
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPROVED CONVEX DECOMPOSITION WITH
ENSEMBLING AND BOOLEAN PRIMITIVES

Anonymous authors
Paper under double-blind review

ABSTRACT

Describing a scene in terms of primitives – geometrically simple shapes that offer
a parsimonious but accurate abstraction of structure – is an established and difficult
fitting problem. Different scenes require different numbers of primitives, and these
primitives interact strongly; however, any proposed solution can be evaluated at
inference time. The state of the art method involves a learned regression procedure
to predict a start point consisting of a fixed number of primitives, followed by a
descent method to refine the geometry and remove redundant primitives. Methods
are evaluated by accuracy in depth and normal prediction and in scene segmentation.
This paper shows that very significant improvements in accuracy can be obtained
by (a) incorporating a small number of negative primitives and (b) ensembling
over a number of different regression procedures. Ensembling is by refining each
predicted start point, then choosing the best by fitting loss. Extensive experiments
on the standard NYUv2 dataset confirm that negative primitives are useful, and
that our refine-then-choose strategy outperforms choose-then-refine, confirming
that the fitting problem is very difficult. Our ensembling with boolean primitives
approach strongly outperforms existing methods; additionally we present several
improvements to the underlying primitive generation process enabling us to obtain
better decompositions with fewer primitives. Code will be released upon acceptance
of the paper.

1 INTRODUCTION

Geometric representations of scenes and objects as primitives – simple geometries that expose
structure while suppressing detail – should allow simpler, more general reasoning. It is easier to
plan moving a cuboid through stylized free space than moving a specific chair through a particular
living room. As another example, an effective primitive representation should simplify selecting and
manipulating objects in scenes as in image-based scene editing (Bhat et al., 2023; Vavilala et al.,
2023). But obtaining primitive representations that abstract usefully and accurately has been hard
(review Sec. 2).

There are two main types of method. A descent method chooses primitives for a given geometry
by minimizing a cost function. Important obstacles include: different geometries require different
numbers of primitives; the choice of primitive appears to be important in ways that are opaque; the
fitting problem has large numbers of local minima; and finding a good start point is difficult. In
particular, incremental fitting procedures are often defeated by interactions between primitives. A
regression method uses a learned predictor to map geometry to primitives and their parameters.
These methods can pool examples to avoid local minima, but may not get the best prediction for a
given input.

The SOTA method (Vavilala & Forsyth, 2023) for parsing indoor scenes uses a regression method
to predict a start point consisting of a fixed set of primitives. An important feature of this class of
problem is that, at run time, one can evaluate a predicted solution efficiently and accurately. The start
point is polished using a descent method on a fitting loss, comparing the prediction with depth and
segmentation maps from a suitable pretrained network, with backward selection to remove redundant
primitives. Finally, evaluation is by comparing the primitive geometry to reference depth, normal and
segmentation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

RG
B

In
pu

t
Kl

ug
er

 e
t a

l.
Va

vi
la

la
 e

t a
l.

O
ur
s

Figure 1: We present a method that advances the SOTA for primitive decomposition of indoor scenes
by using ensembling and boolean primitives. We present qualitative comparison with prior work here.
(Bottom row) In the fourth column, notice how a negative primitive helps explain free space on the
bottom left; in the last column, notice how a negative primitive helps represent the chair in the center.

This paper shows two procedures that yield significant (over 40% relative error) improvements in
accuracy. First, we allow a small number of negative primitives in the sense of constructive solid
geometry (CSG). Second, we show that an appropriately constructed ensembling method produces
very strong improvements in accuracy.

For negative primitives, the predicted geometry is the set difference between the union of positive
primitives and the union of negative primitives. As our ablation experiments show, this significantly
expands the geometries we can encode and significantly complicates the fitting problem. On their
own, negative primitives produce small improvements in accuracy. With ensembling we obtain
significant improvements in accuracy. We ensemble by using multiple predictors, each trained
to predict a start point with a different number of primitives; some predictors use only positive
primitives, others use both positive and negative primitives. Each predicted start point is then polished
by minimizing a fitting loss, and the best resulting set of primitives by fitting loss is reported. This
polish-then-choose strategy yields very strong improvements in accuracy. Notably, for some scenes
only positive primitives are used, whereas for others both positive and negative primitives are used.

