Learning to Communicate Locally for Large-Scale Multi-Agent Pathfinding

Valeriy Vyaltsev, Alsu Sagirova, Anton Andreychuk, Yuri Kuratov, Konstantin Yakovlev,
Aleksandr Panov, Alexey Skrynnik

CogAlI Lab
Moscow, Russia
andreychuk @cogailab.com

Abstract

Multi-agent pathfinding (MAPF) is a widely used abstraction
for multi-robot trajectory planning problems, where multiple
homogeneous agents move simultaneously within a shared
environment. Although solving MAPF optimally is NP-hard,
scalable and efficient solvers are critical for real-world appli-
cations such as logistics and search-and-rescue. To this end,
the research community has proposed various decentralized
suboptimal MAPF solvers that leverage machine learning.
Such methods frame MAPF (from a single agent perspec-
tive) as Dec-POMDP when at each time step an agent has
to decide an action based on the local observation and typi-
cally solve the problem via reinforcement learning or imita-
tion learning. We follow the same approach but additionally
introduce a learnable communication module tailored to in-
crease the level of cooperation between the agents via effi-
cient feature sharing. We present the Local Communication
for Multi-agent Pathfinding (LC-MAPF), a foundation model
that applies multi-round communication between neighbor-
ing agents to exchange information and improve their coor-
dination. Our experiments show that the introduced method
outperforms the existing learning-based MAPF solvers, in-
cluding IL and RL based approaches, across diverse metrics
in a diverse range of (unseen) test scenarios. Remarkably, the
introduced communication mechanism does not compromise
the scalability LC-MAPF, which is a common bottleneck for
communication-based MAPF solvers.

Introduction

Modern robotic systems often involve multiple mobile
agents that must navigate and operate within shared environ-
ments, such as robots transporting goods in automated ware-
houses (Li et al. 2021a) or autonomous vehicles on public
roads (Li et al. 2023). A key abstraction for modeling and
solving the challenge of coordinating such agents safely is
multi-agent pathfinding (MAPF) (Stern et al. 2019).

In MAPEF, time is divided into discrete steps, and agents
move on a graph structure (typically a 4-connected grid).
Each agent acts synchronously, with each action, either mov-
ing to a neighboring vertex or waiting in place, taking ex-
actly one time step. The goal is to compute a set of indi-
vidual plans, one for each agent, that ensures no collisions
occur as the agents execute them.

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Many challenges of real-world robotics are not directly
captured by the MAPF abstraction, including continuous
space and time, asynchronous agent behavior, limited com-
munication and observation, and various perception con-
straints. Despite these simplifications, MAPF successfully
models the central difficulty in multi-robot navigation: coor-
dinating agents to avoid collisions while aiming to optimize
a specific cost function. As a result, MAPF has attracted sub-
stantial interest from both the robotics and Al research com-
munities. Furthermore, a number of studies have demon-
strated the successful application of MAPF-based methods
to the continuous, noisy, and uncertain environments faced
by real-world robotic systems (Honig et al. 2016; Ma et al.
2019b).

MAPF is most commonly approached in a centralized set-
ting, where a single planner with full knowledge of the en-
vironment is responsible for generating plans for all agents.
A wide range of both optimal and suboptimal centralized
solvers have been proposed (Standley 2010; Sharon et al.
2015; Wagner and Choset 2011; Surynek et al. 2016; Oku-
mura et al. 2022; Okumura 2023; Li et al. 2022; Veerapaneni
et al. 2024; Wang et al. 2025).

It is well established that optimal MAPF solvers scale
poorly with the increasing numbers of agents, as the prob-
lem is NP-hard (Surynek 2010). Suboptimal solvers, on the
other hand, can scale to thousands of agents, but their solu-
tion quality may degrade significantly. Consequently, a cen-
tral focus of MAPF research is striking the balance between
computational efficiency and solution quality.

One promising strategy for addressing this challenge is
to adopt a decentralized approach. Here, MAPF is mod-
eled as a decentralized sequential decision-making problem,
where each agent independently selects and executes actions
at every time step based on local observations. The resulting
decision-making policy may be fully learned or designed as
a hybrid, combining learnable and fixed components (Liu
et al. 2020; Li et al. 2021b; Wang et al. 2023; Ma, Luo, and
Ma 2021; Ma, Luo, and Pan 2021; Tang, Berto, and Park
2024; Skrynnik et al. 2024, 2023; Sagirova, Kuratov, and
Burtsev 2025; Phan, Phan, and Koenig 2025). A recent sur-
vey provides a comprehensive overview of developments in
this area (Alkazzi and Okumura 2024).

One of the recent advancements in decentralized, learn-
able MAPF is MAPF-GPT (Andreychuk et al. 2025b),

which relies entirely on supervised learning using a
transformer-based neural network trained on an extensive
dataset of approximately one billion observation-action
pairs. Despite its simplicity, MAPF-GPT outperforms most
of the state-of-the-art learning-based MAPF methods.

However, a major limitation of MAPF-GPT is its lack of
agent-to-agent communication. While it learns collaborative
behavior through the data, it does so without any commu-
nication between agents, as the training data is generated
by a centralized solver that does not include communica-
tion signals. This means that MAPF-GPT cannot explicitly
facilitate interaction or collaboration between agents during
problem-solving, which could be a key factor in improving
performance.

