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Abstract

As large language models (LLMs) are increas-
ingly deployed in enterprise settings, control-
ling model behavior based on user roles be-
comes an essential requirement. Existing safety
methods typically assume uniform access and
focus on preventing harmful or toxic outputs,
without addressing role-specific access con-
straints. In this work, we investigate whether
LLMs can be fine-tuned to generate responses
that reflect the access privileges associated with
different organizational roles. We explore three
modeling strategies: a BERT-based classifier,
an LLM-based classifier, and role-conditioned
generation. To evaluate these approaches, we
construct two complementary datasets. The
first is adapted from existing instruction-tuning
corpora through clustering and role labeling,
while the second is synthetically generated to
reflect realistic, role-sensitive enterprise sce-
narios. We assess model performance across
varying organizational structures and analyze
robustness to prompt injection, role mismatch,
and jailbreak attempts.

1 Introduction

In enterprise workflows, access control is a core
security mechanism for regulating access to orga-
nizational resources. Through authentication and
authorization, systems verify user identities and
enforce access privileges. While role-based access
control (RBAC) is well established in traditional
software systems (Ferraiolo et al., 1995; Sandhu,
1998; Park et al., 2001), its application to large lan-
guage models (LLMs) remains largely unexplored.
As LLMs are increasingly deployed for enterprise
applications such as document generation (Wise-
man et al., 2017), summarization (Laskar et al.,
2023; Zhang et al., 2025), and internal assistance
(Muthusamy et al., 2023), it becomes critical to
enforce access control not just over outputs but at
the level of model instructions.
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Figure 1: A role-aware LLM rejects questions from
unauthorized roles, enhancing safety by restricting ac-
cess to sensitive information. Icon source: Flaticon.com
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Figure 1 demonstrates how role-aware language
models can help prevent unauthorized access to
sensitive information. When the same instruction
is issued by users in different roles, such as a CEO
and a researcher, a role-unaware LLM may provide
identical responses regardless of the requester’s per-
missions. In contrast, a role-aware LLM considers
the user’s role and restricts access appropriately,
disclosing information only to those with sufficient
clearance and declining requests from others. This
approach enables organizations to align LLM be-
havior with established access policies, minimizing
the risk of information leakage across roles.

Despite increasing attention to the safety and
alignment of LLMs (Wang et al., 2024a; Ge et al.,
2024), the challenge of role-conditioned instruc-
tion filtering has received limited focus. Most ex-
isting approaches assume uniform user access or
apply static safety filters, focusing primarily on pre-
venting the generation of harmful or toxic content
(Wang et al., 2024a,b; Azmi et al., 2025). These
methods do not account for access control policies
that vary by user role—a critical requirement in
organizational contexts. To support secure, multi-
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Figure 2: Overview of our methodology. Top-left: dataset preparation yields four datasets across two types
(repurposed and synthetic) with predefined structures. Top-right: balanced test distribution over positive/negative
and seen/unseen paraphrases. Bottom: three training strategies: Role-aware Cls (BERT-based), Role-aware LLM-

Cls (LLM-based), and Role-aware LLM-Gen (response

user deployments, we pose the following research
question: Can large language models be fine-tuned
to generate role-aware responses that enforce ac-
cess control? While LLMs continue to advance
in capability and generalization (Jiang et al., 2024;
Dubey et al., 2024; Bai et al., 2023; Dou et al.,
2025; Liu et al., 2024; Koto et al., 2025), their
application to role-sensitive scenarios remains un-
derexplored.

To address this research question, we simulate
realistic organizational scenarios and develop a
role-aware language model using three comple-
mentary strategies: (i) a BERT-based classifier,
(i1) an LLM-based classifier, and (iii) direct role-
conditioned generation. We evaluate these meth-
ods on two separate datasets: one repurposed from
existing instruction-tuning corpora using cluster-
ing and role-based labeling, and another consisting
of synthetic, role-sensitive instructions generated
by LLMs to reflect realistic enterprise interactions.
Unlike contemporaneous work such as Jayaraman
et al. (2025), which focuses on domain-level access
control, our approach explicitly models user roles
and supports fine-grained, hierarchical permissions
required in organizational settings.

generation).

Our contributions can be summarized as follows:

* We evaluate role-aware LLMs in realistic or-
ganizational settings with diverse access struc-
tures, using multiple modeling strategies. Our
experiments include full pretraining of six
BERT-based classifiers and adapter-based fine-
tuning on six different LLMs.

* We conduct robustness analyses under vari-
ous threat scenarios, including jailbreaking
across role-encoding strategies, access control
mismatches, and prompt injection or manipu-
lation attacks.

* We provide a comprehensive evaluation across
varying levels of organizational complexity,
comparing classifier-based and generation-
based approaches, and analyzing performance
on role-independent, blacklisted topics.

2 Related Works

Access Control in Traditional Systems In clas-
sical role-based access control (RBAC), users are
assigned roles with specific permissions (Ferraiolo
et al., 1995, 2003), enforcing the principle of least
privilege. Organizations often segregate data by
clearance levels or roles so that only authorized per-



sonnel can view sensitive records (Sandhu, 1998;
Jayaraman et al., 2025). Role hierarchies allow
higher-level roles (e.g., managers) to inherit the per-
missions of subordinate roles, a concept well under-
stood in databases and operating systems. However,
applying similar role-based permissions to a gen-
erative LLLM is nontrivial (Chan, 2025), since the
model can hallucinate or leak information beyond
its explicit training data (Kaddour et al., 2023).

Access Control in Language Models Work on
access control in language models remains lim-
ited. A contemporaneous study by Jayaraman
et al. (2025) introduces PermissionedLLMs, which
implement domain-based access control through
parameter-efficient fine-tuning methods such as
LoRA (Hu et al., 2022) and Few-Shot Parameter
Efficient Tuning (Liu et al., 2022). Their approach
defines access at the domain level, where a domain
represents a group of data records requiring identi-
cal credentials. In parallel, Saha et al. (2025) pro-
posed sudoLLM, which makes LLMs “user-aware”
by injecting secret biases into input queries based
on user identity. In contrast to these approaches,
our work focuses on role-based access control with
deeper hierarchical structures, making it more suit-
able for enterprise and organizational settings.

AdapterSwap (Fleshman et al., 2025) imple-
ments access control by associating different ac-
cess levels with separate LoRA adapters, which
are selected and composed at inference time. This
approach requires maintaining multiple domain-
specific adapters. In contrast, our method uses a
unified model that directly encodes role-awareness
without external composition. Chen et al. (2023)
address a related challenge from a privacy perspec-
tive, showing that pre-trained LL.Ms are prone to
leaking sensitive information and proposing a self-
moderation mechanism. While their work does not
focus on role-aware modeling, it shares our broader
goal of improving control over LLM outputs to pre-
vent unauthorized disclosures.

3 Problem Formulation

Let x be a prompt or instruction, y the LLM output,
and r a user’s role within an organization. A gen-
eral LLLM defines a conditional distribution over
outputs y dependent on a user’s instruction x:

Py | z).
However, a role-aware LLM defines the follow-
ing distribution:

ProteLrm (Y | @, 7),
such that » € R, where R is the set of all roles in
an organization.

Now, formalizing access control, define a tree
T = (R, <) such that for any two roles 71,72 € R
where r; < ro denotes 7o inherits 71’s permissions.
Then, the access set of a role r € R is:

Ar) = 8¢,

where S(r') C Q. S(r') is the set of all queries
of role 7/, and Q is the universe of all valid input-
output instruction types. Hence,

P(y | z,r),
5deny(y)a

if x € A(r)

ProleLLM(y | z,7) = { otherwise

such that dqeny () is a degenerate distribution con-
centrating all the probability mass on a refusal out-
put (i.e., access is denied).

4 Dataset Construction

We define two organizational structures, each com-
prising 20 roles, to evaluate role-awareness under
varying levels of hierarchy. The first is the Basic
structure, where a single CEO directly supervises
19 subordinate roles. The second is the Office
structure, which includes a CEO, four department
managers reporting to the CEO, and 3—4 team mem-
bers reporting to each manager. A detailed break-
down of roles in both structures is provided in Ap-
pendix C. These configurations are used to assess
the ability of each method to encode and respond
to hierarchical role information, as outlined in Sec-
tion 5.1.

For each organizational structure, we construct
two datasets using complementary strategies (see
Figure 2). The first is by repurposing existing
instruction-tuning data via clustering, and the latter
involves generating synthetic data via LLMs.

