.33 14.67 83.00 3.93 3.66 4.62 79.67 76.00
Basic LLM-Cls Qwen2.5-3B 90.67 14.67 6.67 92.33 – – – 89.33 91.67
Basic LLM-Cls Llama-3.2-3B 96.67 5.33 2.33 97.33 – – – 96.33 97.00
Basic LLM-Cls gemma-4B 97.33 4.00 2.33 97.67 – – – 97.00 97.33
Basic LLM-Cls Qwen2.5-7B 96.33 6.33 2.00 97.00 – – – 96.33 96.00
Basic LLM-Cls Llama-3.1-8B 97.00 3.67 2.00 98.00 – – – 97.33 97.33
Basic LLM-Cls gemma-7B 91.67 19.33 2.00 93.67 – – – 91.67 91.67
Basic Cls Modern BERT-base 91.08 12.00 7.07 92.88 – – – 89.92 92.25
Basic Cls Modern BERT-large 84.50 25.33 9.60 87.92 – – – 84.25 84.75
Basic Cls Google BERT-base 87.48 25.74 3.05 90.96 – – – 86.80 90.83
Basic Cls Google BERT-large 90.73 15.81 5.90 92.94 – – – 90.95 91.23
Basic Cls RoBERTa-base 80.67 48.27 3.67 85.95 – – – 80.46 80.61
Basic Cls RoBERTa-large 61.45 74.25 12.94 74.83 – – – 62.30 66.95
Office LLM Qwen2.5-3B 77.67 47.67 7.00 83.67 3.76 3.60 4.71 80.00 75.67
Office LLM Llama-3.2-3B 78.67 47.33 5.67 84.67 3.85 3.71 4.73 80.33 77.00
Office LLM gemma-4B 73.67 58.00 7.33 81.67 3.84 3.69 4.69 76.33 71.00
Office LLM Qwen2.5-7B 79.00 45.33 6.33 84.67 3.89 3.77 4.77 81.00 77.00
Office LLM Llama-3.1-8B 78.00 49.00 6.00 84.00 3.94 3.77 4.81 80.00 76.00
Office LLM gemma-7B 76.00 53.33 6.33 83.00 3.81 3.59 4.58 80.00 71.67
Office LLM-Cls Qwen2.5-3B 79.67 51.33 2.00 85.67 – – – 81.00 78.33
Office LLM-Cls Llama-3.2-3B 80.00 50.00 2.00 85.67 – – – 81.00 79.00
Office LLM-Cls gemma-4B 79.67 51.00 2.00 85.33 – – – 81.67 77.67
Office LLM-Cls Qwen2.5-7B 81.33 45.33 2.33 86.67 – – – 82.33 80.33
Office LLM-Cls Llama-3.1-8B 81.67 46.67 2.00 87.00 – – – 84.00 79.00
Office LLM-Cls gemma-7B 80.00 49.33 2.00 86.00 – – – 81.33 79.00
Office Cls Modern BERT-base 80.17 43.89 5.40 85.63 – – – 82.08 78.25
Office Cls Modern BERT-large 77.13 53.33 4.60 83.91 – – – 78.17 76.08
Office Cls Google BERT-base 75.32 62.32 3.97 83.51 – – – 78.18 73.29
Office Cls Google BERT-large 78.17 55.27 4.67 85.57 – – – 77.10 77.62
Office Cls RoBERTa-base 73.79 63.95 3.63 82.71 – – – 76.38 72.93
Office Cls RoBERTa-large 69.13 79.94 0.73 80.69 – – – 70.98 69.10

Table 15: Role-aware performance on synthetic datasets. Green cells mark the best accuracy in each dataset block.
Higher is better for all metrics except FPR/FNR (lower is better).
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