Our contributions are:

1. We believe our method is the only one that can fit CSG with a set differencing operator to
indoor scenes.

2. Our novel ensembling method results in large improvements in accuracy and allows the user
to control the level of abstraction. We are unaware of another method using ensembling to
improve primitive generation.

3. Our primitive decomposition method for indoor scenes is an effective procedure that sub-
stantially outperforms SOTA on established metrics on the benchmark NYUv2 dataset.

2 RELATED WORK

Primitives date to the origins of computer vision. Roberts worked with blocks (Roberts, 1963);
Binford with generalized cylinders (Binford, 1971); Biederman with geons (Biederman, 1987).
Ideally, complex objects might be handled with simple primitives (Chen et al., 2019) where each
primitive is a semantic part (Biederman, 1987; Binford, 1971; van den Hengel et al., 2015). Primitives

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

can be recovered from image data (Nevatia & Binford, 1977; Shafer & Kanade, 1983), and allow
simplified geometric reasoning (Ponce & Hebert, 1982).

For individual objects, neural methods could predict the right set of primitives by predicting solutions
for test data that are “like” those that worked for training data. Tulsiani et al. parse 3D shapes into
cuboids, trained without ground truth segmentations (Tulsiani et al., 2017). Zou et al. parse with
a recurrent architecture (Zou et al., 2018). Liu et al. produce detailed reconstructions of objects in
indoor scenes, but do not attempt parsimonious abstraction (Liu et al., 2022). Worryingly, 3D recon-
struction networks might rely on object semantics (Tatarchenko et al., 2019). Deng et al. (CVXNet)
represent objects as a union of convexes, again training without ground truth segmentations (Deng
et al., 2020). An early variant of CVXNet can recover 3D representations of poses from single
images, with reasonable parses into parts (Deng et al., 2019). Meshes can be decomposed into
near convex primitives, by a form of search (Wei et al., 2022). Part decompositions have attractive
editability (Hertz et al., 2022). Regression methods face some difficulty producing different numbers
of primitives per scene (CVXNet uses a fixed number; (Tulsiani et al., 2017) predicts the probability
a primitive is present; one also might use Gumbel softmax (Jang et al., 2017)). Primitives that have
been explored include: cuboids (Calderon & Boubekeur, 2017; Gadelha et al., 2020; Mo et al., 2019;
Tulsiani et al., 2017; Roberts et al., 2021; Smirnov et al., 2019; Sun & Zou, 2019; Kluger et al., 2021);
superquadrics (Barr, 1981; Jaklič et al., 2000; Paschalidou et al., 2019); planes (Chen et al., 2019;
Liu et al., 2018a); and generalized cylinders (Nevatia & Binford, 1977; Zou et al., 2017a; Li et al.,
2018). There is a recent review in (Fu et al., 2021).

Neural Parts (Paschalidou et al., 2021) decomposes an object given by an image into a set of non-
convex shapes. CAPRI-Net (Yu et al., 2022) decomposes 3D objects given as point clouds or voxel
grids into assemblies of quadric surfaces. DeepCAD (Wu et al., 2021) decomposes an object into
a sequence of commands describing a CAD model, but requires appropriately annotated data for
training. Point2Cyl (Uy et al., 2022) is similar, but predicts the 2D shapes in form of an SDF. Notably,
Yu et al. (2022); Wu et al. (2021); Uy et al. (2022) also utilise CSG with negative primitives or parts
but, unlike our work, focus on CAD models of single objects instead of complex real-world scenes.

Hoiem et al parse outdoor scenes into vertical and horizontal surfaces (Hoiem et al., 2005; 2007);
Gupta et al demonstrate a parse into blocks (Gupta et al., 2010). Indoor scenes can be parsed into: a
cuboid (Hedau et al., 2009; Vavilala & Forsyth, 2023); beds and some furniture as boxes (Hedau et al.,
2010); free space (Hedau et al., 2012); and plane layouts (Stekovic et al., 2020; Liu et al., 2018b). If
RGBD is available, one can recover layout in detail (Zou et al., 2017b). Patch-like primitives can be
imputed from data (Fouhey et al., 2013). Jiang demonstrates parsing RGBD images into primitives
by solving a 0-1 quadratic program (Jiang, 2014). Like that work, we evaluate segmentation by
primitives (see Jiang (2014), p. 12), but we use original NYUv2 labels instead of the drastically
simplified ones in the prior work. Also, our primitives are truly convex. Monnier et al and Alaniz
et al decompose scenes into sets of superquadrics using differentiable rendering, which requires
calibrated multi-view images as input (Monnier et al., 2023; Alaniz et al., 2023). Most similar to
our work is that of Kluger et al, who identify cuboids sequentially with a RANSAC-like greedy
algorithm (Fischler & Bolles, 1981; Kluger et al., 2020; 2021; 2024; Kluger & Rosenhahn, 2024).