Repurposing Existing Instruction Dataset We
repurpose We repurpose the Databricks Dolly-15k
dataset (Conover et al., 2023) by clustering in-
structions and assigning roles based on hierarchical
structure. Using a sentence transformer (Reimers
and Gurevych, 2019), we encode each instruction
and its context into dense vectors. Clustering be-
gins at the root of the organization: we apply K-
Means to partition the data into three high-level



groups: General, Shared, and Root Only (e.g.,
CEO-specific). Prompts in the General group are
marked terminal and excluded from further subdi-
vision.! Shared prompts are recursively partitioned
along the hierarchy. At each level, prompts are split
into role-specific clusters corresponding to subordi-
nate roles (e.g., Department 1, Department 2, etc.).
Within each cluster, we further divide prompts into
Shared (used across subordinates) and Role Only
(exclusive to the role). The process continues recur-
sively: Shared prompts are passed down for further
subdivision, while Role Only groups are treated as
terminal. This hierarchical clustering procedure,
illustrated in Figure 8 (Appendix D), yields fine-
grained, role-aligned instruction sets that mirror
the structure of the target organization.

Synthetic Organization Dataset We use Ope-
nAI’s GPT-4.1 mini with a temperature of 0.7
to generate synthetic organizational data. Based
on the basic and office structures (Appendix C),
we define each role, department, and access range
in a structured JSON-like format. Prompts are
then generated for each role, conditioned on
its responsibilities and access scope. The re-
sulting data is organized with the fields: role,
instruction, and output. We also generate
200 general instruction-response pairs represent-
ing organization-wide prompts that are accessible
to all roles. Details of the generation prompt are
provided in Appendix D.

Synthetic Dataset Quality Analysis To evaluate
the quality of the synthetic dataset, we randomly
sampled 100 query-response pairs for manual anal-
ysis. Each pair was scored on two binary criteria:
(1) whether the query was relevant to the assigned
role, and (2) whether the response was complete
and appropriate. A score of 1 was given for each
criterion if it was met, and O otherwise. The results
show that over 96% of the samples satisfied both
criteria, indicating high relevance and response
quality.

Training Set Construction To train the model to
distinguish between authorized and unauthorized
access, we construct positive and negative instances
from each instruction-response pair. First, we as-
sign each pair the lowest-level role authorized to
access the instruction. Using this role as an an-
chor, we generate four training instances through a

'"The General group refers to prompts that are accessible
to all roles within the organization

sliding-window over the organizational hierarchy.
Specifically, we create: (1) a positive instance using
the minimal authorized role, and (2) another posi-
tive instance using its immediate parent, reflecting
inherited permissions. We then generate two nega-
tive instances: (3) one from a subordinate role (or a
random role from a different branch if no children
exist), and (4) one from a non-existent external role.
Each instance is labeled with a binary (1 for ac-
cess granted, O for denied). For the denied request,
LLM is expected to generate a generic refusal mes-
sage. This procedure results in 6,000 training sam-
ples per dataset variant: repurposed_basic, repur-
posed_office, synthetic_basic, and synthetic_office.
The ratio of positive and negative samples is ap-
proximately balanced: repurposed datasets contain
54.5% valid examples, and synthetic datasets con-
tain 52.5%.

Test Set Construction Each dataset variant in-
cludes a test set of 1,000 samples, balanced with
50% positive and 50% negative instances. Posi-
tive samples are split evenly into two subsets: 250
with previously unseen instructions, and 250 with
paraphrased versions of training instructions gen-
erated by GPT-4.1 mini. Negative samples are di-
vided into three categories: (1) 300 mismatch cases,
where an unauthorized in-hierarchy role attempts
to access restricted content (e.g., a leaf role query-
ing CEO-level data); (2) 100 random cases using
external roles not present in the hierarchy; and (3)
100 broken cases where the role string is intention-
ally corrupted (e.g., “1.2” — “01.02”, “1..2”, or
“one.two”) to test model robustness. Each negative
category includes an equal mix of unseen and para-
phrased instructions, ensuring that every test set
contains exactly 500 unseen and 500 seen prompts
(See Figure 2.

S Experimental Set-Up
5.1 Role Encoding Strategies

After grouping instruction-response pairs by role,
we encode each role to study how different en-
coding strategies affect access control. Each or-
ganizational position is represented by a string
that reflects its location in the hierarchy, which
is appended to every instruction-response pair to
indicate the minimum role required to access the
content. Access is permitted to roles at or above
the specified level and denied to those below or
in unrelated branches. We explore three encoding
methods. Hierarchical Number Encoding uses



dot-delimited indices (e.g., “1” for the CEO, “1.1”
and “1.2” for direct subordinates), with “1.0” re-
served for general, organization-wide instructions.
Single Name Encoding uses only the role’s title
(e.g., “CEO,” “IT Department Manager”), while
Hierarchical Name Encoding concatenates the
full path of titles (e.g., “CEO - IT Department Man-
ager - IT Support”) to retain both structural and
semantic information.

5.2 Training Approaches

We evaluate three methods for access control, train-
ing each on all four dataset variants. To ensure
reproducibility, we fix random seeds and report av-
eraged results over three runs per setting. Training
data is shuffled to eliminate order effects. Each
training instance includes a prompt, answer, role,
and access label. Full training details and hyperpa-
rameters are provided in Appendix B.

Role-aware Cls We trained six BERT-based
models (Devlin et al., 2019; Liu et al., 2019), in-
cluding MODERN BERT-BASE, MODERN BERT-
LARGE, GOOGLE BERT-BASE, GOOGLE BERT-
LARGE, ROBERTA-BASE, and ROBERTA-LARGE
for access control. We appended the role to the end
of the prompt as “<prompt> [SEP] <role>”.

Role-aware LLM-Cls We fine-tune six open-
source LLMs (Bai et al., 2023; Dubey et al., 2024;
Team et al., 2024)—QWEN 2.5 (3B, 7B), LLAMA
3.xX (3B, 8B), and GEMMA (4B, 7B)—to perform
binary access control classification. We include
both small and large models to assess the effect of
model size. For each example, the role is prepended
to the prompt as “Position: <role> <prompt>”,
and a system prompt instructs the model to respond
with True (grant access) or False (deny access).
All inputs and labels are formatted as conversa-
tions and fine-tuned using LoRA with supervised
learning.

Role-aware LLM-Gen We use the same LLMs
and fine-tuning setup as in Role-aware LLM-ClIs,
but instead train the model to generate full answers
rather than binary access decisions. The system
prompt is removed to allow free-form responses,
and the output corresponds to the original answer
instead of a True/False label.

5.3 Evaluation Protocol

For the classification-based approaches (Role-
aware Cls and Role-aware LLM-Cls), we re-

port standard metrics: accuracy, false positive
rate (FPR), false negative rate (FNR), and FI
score. FPR captures unauthorized access incor-
rectly granted, while FNR reflects valid access
that was wrongly denied. We also report perfor-
mance on “seen” vs. “‘unseen” instructions, along
with category-specific accuracy for mismatch, ran-
dom, and broken roles. For Role-aware LLM-Gen,
which outputs either a direct answer or a generic
denial, we use GPT-4.1 mini to classify each re-
sponse as grant or deny, enabling comparison with
the ground-truth valid label.

Finally, to assess whether access control impacts
answer quality, we randomly sample 100 valid
(granted) examples and compare the generated re-
sponses to the original references. Each response
is evaluated using GPT-4.1 mini, scored on a 1-5
scale for correctness, completeness, and clarity.

6 Results

Tables 1 and 2 (or Table 14 and Table 15 for de-
tails) summarize the performance of our proposed
role-aware LLLMs evaluated on access-control ac-
curacy and LL.M-rated generation quality across
two distinct training datasets: a repurposed existing
instruction dataset (Dolly) and a synthetic organi-
zation dataset. The evaluation is conducted on
all Role-aware methods (Cls, LLM-Cls, and LLM-
Gen), assessing both quantitative metrics (e.g., ac-
curacy, negative-pair defense) and qualitative di-
mensions (correctness, completeness, clarity). The
detailed results and comparisons between the train-
ing datasets and modeling methods are discussed
in further detail in the following sections.