Several existing decentralized MAPF methods, such as
SCRIMP, PICO, DCC, and DHC use communication mech-
anism. However, it is mostly limited to sharing local obser-
vations or internally known state information in one round of
communication (Alkazzi and Okumura 2024). These mech-
anisms often fall short of enabling agents to engage in more
meaningful coordination.

We argue that effective communication in decentralized
MAPEF should extend beyond single-message exchange and
involve multiple rounds of agent interaction. Such itera-
tive communication enables agents to negotiate, resolve
conflicts, and build consistent joint plans that are crucial
for robust multi-agent coordination in complex environ-
ments. Motivated by this, we explore how to equip a large
transformer-based imitation learning model with the ability
to perform effective local communication.

Our main contributions are the following:

* We introduce a novel communication learning frame-
work called LC-MAPF, which enables agents to com-
municate using only the expert demonstrations of se-
lected actions, without requiring explicit communication
supervision.

* We present a transformer-based model with 3 million
parameters that significantly improves performance and
sets a new state-of-the-art among learnable decentralized
MAPF solvers. We conduct extensive evaluations and
compare it with existing learning-based approaches.

* Additionally, we extensively study how the number of
communication rounds influences the performance of
the agents, as shown in the ablation study. Moreover,
we show that despite incorporating communication, the
proposed mechanism maintains linear scalability as the
number of agents grows.

Related Work

The related work section covers three categories relevant
to the proposed approach: foundation models for multi-
agent systems, communication-based learning in MAPF,
and multi-agent pathfinding.

Foundation Models for Multi-Agent Systems

Foundation models are typically trained on large-scale
datasets, enabling generalization through zero-shot or few-
shot learning (Bommasani et al. 2021; Yang et al. 2023).

For autonomous agents, demonstrations of task execution
in the environment are used as a dataset, and generaliza-
tion implies the execution of new tasks that were not in the
training data distribution without additional demonstrations
or with a minimal number of them (Firoozi et al. 2023).
Demonstration-based pretraining is not commonly used in
multi-agent settings, but there are some examples, includ-
ing games such as chess (Silver et al. 2016; Ruoss et al.
2024), cooperative video games via self-play (Berner et al.
2019), and multi-agent pathfinding, as in SCRIMP (Wang
et al. 2023).

A key strength of foundation models is their fine-tuning
capability, which supports rapid adaptation to task-specific
requirements. While widely adopted in robotics, partic-
ularly in multimodal tasks involving text-based instruc-
tions (Firoozi et al. 2023; Team et al. 2024; Kim et al. 2024),
their use in multi-agent systems remains relatively limited.
Notable examples include the Magnetic-One model for lan-
guage and multimodal tasks in WebArena (Fourney et al.
2024) and MAPF-GPT for decentralized pathfinding (Andr-
eychuk et al. 2025b).

Multi-agent Pathfinding

A variety of approaches have been proposed for solving
MAPF. Rule-based solvers are designed for fast compu-
tation but lack guarantees on solution quality (Okumura
2023; Li et al. 2022). Reduction-based methods convert
MAPF into classical problems such as minimum-cost flow
or SAT, leveraging existing solvers to compute optimal so-
lutions (Surynek et al. 2016). Search-based solvers, such as
CBS and its variants (Sharon et al. 2015; Sharon, Stern, and
Goldenberg 2013; Wagner and Choset 2011), apply graph
search techniques and often offer optimality or bounded-
suboptimality guarantees. Simpler methods like prioritized
planning (Ma et al. 2019a) trade off optimality for efficiency
and scalability.

Communication-based MAPF Methods

More recently, learning-based approaches have emerged.
PRIMAL (Sartoretti et al. 2019) was among the first to
demonstrate decentralized MAPF solving via learning. In
case of PRIMAL the only communication between agents is
their corresponding targets. One of the first learnable MAPF
solvers that has a specific learnable communication block
was DHC (Ma, Luo, and Ma 2021) that demonstrate sig-
nificant improvement over PRIMAL. Subsequent methods
such as DCC (Ma, Luo, and Pan 2021) utilize the ideas
proposed by DHC, but enhance the communication mech-
anism by training selective communication. Another ap-
proach, SCRIMP (Wang et al. 2023), combines imitation
learning, reinforcement learning and communication mech-
anism and improves the efficiency even further. Another ex-
ample of a decentralized communication approach coming
from the online MAPF is the SRMT (Sagirova, Kuratov, and
Burtsev 2025). It allows agents to implicitly exchange in-
formation by generating and broadcasting agents’ working
memory representations learned by the memory-augmented
transformer (Burtsev et al. 2020). The memory states used

for communication, are updated recurrently (Bulatov, Kura-
tov, and Burtsev 2022) to preserve the historical information
and improve agents coordination.

