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ABSTRACT

In recent years, preference-based human feedback mechanisms have become in-
tegral to improving model performance across a range of applications, including
conversational AI systems like ChatGPT. However, existing methodologies often
overlook critical factors such as model uncertainty and variability in feedback qual-
ity. To address these limitations, we propose an innovative entropy-based human
feedback framework designed for contextual bandits, which balances exploration
and exploitation by soliciting expert feedback when model entropy surpasses a pre-
defined threshold. Our method is model-agnostic and adaptable to any contextual
bandit agent employing stochastic policies. Through rigorous experimentation, we
demonstrate that our approach requires minimal human feedback to achieve signifi-
cant performance gains, even with suboptimal feedback quality. Our work not only
introduces a novel feedback solicitation strategy but also underscores the robustness
of integrating human guidance into machine learning systems. Our code is publicly
available: https://anonymous.4open.science/r/CBHF-33C5

1 INTRODUCTION

Contextual bandits (CB) have emerged as a powerful framework across various applications, in-
cluding recommendation systems (Li et al., 2010; Xu et al., 2020), healthcare (Yu et al., 2024),
and finance (Zhu et al., 2021), among others (Bouneffouf et al., 2020). CBs enable personalized
decision-making by learning from the contextual information in each instance. However, current
systems often rely heavily on implicit feedback signals, such as clicks, which are inherently biased
and incomplete, limiting their ability to fully capture true user preferences (Qi et al., 2018).

To address these challenges, we explore the incorporation of explicit human feedback in a CB setting.
Human feedback has shown promise in reinforcement learning by integrating human guidance into
the learning process (Christiano et al., 2017; MacGlashan et al., 2017). Incorporating human feedback
enables models to generate more accurate and informative responses, improving performance in
applications such as conversational AI like ChatGPT (Ouyang et al., 2022; Achiam et al., 2023), and
robotics (Osa et al., 2018).

Human feedback can generally be categorized into action-based feedback from human experts (Osa
et al., 2018; Li et al., 2023), and preference-based feedback (Christiano et al., 2017; Saha et al., 2023).
This work focuses on the latter. Preference-based feedback, where humans indicate their preference
between two options selected by the learner, has gained popularity due to its simplicity. However,
existing methods fail to address two critical issues: the varying quality of human feedback and the
uncertainty in the model’s decisions. These factors often result in inefficient learning and suboptimal
performance, especially in high-stakes or complex environments. In this work, we aim to answer the
key question: Can we propose a simple yet effective strategy to incorporate preference-based
human feedback in contextual bandits?

A key challenge in CB problems is balancing exploration and exploitation, which becomes more
complex with the addition of human feedback. The algorithm must balance this input to avoid over-
reliance while ensuring efficient learning. To address this, we propose a simple criterion for feedback
solicitation and introduce two methods for incorporating human feedback into CB, evaluating their
performance.
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We present two feedback settings. In the action recommendation (AR) method, a human expert
provides recommended actions for a given context. In the reward manipulation (RM) method, the
expert assigns a reward penalty when the learner selects an action not recommended by the expert.
Feedback solicitation is based on model uncertainty, quantified by policy entropy, and human feedback
is requested when model entropy exceeds a certain threshold.

These additions underscore the key finding of our study: even low-quality human feedback, when
appropriately solicited, can lead to significant performance improvements.

Our contributions are threefold. First, we propose a framework to integrate human feedback into
CB across different environments and analyze the relative performance of two feedback strategies:
action recommendation and reward penalty. Second, we identify limitations in current approaches
and introduce an entropy-based criterion to enhance learning. This criterion not only improves
performance but also deepens our understanding of how these methods support learning. Finally, we
evaluate the impact of expert feedback quality on CB learner performance, showing how varying
levels of human recommendation accuracy affect cumulative rewards. Our findings advocate for
the inclusion of our methods in decision-making models and expand the understanding of human
feedback integration in reinforcement learning.

2 RELATED WORKS

Contextual bandits Contextual bandits have diverse applications in recommendation systems (Li
et al., 2010; Xu et al., 2020), healthcare (Yu et al., 2024), finance (Zhu et al., 2021), and other
fields (Bouneffouf et al., 2020). CBs are a variant of the multi-armed bandit problem where each
round is influenced by a specific context, and rewards vary accordingly. This adaptability makes CBs
valuable for enhancing various machine learning methods, including supervised learning (Sui & Yu,
2020), unsupervised learning (Sublime & Lefebvre, 2018), active learning (Bouneffouf et al., 2014),
and reinforcement learning (Intayoad et al., 2020).

To tackle CB challenges, several algorithms have been developed, such as LINUCB (Li et al., 2010),
Neural Bandit (Allesiardo et al., 2014), and Thompson sampling (Agrawal & Goyal, 2013). These
typically assume a linear dependency between the expected reward and its context. Despite these
advancements, CBs often rely on implicit feedback, like user clicks, leading to biased and incomplete
evaluations of user preferences (Qi et al., 2018). This reliance complicates accurately gauging user
responses and tailoring the learning process.

Human feedback in the loop Recent advancements in human-in-the-loop methodologies have shown
significant successes in real-life applications, such as ChatGPT via reinforcement learning with
human feedback (RLHF) (MacGlashan et al., 2017), as well as in robotics (Argall et al., 2009) and
health informatics (Holzinger, 2016).

Preference-based feedback can be categorized into three groups: i) action-based prefer-
ences (Fürnkranz et al., 2012), where experts rank actions, ii) state preferences (Wirth & Fürnkranz,
2014), and iii) trajectory preferences Busa-Fekete et al. (2014); Novoseller et al. (2020). Action-
based feedback from humans is explored in (Mandel et al., 2017), where experts add actions to a
reinforcement learning agent to boost performance. Other forms of explicit human feedback include
reward shaping (Xiao et al., 2020; Bıyık et al., 2022; Ibarz et al., 2018; Arakawa et al., 2018). These
approaches however do not account for acquiring feedback based on the learner’s uncertainty or the
impact of varying levels of feedback on performance.