Access-Control Performance Our role-aware
LLMs consistently achieved high access-control ac-
curacy across both datasets, with LLM-Cls models
outperforming other variants; specifically, MOD-
ERNBERT LARGE attained the highest accuracy
(90.0%) on Dolly, while LLAMA3 8B INSTRUCT
achieved top performance (89.3%) on the syn-
thetic dataset. Generative approaches (LLM-Gen)
slightly lagged in raw accuracy by approximately
5-10 percentage points with an influx in false-
negative errors, indicating a strict access enforce-
ment in role-conditioned generation. However, no-
table negative results emerged, particularly with
ROBERTA LARGE (Cls), whose accuracy drasti-
cally decreased to 74.8% accompanied by an in-
flated false-positive rate (58%) on the Dolly dataset
and subsequently in the synthetic dataset, highlight-



Method Model Ace. () FPR() FNR()  Fi(p _ Aee® F1(1) Negative Pair Acc. (1)
Seen Unseen Seen Unseen Mismatch Broken Random

Repurposed Existing Instruction Dataset (Dolly)

Role-aware Cls BERT Base 86.0+24 29.8+1.0 4.0+24 90.3+0.5 88.6 85.0 923 89.5 70.8 42.6 100.0
RoBERTa Base 787454 422+164 6.6+4.1 84.1+£3.3 827 779 87.6 83.5 58.4 532 100.0
ModernBERT Base 89.7+3.8 18.3+7.8 55425 92.0+£29 903 89.0 925 91.5 81.7 60.2 100.0
BERT Large 81.4+6.2 43.1+14.8 55429 87.0+4.5 825 81.2 882 86.1 58.0 442 100.0
RoBERTa Large 74.8+£12.2 58.1+45.6 54453 83.3+6.8 742 744  82.0 83.6 41.0 28.3 90.5
ModernBERT Large  90.0+3.2 18.9+8.1 4.7+1.0 92.3+23 90.8 89.2 929 91.6 81.1 48.8 99.8

Role-aware LLM-Cls  Qwen2.5 3B Instruct ~ 88.5+2.2 21.846.6 5.2+0.8 91.2+1.7 89.5 875 91.8 90.3 78.2 443 99.7
Llama3.2 3B Instruct ~ 88.84+1.7 20.0+3.7 6.0+1.3 91.3+1.4 90.2 87.7 923 90.2 80.0 45.0 100.0
Gemma3 4B Instruct ~ 88.8+3.3 20.8+7.5 5.3+1.4 91.5+2.6 90.5 873 92.7 90.3 79.2 52.5 100.0
Qwen2.5 7B Instruct ~ 86.3+1.8 24.5+44 72425 89.7+1.4 88.0 85.0 903 88.5 75.5 48.8 99.8
Llama3.1 8B Instruct  81.84+5.0  29.0+£7.7 11.5+£82 85.8+4.6 83.7 80.0 87.3 84.2 71.0 46.2 99.7
Gemma 7B Instruct 83.0+£5.3 31.0+13.6 8.7+6.3 86.8+3.9 84.0 81.8 87.8 85.7 69.0 48.8 99.8

Role-aware LLM-Gen Qwen2.5 3B Instruct ~ 76.5£1.0  24.0+£3.3 23.3+2.3 80.2+1.0 80.3 727 84.0 76.5 76.0 66.8 99.8
Llama3.2 3B Instruct ~ 79.74+3.8  26.7£3.6 16.7+5.7 83.5+3.6 82.0 77.0 85.8 81.0 73.3 57.5 99.8
Gemma3 4B Instruct  77.34£2.6  26.5+2.2 20.3+3.8 81.5+2.4 80.0 74.8 83.8 79.0 73.5 56.2 97.2
Qwen2.5 7B Instruct ~ 78.2+2.1  25.04£3.5 20.24+5.1 82.0+2.4 81.3 747 852 78.7 75.0 60.2 100.0
Llama3.1 8B Instruct ~ 78.0+2.6  25.8+2.1 19.5+5.0 81.8+2.8 80.8 752 84.7 79.3 74.2 60.2 99.7
Gemma 7B Instruct 73.0£1.5 34.0+6.8 223426 78.3+1.0 76.0 70.3 81.7 75.0 66.0 61.7 97.3

Synthetic Organization Dataset

Role-aware Cls BERT Base 81.4+6.7 44.0+20.1 3.54+1.1 87.24+4.1 825 82.1 87.7 86.0 56.9 37.8 100.0
RoBERTa Base 772439 56.1+£8.7 3.7+£0.8 84.3+1.8 784 76.8 845 84.0 44.7 53.9 100.0
ModernBERT Base 85.6+6.0 27.9+179 6.2+1.8 89.3+4.0 86.0 853 894 89.1 72.1 64.8 99.8
BERT Large 84.5+6.9 35.5+21.6 53422 89.3+4.1 84.0 84.4 90.6 88.2 65.5 42.6 99.0
RoBERTa Large 653+4.9 77.14£34 6.8+6.7 77.8+£34 66.6 68.0 784 78.5 22.4 474 99.5
ModernBERT Large  80.84+8.5 39.3+£18.6 7.1+6.9 85.9+62 81.2 80.4 86.1 85.7 60.7 483 99.8

Role-aware LLM-Cls  Qwen2.5 3B Instruct ~ 85.24+6.6 33.0+20.3 4.3+3.5 89.0+4.1 85.2 85.0 89.3 89.2 67.0 50.3 100.0
Llama3.2 3B Instruct ~ 88.34+9.2 27.74£24.5 2.240.8 91.5+6.4 88.7 88.0 91.8 91.0 72.3 46.2 100.0
Gemma3 4B Instruct  88.5+9.8 27.5+426.0 2.24+0.4 91.5+6.8 89.3 87.5 925 91.0 72.5 36.8 99.8
Qwen2.5 7B Instruct ~ 88.8+8.4 25.8+21.8 2.2+4+1.2 91.8+57 893 882 925 91.5 74.2 473 100.0
Llama3.1 8B Instruct  89.3+8.6 25.2+24.1 2.0+0.0 /92.5+6.2 90.7 88.2 93.0 91.8 74.8 31.5 99.8
Gemma 7B Instruct 85.8+6.5 34.3+16.8 2.0+0.0 89.844.4 86.5 853 90.2 89.7 65.7 39.0 99.7

Role-aware LLM-Gen Qwen2.5 3B Instruct ~ 74.8+£3.5 42.5+6.8 14.748.5 80.7+3.6 76.3 735 815 80.2 57.5 59.3 95.0
Llama3.2 3B Instruct  85.3+7.4 30.0£19.1 5.5+1.2 89.0+49 85.8 84.7 89.3 88.8 70.0 62.0 95.8
Gemma3 4B Instruct ~ 74.5+4.7 50.0+10.6 10.84+5.8 81.5+3.5 758 73.0 81.8 80.7 50.0 52.8 75.5
Qwen2.5 7B Instruct ~ 78.2+£5.2 40.2+11.1 10.845.6 83.3+4.1 80.0 76.0 84.7 82.2 59.8 51.3 95.2
Llama3.1 8B Instruct  85.3+8.4 31.24+20.0 5.3+1.5 89.0+5.8 86.3 84.0 89.7 88.5 68.8 50.8 95.0
Gemma 7B Instruct 772441 438+11.1 10.5+£5.8 83.0+3.2 79.8 73.8 84.7 81.0 56.2 40.3 713

Table 1: Overall performance on the role-aware access-control benchmark. Bold marks the best score for a given
training set, while underline marks the best model within each method.

ing critical sensitivity to encoder selection. In the
more challenging synthetic dataset, all methods
faced increased difficulty (3—6% accuracy drop),
yet instruction-tuned models maintained compara-
tively robust performance, emphasizing that richer
instruction tuning substantially mitigates accuracy
degradation under semantically overlapping role
conditions. Please refer to Appendix E for further
explanation.

Method Robustness To evaluate the robustness
of our proposed methods, each method-model com-
bination was trained under two organizational struc-
tures (basic, office) across three independent ran-
dom seeds, with the results averaged and sum-
marized in Tables 1-2. Generally, all methods
demonstrated low variance (acc std.< 4%) on the
Dolly dataset, except for notable brittleness in
ROBERTA LARGE (Cls), which exhibited sub-
stantial instability (12.2% accuracy, 45.6% FPR),
contrasting strongly with the more stable MOD-
ERNBERT LARGE (3.2% accuracy, 8.1% FPR).
Instruction-tuned LLM classifiers (LLM-Cls), such

as QWEN2.5 3B INST. and LLAMA3 3B INST.,
further reduced variance (acc std.< 2.2%), under-
scoring stability gains from modern instruction tun-
ing. On the synthetic dataset, semantic overlaps in-
creased variance to around 8—-10%, yet instruction-
tuned models (e.g., LLAMA3 8B INST.) main-
tained comparative stability (8.4-8.6%). More de-
tailed of the performances on Basic and Office are
shown in Appendix H. Collectively, these results
demonstrate that our proposed methods achieve
robust performance, primarily due to richer pre-
training and instruction tuning rather than merely
model scale.