Background

Problem Statement

MAPF problem is a tuple (G,s',...,s" g',...,g"), where
G = (V, E) is a graph representing the environment, s* € V'
is the start vertex of the i-th agent, and ¢* € V is its
goal vertex. Totally n agents (A = {uq,...,u,}) are pre-
sented in the environment. The task is to find a set of plans
Pl = {pl*} composed of the actions that can be either move
to an adjacent vertex or stay at the current vertex. Addition-
ally, the plans should be conflict-free, i.e., no two agents
occupy the same vertex or traverse the same edge at the
same time. The solution cost is typically measured by ei-
ther the Sum-of-Costs, SOC(Pl) = >"""_, cost(pl®), or the
makespan, msn(Pl) = max’_, cost(pl"), where cost(pl*)
is the timestep at which agent ¢ reaches its goal and remains
there.

MAPF can also be formulated as a sequential decision-
making problem, where the task is to construct a centralized
policy Teenratized that selects a joint, conflict-free action a =
a' x --- x a™ at each timestep, with a’ denoting agent 3’s
action. Such a policy can be hand-crafted or learned.

Finally, MAPF can also be treated as a decentralized
decision-making problem where the goal is to learn a homo-
geneous individual policy 7 shared by all agents, which se-
lects an action for each agent based solely on local observa-
tions and, possibly, communication. The observations typi-
cally include information about nearby obstacles and agents,
rather than the full global state.

Imitation Learning for MAPF

Imitation learning seeks to approximate an expert policy 7
by training a parameterized policy my. A dataset 7 of ex-
pert trajectories is first collected: 7~ = {#}E |, where each
7 = {(s',al),..., (s*,a%)} consists of state and joint ac-
tion pairs. In MAPEF, 7 is typically a centralized solver, for
example, LaACAM* (Okumura 2024).

To enable decentralized learning, individual agent trajec-
tories 77 = {(oL,al),..., (oL aL)} are extracted, where
0!, is the local observation of agent u at time ¢, and a!, is
the corresponding expert action. Observations may be rep-
resented as tensors or token sequences (e.g., in transformer-
based models (Ruoss et al. 2025)). The resulting dataset
D = {77}"_, is then used to train the policy.

The learning objective minimizes the negative log-
likelihood of expert actions:

0" = argminE, o5)~p [~logm(a | ou)] . (1)
After training, actions are sampled as a® ~ g (0y,).

Method

The overall communication and action prediction workflow
is illustrated in Figure 1. At each time step ¢ € [1,..., L]

and for each agent v € [1,...,U], the model receives a
structured observation

t

Oy

vt ot t
= [COSt-t0-20y,, Ty Moy 15+ -+ > My k)5 (2)

u?

where cost-to-go’, is an egocentric cost-to-go matrix, i!, con-
tains the agent’s own features (relative positions of current
and goal locations, greedy action, and previous k actions),
and each n!, ; contains analogous information for one of the
k closest neighboring agents. This localized, tokenized rep-
resentation allows each agent to reason using only informa-
tion that is relevant for preventing collisions and coordinat-
ing movement.

The observation is converted into a sequence of embed-
dings:

XO,u = Etok(OZ) + Epos + Enpr, (3)
where E\x encodes the token identity, £, provides a posi-
tional index inside the sequence, and E, serves as a neigh-
bor identifier so that the model can distinguish which nearby
agent contributed each token.

A Transformer encoder processes this embedded input
and produces contextualized representations:

H;™ = Encoder(Xg,,). 4)

To avoid propagating the entire observation sequence
throughout communication, we apply an information bot-
tleneck inspired by the Perceiver architecture (Jaegle et al.
2022). A small set of learnable latent queries Lg"“ cross-
attends to the encoded tokens and produces a compact latent
state:

2z, = LatentEncoder(Lg™, HG'), 2y, € RTiuen X an
)
This forms the agent’s internal representation of the world
and only this compressed state participates in communica-
tion, making the communication cost independent of the ob-
servation size. The agents then perform Rcomm rounds of
local communication. Each agent stores a message vector
m, € Rden for round 7, initialized with a learnable vector
my shared across all agents.
At round r, agent u receives messages from neighbors:

Cr={my ™" + B (v) FoeN (w)uiu}s (6)

where Egltfrc indicates which agent produced each message.
Messages are inserted into a decoding module together with

the agent’s latent state:

hy, = Decoder(Lgec, [2u, CL]). (7)

The decoder integrates information from neighbors and pro-

duces a new message:

m,, = MsgHead(hy,). (8)

After the final round, a prediction head produces the ac-
tion logits:

a, = ActionHead (hffeomm),

Our Transformer blocks integrate several recent advance-
ments aimed at improving stability and performance, includ-
ing RMSNorm (Zhang and Sennrich 2019) for normaliza-
tion, SWiGLU (Shazeer 2020) feed-forward layers, a com-
bined pre- and post-normalization and QK-normalization

Py = softmax(a,). (9)

' DECODER '

c: 0000 0008 -

INITIAL EMPTY
MESSAGES

' ENCODER '

Il

OBSERVATION TOKEN X u

EMEDDINGS

m‘i' DECODER' Qm;'

P,

'DECODER' m;
= <000 0000

DECODER

@_’_ TRANSFORMER
BLOCK

Cross-Attention

TRANSFORMER
BLOCKS
Self-Attention

NEIGHBOR
MESSAGES

<

o Py

TRANSFORMER
BLOCK

Cross-Attention

TRANSFORMER
BLOCKS

Self-Attention

Figure 1: Overview of the proposed LC-MAPF architecture. Each agent u € U encodes its local observation of, into a latent
representation z,, using a Transformer-based encoder.The latent state participates in an iterative message-passing procedure
over R communication rounds. At each round r, the agent receives the set of neighbor messages C;, and fuses them with its
latent state z,, through a Transformer-based decoder, producing an updated message m/, that will be sent to its neighbors in the
next round. After R communication rounds, the decoder outputs action logits a,,, which are converted to an action probability
distribution p,, = softmax(a,,). Both encoder and decoder consist of stacked Transformer blocks with self-attention and cross-
attention: the encoder integrates the tokenized observation of,, while the decoder integrates the agent’s latent representation z,
with contextualized neighbor messages C,, enabling decentralized coordination through end-to-end learned communication.

scheme (Zhuo et al. 2025), and a differential attention mech-
anism (Ye et al. 2025).