The success of a descent method depends critically on the start point, typically dealt with using
greedy algorithms (rooted in RANSAC (Fischler & Bolles, 1981); note the prevalence of RANSAC
in a recent review (Kang et al., 2020)); randomized search (Ramamonjisoa et al., 2022; Hampali
et al., 2021); or multiple starts. Regression methods must minimize loss over all training data, so
at inference time do not necessarily produce the best representation for the particular scene. The
prediction is biased by the need to get other scenes right, too. To manage this difficulty, we use a
mixed reconstruction strategy – first, predict primitives using a network, then polish using descent.

3 METHOD

Our work is based on the architecture and losses of Vavilala & Forsyth (2023) and maintains its basic
inference procedure:

1. Predict initial convex parameters from an RGBD image via a convolutional neural network.
2. Refine the fit by directly optimizing convex parameters against the training losses.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We note that generally, GT primitive decompositions are not available and instead a variety of losses
supervise the fitting process. Unlike prior primitive generation work, we employ an ensemble of
networks that predict varying numbers of convexes, and select the prediction which yields the lowest
error after refinement (Sec. 3.1). This allows us to abandon the pruning heuristic used by Vavilala
& Forsyth (2023) to control the number of convexes for each scene. We furthermore introduce
negative boolean primitives for scene decomposition (Sec. 3.2). As visualised in Fig. 2, boolean
primitives allow for a more parsimonious description of complex geometry. An additional biasing
loss, annealing schedule, data augmentation, and thorough hyperparameter search yield further
accuracy gains (Sec. 3.3). Fig. 3 provides an overview of our inference pipeline.

Our method is RGBD input. Our losses require a point cloud that is extracted from the depth image
via the heuristic described in Vavilala & Forsyth (2023). Our method works both when GT depth
is and is not available, and we evaluate both scenarios, using MIDAS (Ranftl et al., 2022) to obtain
inferred depth maps.

3.1 ENSEMBLING

We remark that much of the literature on primitive decomposition fits a fixed number of primi-
tives Deng et al. (2020). Other work starts from a fixed number of primitives and removes excess
primitives according to a greedy algorithm (Vavilala & Forsyth, 2023). The problem with these
approaches is that it is difficult to know a priori what initial settings are best for a given test image.
For example, post-training refinement could get stuck in a local minimum if the start point isn’t good.

A solution we employ in this work is ensembling the prediction from multiple networks, and selecting
the best one. Naturally, the more members of the ensemble, the better the final quality since we can
evaluate each method independently and select the best one. Our aim is simply to show one avenue
of creating a usefully rich ensemble: varying the number of positive and negative primitives. Because
primitive decomposition networks typically have several primary and regularizing losses, training
networks with diverse hyperparameters would be another way of generating an ensemble, though due
to limited compute we do not show this sort of ensemble.

Additionally, use-cases where stochasticity is desired (analogous to image generation literature)
benefit from ensembling because multiple primitive decompositions will be available for a given test
image. Prior work does not propose a method to generate and select from an ensemble if a user wants
diverse representations of a scene.

For a given test image, we can select the best method by running it through each network, evaluating
the generated primitive depth map against an inferred or GT depth, and use the best network for
subsequent refinement. In practice, we observed refine-then-choose to perform better, whereby we
refine each method first then choose the one with the best error metrics. Even though this involves
more compute, the quality gains are substantial (see Table 1).