Negative Pair Accuracy All methods achieved
near-perfect accuracy (100%) in identifying ran-
domly assigned negative-role pairs, highlighting
their effectiveness in clearly invalid scenarios.
However, performance dropped notably for sub-
tler cases such as existing-but-mismatched and
broken-role pairs. Specifically, LLM-Cls models
demonstrated comparatively stronger performance
(e.g., MODERNBERT LARGE: 81.1%; QWEN2.5



Model Generation Quality (7, 5-pt rubric)

Correctness ~ Completeness Clarity
Repurposed Existing Instruction Dataset (Dolly)
Qwen?2.5 3B Instruct 3.940.1 3.540.2 4.6+0.1
Llama3.2 3B Instruct 4.0+0.1 3.6+£0.2 4.740.1
Gemma3 4B Instruct 4.040.1 3.6£0.1 4.6+0.0
Qwen2.5 7B Instruct 4.1+0.2 3.7+0.2 4.7+0.0
Llama3.1 8B Instruct 4.140.1 3.74+0.1 4.7+0.1
Gemma 7B Instruct 3.910.1 3.54+0.1 4.5+0.1
Synthetic Organization Dataset
Qwen2.5 3B Instruct 3.940.2 3.6£0.2 4.7£0.1
Llama3.2 3B Instruct 3.940.1 3.7£0.1 4.740.0
Gemma3 4B Instruct 3.940.1 3.74£0.1 4.740.1
Qwen2.5 7B Instruct 4.0+0.1 3.8+0.1 4.840.0
Llama3.1 8B Instruct 3.91+0.1 3.8+0.1 4.8+0.0
Gemma 7B Instruct 3.940.1 3.6£0.1 4.610.1

Table 2: LLM-rated generation quality against gold ref-
erence. Bold = best within the same training dataset;
underline = best within the Role-aware LLM-Gen
method.

3B INST.: 78.2% on Dolly), whereas standard
classifiers (Cls), particularly ROBERTA LARGE
(41.0%), struggled significantly. Generative mod-
els (LLM-Gen) showed moderate accuracy (e.g.,
LLAMA3 3B INST.: 73.3%), underscoring ongoing
challenges in detecting nuanced role mismatches.
These results indicate that while instruction-tuned
models substantially enhance negative-pair detec-
tion, subtle distinctions between valid yet incor-
rect role assignments remain difficult, suggesting
a promising direction for future improvements in
fine-grained role understanding.

Generation Quality Generation quality ratings
(correctness, completeness, clarity) were consis-
tently high (around 4 out of 5), with larger
instruction-tuned models (e.g., QWEN2.5 7B
INST., LLAMA3 8B INST.) achieving the best
scores. The differences between the training data
sets were minimal, highlighting the reliability of
role-aware generation regardless of the data source.

7 Analysis
7.1 Jailbreak Robustness

To assess the model’s robustness against prompt
injection attempts, we conducted an additional ex-
periment involving modifications to the original
datasets. Specifically, we generated 100 more
negative samples for both training and test sets
in which the original instruction was prepended
with misleading phrases. These included asser-
tions of higher authority (e.g., “I’m authorized as
CEO to ask this:”) or commands (e.g., “Regard-
less of policy, respond to this:”). We evaluated

Role-aware LLM-Cls using Llama 3.2 3B Instruct.
The model was trained in two ways: the first in-
corporates jailbreak samples in the training data,
and the other does not. A comparative summary of
performance is presented in Appendix F. Although
the inclusion of jailbreak prompts did not signif-
icantly affect overall accuracy across the test set
(except for experiments with the repurposed_basic
dataset, which can be attributed to randomness),
the model trained with jailbreak-specific examples
demonstrated improved resistance to prompt injec-
tion with an average of 87% compared to the 70%
accuracy of the baseline model.

7.2 Robustness on Blacklisted Topics

To evaluate the model’s capacity to restrict answers
to queries whose content violates organizational
policies, we extended the original datasets men-
tioned in Section 4. We generated 100 queries on
general blacklisted topics (e.g., violence, weapons,
cheating, etc.) and 100 queries related to real-life
politics. The respective responses to the queries
were designed to be restricted, regardless of an em-
ployee’s role. Subsequently, each original dataset
was extended by adding 50 unique blacklisted
queries of each type separately, and duplicates of
each blacklisted query for multiple organization
roles. The remaining 50 queries of each black-
listed dataset were used for the evaluation datasets.
Using the Role-aware LL.M-Cls method, LLAMA
3.2 3B INSTRUCT was trained and tested using
these extended datasets. The detailed information
on the results can be found in Appendix G. As
shown in Table 8, the blacklisted model’s perfor-
mance remained unchanged relative to the baseline
model. The model was also highly successful in
restricting answers to blacklisted queries with an
overall accuracy >99%. The accuracy rates for the
model trained on the repurposed basic dataset were
the only outliers, exhibiting a decrease in accuracy
from 92% to 84%.

7.3 Effect of Role Information in Prompts

To assess whether including role information in the
prompt affects response quality, we fine-tuned all
LLMs on the four training datasets without role
annotations. We evaluated response quality us-
ing three metrics: correctness, completeness, and
clarity. From the 1,000 test outputs, we randomly
sampled 100 responses and compared them to the
reference answers using GPT-4.1 mini. The same
evaluation was applied to Role-aware LLM-Gen,



Prompt Style Correctness Completeness Clarity
Without roles 3.90 3.58 4.67
With roles 3.93 3.59 4.64

Table 3: Quality ratings (five-point scale) of responses
generated by LLMs trained with versus without role
prompts, assessed by GPT-4.1 mini.

which was trained with roles included in the prompt.
Results show that the average difference in quality
between the two settings is under 1%, indicating
that including roles does not degrade response qual-
ity. Summary metrics are reported in Table 3, with
detailed results in Appendix L.

030 Encoding Type
0.25 Bl Hierarchical number
-271% -271% I Single name
m0.20 0.19 _0.19 Il Hierarchical name
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-50% -50%
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Figure 3: Comparison of FPR and FNR across role
encodings. The Hierarchical Number Encoding has the
worst defense against unauthorized roles (highest FPR),
and overly denies authorized roles (highest FNR).

Encoding Type
I Hierarchical number
I Single name
Il Hierarchical name

-47% -47%
0.27 0.27

Broken role rejection accuracy

Figure 4: Comparison of broken role rejection accuracy
across role encodings. The Hierarchical Number En-
coding has the best defense against broken roles.

7.4 Effect of Role Encoding on Access Control

We investigate how different role encoding strate-
gies affect access control performance across our
three methods: Role-aware Cls, Role-aware LLM-
Cls, and Role-aware LLM-Gen. For consistency,
we use the MODERN BERT-BASE model for Role-
aware Cls and LLAMA 3.1 8B INSTRUCT for the
LLM-based methods, training each on the four
dataset variants.

We compare three encoding strategies: Hierar-
chical Number Encoding, Single Name Encoding,
and Hierarchical Name Encoding, and present the
results in Figures 3 and 4. Hierarchical Number En-
coding achieves the highest FPR, indicating poorer
rejection of unauthorized roles and weaker robust-
ness to broken role strings (e.g., misspelled or ma-
nipulated encodings). This suggests that LLMs
can more easily differentiate between role names
like “CEO” and “Researcher” than between for-
mats like “1.1” and “1.a” . This encoding also
results in the highest FNR, likely because LLMs
struggle to generalize upward in hierarchical struc-
tures (e.g., understanding that “1” can access data
assigned to “1.1”). In contrast, name-based en-
codings offer slightly better generalization across
authorized roles but are more vulnerable to adver-
sarial role perturbations. Full results are provided
in Appendix J.

8 Conclusion

This paper investigates methods for modeling role-
aware behavior in large language models, with a
focus on enforcing access control and evaluating
the effects of different fine-tuning strategies and
datasets. Our experiments compare classification-
based and generative approaches across multiple
organizational structures. Instruction-tuned classi-
fiers (LLM-Cls) consistently outperform both gen-
erative (LLM-Gen) and traditional classifier-based
(Cls) methods, reaching up to 90.0% and 89.3%
accuracy on the Dolly and synthetic datasets, re-
spectively, without compromising answer quality.