LC-MAPF is trained from expert demonstrations in a
fully end-to-end manner. The training objective is the cross-
entropy loss:

L = CE (ay, ay,) (10)

where a,,, is the one-hot expert action. The total loss is av-
eraged across all agents in the batch.

A key property of LC-MAPF is that messages are not
supervised. There is no auxiliary loss on m/,, nor are the
messages forced to represent explicit semantic content. In-
stead, messages influence future rounds of communication,
and therefore their gradients flow through the action loss of
the agents that receive them. During backpropagation, the
update to m;, depends on how it affects the action logits
of neighboring agents in subsequent rounds. Consequently,
the network learns what information should be communi-
cated and communication can emerge naturally from opti-

mization of the shared objective. In all our experiments we
use Reomm = 4 communication rounds.

Experimental Setup

The experiments were conducted on the POGEMA bench-
mark (Skrynnik et al. 2025a), which provides a diverse set
of partially observable multi-agent pathfinding (MAPF) en-
vironments, including Random, Mazes, Warehouse, Cities,
and Puzzles map types. Each agent receives a tokenized ob-
servation of up to 256 tokens, corresponding to its 11 x 11
local field of view, agent-specific attributes, and spatial con-
text. Agents can communicate with up to 13 nearby agents
within a 5-cell radius, and neighboring agents are ordered
by their Manhattan distance to the ego-agent, ensuring con-
sistent positional ordering in the communication graph.

The training dataset consisted of aggregated samples from
three subsets of the POGEMA benchmark: mazes, random,
and house maps. The combined dataset contained approxi-

mately 23.5 million samples with a 0.6:0.2:0.2 distribution
across the three subsets. In contrast to the dataset used for
training the original MAPF-GPT, in this dataset each sam-
ple contains observations and ground-truth actions for all
agents, instead of a particular one. Thus, the total number of
observation-action pairs is roughly 750 million. Addition-
ally to the observations and ground-truth actions, the dataset
contains adjacency information describing the local commu-
nication structure.

Training was performed for 800,000 iterations using a
single NVIDIA H100 GPU with 80GB memory. On each
iteration a local batch of 32 samples with 16 gradient ac-
cumulation steps, resulting in an effective batch size of
512 samples per optimization step. The total training time
amounted to roughly 900 GPU-hours. Mixed-precision
training (bfloat16) was used to improve throughput and re-
duce memory footprint, and all runs were executed using
PyTorch 2.3.1 with CUDA 12.2.

The model contained approximately 3 million trainable
parameters and was trained from scratch using the AdamW
optimizer with cosine learning rate decay. Key architectural
and optimization hyperparameters are summarized in Ta-
ble 1.

Table 1: Values of key hyperparameters.

Parameter Value
Learning rate schedule Cosine decay
Maximum learning rate 6 x 1074
Minimum learning rate 6 x 107°
Warm-up iterations 8000
Gradient accumulation steps 16

Batch size 32

Block size 256
Encoder/Decoder layers 3
Attention heads 3
Embedding dimension (demba) 192
Latent dimension (djaent) 96

Number of latent tokens (7jaent) 32
Number of communication rounds 4

Experimental Results

To evaluate LC-MAPF empirically, we conducted multi-
ple series of experiments. The main series aimed at face-
to-face comparison of LC-MAPF to state of the art in
learnable MAPF, specifically to MAPF-GPT (Andreychuk
et al. 2025b), its recent fine-tuned variation MAPF-GPT-
DDG (Andreychuk et al. 2025a), SCRIMP (Wang et al.
2023), DCC (Ma, Luo, and Pan 2021), and EPH (Tang,
Berto, and Park 2024). The original MAPF-GPT comes in
three different sizes: 2M, 6M, and 85M. In our experiments,
we used only the largest and best performing model with
85M parameters. The experiments were conducted on the
POGEMA benchmark (Skrynnik et al. 2025b) with the same
evaluation protocol as in the original MAPF-GPT paper.

Specifically, we used 4 map types: Random, Mazes, Ware-
house, and Cities Tiles. The first two are the same type of
maps that were used to train LC-MAPF, the latter two differ
significantly in topology and are used to evaluate the ability
to generalize to out-of-distribution map types. Mazes and
Random maps range in size from 17 x 17 to 21 x 21, and
contain up to 64 agents. The Warehouse type features a sin-
gle map of size 33 x 46 with restrictions on where start and
goal locations can be placed (to model real-world fulfillment
scenarios). The maximum number of agents on this map is
192. The Cities Tiles maps are of 64 x 64 size, allowing for
up to 256 agents. In all runs the episode length was limited to
128 steps, except for Cities Tiles, where the episode length
was 256. More details about the benchmark and evaluation
protocol can be found in (Skrynnik et al. 2025b)

We also performed two additional series of experiments.
One studied the influence of number of communication
rounds on the overall performance, while the other one is
conducted to demonstrate that addition of communication
does not violate one of the core features of MAPF-GPT -
linear scalability to the number of agents.