3.2 BOOLEAN PRIMITIVES

A traditional collection of primitives is represented by an indicator function O : R → [0, 1], with
O(x) = 0 indicating free space, and O(x) = 1 indicating a query point x ∈ R3 is inside the volume.
When introducing negative primitives, the final indicator can be composed of a CSG operation
between the union of positive primitives and union of negative primitives. Let O+(x) be the indicator
of positive primitives only, and O−(x) be the indicator of negative primitives only. The final indicator
for our representation is simply

O(x) = relu(O+(x)−O−(x)) (1)

Our modified representation allows re-using the existing sample loss, unique parametrization loss,
and Manhattan World loss Deng et al. (2020); Vavilala & Forsyth (2023) for both O+(x) and O−(x).
However, for negative primitives only, we must modify the samples on which the overlap loss,
guidance loss, and localization loss are applied. During each training iteration, we select samples
for which the ground truth label for a point is outside, x = 0, but the indicator function is positive,
O(x) = 1. Thus if a negative primitive moves to such a sample, its classification will become
O(x) = 0, matching ground truth.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) (b) (c)

Figure 2: Boolean primitives are parameter-efficient. Representing a simple box with a hole
punched in it can be challenging even with several traditional primitives, as shown in (a), where five
primitives get stuck in a local minimum. In contrast, two primitives - one positive and one negative -
can represent the geometry successfully because of the enriched vocabulary of operations. Two views
are shown in (b) and (c).

Our early experimentation showed that we are better off pretraining with positive primitives only,
and then introducing negative primitives for further training. Conceptually, this procedure allows
positive primitives to explain the scene at a high level, and then negative primitives to improve the
representation later on.

3.3 PERFORMANCE IMPROVEMENTS

Biasing sample loss The primary loss for training a convex decomposition network is

Lapprox = Ex∼R3 ||Ô(x)−O(x)||2. (2)

We postulate that negative primitives would be most useful in regions that the positive primitives
over-explain certain geometry, i.e. they explain more inside samples correctly than outside samples.
In effect, if the positive primitives are “too big", then negative primitives will help the network carve
away unnecessary geometry. In other words, there will be more useful regions that negative primitives
can exist. We can achieve this bias by simply introducing an additional sample loss but only apply it
to points where the GT label is inside, O(x) = 1

Linside = Ex∼R3 ||Ô(x)− 1||2. (3)

We weight Linside by 0.1, and ablate that choice in Fig. 8.

Annealing loss weights Further, we found more stable training by annealing the weight of the overlap
loss and alignment loss, starting from 0 at the beginning of training, up to the target weight midway
through training. We preserve the annealing of the surface sample weight, whereby early in training
free space samples are prioritized in the losses, and by midway of training, all samples have an equal
weight. These performance improvements are intended to aid the network in predicting high-level
geometric structure of the scene early in training, then getting the details right towards the end.

Data augmentation Prior art did not successfully implement data augmentations in the form of
horizontal flips. A correct implementation needs to take into account the effect of camera calibration
parameters on the point cloud. We do so here and in practice, we observe substantial improvements –
see Fig. 10.

Augmentations are especially valuable given that the NYUv2 dataset is relatively small - though
clearly sufficient for getting good results. Our procedure uses the standard 795/654 train/test NYUv2
split Nathan Silberman & Fergus (2012). We hold out 5% of training images for validation. We use
this dataset primarily to maintain consistency in evaluating against prior art. We do not consider the
volume loss or segmentation loss from Vavilala & Forsyth (2023) in our experimentation, as they
were shown to have an approximately neutral effect.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

...

NN1

Convex
Parameters

im
ag

e
de

pt
h

NN5

...
NN15

...

NN6

Refine all

Select best

...

...
...

convexes depth

Figure 3: Inference Overview: We feed an RGBD image into an ensemble of independently trained
convolutional neural networks. Each network predicts the parameters of a set of convexes Ci. The
number of convexes predicted by each network varies between 8 and 40 in this work, with up to two
of them being negative. We refine each set of convexes by minimizing the training loss w.r.t. the
input depth map. Our final decomposition consists of the set of refined convexes Ci which yields the
lowest absolute relative depth error.

3.4 IMPLEMENTATION DETAILS

Our neural architecture is a ResNet-18 encoder (accepting RGBD input), followed by a decoder
consisting of three linear layers of sizes [1048, 1048, 2048] and LeakyRelu activations. We do not
freeze any layers during training. The dimensionality of the final output varies based on the number
of primitives the model is trained to produce (as we train different models for different numbers of
primitives in this work). We implement our procedure in PyTorch and train all networks with AdamW
optimizer, learning rate 4× 10−4, batch size 128, mixed-precision training, for 5000 iterations, on a
single A40 GPU. It takes 26 mins to train a 8 primitive model and 67 mins to train a 40 primitive
model. Our inference procedure requires around 5 seconds for an 8 primitive model and up to 20
seconds for a 40 primitive model. We halve the learning rate after 50% and 75% of the steps during
both training and refinement. During refinement, we optimize for 250 steps, AdamW optimizer, and
learning rate 0.01. Again, we find LR decay helpful during refinement with the same schedule as
during training.