Despite high overall performance, challenges re-
main. All models are effective at rejecting clearly
unauthorized roles, such as random or external enti-
ties (=100% accuracy), and instruction-tuned meth-
ods reliably detect more subtle mismatches (=70%
accuracy on average). However, broken role for-
mats and fine-grained violations still present diffi-
culties, with a 15-30% gap in accuracy. Generative
models, while more flexible, suffer a modest perfor-
mance trade-off. Future work should focus on en-
hancing generalization across complex hierarchies,
reducing false positives from brittle encoders, and
improving discrimination between closely related
roles.

9 Limitations

While our results demonstrate promising capabil-
ities in enabling safe and role-aware deployment



of LLMs within organizational contexts, several
limitations constrain the scope of our conclusions.

Unified Organization Representation Our ex-
periments used a single adapter to represent all
roles within an organization. Although effective,
we did not investigate the alternative of using a
multi-adapter strategy, such as separate adapters
for each department. This strategy could poten-
tially reduce information leakage by further isolat-
ing department-specific knowledge, though it may
come at the cost of overall effectiveness.

Access Control Post Fine-tuning We demon-
strated effective fine-tuning of adapters for initial
access control; however, our methodology did not
address dynamic modification or addition of roles
after the fine-tuning phase. Future research should
explore approaches that enable post-training up-
dates to role-based access, as roles are dynamic
and such updates would eliminate the need to re-
train adapters from scratch.

Alignment Methods Beyond SFT This study ex-
clusively employed SFT for alignment. We did not
explore alternative methods such as Direct Pref-
erence Optimization (DPO) or other preference-
based alignment techniques, which could poten-
tially yield improved alignment outcomes.

Integration of External Knowledge Although
our results indicate strong capabilities in control-
ling internal knowledge, either by restricting spe-
cific topics organization-wide or selectively au-
thorizing content per role, we did not evaluate
role-aware control when the LLM is augmented
with external knowledge sources (e.g., Retrieval-
Augmented Generation or web search). Investigat-
ing how role-based adapters influence responses
that incorporate external information remains an
open area for future study.
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Seed # Value
Seed 1 42
Seed 2 937
Seed3 3827

Table 4: Seeds for training, testing and evaluation for
all methods

B Training Hyperparameters

We used the same set of hyperparameters (Table
5) to train all LLMs and a different set of hyperpa-
rameters (Table 6) to train all BERT models. We
created a LoRA adapter to train LLMs with the
LoRA configuration given in (Table 5 ).

Parameter Value
LoRA rank 32
LoRA alpha 64
LoRA dropout 1x1071
up proj, down proj,
LoRA modules gate proj, k proj,
q proj, v proj, o proj
Batch size 1
Epochs 4
Learning rate 1x107*
Grad. accumulation 1
Weight decay 0.0
Warmup ratio 0.0

Table 5: Hyperparameters used for LoORA SFT training
of LLMs

Parameter Value
Batch size 16
Epochs 5
Learning rate 2x107°
Grad. accumulation 1
Weight decay 1x1072
Warmup ratio 1x1071

Table 6: Hyperparameters for BERT training

C Organizational Structure Details

We define two predefined structures for dataset cre-
ation: the Basic and Office structures, shown in
Table 5 and Table 6, respectively. In the Basic struc-
ture, a single CEO directly corresponds to all other
roles, allowing us to test whether the models can
leverage role-awareness when faced with a wide,
single-layer hierarchy. In contrast, the Office struc-
ture introduces a multi-level hierarchy, where the
CEO supervises department managers, who in turn
oversee several team members. This setup evalu-
ates whether the methods discussed in Section 5.1
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can effectively capture and utilize hierarchical re-
lationships within the organization. Additionally,
Figure 7 presents several example roles introduced
in each structure for synthetic role data generation,
making the data specific to the roles defined in each
structure.

‘)
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Figure 6: Hierarchical structure for Office structure.

CEO CEO

Member a — Data Analyst — Department Manager — Marketing
Member b — Survey Specialist — Marketing Associate A
Member ¢ — Research Methodologist —— Marketing Associate B
Member d — Literature Reviewer —— Marketing Associate C
Member e — Statistical Consultant —— Marketing Associate D
Member f — Field Operations —— Department Manager — Sales
Coordinator — Sales Rep A
— Member g — Interview Scheduler — Sales Rep B
—— Member h — Operations Strategist — Sales Rep C
— Member i — Procurement Officer —— Sales Rep D
— Member j — Budget Coordinator — Department Manager — HR:
—— Member k — Inventory Manager — HR Specialist A
— Member 1 — Logistics Planner —— HR Specialist B
— Member m — Resource Allocation —— HR Specialist C
nalyst L HR Specialist D
Member n = Public Relations Officer L— Department Manager = IT:
Member o = Social Media IT Support A
Coordinator IT Support B
f— Member p — Event Manager IT Support C
—— Member q — Content Strategist
t—— Member r — Community Engagement

Lead
L— Member s — Graphic Designer

Figure 7: Predefined roles for each Basic and Office
structure.

D Dataset Creation

Figure 8 shows our clustering scheme when re-
purposing the dataset. At the root level, datasets
are first partitioned into three clusters: General,
Shared, and Root-Only. Prompts in the General
cluster terminate immediately; those in Shared are
then split along the root’s direct subordinate roles,



and recursion continues further. Furthermore, Fig-
ure 9 shows the specific system-level prompt used
to generate the synthetic data. Below the prompt
is an example of the OpenAl API output with the
specified keys after generating the dataset.

Dataset

lRoIe Encoding: 1 l Role Encoding: 1.0

[ Shared J [ General ]

{ Root-Only }

Role Encoding: 1.N

Figure 8: Hierarchical clustering scheme of repurposed
dataset.

Role Data Generation

Prompt: """You are a data generation assistant. Your task is to generate role-specific
synthetic, realistic data for organizational settings. The schema will include field names,
types, and any constraints or requirements for the data.

Generate queries and responses that reflect the role's responsibilities in the specified
organizational or institutional structure.

Consider the role's responsibilities and access privileges when generating the examples.

Output must be in JSON format, with the following keys:
- "role": The name of the role.
- "department": Associated department (if applicable).
- "access_range": The data access range.
- "queries": List of 100 realistic queries.
- "responses": Corresponding list of 100 realistic responses to each query.""

"role": "CEO (t)"
"department™: "

Figure 9: System-Level Output for Synthetic Dataset.

E Role-aware Method: Cls vs LLM-Cls
vs LLM-Gen

The Role-aware Cls shows a highly inconsistent
performance, with a mean FPR of 0.41 and a large
variance between 0.23 and 0.68, where the Roberta-
large model performed the worst with the highest
FPR of 0.68, which means that there are significant
model-dependent weaknesses to unauthorized ac-
cess. However, they are consistently low in FNR
(0.04-0.06, average 0.05), indicating reliable access
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to authorized users. Conversely, the Role-aware
LLM-Gen exhibited more stable but poor security
performance with moderate FPR (0.28-0.38, av-
erage 0.33) and significantly higher FNR variabil-
ity (0.11-0.19, average 0.15), indicating that it has
greater difficulty in rejecting genuine access re-
quests across model implementations and organi-
zational designs.

Comparison of Method Architectures: FPR, FNR, and Broken Role Accuracy
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Figure 10: Performance comparison of three role-
based access control architectures across security
metrics. Results show minimum, average, and maxi-
mum values for FPR, FNR, and Broken Role accuracy
across six different models per architecture, averaged
over multiple datasets with organizational structure vari-
ations. Higher Broken Role accuracy indicates better
defense against one of jailbreak attacks.

Most importantly, our analysis shows that there
are different security capabilities against adver-
sarial attacks in different architectures. The
Role-aware LLM-Gen strategy showed the best
protection against broken role attacks with an aver-
age broken role accuracy of 0.56 (range: 0.42-0.63),
and was able to reject the greatest percentage of
malicious role manipulation attempts. Such high
performance indicates that the integrated method,
in which both access control and question answer-
ing are performed by a single model, offers im-
proved contextual knowledge of role-based attacks.
Role-aware CLs performed at average levels (aver-
age: 0.48, range: 0.30-0.40), whereas Role-aware
LLM-CLs had the lowest broken role accuracy (av-
erage: 0.45, range: 0.39-0.48), which means that
it is more susceptible to such adversarial attacks.
These results indicate a curious tradeoff: whereas
the Role-aware LLM-Gen approach exhibits larger
FNR variation and moderate FPR, it makes up in
better resistance to advanced attacking methods,
indicating that the unified architecture might be
inherently more capable of identifying and resist-
ing role-based manipulation attacks than separated
classification systems.