Contextual bandits with human feedback Human-in-the-Loop Reinforcement Learning addresses
the bias problem of implicit feedback in contextual bandits. The exploration of learning in multi-
armed bandits with human feedback is discussed in (Tang & Ho, 2019), where a human expert
provides biased reports based on observed rewards. The learner’s goal is to select arms sequentially
using this biased feedback to maximize rewards, without direct access to the actual rewards.

Preference-based feedback in contextual and dueling bandit frameworks has been explored in previous
studies (Sekhari et al., 2023; Dudík et al., 2015; Saha, 2021; Wu et al., 2023). The learner presents
candidate actions and receives noisy preferences from a human expert, focusing on minimizing regret
and active queries. In contrast, we consider a setup where the learner receives direct feedback from
human experts and show how the fraction of active queries varies with different sets of experts.
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Active learning in contexual bandits Active learning (Judah et al., 2014) enhances performance by
selectively querying the most informative data points for labeling, rather than passively receiving
labels for randomly or sequentially presented data. In the context of bandit algorithms, active learning
has been employed to optimize the exploration-exploitation trade-off by guiding the algorithm to
request feedback or labels when it is most uncertain about an action’s outcome (Taylor & Stone,
2009). For example, Bouneffouf et al. (2014) integrated active learning with Thompson sampling and
UCB algorithms in contextual bandits, resulting in improved sample efficiency.

In our work, we build on this idea by combining active learning techniques with human feedback,
utilizing an entropy-based mechanism to query feedback when necessary. By incorporating active
learning principles into our contextual bandit framework, we aim to more effectively balance ex-
ploration and exploitation, particularly in scenarios where human feedback is noisy or costly. This
approach not only improves sample efficiency but also helps mitigate the challenges posed by varying
feedback quality.

Other related areas Our work builds on several important research areas, including counterfactual
reasoning, imitation learning, preference optimization, and entropy-based active learning. We draw
inspiration from Tang and Wiens Tang & Wiens (2023), whose counterfactual-augmented importance
sampling informs our feedback framework, and extend DAGGER Ross et al. (2011) by dynamically
incorporating expert feedback instead of using fixed imitation. We also acknowledge parallels
with Active Preference Optimization (APO) Das et al. (2024), adapting trajectory-level preference
feedback to reward manipulation in more complex settings. Additionally, we connect with entropy-
driven methods like BALD Houlsby et al. (2011) and IDS Russo & Van Roy (2014), adapting their
principles for contextual bandit problems to balance information gain and decision-making efficiency
in sequential exploration. These connections highlight how our approach advances real-time feedback
integration and decision optimization.

3 METHOD

The following section provides a description of our method and its subcomponents. A comprehensive
representation of the approach is shown in Figure 1. Algorithm 1 describes our method.

3.1 CONTEXTUAL BANDIT FORMULATION

We consider an online stochastic contextual bandit framework where at each round t, the world
generates a context-reward pair (st, rt) sampled independently from a stationary unknown distribution
D. Here st ∈ S = Rm is an m dimensional real valued vector and rt = (rt(1), . . . , rt(k)) ∈ {0, 1}k
is a k-dimensional vector where each element can take values 0 or 1. The agent then chooses an
action at ∈ {1, . . . , k} according to a policy π : S 7→ {1, . . . , k} and the environment reveals the
reward rt(at) ∈ {0, 1}.
The objective of the agent is to find a policy π ∈ Π that maximizes the expected cumulative reward
given by

max
at∼π

T∑
t=1

E
[
rt(at) | st, at

]
(1)

The problem setup described above bears a strong resemblance to a multi-label or multiclass classifi-
cation problem, where rt(at) = 1 indicates the correct label choice and 0 otherwise. However, a key
distinction lies in the learner’s lack of access to the correct label or label set for each observation.
Instead, the learner only discerns whether the chosen label for an observation is correct or incorrect.

3.2 INCORPORATING ENTROPY BASED HUMAN FEEDBACK

In contextual bandits, feedbacks are provided in the form of a reward signal predetermined by the
designer. These reward signals are not well defined for complex decision making problems (Blanchard
et al., 2023; Dragone et al., 2019), and are often learned from data. An alternate to learning a reward
function from data is to obtain preference based feedback from humans and learn the underlying
reward function that the human expert is optimizing (Sekhari et al., 2024). In this work, we consider
the setup where human expert has sufficient expertise and valuable insights stemming from their

3
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Figure 1: Overview of the proposed architecture.

experience and domain knowledge to provide direct feedback to the learner. These feedbacks can
directly impact the actions a contextual bandit learner takes or the rewards it receives. However, the
quality of such explicit feedback may vary depending on the expertise levels of different individuals.
We provide two ways in which human experts can provide feedback to the contextual bandit learner:
i) Action Recommendation through direct supervision (AR) ii) Reward Manipulation (RM). In certain
applications, a human expert can directly control the actions that the agent takes; in these cases,
feedback in the form of action recommendations (AR) is useful. Conversely, in other applications
where the human expert cannot directly influence the agent’s actions, feedback through reward
manipulation is more beneficial.

We describe each of these different feedback below.

3.2.1 ACTION RECOMMENDATION VIA DIRECT SUPERVISION

In this form of feedback, the human expert explicitly instructs the actions to take for a given context.
We assume that the algorithm always accepts the recommended action. Let ât be a set of actions
recommended by the human expert EAR for a given context st and expert quality qt, where qt ∈ [0, 1],
we elaborate more on the expert quality in Section 3.4. When the expert recommends a set of actions,
the learning algorithm randomly chooses an action from the recommended set. The final reward rft
received by the learner is given by:

ât = EAR(st, qt) (2)
at ∼ Uniform(ât) (3)

rft = rt(at) (4)

3.2.2 REWARD MANIPULATION

In this form of feedback, the human expert ERM gives an additional reward penalty when the learner
chooses an action not recommended by the expert. Let rp be the fixed reward penalty for non-
recommended actions. Let at be the action chosen by the learner at round t, and ât be the expert’s
recommended action set. The final reward rft received by the learner is given by:

4
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Algorithm 1 Enropy Based - CBHF

Require: Input parameters: entropy threshold (λ), feedback-type (fb), round-number (n), contex-
tual bandit agent (A), human expert quality (qt)

Ensure: Output: mean cumulative reward
1: Initialize mean cumulative reward← 0
2: for t = 1 to n do
3: Get context, reward vector (st, rt)← ω
4: Get actions and action distribution from the learner (at, π(st))← A(st)
5: Compute H(π(st))
6: if H(π(st)) > λ then
7: if fb == AR then
8: â← E(st, qt)
9: at ← â

10: r ← rt(at)
11: else if fb== RM then
12: rp ← E(st, qt)
13: r ← rt(at) + rp
14: end if
15: else
16: r ← rt(at)
17: end if
18: Update Agent A policy π with feedback r
19: mean cumulative reward← evaluate agent A
20: end for
21: return mean cumulative reward

rp = ERM(st, qt) (5)

rft =

{
rt(at) + rp if at /∈ ât
rt(at) otherwise

(6)

3.3 WHEN TO SEEK HUMAN FEEDBACK?

An important question that naturally arises when integrating human feedback into the contextual
bandit algorithm is when the algorithm will actively seek out such feedback. In the contextual
duelling bandit setup in (Di et al., 2024), the algorithm presents two options to the human and asks
them to choose a preferred one based on a given context. In the case of model misspecification, where
the underlying reward function assumed by the algorithm does match the true rewards generated by
human preferences, the algorithm can actively query the human expert to obtain feedback on the
predicted reward or rankings (Yang et al., 2023). In our work, we take a different approach where
the learner seeks for expert feedback based on model uncertainty. The model computes the entropy
of the policy at each round t which quantifies the degree of unpredictability in the policy’s decision
making process using the following expression

H(π) = −
∑
at

π(at | st) log(π(at | st)), (7)

where H(π) denotes the entropy of policy π. The model then queries for human feedback when the
model entropy exceeds a predefined threshold λ. Appropriate choice of λ will depend on the problem
domain and are obtained using hyper parameter search. Our proposed entropy based approach for
querying the expert depends on the learner’s ability to compute an entropy for its policy. Thus for
certain models when model uncertainty is not available, we can still obtain two forms of human
feedback periodically, we also demonstrate the effect on model performance when these two types of
human feedback are incorporated for different periods.

5
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3.4 QUALITY OF EXPERTS

We consider the effect of learner’s performance based on different quality of expert feedback received.
We define the quality of feedback in this case as the accuracy of the expert in providing correct
recommendation. We first show how the performance of the contextual bandit learner measured
by the expected cumulative reward varies for different expert levels of accuracy. Let qt ∈ [0, 1] be
the probability of providing correct recommendation associated with a particular level of expert.
During training, the algorithm seeks expert feedback described in Section 3.2.1 and 3.2.2 when
H(π) ≥ λ. For action recommendation via direct supervision, the expert provides the correct action
with probability qt and provides a randomized action with probability 1−qt. For reward manipulation
feedback, the expert wrongly penalizes the learner with a probability of 1− qt.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In this sub-section, we present the environment settings, baselines, and experimental results. We also
discuss the effect of entropy thresholds and expert accuracy on model performance.

Algorithms and Environments Considered. We conduct experiments across a range of environments
and contextual bandit agents. The agents fall into two categories: (i) classic contextual bandit
algorithms and (ii) policy-based reinforcement learning (RL) algorithms with a discount factor of 0,
focusing on immediate rewards.

Classic Contextual Bandit Algorithms. For the classic contextual bandit setup, we employ three
key algorithms: 1. LinearUCB (Li et al., 2010): An extension of the traditional Upper Confidence
Bound (UCB) algorithm (Auer, 2002), where the expected reward for each action depends linearly on
the context or features associated with that action. 2. Bootstrapped Thompson Sampling (Kaptein
& Eckles, 2014): This method replaces the posterior distribution in standard Thompson Sampling
with a bootstrapped distribution, enhancing robustness by resampling historical data instead of
relying on a parametric model. 3. EE-NET (Ban et al., 2021): This approach utilizes two neural
networks—one for exploration and one for exploitation—to learn a reward function and adaptively
balance exploration with exploitation.

Policy-Based Reinforcement Learning Algorithms. For policy-based RL, we evaluate four algo-
rithms, with the discount factor set to 0 to prioritize immediate rewards: Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017), PPO with Long Short-Term Memory (PPO-LSTM),
REINFORCE (Williams, 1992), Actor-Critic (Haarnoja et al., 2018).

Baseline Comparison. We include the TAMER framework (Knox & Stone, 2009) as a baseline,
which allows human trainers to provide real-time feedback to the agent, supplementing the predefined
environmental reward signal. In our experiments, we simulate human feedback by revealing the true
labels during training.

Expert Feedback Comparison. For all contextual bandit agents, we compare two types of expert
feedback as described in sections 3.2.1 and 3.2.2. Expert feedback is solicited only during the training
phase, and each learner is evaluated after five independent runs, with the mean cumulative reward
reported.

Datasets. We use multi-label datasets from the Extreme Classification Repository, including Bibtex,
Media Mill, and Delicious (Bhatia et al., 2016). In the contextual bandit framework, the reward
function for these supervised learning datasets is defined as:

rt(at) =

{
1 if at ∈ yt
0 otherwise

(8)

where yt represents the set of correct labels associated with context st. These datasets are selected
for their size, complexity, and diversity, making them suitable for evaluating contextual bandits with
human feedback.

Implementation Details. We consider a range of entropy thresholds as hyperparameters, controlling
how frequently the algorithm seeks to incorporate human feedback. The specific ranges for different

6
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datasets are detailed in Appendix E.2. We select the optimal entropy threshold and report the mean
cumulative reward for each mode of human expert feedback. The code base for policy-based RL
algorithms is implemented in PyTorch, adapted from (seungeunrho, 2019), while the LinearUCB
and Bootstrapped Thompson Sampling implementations are adapted from (Cortes, 2019). The
hyperparameters for the RL algorithms are provided in Appendix E.1. Additionally, expert quality
is varied based on values of qt ∈ [0, 1], where with probability qt, the correct label or set of labels
associated with context st is provided to the learner, as mentioned in Section 3.3.