3.5 EVALUATION OF PRIMITIVES

Geometric primitive abstraction is a longstanding interest in computer vision (Marr & Nishihara
(1978), Sec. 2) but finding broad applications of them is ongoing. We are aware of recent efforts to
condition image synthesis on primitives - see Vavilala et al. (2023); Bhat et al. (2023). Our work can
be a useful building block for such use-cases.

To that end, we’d like to evaluate primitives appropriately for these tasks. If a user is assembling
primitives (possibly extracted from a real image) and editing their position, it is critical that the
generated image matches the requested depth. Thus, our evaluation must measure the geometric
accuracy between the generated primitives and the source depth. If we are allowed a large number
of primitives e.g. 1 per pixel, we could perfectly match the GT depth at the cost of coarse scene
abstraction; because we are instead dealing with few primitives (8-40 in this work), depth error
metrics will give a true indication of geometric scene decomposition quality. Similarly, evaluating
per-pixel normals offers a measure of geometric reconstruction quality. GT depth and normals are
available at inference time (and they can be inferred by high quality estimators like Ranftl et al.
(2020) if not). Predicted depth and normals can be obtained by ray marching the generated primitives
from the original viewpoint, obtaining a dense per-pixel estimate. Similarly, downstream use-cases
of primitives may require object-level control. We can evaluate how well our primitives enable this
capability by assigning each primitive’s face the most common GT segmentation label in its support,
and then measuring the dense per-pixel segmentation accuracy across the whole image. A high score
means that primitives map to objects quite well.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

We note that we evaluate these metrics against existing primitive generation works from RGB images
(specifically Vavilala & Forsyth (2023); Kluger et al. (2021)), not against methods that predict
segmentation, depth, or normals from RGB like Yang et al. (2024); Kirillov et al. (2023). We argue
that we can evaluate primitives by looking at their predicted depth/normals/segmentation. But we’re
not trying to predict depth/normals/segmentation from RGB using primitives, for which there are
well-developed methods. Our evaluation procedure is consistent with prior art. Better metrics should
mean better primitives. This allows us to use detailed quantitative evaluations in an area that has
traditionally lacked them.

4 EXPERIMENTS

We perform extensive quantitative and qualitative evaluation of our method. To do so, we use
established evaluation procedures on the depth, normals, and segmentation inferred from the generated
primitives.

Any individual network we train beats baselines. Without ensembling, with or without negative
primitives, our method beats all baselines on nearly every metric - see Tables 1, 2. Here, we present
several networks with different numbers of positive and negative primitives. We apply refinement at
test time. Individually, each procedure performs quite well across a range of initial primitives. In
some cases, introducing negative primitives helps on average (we test K− ∈ [0, 1, 2]). When we
ensemble the five networks without negative primitives, we get substantially better error metrics,
particularly as measured by AbsRel of the depth map. To select the best method, we simply compare
the depth of generated primitives against GT. Ensembling with negative primitives can boost
quality. Further, when we enrich the vocabulary of operations with negative primitives, depth metrics
get better (pos+neg R->S).

Refinement improves all methods. In Fig. 7, we apply our refinement procedure on all test images
using the GT depth map. Consistent with previous work, refining is essential to getting the best results.
Observe how all error metrics, particularly AbsRel, get better with refinement. In particular, the
negative primitives we introduced get better with refinement. While we get strong results across all
numbers of primitives, the introduction of negative primitives only occasionally helps on average, in
some cases slightly hurting metrics, which indicates that our test scenes are quite diverse and different
settings are optimal for each scene. Refine-then-select performs better than select-then-refine.
When we ensemble the five positive-only networks, rows pos, all error metrics get better than any
method alone. However, the fact that we get better numbers when we select after refining indicates
that this is an extremely difficult fitting problem whereby what appears to be the best start point
may not necessarily yield the best endpoint. When comparing ensembles with negative primitives
(pos+neg), we again observe that we are better off refining then selecting. Further, on average
the network picks 0.30 negative primitives in our best ensemble - which means they are genuinely
helpful on some scenes. In Fig 4 we present histograms showing how many total and negative
primitives were chosen on our test set. In practice, (left) our procedure is able to handle larger
numbers of primitives better than prior work, observing that more primitives is generally better, and
right, negative primitives can be quite helpful, noting that they are selected from the ensemble for
several scenes.