Comparison with the Baselines

The first series of experimental results is shown in Fig. 2 and
Fig. 3. In the former, the average success rate for each map
type is presented based on the number of agents in the in-
stances. As can be seen, in all the cases LC-MAPF is either
on par or better than any baseline, including original MAPF-
GPT with a huge 85M model and fine-tuned MAPF-GPT-
DDG. Comparing with other competitors, SCRIMP demon-
strates the best performance among baselines. However, LC-
MAPF is able to outperform it on this map as well.

Fig. 3 presents the ratio of SoC (solution cost) relative to
the solution found by the centralized planner, LaCAM¥*, in
the form of box-and-whiskers plots. These results align with
those presented in Fig. 2 and show that LC-MAPF achieves
the best results in most of the cases. Surprisingly, while
MAPF-GPT-DDG has a worse success rate than LC-MAPF
on Warehouse map, its average solution cost is slightly bet-
ter.

Ablation study

During the ablation study of LC-MAPF we wanted to in-
vestigate the influence of the communication mechanism
on the performance of the approach. To this end, we var-
ied the number of communication rounds employed by LC-
MAPF from 1 to 8. The experiments were conducted on
Warehouse map with number of agents varying from 32 to
192. For each number of agents all 128 testing instances pro-
vided by the POGEMA Behcnmark (Skrynnik et al. 2025b)
were used. The length of the episode was set to 128. Two
performance indicators were tracked: success rate (the ratio
of the successfully solved instances) and number of colli-
sions. The results are shown in Table 2.

The obtained results clearly demonstrates that a) LC-
MAPF needs at least 2 rounds of communication to solve
at least some of the instances; b) the best performance LC-
MAPF demonstrates with the number of rounds that was

Success Rate

Random Maps Mazes Maps Warehouse Cities Tiles

1.0 4+ Mt e 09 1.0 0«.‘—__—:::-—‘F=.:.::-:;\ 1.0 A \“\\:
eXS P TN RN N
0.8 e, 08 —Sta S, 081 Vvl o
NN) 2 t
061 I % 2 "] I
04) § 0.4 1 3 g 0.4 ‘+ °§’ 067
e A
0.2 © 0.2 1 “5. 7 021 04
0.0 1 0.0 0.0 S
8 16 32 64 8 16 32 64 32 64 128 64 128 256
Number of Agents Number of Agents Number of Agents Number of Agents
DCC —x— SCRIMP «m- EPH =+= MAPF-GPT-85M —#- MAPF-GPT-DDG-2M =+-+ LC-MAPF-3M

Figure 2: Success rates of the approaches on different map types depending on the number of agents in the instances (higher is
better). The shaded area indicates the 95% confidence interval.

Random Maps Mazes Maps Warehouse Cities Tiles
- - T T -
4 5 L_l:"i II:I_I T 2.0
T F -|Erd 2.5 T 1.8 T

k<! o4 ==l = 2

53 3 =] ¢ | 816

-4 o T 2.0 o

g g3 g g

a5l 0 n a147]

b= 1.5H
1.27
1 1 1.0 1.0
DCC mm SCRIMP s EPH EEE MAPF-GPT-85M N MAPF-GPT-DDG-2M I | C-MAPF-3M
Figure 3: SoC ratio relative to solutions found by the LaCAM* approach (lower is better).
Success rate across different LC-MAPF communication rounds
Agents Rounds=1 Rounds=2 Rounds=3 Rounds=4 Rounds=5 Rounds=6 Rounds=7 Rounds=8
32 0.000 + 0.000 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000
64 0.000 % 0.000 0.766 £ 0.070 1.000 £ 0.000 1.000 % 0.000 1.000 £ 0.000 1.000 + 0.000 1.000 £ 0.000 1.000 + 0.000
96 0.000 + 0.000 0.094 £ 0.051 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000
128 0.000 + 0.000 0.008 + 0.012 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000 1.000 # 0.000
160 0.000 + 0.000 0.016 +0.020 0.984 +0.020 1.000 + 0.000 1.000 + 0.000 1.000 + 0.000 0.992 +0.012 1.000 + 0.000
192 0.000 £ 0.000 0.000 + 0.000 0.742 £ 0.074 0.938 £ 0.043 0.914 £ 0.051 0.883 £0.055 0.938 £ 0.043 0.938 £ 0.043
Collision counts across different LC-MAPF communication rounds
Agents Rounds=1 Rounds=2 Rounds=3 Rounds=4 Rounds=5 Rounds=6 Rounds=7 Rounds=8