4.2 VARIATION OF MODEL PERFORMANCE BASED ON DIFFERENT EXPERT QUALITY

We first present the effect of different expert quality on the two types of feedback discussed in
Section 3.2.1 and Section 3.2.2. Note that we can compute the entropy of policy π for the PPO,
PPO-LSTM, Reinforce, Actor-Critic and LinearUCB and Bootstrapped Thompson sampling. We
now present the results associated with different expert levels in for the four environments discussed
in section 4. Figure 2 shows the variation of different expert qualities for different range of learners.
The bar plot in orange shows the model performance when reward manipulation is used as a feedback
from the human expert and the bar plot in blue shows the model performance when action recommen-
dation as a feedback from human feedback. Our analysis shows that for different expert levels the
effectiveness of incorporating human feedback depends on the learner. Comparison of expert levels
with model performance for other learners are shown in Appendix A.
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Figure 2: Comparison of expert feedback for different learners based on different expert qualities.
The results show that mean cumulative reward for different datasets and algorithms vary in a different
manner for the two feedback schemes considered. Higher levels of expert does not necessary results
in better performance.
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Table 1: Performance comparison of algorithms for different quality of expert feedback. The values
in bold represent the maximum mean cumulative reward achieved across different levels of expert.

Feedback Type Algorithm Name Environment Name 0.3 0.5 0.7 0.9
Action Recommendation PPO Bibtex 0.27349± 0.00167 0.26383± 0.00091 0.20268± 0.00260 0.16763± 0.00092

Reward Manipulation PPO Bibtex 0.27827± 0.00312 0.27470± 0.00165 0.16965± 0.00202 0.31021± 0.00278

Action Recommendation PPO Delicious 0.51770± 0.00220 0.36824± 0.00191 0.37114± 0.00208 0.46170± 0.00130

Reward Manipulation PPO Delicious 0.48187± 0.00113 0.29682± 0.00230 0.36717± 0.00215 0.40190± 0.00165

Action Recommendation PPO-LSTM Media_Mill 0.76836± 0.00155 0.77318± 0.00141 0.77504± 0.00058 0.77113± 0.00120

Reward Manipulation PPO-LSTM Media_Mill 0.76973± 0.00114 0.77447± 0.00177 0.76748± 0.00187 0.76197± 0.00373

Action Recommendation LinearUCB Bibtex 0.02478± 0.00068 0.02280± 0.00056 0.02145± 0.00066 0.02002± 0.00055

Reward Manipulation LinearUCB Bibtex 0.02369± 0.00080 0.02532± 0.00079 0.02518± 0.00049 0.03527± 0.00115

Action Recommendation LinearUCB Delicious 0.02430± 0.00053 0.01818± 0.00036 0.02064± 0.00061 0.05308± 0.00066

Reward Manipulation LinearUCB Delicious 0.01664± 0.00022 0.10018± 0.00161 0.01889± 0.00051 0.08540± 0.00063

Action Recommendation Bootstrapped-TS Bibtex 0.22537± 0.00196 0.19911± 0.00105 0.21668± 0.00144 0.24097± 0.00137

Reward Manipulation Bootstrapped-TS Bibtex 0.15276± 0.00101 0.27697± 0.00103 0.18423± 0.00087 0.18468± 0.00278
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Figure 3: Performance comparison with baselines. Human feedback consistently leads to large
performance gains.

4.3 INCORPORATING ENTROPY BASED FEEDBACK ACHIEVES HIGHER PERFORMANCE
COMPARED TO BASELINES

We optimize the model performance across various expert levels and compare these results with
baseline models, including TAMER and EE-Net. Figure 3 presents the mean cumulative reward for
the optimized expert level (as obtained from Table 1), highlighting the significant performance gains
achieved by incorporating entropy-based feedback over the baselines.

Our analysis, conducted across all datasets, demonstrates that integrating entropy-based feed-
back—specifically Action Recommendation (AR) and Reward Modification (RM)—consistently
outperforms both TAMER and EE-Net. Moreover, we observe that the proportion of steps during
which the algorithm seeks human expert feedback varies across datasets. Importantly, the results
reveal two key findings:

Firstly, learners benefit substantially from entropy-based feedback compared to when no such
feedback is provided. This improvement underscores the effectiveness of entropy thresholds in
selectively involving human experts, thereby guiding the learning process. In fact, even with a modest
number of queries to the human expert (less than 30% of the total training steps), entropy-based
feedback drives superior performance over the baseline models. Secondly, the final performance of
the learners is not strictly dependent on the quality of the human feedback, as shown in Figure 2.

Interestingly, the performance of AR and RM varies between datasets. For example, on the Bibtex
dataset, AR performs worse compared to RM, while on the Delicious dataset, AR demonstrates the
best performance among the three. This difference arises due to how penalties affect exploration:
Bibtex, with fewer actions, benefits less from AR’s action-space limitation, whereas Delicious, with
many possible actions, sees AR accelerating convergence by narrowing down the action space early
in the learning process. As a result, AR’s advantage becomes more apparent in environments where
an overwhelming number of actions could otherwise slow down the learner’s progress.
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Further details regarding the proportion of expert queries for different levels of expert quality are
provided in Appendix C.

4.4 EFFECT OF ENTROPY THRESHOLD AND EXPERT ACCURACY ON MODEL PERFORMANCE

Figure 4 presents bubble plots comparing model performance at different expert levels and entropy
threshold values for both AR and RM feedback types. The size and color of each bubble represent
the mean cumulative reward for the corresponding learner.

We begin by analyzing the results for AR feedback. Generally, we observe that at higher entropy
threshold values, the model’s performance remains relatively stable across different expert levels.
This behavior is expected, as higher entropy thresholds result in fewer queries to the human expert,
reducing the impact of expert quality on performance.