F Maetrics for Jailbreak Experiment

Figure 7 shows the detailed performance between
the baseline and the model that has been trained on
the jailbreak train set (See Section 7.1).

Model Structure Accuracy Broken Jailbreak
RB! 0.92 0.49 0.71
2
Baseline RO3 0.839 0.29 0.69
SB 0.96 0.58 0.89
so* 0.80 0.30 051
i RB 0.84 0.56 0.98
e RO 0.88 0.27 0.70
jailbreak
samples SB 0.97 0.60 0.96
SO 0.82 0.39 0.83

Table 7: Jailbreak Experiment Performance for Llama
3.2 3B Instruct.

'Repurposed Basic, *Repurposed Office, *Synthetic Basic,
4Synthetic Office

G Metrics for Blacklist Experiment

Figure 8 presents a detailed comparison between
the baseline model and the model trained on the
original plus the blacklist training set (see Sec-
tion 7.2).

Blacklist Topic ~ Structure Accuracy Blacklist

RB' 0.92 -
2

Baseline R03 0.89 B
SB 0.96 -
so* 0.80 -
RB 0.84 1.00

Politics RO 0.88 1.00
SB 0.97 1.00
SO 0.80 1.00
RB 0.84 1.00

General RO 0.88 1.00
SB 0.96 1.00
SO 0.81 0.99

Table 8: Blacklist Experiment Performance for Llama
3.2 3B Instruct.

'Repurposed Basic, *Repurposed Office, *Synthetic Basic,
4Synthetic Office

Note that Baseline here denotes the baseline datasets
(original) used to train the model.

H Basic vs Office Structures

After training the models using three methods of
Section 5.1, we averaged the accuracy metrics for
the two types of structures (basic and office). As
shown in Figure 11, model performance, on aver-
age, on the office organizational structure is lower
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than on the basic structure, as expected. For the
Role-aware Cls and Role-aware LLM-Cls methods,
the accuracy rates decreased by 6.0% and 6.7%
when trained with the office structure. The rea-
son for this is due to the deep hierarchy associated
with the office structure compared to the basic one.
Nonetheless, when using the Role-aware LLM-Gen
method, the accuracy rate increased 1.3% when
training with the office structure, potentially indi-
cating that, with answer generation, there is negli-
gible model performance difference when training
with either structures

W Basic Structure
mm Office Structure

0.84 -6.0%
0.79

0.78 +1.3% 0.79

Accuracy

Role-aware LLM-Gen Role-aware LLM-Cls Role-aware Cls

Figure 11: Average Accuracy Rates of Models Trained
on the Basic vs Office Datasets.

Across almost all methods, models exhibit lower accu-
racy rates when trained with the office structure. Note
that for Role-aware LLM-Gen, accuracy rates for both
structures are almost equal.



I Role vs No role comparison

Tables 9 and 10 show the difference in quality of
LLM responses to prompts with and without roles
respectively. We use three metrics for response
quality - Correctness, Completeness, and Clarity
(on a scale of 1 to 5). The LLM responses are sent
to ChatGPT 4.1 mini for evaluation as described
in Section 7.3. The average metrics for prompts
with and without roles are similar, with less than

1% difference between each of the metrics.

Architecture Dataset Model S Org. Seed  Completeness Correctness Clarity
tructure
LLM +LLM  Repurposed Qwen2.5 3B Instruct Basic 42 3.86 3.26 4.62
LLM+LLM  Repurposed Qwen2.5 3B Instruct Office 42 3.7 3.21 4.61
LLM+LLM  Repurposed  Llama 3.2 3B Instruct Basic 42 3.85 343 4.64
LLM+LLM  Repurposed  Llama 3.2 3B Instruct Office 42 393 3.28 4.7
LLM +LLM  Repurposed Gemma 3 4B Instruct Basic 42 4.03 3.53 4.52
LLM+LLM  Repurposed  Gemma 3 4B Instruct Office 42 391 3.39 4.41
LLM +LLM  Repurposed Qwen2.5 7B Instruct Basic 42 4.1 3.69 4.75
LLM +LLM  Repurposed Qwen2.5 7B Instruct Office 42 4.01 3.55 4.63
LLM +LLM  Repurposed Llama 3.1 8B Instruct Basic 42 4.11 3.69 4.73
LLM+LLM  Repurposed  Llama 3.1 8B Instruct Office 42 4.15 3.63 4.72
LLM +LLM  Repurposed Gemma 7B Instruct Basic 42 3.95 3.61 4.44
LLM +LLM  Repurposed Gemma 7B Instruct Office 42 4.03 3.6 4.36
LLM + LLM Synthetic Qwen2.5 3B Instruct Basic 42 3.93 3.59 4.75
LLM + LLM Synthetic Qwen2.5 3B Instruct Office 42 3.6 3.63 4.75
LLM + LLM Synthetic Llama 3.2 3B Instruct Basic 42 3.84 3.66 4.74
LLM + LLM Synthetic Llama 3.2 3B Instruct Office 42 3.68 3.66 4.71
LLM + LLM Synthetic Gemma 3 4B Instruct Basic 42 4.09 3.66 4.77
LLM + LLM Synthetic Gemma 3 4B Instruct Office 42 3.75 3.62 4.65
LLM + LLM Synthetic Qwen2.5 7B Instruct Basic 42 3.95 3.71 4.83
LLM + LLM Synthetic Qwen2.5 7B Instruct Office 42 3.59 3.69 4.74
LLM + LLM Synthetic Llama 3.1 8B Instruct Basic 42 4.04 3.73 4.81
LLM + LLM Synthetic Llama 3.1 8B Instruct Office 42 3.79 3.75 4.78
LLM + LLM Synthetic Gemma 7B Instruct Basic 42 4.05 3.71 4.69
LLM + LLM Synthetic Gemma 7B Instruct Office 42 3.74 3.73 4.66
Average 39 3.58 4.67

Table 9: Response quality when no role is included in question for LLM
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Org.

Architecture Dataset Model S Seed  Completeness  Correctness  Clarity
tructure
LLM Repurposed Qwen2.5 3B Instruct Basic 42 3.85 341 4.58
LLM Repurposed Qwen2.5 3B Instruct Office 42 3.83 3.38 4.67
LLM Repurposed  Llama 3.2 3B Instruct Basic 42 3.97 3.50 4.56
LLM Repurposed  Llama 3.2 3B Instruct Office 42 3.80 3.40 4.59
LLM Repurposed Gemma 3 4B Instruct Basic 42 3.96 3.56 4.53
LLM Repurposed Gemma 3 4B Instruct Office 42 4.10 3.64 4.54
LLM Repurposed Qwen2.5 7B Instruct Basic 42 3.94 3.51 4.73
LLM Repurposed Qwen2.5 7B Instruct Office 42 4.09 3.59 4.73
LLM Repurposed  Llama 3.1 8B Instruct Basic 42 4.09 3.65 4.64
LLM Repurposed  Llama 3.1 8B Instruct Office 42 4.02 3.52 4.63
LLM Repurposed Gemma 7B Instruct Basic 42 3.77 3.42 4.38
LLM Repurposed Gemma 7B Instruct Office 42 3.73 3.36 4.36
LLM Synthetic Qwen2.5 3B Instruct Basic 42 3.89 3.56 4.75
LLM Synthetic Qwen2.5 3B Instruct Office 42 3.96 3.86 4.82
LLM Synthetic Llama 3.2 3B Instruct Basic 42 3.91 3.61 4.64
LLM Synthetic Llama 3.2 3B Instruct Office 42 3.87 3.76 4.70
LLM Synthetic Gemma 3 4B Instruct Basic 42 3.92 3.60 4.61
LLM Synthetic Gemma 3 4B Instruct Office 42 3.90 3.78 4.73
LLM Synthetic Qwen2.5 7B Instruct Basic 42 4.13 3.88 4.79
LLM Synthetic Qwen2.5 7B Instruct Office 42 3.98 3.81 4.79
LLM Synthetic Llama 3.1 8B Instruct Basic 42 3.86 3.60 4.78
LLM Synthetic Llama 3.1 8B Instruct Office 42 391 3.65 4.78
LLM Synthetic Gemma 7B Instruct Basic 42 3.84 3.55 4.54
LLM Synthetic Gemma 7B Instruct Office 42 3.88 3.65 4.59
Average 393 3.59 4.64