32 299.047 + 6.149 61.961 £2.794 31.977 +1.539 5.438 £0.743 8.289 £ 1.012 8.055 £0.727 6.664 +0.754 7.266 £0.782
64 787.773 +7.359 258.078 £ 6.611 127.977 + 3.669 24914 + 1.633 36.164 +2.379 42.250 £2.012 32.750 + 2.004 30.188 + 1.965
96 1361.750 + 14.048 618.430 £ 16.111 289.789 +9.089 79.484 + 4.542 112.781 + 6.368 119.922 +5.572 105.938 +5.770 92.641 +5.208
128 2077.656 £26.500 1144.828 + 46.349 564.547 +17.383 226.641 +13.798 294.492 + 14.356 291.977 +13.338 264.773 + 14460 252.688 + 12.756
160 3317.375+90.149 2107.891 £81.585 1057.641 £44.313 ~ 486.711 £23.802 641.992+38.691 639.562 £31.303 585.219 +28.836 570.234 +31.782
192 5330.273 +£142.768 3556.984 +136.774 2038.875 + 107.579 1175.117 £77.500 1422.742 +74.590 1408.836 +£79.931 1253.203 +£72.768 1224.867 + 67.736

Table 2: Success rate and number of collisions of different versions of LC-MAPF on Warehouse map. The provided values

are average + 95% confidence interval. Tan boxes highlight the best mean values for visibility purposes.

used during training, i.e. 4; c) further increment of commu-
nication rounds does not lead to improvement of metrics,
however, comparing them between each other demonstrates
that higher number of communications round reduces the
number of collisions that occurs between agents.

Scalability Analysis

To better demonstrate the superior scalability of LC-MAPF,
we present the actual decision times of all evaluated
learning-based approaches with communication capabili-
ties: DCC, SCRIMP, and LC-MAPE. Table 3 shows the aver-
age time required for all agents to determine their next action

across varying numbers of agents in the Warehouse map
scenarios.

Algorithm 32 agents 64 agents 128 agents 192 agents

DCC 480+ 1.0 164.0+2.0(x3.4) 619.0£2.0(x12.9) 1314.0 £ 3.0 (x27.4)
SCRIMP 470+ 1.0 106.0+1.0(x23) 388.0+7.0(x8.3) 1190.0 4 25.0 (x25.3)
LC-MAPF 198 £0.5 294+ 0.2 (x15) 54.1 £ 0.4 (x2.7) 78.4 £ 0.5 (x4.0)

Table 3: Decision time (in milliseconds) in the instances
with different numbers of agents on Warehouse map.

LC-MAPF demonstrates superior efficiency, scaling even
better than linear. Such scaling is explained by the ability
of GPU to process agents in parallel with a larger batch

size. While LC-MAPF performs multiple rounds of com-
munication, it requires less computation time than DCC or
SCRIMP. In contrast, when handling 192 agents, SCRIMP
and DCC require 25.3 and 27.4 times more computation
time, respectively, compared to their performance with 32
agents.

Conclusion

We introduced LC-MAPF, a novel communication learn-
ing framework for decentralized multi-agent pathfinding that
leverages expert demonstrations without explicit commu-
nication supervision. The communication is organized in
rounds to increase the level of cooperation between the
agents. Our transformer-based model outperforms state-
of-the-art learning-based MAPF solvers on the POGEMA
benchmark, improving coordination and cooperation across
diverse scenarios.

LC-MAPF maintains linear scalability with the number of
agents, overcoming a common limitation of communication-
based approaches. Ablation studies confirm that multi-round
local communication enhances performance without sacri-
ficing scalability or generalization. These results highlight
LC-MAPF as a foundation model that offers an effective and
scalable solution for decentralized multi-agent pathfinding
through multi-round local communication.

References

Alkazzi, J.-M.; and Okumura, K. 2024. A Comprehensive
Review on Leveraging Machine Learning for Multi-Agent
Path Finding. IEEE Access.

Andreychuk, A.; Yakovlev, K.; Panov, A.; and Skrynnik,
A. 2025a. Advancing Learnable Multi-Agent Pathfind-
ing Solvers with Active Fine-Tuning. arXiv preprint
arXiv:2506.23793.

Andreychuk, A.; Yakovlev, K.; Panov, A.; and Skrynnik,
A. 2025b. MAPF-GPT: Imitation learning for multi-agent
pathfinding at scale. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, 23126-23134.

Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Dkebiak,
P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse,
C.; et al. 2019. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680.

Bommasani, R.; Hudson, D. A.; Adeli, E.; Altman, R.;
Arora, S.; von Arx, S.; Bernstein, M. S.; Bohg, J.; Bosselut,
A.; Brunskill, E.; et al. 2021. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258.

Bulatov, A.; Kuratov, Y.; and Burtsev, M. 2022. Recurrent
memory transformer. Advances in Neural Information Pro-
cessing Systems, 35: 11079-11091.

Burtsev, M. S.; Kuratov, Y.; Peganov, A.; and Sapunov,
G. V. 2020. Memory transformer. arXiv preprint
arXiv:2006.11527.

Firoozi, R.; Tucker, J.; Tian, S.; Majumdar, A.; Sun, J.;
Liu, W.; Zhu, Y.; Song, S.; Kapoor, A.; Hausman, K.; et al.
2023. Foundation models in robotics: Applications, chal-
lenges, and the future. The International Journal of Robotics
Research.