However, at lower entropy thresholds, an interesting pattern emerges: increasing expert quality
can actually lead to a decrease in model performance. This phenomenon relates to the exploration-
exploitation trade-off. At high expert levels, the expert consistently provides accurate recommenda-
tions, and since the model is designed to always accept these recommendations in the AR setting,
the result is pure exploitation. Conversely, at lower expert levels, where recommendations are more
random, the model is encouraged to explore a broader set of actions, which can ultimately yield
higher cumulative rewards.

A similar pattern is observed with RM feedback. At higher entropy thresholds, the differences in
performance between varying expert levels are minimal, as fewer queries are made to the expert. At
lower entropy thresholds, however, we again see a decline in performance as expert quality increases.

Further bubble plots illustrating these trends for other learners, under both AR and RM feedback, can
be found in Appendix B.
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Figure 4: Comparison of model performance for different values of entropy and expert accuracies for feedback:
Action Recommendation and Reward Manipulation. The size and color of each bubble in the bubble plots
represent the magnitude of the mean cumulative reward.
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4.5 OBSERVED DIFFERENCES BETWEEN FEEDBACK TYPES

Figure 3 illustrates how the two forms of feedback, AR and RM, interact differently with the
underlying algorithms and datasets. The choice of feedback type should therefore depend on the
specific application.

Our results generally indicate that at higher expert levels, AR tends to be more effective than RM. This
is likely because AR directly influences the actions taken by the contextual bandit (CB), interfering
less with its reward-based learning process. At low expert levels, however, AR can become disruptive,
leading to poor exploration by prematurely narrowing the action space. In contrast, at high expert
levels, AR provides clearer guidance for the bandit’s exploration, optimizing action selection while
leaving the reward structure relatively intact.

Ultimately, this suggests that AR is particularly advantageous when expert quality is high, as it can
effectively guide exploration without destabilizing the learning process.

5 CONCLUSION

In conclusion, this work introduces an effective entropy-based framework for incorporating human
feedback into contextual bandits. By utilizing model entropy to trigger feedback solicitation, we
significantly reduce the reliance on continuous human intervention, thus making the system more
efficient and scalable. Our experiments show that even with low-quality human feedback, substantial
performance gains can be achieved, underscoring the potential of entropy-based feedback mechanisms
in various real-world applications. This framework enhances learning efficiency and provides new
insights into the dynamics of human-machine collaboration in reinforcement learning environments.
Future work may focus on refining feedback solicitation strategies and exploring their applicability in
broader AI contexts, ensuring even more adaptive and responsive learning systems.

6 IMPACT STATEMENT

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.
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A EFFECT OF FEEDBACK QUALITIES ON DIFFERENT LEARNERS

This section details the impact of feedback levels on different learners.

Figure 5: Comparison of expert feedback for different learners based on different expert qualities. The results
show that mean cumulative reward for different datasets and algorithms vary in a different manner for the two
feedback schemes considered. Higher levels of expert does not necessary results in better performance.

0.1 0.3 0.5 0.7 0.9
Expert Accuracy

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
ea

n 
Cu

m
ul

at
iv

e 
Re

wa
rd

Action Recommendation
Reward Manipulation

0.1 0.3 0.5 0.7 0.9
Expert Accuracy

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n 
Cu

m
ul

at
iv

e 
Re

wa
rd

Action Recommendation
Reward Manipulation

0.1 0.3 0.5 0.7 0.9
Expert Accuracy

0.0

0.2

0.4

0.6

0.8

M
ea

n 
Cu

m
ul

at
iv

e 
Re

wa
rd

Action Recommendation
Reward Manipulation

PPO-LSTM

0.1 0.3 0.5 0.7 0.9
Expert Accuracy

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n 
Cu

m
ul

at
iv

e 
Re

wa
rd

Action Recommendation
Reward Manipulation

0.1 0.3 0.5 0.7 0.9
Expert Accuracy

0.0

0.1

0.2

0.3

0.4

M
ea

n 
Cu

m
ul

at
iv

e 
Re

wa
rd

Action Recommendation
Reward Manipulation

0.1 0.3 0.5 0.7 0.9
Expert Accuracy

0.0

0.2

0.4

0.6

0.8

M
ea

n 
Cu

m
ul

at
iv

e 
Re

wa
rd

Action Recommendation
Reward Manipulation

Reinforce

0.1 0.3 0.5 0.7 0.9
Expert Accuracy

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n 
Cu

m
ul

at
iv

e 
Re

wa
rd

Action Recommendation
Reward Manipulation

0.1 0.3 0.5 0.7 0.9
Expert Accuracy

0.00

0.01

0.02

0.03

0.04

0.05

M
ea

n 
Cu

m
ul

at
iv

e 
Re

wa
rd

Action Recommendation
Reward Manipulation

0.1 0.3 0.5 0.7 0.9
Expert Accuracy

0.0

0.2

0.4

0.6

0.8

M
ea

n 
Cu

m
ul

at
iv

e 
Re

wa
rd

Action Recommendation
Reward Manipulation

Actor Critic

0.1 0.3 0.5 0.7 0.9
Expert Accuracy

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n 
Cu

m
ul

at
iv

e 
Re

wa
rd

Action Recommendation
Reward Manipulation

0.1 0.3 0.5 0.7 0.9
Expert Accuracy

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n 
Cu

m
ul

at
iv

e 
Re

wa
rd

Action Recommendation
Reward Manipulation

0.1 0.3 0.5 0.7 0.9
Expert Accuracy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n 
Cu

m
ul

at
iv

e 
Re

wa
rd

Action Recommendation

Boostrapped-TS

B EFFECT OF ENTROPY THRESHOLD AND EXPERT LEVELS ON MODEL
PERFORMANCE

This section studies the impact of the entropy threshold on performance.
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Figure 6: Comparison of model performance for different values of entropy and expert accuracies for feedback:
Action Recommendation. The size and color of each bubble in the bubble plots represent the magnitude of the
mean cumulative reward.
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Figure 7: Comparison of model performance for different values of entropy and expert accuracies for feedback:
Reward Manipulation. The size and color of each bubble in the bubble plots represent the magnitude of the mean
cumulative reward.
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C VARIATION IN THE PERCENTAGE OF STEPS FOR EXPERT QUERIES BASED ON
ENTROPY THRESHOLD

This section studies the variation of expert queries for the two feedback types.