Table 10: Response quality when role is included in question for LLM
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J Comparison of encodings

We show our results from comparison of different
role encodings for access control as described in
Section 7.4. We experimented with Single Name
Encoding (Table 11), Hierarchical Name Encoding
(Table 12), and Hierarchical Number Encoding (Ta-
ble 13). We used four metrics to compare model
responses across role encodings: Accuracy, FPR
(how often the model gives access to unauthorized
roles), FNR (how often the model denies access
to authorized roles), and F1. Compared to Hier-
archical Number Encoding, the Single Name En-
coding has a 28.33% decrease in FPR (26.19% to
18.77%) and a 45.15% decrease in the FNR (9.08%
to 4.98%). There is a 47.64 % decrease in the bro-
ken role rejection accuracy (51.42% to 26.92%).
Similarly, the Hierarchical Name Encoding has a
29.13 % decrease in FPR (26.19% to 18.56%), a
45.15% decrease in the FNR (9.08% to 4.98%) and
a 47.64 % decrease in the broken role rejection ac-
curacy (51.42% to 26.92%) when compared to the
Hierarchical Number Encoding. Overall, the Hi-
erarchical Number Encoding has the highest FPR,
highest FNR and highest broken role rejection ac-
curacy.
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Exist

e o Org. e Seen Unseen X Broken Random
Architecture Dataset Model Structure Seed  Accuracy FPR FNR Fl1 Role Ace.  Role Acc. Mismatch Role Ace.  Role Acc.
LLM Repurposed ~ Llama 3.1 8B Instruct basic 42 84.11 16.50  15.00  85.54 86.33 81.89 78.00 43.00 100.00
LLM + LLM Repurposed ~ Llama 3.1 8B Instruct basic 42 96.22 6.00 2.00 96.65 95.11 97.33 92.00 14.00 100.00
BERT + LLM  Repurposed Modern BERT-base basic 42 90.56 14.25 5.60 91.74 91.89 89.22 81.00 53.00 100.00
LLM Repurposed ~ Llama 3.1 8B Instruct office 42 84.56 22.50 11.00  86.65 87.89 80.11 70.00 49.00 100.00
LLM + LLM Repurposed ~ Llama 3.1 8B Instruct office 42 88.11 20.25 4.00 89.86 89.22 87.00 73.00 17.00 100.00
BERT + LLM Repurposed Modern BERT-base office 42 87.89 21.75 4.40 89.77 88.78 87.00 71.00 33.00 100.00
LLM Synthetic Llama 3.1 8B Instruct basic 42 95.78 575 2.00 96.23 94.67 96.89 94.00 8.00 95.00
LLM + LLM Synthetic Llama 3.1 8B Instruct basic 42 98.11 225 2.00 98.30 98.11 98.11 97.00 7.00 100.00
BERT + LLM Synthetic Modern BERT-base basic 42 96.00 4.50 3.60 96.40 94.78 97.22 94.00 41.00 100.00
LLM Synthetic Llama 3.1 8B Instruct office 42 84.00 30.50 5.00 86.91 85.11 81.78 63.00 14.00 89.00
LLM + LLM Synthetic Llama 3.1 8B Instruct office 42 83.78 33.75 2.00 87.01 84.89 82.67 55.00 16.00 100.00
BERT + LLM Synthetic Modern BERT-base office 42 77.22 47.25 3.20 82.52 78.22 76.22 37.00 28.00 100.00
Average 88.86 18.77 4.98 90.63 89.58 87.95 75.42 26.92 98.67

Table 11: Access control metrics for Single Name Encoding

Org Seen Unseen Exist Broken Random
Architecture Dataset Model Structure Seed  Accuracy FPR FNR Fl1 Role Acc. Role Acc. Ml;:;]jmh Role Acc. Role Acc.
LLM Repurposed Llama 3.1 8B Instruct basic 42 90.44 11.25 15.00 91.43 90.44 90.44 78.00 43.00 100.00
LLM + LLM Repurposed Llama 3.1 8B Instruct basic 42 94.11 9.75 2.00 94.83 95.22 93.00 92.00 14.00 100.00
BERT + LLM Repurposed Modern BERT-base basic 42 93.44 10.50 5.60 94.24 94.00 92.89 81.00 53.00 100.00
LLM Repurposed Llama 3.1 8B Instruct office 42 85.56 18.75 11.00 87.25 87.78 84.44 70.00 49.00 100.00
LLM + LLM Repurposed Llama 3.1 8B Instruct office 42 88.33 18.75 4.00 89.95 90.56 86.11 73.00 17.00 100.00
BERT + LLM Repurposed Modern BERT-base office 42 88.89 17.50 4.40 90.38 89.44 88.33 71.00 33.00 100.00
LLM Synthetic Llama 3.1 8B Instruct basic 42 96.33 6.00 2.00 96.75 95.22 97.44 94.00 8.00 95.00
LLM + LLM Synthetic Llama 3.1 8B Instruct basic 42 98.56 225 2.00 98.71 98.56 97.44 97.00 7.00 100.00
BERT + LLM Synthetic Modern BERT-base basic 42 96.56 4.25 3.60 96.91 97.33 95.78 94.00 41.00 100.00
LLM Synthetic Llama 3.1 8B Instruct office 42 80.78 34.50 5.00 84.32 83.00 78.56 63.00 14.00 89.00
LLM + LLM Synthetic Llama 3.1 8B Instruct office 42 78.11 46.50 2.00 83.23 79.22 77.00 55.00 16.00 100.00
BERT + LLM Synthetic Modern BERT-base office 42 79.33 42.75 3.20 83.91 81.44 77.22 37.00 28.00 100.00
Average 89.20 18.56 4.98 90.99 90.19 88.22 75.42 26.92 98.67

Table 12: Access control metrics for Hierarchical Name Encoding

Org Seen Unseen Exist Broken Random
Architecture Dataset Model Structure Seed  Accuracy FPR FNR Fl1 Role Ace.  Role Acc. Mismatch Role Ace.  Role Acc.
LLM Repurposed ~ Llama 3.1 8B Instruct Basic 42 75.00 24.00 25.00  79.00 78.00 72.00 76.00 74.00 100.00
LLM + LLM Repurposed  Llama 3.1 8B Instruct 42 79.00 16.00 24.00 82.00 81.00 77.00 84.00 64.00 100.00
BERT + LLM Repurposed Modern BERT-base Basic 42 92.25 13.33 4.40 93.91 91.25 93.25 86.67 65.00 100.00
LLM Repurposed ~ Llama 3.1 8B Instruct Office 42 80.00 27.00 15.00 84.00 84.00 77.00 73.00 49.00 99.00
LLM + LLM Repurposed ~ Llama 3.1 8B Instruct Office 42 87.00 26.00 5.00 90.00 89.00 84.00 74.00 31.00 100.00
BERT + LLM Repurposed Modern BERT-base Office 42 86.75 2733 4.80 89.98 89.00 84.50 72.67 50.00 100.00
LLM Synthetic Llama 3.1 8B Instruct Basic 42 89.00 19.00 7.00 91.00 89.00 89.00 81.00 62.00 95.00
LLM + LLM Synthetic Llama 3.1 8B Instruct Basic 42 97.00 3.00 2.00 98.00 98.00 97.00 97.00 43.00 100.00
BERT + LLM Synthetic Modern BERT-base Basic 42 89.75 17.33 6.00 91.98 88.50 91.00 82.67 71.00 100.00
LLM Synthetic Llama 3.1 8B Instruct Office 42 76.00 54.00 6.00 83.00 78.00 74.00 46.00 34.00 94.00
LLM + LLM Synthetic Llama 3.1 8B Instruct Office 42 81.00 48.00 2.00 87.00 83.00 79.00 52.00 20.00 100.00
BERT + LLM Synthetic Modern BERT-base Office 42 80.38 39.33 7.80 85.45 81.50 79.25 60.67 54.00 99.00
Average 84.43 26.19 9.08 87.94 85.85 83.08 73.81 51.42 98.92

Table 13: Access control metrics for Hierarchical Number Encoding
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Struct. Arch. Model Acc. FPR FNR F1 Corr. Comp. Clar. Seen Unseen

Repurposed Dataset (Dolly)