Fourney, A.; Bansal, G.; Mozannar, H.; Tan, C.; Salinas,
E.; Niedtner, F.; Proebsting, G.; Bassman, G.; Gerrits, J.;
Alber, J.; et al. 2024. Magentic-one: A generalist multi-
agent system for solving complex tasks. arXiv preprint
arXiv:2411.04468.

Honig, W.; Kumar, T. S.; Cohen, L.; Ma, H.; Xu, H.; Aya-
nian, N.; and Koenig, S. 2016. Multi-Agent Path Find-
ing with Kinematic Constraints. In Proceedings of The
26th International Conference on Automated Planning and
Scheduling (ICAPS 2016), 477-485.

Jaegle, A.; Borgeaud, S.; Alayrac, J.-B.; Doersch, C.;
Tonescu, C.; Ding, D.; Koppula, S.; Zoran, D.; Brock, A.;
Shelhamer, E.; Hénaff, O.; Botvinick, M. M.; Zisserman,
A.; Vinyals, O.; and Carreira, J. 2022. Perceiver 1O:
A General Architecture for Structured Inputs & Outputs.
arXiv:2107.14795.

Kim, M. J.; Pertsch, K.; Karamcheti, S.; Xiao, T.; Balakr-
ishna, A.; Nair, S.; Rafailov, R.; Foster, E. P.; Sanketi, P. R.;
Vuong, Q.; Kollar, T.; Burchfiel, B.; Tedrake, R.; Sadigh,
D.; Levine, S.; Liang, P.; and Finn, C. 2024. OpenVLA: An
Open-Source Vision-Language-Action Model. In 8th An-
nual Conference on Robot Learning.

Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig,
S. 2022. MAPF-LNS2: Fast repairing for multi-agent path
finding via large neighborhood search. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36,
10256-10265.

Li, J.; Lin, E.; Vu, H. L.; Koenig, S.; et al. 2023. Intersec-
tion coordination with priority-based search for autonomous
vehicles. In Proceedings of the 37th AAAI Conference on
Artificial Intelligence (AAAI 2023), 11578-11585.

Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. S.;
and Koenig, S. 2021a. Lifelong multi-agent path finding in
large-scale warehouses. In Proceedings of the 35th AAAI
Conference on Artificial Intelligence (AAAI 2021), 11272—
11281.

Li, Q.; Lin, W.; Liu, Z.; and Prorok, A. 2021b. Message-
aware graph attention networks for large-scale multi-robot
path planning. IEEE Robotics and Automation Letters, 6(3):
5533-5540.

Liu, Z.; Chen, B.; Zhou, H.; Koushik, G.; Hebert, M.; and
Zhao, D. 2020. Mapper: Multi-agent path planning with
evolutionary reinforcement learning in mixed dynamic en-
vironments. In Proceedings of the 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS
2020), 11748-11754. IEEE.

Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S.
2019a. Searching with consistent prioritization for multi-
agent path finding. In Proceedings of the AAAI conference
on artificial intelligence, volume 33, 7643-7650.

Ma, H.; Honig, W.; Kumar, T. K. S.; Ayanian, N.; and
Koenig, S. 2019b. Lifelong Path Planning with Kinematic
Constraints for Multi-Agent Pickup and Delivery. In Pro-
ceedings of the 33rd AAAI Conference on Artificial Intelli-
gence (AAAI 2019), 7651-7658.

Ma, Z.; Luo, Y.; and Ma, H. 2021. Distributed heuris-
tic multi-agent path finding with communication. In 2021

IEEE International Conference on Robotics and Automation
(ICRA 2021), 8699-8705. IEEE.

Ma, Z.; Luo, Y.; and Pan, J. 2021. Learning selective com-
munication for multi-agent path finding. IEEE Robotics and
Automation Letters, 7(2): 1455-1462.

Okumura, K. 2023. Lacam: Search-based algorithm for
quick multi-agent pathfinding. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, 11655—
11662.

Okumura, K. 2024. Engineering LaCAM*: Towards Real-
time, Large-scale, and Near-optimal Multi-agent Pathfind-
ing. In Proceedings of the 23rd International Conference on
Autonomous Agents and Multiagent Systems, 1501-1509.

Okumura, K.; Machida, M.; Défago, X.; and Tamura, Y.
2022. Priority inheritance with backtracking for itera-
tive multi-agent path finding. Artificial Intelligence, 310:
103752.

Phan, T.; Phan, T.; and Koenig, S. 2025. Generative Cur-
ricula for Multi-Agent Path Finding via Unsupervised and
Reinforcement Learning. Journal of Artificial Intelligence
Research, 82: 2471-2534.

Ruoss, A.; Delétang, G.; Medapati, S.; Grau-Moya, J.; Li,
K.; Catt, E.; Reid, J.; Lewis, C.; Veness, J.; and Genewein,
T. 2025. Amortized planning with large-scale transformers:
A case study on chess. Advances in Neural Information Pro-
cessing Systems, 37: 65765-65790.

Ruoss, A.; Deletang, G.; Medapati, S.; Grau-Moya, J.; Wen-
liang, L. K.; Catt, E.; Reid, J.; Lewis, C. A.; Veness, J.; and
Genewein, T. 2024. Amortized Planning with Large-Scale
Transformers: A Case Study on Chess. In The Thirty-eighth
Annual Conference on Neural Information Processing Sys-
tems.