D PERFORMANCE OF DIFFERENT ALGORITHMS BASED ON DIFFERENT EXPERT
LEVELS

This section provides more details on the performance as a function of different expert levels.
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Figure 8: Variation of expert queries made for different models based on entropy for feedback type: Action
Recommendation
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Figure 9: Variation of expert queries made for different models based on entropy for feedback type: Reward
Manipulation
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Table 2: Performance comparison of algorithms for different quality of expert feedback. The values in bold
represent the maximum mean cumulative reward achieved across different levels of expert.

Feedback Type Algorithm Name Environment Name 0.3 0.5 0.7 0.9
Action Recommendation PPO Bibtex 0.27349± 0.00167 0.26383± 0.00091 0.20268± 0.00260 0.16763± 0.00092

Reward Manipulation PPO Bibtex 0.27827± 0.00312 0.27470± 0.00165 0.16965± 0.00202 0.31021± 0.00278

Action Recommendation PPO Media_Mill 0.76862± 0.00137 0.76842± 0.00230 0.77206± 0.00124 0.76662± 0.00134

Reward Manipulation PPO Media_Mill 0.76683± 0.00190 0.76530± 0.00128 0.76895± 0.00291 0.77545± 0.00151

Action Recommendation PPO Delicious 0.51770± 0.00220 0.36824± 0.00191 0.37114± 0.00208 0.46170± 0.00130

Reward Manipulation PPO Delicious 0.48187± 0.00113 0.29682± 0.00230 0.36717± 0.00215 0.40190± 0.00165

Action Recommendation PPO-LSTM Bibtex 0.13464± 0.00086 0.11283± 0.00204 0.11533± 0.00090 0.02363± 0.00063

Reward Manipulation PPO-LSTM Bibtex 0.14413± 0.00052 0.14157± 0.00186 0.13750± 0.00095 0.14304± 0.00136

Action Recommendation PPO-LSTM Media_Mill 0.76836± 0.00155 0.77318± 0.00141 0.77504± 0.00058 0.77113± 0.00120

Reward Manipulation PPO-LSTM Media_Mill 0.76973± 0.00114 0.77447± 0.00177 0.76748± 0.00187 0.76197± 0.00373

Action Recommendation PPO-LSTM Delicious 0.12497± 0.00140 0.11567± 0.00091 0.11793± 0.00203 0.11698± 0.00100

Reward Manipulation PPO-LSTM Delicious 0.28802± 0.00123 0.26663± 0.00204 0.09600± 0.00092 0.26014± 0.00151

Action Recommendation Reinforce Bibtex 0.24346± 0.00128 0.27678± 0.00159 0.29793± 0.00134 0.11714± 0.00133

Reward Manipulation Reinforce Bibtex 0.21970± 0.00090 0.24939± 0.00148 0.25543± 0.00166 0.25662± 0.00137

Action Recommendation Reinforce Media_Mill 0.08715± 0.00139 0.35710± 0.00214 0.63323± 0.00296 0.63446± 0.00155

Reward Manipulation Reinforce Media_Mill 0.77292± 0.00310 0.77098± 0.00177 0.77183± 0.00111 0.77339± 0.00129

Action Recommendation Reinforce Delicious 0.37394± 0.00165 0.35349± 0.00121 0.37268± 0.00230 0.24432± 0.00258

Reward Manipulation Reinforce Delicious 0.04502± 0.00067 0.15057± 0.00138 0.07441± 0.00142 0.07983± 0.00091

Action Recommendation Actor-Critic Bibtex 0.14119± 0.00107 0.21240± 0.00068 0.23825± 0.00093 0.15231± 0.00208

Reward Manipulation Actor-Critic Bibtex 0.17242± 0.00126 0.23110± 0.00149 0.19961± 0.00119 0.19822± 0.00149

Action Recommendation Actor-Critic Media_Mill 0.76394± 0.00118 0.77449± 0.00242 0.76325± 0.00085 0.76966± 0.00076

Reward Manipulation Actor-Critic Media_Mill 0.76749± 0.00205 0.77507± 0.00124 0.77664± 0.00099 0.76347± 0.00203

Action Recommendation Actor-Critic Delicious 0.02017± 0.00084 0.02213± 0.00031 0.02629± 0.00054 0.03498± 0.00036

Reward Manipulation Actor-Critic Delicious 0.02292± 0.00051 0.02334± 0.00070 0.02354± 0.00034 0.02154± 0.00069

Action Recommendation LinearUCB Bibtex 0.02478± 0.00068 0.02280± 0.00056 0.02145± 0.00066 0.02002± 0.00055

Reward Manipulation LinearUCB Bibtex 0.02369± 0.00080 0.02532± 0.00079 0.02518± 0.00049 0.03527± 0.00115

Action Recommendation LinearUCB Media_Mill 0.00321± 0.00028 0.00259± 0.00029 0.17961± 0.00117 0.17399± 0.00084

Reward Manipulation LinearUCB Media_Mill 0.00059± 0.00004 0.00058± 0.00007 0.19890± 0.00087 0.05337± 0.00136

Action Recommendation LinearUCB Delicious 0.02430± 0.00053 0.01818± 0.00036 0.02064± 0.00061 0.05308± 0.00066

Reward Manipulation LinearUCB Delicious 0.01664± 0.00022 0.10018± 0.00161 0.01889± 0.00051 0.08540± 0.00063

Action Recommendation Bootstrapped-TS Bibtex 0.22537± 0.00196 0.19911± 0.00105 0.21668± 0.00144 0.24097± 0.00137

Reward Manipulation Bootstrapped-TS Bibtex 0.15276± 0.00101 0.27697± 0.00103 0.18423± 0.00087 0.18468± 0.00278

Action Recommendation Bootstrapped-TS Media_Mill 0.00000± 0.00000 0.00000± 0.00000 0.00000± 0.00000 0.00000± 0.00000

Reward Manipulation Bootstrapped-TS Media_Mill 0.00000± 0.00000 0.00000± 0.00000 0.00000± 0.00000 0.00000± 0.00000

Action Recommendation Bootstrapped-TS Delicious 0.00000± 0.00000 0.00000± 0.00000 0.00000± 0.00000 0.00000± 0.00000

Reward Manipulation Bootstrapped-TS Delicious 0.00000± 0.00000 0.00000± 0.00000 0.00000± 0.00000 0.00000± 0.00000

E HYPER PARAMETERS

We provide the hyperparameters for the policy based RL algorithms and the range of values of entropy
thresholds that we consider for each dataset.