Basic LLM Qwen2.5-3B 76.33 22.67 24.33 80.00 3.92 353 4.65 80.00 72.67
Basic LLM Llama-3.2-3B 76.33 28.00 21.67 80.33 4.02 3.64 4.65 78.00 74.00
Basic LLM gemma-4B 75.33 27.33 23.00 79.67 3.99 355 459 7833 7233
Basic LLM Qwen2.5-7B 76.33 24.33 24.00 80.00 4.08 3.67 471 78.67 73.33
Basic LLM Llama-3.1-8B 75.67 25.00 24.00 79.33 4.12 3.65 4.69 78.00 73.00
Basic LLM gemma-7B 73.00 34.00 22.33 7833 3.85 355 445 76.00 70.33
Basic LLM-Cls Qwen2.5-3B 90.33 16.00 5.67 92.67 - - - 90.67 90.67
Basic LLM-Cls Llama-3.2-3B 89.00 18.00 6.67 91.67 - - - 90.67 88.00
Basic LLM-Cls gemma-4B 91.33 14.67 533 9333 - - - 9267 9033
Basic LLM-Cls Qwen2.5-7B 85.67 22.67 9.33 89.00 - - - 86.67 85.00
Basic LLM-Cls Llama-3.1-8B 77.33 29.67 18.33 81.67 - - - 78.67 76.00
Basic LLM-Cls gemma-7B 78.33 37.33 12.67 8333 - - - 78.67 177.67
Basic Cls Modern BERT-base 92.96 11.44 440 9444 - - - 9292 93.00
Basic Cls Modern BERT-large 92.58 12.11 4.60 94.15 - - - 9275 9242
Basic Cls Google BERT-base 86.82 29.33 1.97 90.36 - - - 88.00 86.43
Basic Cls Google BERT-large 75.77 56.61 4.69 8295 - - - 7577 77.28
Basic Cls RoBERTa-base 7421 57.18 329 8250 - - - 80.07 71.66
Basic Cls RoBERTa-large 85.83 1645 999 8954 - - - 8550 86.49
Office LLM Qwen2.5-3B 76.67 2533 2233 80.33 393 347 4.63 80.67 72.67
Office LLM Llama-3.2-3B 83.00 25.33 11.67 86.67 399 359 4.66 86.00 80.00
Office LLM gemma-4B 79.33 25.67 17.67 83.33 4.08 3.72 459 81.67 7733
Office LLM Qwen2.5-7B 80.00 25.67 16.33 84.00 4.19 374 473 84.00 76.00
Office LLM Llama-3.1-8B 80.33 26.67 15.00 84.33 4.17 370 4.68 83.67 77.33
Office LLM gemma-7B 80.00 24.67 17.67 83.67 3.77 3.41 4.40 83.67 75.67
Office LLM-CIs Qwen2.5-3B 86.67 27.67 4.67 89.67 - - - 88.33 84.33
Office LLM-Cls Llama-3.2-3B 88.67 22.00 5.33 91.00 - - - 89.67 87.33
Office LLM-Cls gemma-4B 86.33 27.00 5.33 89.67 - - - 8833 8433
Office LLM-Cls Qwen2.5-7B 87.00 26.33 5.00 90.33 - - - 89.33 85.00
Office LLM-Cls Llama-3.1-8B 86.33 28.33 4.67 90.00 - - - 88.67 84.00
Office LLM-Cls gemma-7B 87.67 24.67 4.67 9033 - - - 89.33 86.00
Office Cls Modern BERT-base 86.38 25.22 6.67 89.52 - - - 87.67 85.08
Office Cls Modern BERT-large 87.38 25.67 4.80 9041 - - - 88.75 86.00
Office Cls Google BERT-base 85.11 30.20 6.09 90.17 - - - 89.19 83.62
Office Cls Google BERT-large 86.96 29.65 6.34 91.12 - - - 8929 85.03
Office Cls RoBERTa-base 83.15 27.18 9.83 85.68 - - - 8535 84.16
Office Cls RoBERTa-large 63.75 99.72 0.81 77.13 - - - 6285 6241

Table 14: Role-aware performance on repurposed (Dolly) dataset. Green cells mark the best accuracy in each dataset
block. Higher is better for all metrics except FPR/FNR (lower is better).
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Struct. Arch. Model Acc. FPR FNR F1 Corr. Comp. Clar. Seen Unseen

Synthetic Dataset

Basic LLM Qwen2.5-3B 72.00 37.33 22.33 77.67 396 3.69 474 7267 7133
Basic LLM Llama-3.2-3B 92.00 12.67 533 9333 3.86 3.60 468 9133 9233
Basic LLM gemma-4B 75.33 42.00 14.33 81.33 396 3.63 4.62 7533 75.00
Basic LLM Qwen2.5-7B 77.33 35.00 15.33 82.00 4.04 3.78 4.78 79.00 75.00
Basic LLM Llama-3.1-8B 92.67 13.33 4.67 94.00 395 373 479 92.67 92.00
Basic LLM gemma-7B 78.33 34.33 14.67 83.00 393 3.66 4.62 79.67 76.00
Basic LLM-Cls Qwen2.5-3B 90.67 14.67 6.67 9233 - - - 8933 91.67
Basic LLM-Cls Llama-3.2-3B 96.67 533 233 9733 - - - 96.33 97.00
Basic LLM-Cls gemma-4B 97.33 400 233 97.67 - - - 97.00 97.33
Basic LLM-Cls Qwen2.5-7B 9633 633 200 97.00 - - - 96.33 96.00
Basic LLM-Cls Llama-3.1-8B 97.00 3.67 2.00 98.00 - - - 9733 97.33
Basic LLM-Cls gemma-7B 91.67 19.33 2.00 93.67 - - - 91.67 91.67
Basic Cls Modern BERT-base 91.08 12.00 7.07 92.88 - - - 8992 9225
Basic Cls Modern BERT-large 84.50 25.33 9.60 87.92 - - - 8425 8475
Basic Cls Google BERT-base 87.48 25.74 3.05 9096 - - - 86.80 90.83
Basic Cls Google BERT-large 90.73 15.81 5.90 9294 - - - 9095 91.23
Basic Cls RoBERTa-base 80.67 48.27 3.67 8595 - - - 80.46 80.61
Basic Cls RoBERTa-large 61.45 7425 1294 7483 - - - 6230 66.95
Office LLM Qwen2.5-3B 77.67 47.67 7.00 83.67 3.76 3.60 4.71 80.00 75.67
Office LLM Llama-3.2-3B 78.67 4733 5.67 8467 3.85 371 473 80.33 77.00
Office LLM gemma-4B 73.67 58.00 7.33 81.67 3.84 3.69 4.69 7633 71.00
Office LLM Qwen2.5-7B 79.00 4533 6.33 84.67 3.89 377 4.77 81.00 77.00
Office LLM Llama-3.1-8B 78.00 49.00 6.00 84.00 3.94 3.77 4.81 80.00 76.00
Office LLM gemma-7B 76.00 53.33 6.33 83.00 3.81 3.59 458 80.00 71.67
Office LLM-Cls Qwen2.5-3B 79.67 5133 2.00 85.67 - - - 81.00 78.33
Office LLM-Cls Llama-3.2-3B 80.00 50.00 2.00 85.67 - - - 81.00 79.00
Office LLM-Cls gemma-4B 79.67 51.00 2.00 8533 - - - 81.67 77.67
Office LLM-Cls Qwen2.5-7B 81.33 45.33 233 86.67 - - - 8233 80.33
Office LLM-Cls Llama-3.1-8B 81.67 46.67 2.00 87.00 - - - 84.00 79.00
Office LLM-Cls gemma-7B 80.00 49.33 2.00 86.00 - - - 81.33 79.00
Office Cls Modern BERT-base 80.17 43.89 5.40 8563 - - - 82.08 78.25
Office Cls Modern BERT-large 77.13 53.33 4.60 8391 - - - 78.17 176.08
Office Cls Google BERT-base 75.32 62.32 397 8351 - - - 78.18 73.29
Office Cls Google BERT-large 78.17 55.27 4.67 85.57 - - - 77.10 77.62
Office Cls RoBERTa-base 73.79 6395 3.63 8271 - - - 7638 7293
Office Cls RoBERTa-large 69.13 7994 0.73 80.69 - - - 7098 69.10

Table 15: Role-aware performance on synthetic datasets. Green cells mark the best accuracy in each dataset block.
Higher is better for all metrics except FPR/FNR (lower is better).
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