Sagirova, A.; Kuratov, Y.; and Burtsev, M. 2025. SRMT:
Shared Memory for Multi-agent Lifelong Pathfinding.
arXiv:2501.13200.

Sartoretti, G.; Kerr, J.; Shi, Y.; Wagner, G.; Kumar, T. S.;
Koenig, S.; and Choset, H. 2019. Primal: Pathfinding via
reinforcement and imitation multi-agent learning. [EEE
Robotics and Automation Letters, 4(3): 2378-2385.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial intelligence, 219: 40-66.

Sharon, G.; Stern, R.; and Goldenberg, A., Meir aand Fel-
ner. 2013. The increasing cost tree search for optimal multi-
agent pathfinding. Artificial intelligence, 195: 470—495.

Shazeer, N. 2020. GLU Variants Improve Transformer.
arXiv:2002.05202.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. na-
ture, 529(7587): 484-489.

Skrynnik, A.; Andreychuk, A.; Borzilov, A.; Chernyavskiy,
A.; Yakovlev, K.; and Panov, A. 2025a. POGEMA: A
Benchmark Platform for Cooperative Multi-Agent Pathfind-
ing. arXiv:2407.14931.

Skrynnik, A.; Andreychuk, A.; Borzilov, A.; Chernyavskiy,
A.; Yakovlev, K.; and Panov, A. 2025b. POGEMA: A
Benchmark Platform for Cooperative Multi-Agent Pathfind-
ing. In The Thirteenth International Conference on Learning
Representations.

Skrynnik, A.; Andreychuk, A.; Nesterova, M.; Yakovlev, K.;
and Panov, A. 2024. Learn to Follow: Decentralized Life-
long Multi-agent Pathfinding via Planning and Learning. In
Proceedings of the 38th AAAI Conference on Artificial Intel-
ligence (AAAI 2024).

Skrynnik, A.; Andreychuk, A.; Yakovlev, K.; and Panov,
A. 1. 2023. When to switch: planning and learning for par-
tially observable multi-agent pathfinding. [EEE Transac-
tions on Neural Networks and Learning Systems.

Standley, T. S. 2010. Finding optimal solutions to coopera-
tive pathfinding problems. In Proceedings of The 24th AAAI
Conference on Artificial Intelligence (AAAI 2010), 173-178.

Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. S.;
et al. 2019. Multi-agent pathfinding: Definitions, variants,
and benchmarks. In Proceedings of the 12th Annual Sympo-
sium on Combinatorial Search (SoCS 2019), 151-158.

Surynek, P. 2010. An optimization variant of multi-robot
path planning is intractable. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence (AAAI 2010), 1261—
1263.

Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016.
Efficient SAT approach to multi-agent path finding under the
sum of costs objective. In Proceedings of the 22nd European
Conference on Artificial Intelligence (ECAI 2016), 810-818.
10S Press.

Tang, H.; Berto, F.; and Park, J. 2024. Ensembling prior-
itized hybrid policies for multi-agent pathfinding. In 2024
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 8047-8054. IEEE.

Team, O. M.; Ghosh, D.; Walke, H.; Pertsch, K.; Black, K.;
Mees, O.; Dasari, S.; Hejna, J.; Kreiman, T.; Xu, C.; et al.
2024. Octo: An open-source generalist robot policy. arXiv
preprint arXiv:2405.12213.

Veerapaneni, R.; Wang, Q.; Ren, K.; Jakobsson, A.; Li, J.;
and Likhachev, M. 2024. Improving learnt local MAPF poli-
cies with heuristic search. In Proceedings of the Interna-

tional Conference on Automated Planning and Scheduling,
volume 34, 597-606.

Wagner, G.; and Choset, H. 2011. M*: A complete multi-
robot path planning algorithm with performance bounds. In
Proceedings of The 2011 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS 2011), 3260-
3267.

Wang, Y.; Duhan, T.; Li, J.; and Sartoretti, G. 2025. LNS2+
RL: Combining multi-agent reinforcement learning with
large neighborhood search in multi-agent path finding. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 39, 23343-23350.

Wang, Y.; Xiang, B.; Huang, S.; and Sartoretti, G. 2023.
SCRIMP: Scalable communication for reinforcement-and

imitation-learning-based multi-agent pathfinding. In 2023
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 9301-9308. IEEE.

Yang, S.; Nachum, O.; Du, Y.; Wei, J.; Abbeel, P.; and Schu-
urmans, D. 2023. Foundation models for decision mak-
ing: Problems, methods, and opportunities. arXiv preprint
arXiv:2303.04129.

Ye, T.; Dong, L.; Xia, Y.; Sun, Y.; Zhu, Y.; Huang, G.; and
Wei, F. 2025. Differential Transformer. arXiv:2410.05258.
Zhang, B.; and Sennrich, R. 2019. Root Mean Square Layer
Normalization. arXiv:1910.07467.

Zhuo, Z.; Zeng, Y.; Wang, Y.; Zhang, S.; Yang, J.; Li, X.;
Zhou, X.; and Ma, J. 2025. HybridNorm: Towards Stable
and Efficient Transformer Training via Hybrid Normaliza-
tion. arXiv:2503.04598.