E.1 HYPERPARAMETERS FOR POLICY BASED RL ALGORITHMS

Table 3: HyperParameters for Policy based Algorithms. AFD=Advantage function discount.

Algorithms Training Epochs Learning Rate AFD Clipping Batch Size
PPO 5000 0.005 0.1 0.1 32
PPO-LSTM 5000 0.001 0.95 0.1 32
Reinforce 5000 0.0002 - - -
Actor Critic 5000 0.002 - - 32
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E.2 RANGE OF ENTROPY THRESHOLDS CONSIDERED

Table 4: Entropy thresholds for different environments λ

Item λ values
Bibtex 2.5, 3.5, 5.0, 6.5, 9.0
Media Mill 1.5, 2.5, 3.0, 4.5, 7.0
Delicious 1.5, 2.5, 4.5, 6.5, 9.0
Yahoo 1.5, 2.5, 4.5, 7.0, 9.0

F REGRET BOUND FOR CONTEXUAL BANDITS WITH ENTROPY-BASED HUMAN
FEEDBACK

Here’s a regret bound for our proposed algorithm, focusing on entropy-based human feedback in a
contextual bandit setting. The goal is to show how incorporating selective oracle feedback affects
cumulative regret.

Let T be the total number of rounds, and A the set of available actions. At each round t:

- The agent observes a context st.

- The agent selects an action at ∈ A based on its policy πt, which incorporates feedback if requested.

- The oracle feedback is solicited when the entropy of the policy H(πt) exceeds a threshold λ.

- The observed reward rt(at) is a combination of environment and feedback rewards.

The expected regret at time t is defined as:

Regrett = E[rt(a∗t )− rt(at)],

where a∗t = argmaxa∈A E[rt(a)] is the optimal action.

The total regret over T rounds is:

Regret(T ) =
T∑

t=1

Regrett.

F.1 THEOREM: REGRET BOUND

Assume: The entropy threshold λ ensures that feedback is solicited with probability P (H(πt) >
λ) = p. Oracle feedback provides correct information with probability qt.

Then, the expected regret of the proposed algorithm is bounded by:

E[Regret(T )] ≤ O
(√

T |A| log T
)
+O

(
(1− p)T

qt

)
.

1. Regret Decomposition: Decompose regret into two components:

Regret(T ) =
∑
t∈F

Regrett +
∑
t/∈F

Regrett,

where F is the set of rounds where feedback is requested (H(πt) > λ).

2. Regret Without Feedback (t /∈ F): When no feedback is requested, the regret follows standard
contextual bandit regret:

E[Regretno-feedback(T )] ≤ O(
√
T |A| log T ).

3. Regret With Feedback (t ∈ F): For rounds where feedback is solicited: (i) Feedback improves
decision quality, reducing regret proportional to feedback accuracy qt. (ii) The regret in feedback
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rounds is bounded by (1− qt) per round:

E[Regretfeedback(T )] ≤ O

(
(1− p)T

qt

)
.

4. Combining Terms: Combining both terms yields the total regret bound:

E[Regret(T )] ≤ O
(√

T |A| log T
)
+O

(
(1− p)T

qt

)
.

We have the following implications:

- Feedback Benefit: The bound highlights how oracle feedback reduces regret by improving decision-
making in high-uncertainty rounds.

- Trade-off: The second term reflects the cost-benefit trade-off of feedback. With frequent and accurate
feedback (p→ 1 and qt → 1), the regret decreases significantly.

- Entropy Threshold: The choice of λ (affecting p) allows control over feedback frequency, balancing
feedback cost and regret reduction.

G TRADE-OFFS BETWEEN ACTION RECOMMENDATION AND REWARD
MANIPULATION USING LOWER BOUNDS

We can incorporate a lower bound analysis to compare the trade-offs between Action Recommendation
(AR) and Reward Manipulation (RM). It highlights the theoretical benefits and limitations of each
feedback type.

Problem Setup and Notation

Let: T : Total number of rounds. K: Number of actions. A: Action space. st: Context observed at
round t. rt(a): Reward for action a at round t. qAR

t : Probability that the feedback in AR is correct
(expert recommendation quality). qRM

t : Probability that the reward signal is correctly modified in
RM (expert reward quality). pt: Probability of querying feedback in either AR or RM.

We aim to derive regret lower bounds for both feedback types and analyze their trade-offs.

G.1 ACTION RECOMMENDATION (AR)

In the AR setting: The agent queries the oracle to receive the recommended action aAR
t , which is

assumed to be correct with probability qAR
t .

Regret Lower Bound for AR

In rounds where feedback is not queried (1 − pt), the regret follows standard contextual bandit
bounds:

E[Regretno-feedback(T )] ≥ O((1− pt)
√
TK).

In rounds where AR feedback is queried (pt), regret depends on the quality of the recommended
action:

E[RegretAR
feedback(T )] ≥ O

(
ptT

qAR
t

)
.

Thus, the total regret for AR is bounded by:

E[RegretAR(T )] ≥ O((1− pt)
√
TK) +O

(
ptT

qAR
t

)
.

G.2 REWARD MANIPULATION (RM)

In the RM setting: The agent receives a modified reward signal r̃t(at), adjusted by the oracle to
reflect feedback quality qRM

t .
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Regret Lower Bound for RM

Without feedback (1− pt):

E[Regretno-feedback(T )] ≥ O((1− pt)
√
TK).

With RM feedback (pt), the manipulated reward provides improved reward estimates, reducing regret:

E[RegretRM
feedback(T )] ≥ O

(
ptT

qRM
t

)
.

Thus, the total regret for RM is:

E[RegretRM (T )] ≥ O((1− pt)
√
TK) +O

(
ptT

qRM
t

)
.

G.3 TRADE-OFF ANALYSIS

1. Feedback Quality qAR
t vs. qRM

t : AR directly impacts action selection, which may lead to larger
regret reduction if qAR

t is high. RM improves the reward signal, which may be less direct but still
effective in guiding future decisions.

2. Feedback Frequency pt: Both AR and RM benefit from higher feedback frequency pt. However,
querying feedback comes with costs, and the choice depends on the relative quality of feedback qt.

3. Cumulative Regret: If qAR
t > qRM

t , AR is more effective in reducing regret:

E[RegretAR(T )] < E[RegretRM (T )].

Conversely, if qRM
t is higher, RM could achieve lower regret.

G.4 PRACTICAL IMPLICATIONS

When to Use AR: (i) When action recommendations are highly reliable (qAR
t → 1). (ii) When

immediate corrective feedback on actions is critical.

When to Use RM: (i) When action recommendations are less reliable, but reward signals can be
improved consistently (qRM

t > qAR
t ). (ii) When reward shaping can better guide learning in uncertain

environments.

This analysis shows that the choice between AR and RM depends on the quality and frequency of
feedback. Both methods have distinct strengths, and their trade-offs can be quantified using the
derived regret bounds. Future work could further explore hybrid strategies that dynamically balance
AR and RM based on real-time feedback quality.

H DETAILED ANALYSIS OF FEEDBACK SOLICITATION COSTS AND THEIR
IMPACT ON CUMULATIVE REWARDS

In systems that integrate human feedback, the cost of feedback solicitation plays a crucial role in
determining the efficiency and practicality of the algorithm. Below, we provide a structured analysis
of these costs and their effects.

H.1 COST COMPONENTS IN FEEDBACK SOLICITATION

Feedback solicitation costs can be broken into three primary components:

• Human Effort Cost (Ch): Time, cognitive load, or financial compensation required for a
human expert to provide feedback.

• System Overhead (Cs): Computational and communication overhead associated with
querying, collecting, and processing feedback.
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• Opportunity Cost (Co): Delay or missed opportunities to explore other actions during
feedback solicitation.

The total cost per solicitation can be expressed as:

Ctotal = Ch + Cs + Co.

H.2 TRADE-OFF BETWEEN FEEDBACK AND PERFORMANCE

Feedback improves learning by reducing uncertainty in decision-making but comes at a cost. The
trade-off is evident in two opposing factors:

• Benefits: Incorporating feedback accelerates convergence, reduces regret, and improves
cumulative rewards.

• Costs: Frequent feedback queries increase the total cost, potentially diminishing the system’s
overall utility.

The cumulative rewards RT after T rounds with feedback solicitation frequency p can be modeled as:

RT =

T∑
t=1

rt − p · Ctotal,

where rt represents the reward at time step t, and p is the fraction of rounds in which feedback is
solicited.

H.3 EFFECT OF FEEDBACK QUALITY AND FREQUENCY

H.3.1 HIGH-QUALITY FEEDBACK (qt → 1)

• Impact: High-quality feedback significantly reduces regret, as the system quickly learns
optimal actions.

• Cost Justification: Even with higher solicitation costs, the performance gains justify
frequent feedback, especially in complex environments.

H.3.2 LOW-QUALITY FEEDBACK (qt → 0)

• Impact: Low-quality feedback adds noise to the learning process, diminishing performance
gains.

• Cost Justification: Frequent solicitation becomes inefficient, and selective feedback solici-
tation based on entropy thresholds (λ) is preferred.

H.3.3 FREQUENCY OF FEEDBACK (p)

• High p improves learning but incurs higher total costs, leading to diminishing returns as
cumulative rewards plateau.

• Low p reduces costs but risks slower convergence and higher regret.

H.4 ENTROPY-BASED FEEDBACK SOLICITATION

An entropy-based mechanism optimizes feedback solicitation by querying only when the model’s
uncertainty surpasses a predefined threshold (λ):

• High Entropy (H(π) > λ): Feedback is requested to resolve uncertainty, ensuring maxi-
mum utility from the cost incurred.

• Low Entropy (H(π) ≤ λ): Feedback is avoided as the model is confident in its decision.

This selective querying strategy reduces the total feedback cost while maintaining performance by
focusing resources where they have the highest impact.
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H.5 EXPERIMENTAL ANALYSIS

Using simulated environments:

• Performance vs. Cost: Reducing feedback frequency (p) by increasing λ leads to a
marginal decrease in performance while significantly reducing costs. For instance, at
p = 0.3, performance dropped by only 5% compared to p = 1.0, but the cost was reduced
by 70%.

• Dataset Dependency: Feedback efficiency varies across datasets. Datasets with large action
spaces benefit more from frequent feedback (e.g., Delicious dataset), while datasets with
fewer actions (e.g., Bibtex dataset) require less frequent feedback due to faster convergence.

H.6 INSIGHTS AND PRACTICAL IMPLICATIONS

• Optimal Feedback Strategy: Use selective feedback based on model uncertainty and adjust
λ to balance feedback costs with performance gains depending on the application.

• Recommendations for Practitioners: In high-cost settings, prioritize low feedback fre-
quency (p → 0.2 − 0.4) with robust entropy thresholds. For critical applications, higher
feedback costs can be justified for improved cumulative rewards.

• Scalability: Entropy-based solicitation is particularly effective for large-scale systems where
querying all rounds is impractical.

H.7 CONCLUSION

Balancing feedback solicitation costs and cumulative rewards requires careful tuning of feedback
frequency and quality thresholds. An entropy-based approach effectively minimizes costs while
maintaining performance, making it a practical solution for real-world applications. Future work
could explore dynamic threshold adaptation to further optimize this trade-off.
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