A biased sampling loss should be part of the ensemble. We ablate our decision to bias the
sampling loss to favor classifying “inside” points correctly via Linside. In Fig. 8, we test winside ∈
[0.0, 0.1, 0.2, 0.4, 0.8] with K− ∈ [1, 2]. Turning this loss on is generally preferred over not having
it. We thus let winside = 0.1 in our experimentation as a reasonable mid-ground for networks with
negative primitives.

Data augmentation yields more accurate decompositions. As Fig. 10 shows, augmenting RGBD
input data with horizontal flips during training reduces the AbsRel depth error and increases the
segmentation accuracy measurably, with more modest effects on normal accuracy.

5 DISCUSSION

The key goal of primitive decompositions since the 1960s has been to demonstrate representations
that can (a) be computed from data and (b) genuinely simplify reasoning tasks. We have demonstrated

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: We quantitatively evaluate our ensembling approach. First five rows: we train a primitive
generation model according to the procedure laid out in Sec 3. The value under the method column
indicates the number of primitives, and no negative primitives are shown here. Next four rows:
ensembling strongly improves error metrics across the board (we focus on depth, normals, and
segmentation accuracy). Pos refers to five networks with only positive primitives in the ensemble
(Ktotal ∈ [8, 16, 24, 32, 40]); Pos+Neg refers to fifteen networks in the ensemble (where K− ∈
[0, 1, 2]). S → R means that we evaluate a given test image on each method in the ensemble without
finetuning, then finetune the best one using the original network’s training losses. In this table, we
finetune assuming GT depth is available at test time, though our method still works even when depth
is inferred by a pretrained depth estimator. R → S means that we refine the primitives generated by
each method for a given test image, then pick the best one (as measured by AbsRel). The fact that
substantial gains can be achieved from R → S implies that the best start point may not yield the best
end point – meaning the fitting problem is hard. Time and memory estimates are presented as well.
Last row: we compare our methods against existing work. Any individual model we train obtains
better error metrics with less compute. Timings for ensembling show estimated total cost of running
all the methods and selecting the best one; memory refers to peak GPU memory usage.

Method Time (s) Memory (GB) AbsRel ↓ Normalsmean ↓ Normalsmedian ↓ Segacc ↑
8 5.23 2.13 0.095 37.0 31.7 0.574
16 9.39 3.76 0.0714 35.7 30.0 0.653
24 11.9 5.71 0.0662 35.3 29.9 0.678
32 15.9 7.15 0.0613 35.4 29.8 0.697
40 18.8 8.77 0.0645 35.2 29.7 0.694
Pos - S→R 16.7 8.77 0.0666 35.6 30.0 0.666
Pos + Neg S→R 25.7 8.77 0.0672 35.8 30.2 0.668
Pos - R→S 61.3 8.77 0.0561 35.1 29.5 0.698
Pos + Neg R→S 184 8.77 0.0545 35.2 29.6 0.698
Vavilala 2023 40.0 6.77 0.0980 37.4 32.4 0.618

Table 2: Baseline comparisons: Ensembling strongly outperforms two recent SOTA methods, using
the metrics reported by Kluger et al. (2021), and using negative primitives in the ensemble produces
further improvements in some cases. We show results with only positive primitives present Ours
(pos), five networks, Ktotal ∈ [8, 16, 24, 32, 40], as well as with positive and negative primitives
Ours (pos+neg), 15 networks, K− ∈ [0, 1, 2]. Our ensembles significantly outperform existing work.
Further, we present results on the fifteen methods we trained, where Ktotal/K− is shown. Even
without ensembling, any individual method we trained generally performs better than the baselines.

Ensemble Refine Ktotal K− AUC@50↑ AUC@20↑ AUC@10↑ AUC@5↑ meancm↓ mediancm↓
No (Vavilala 2023) Yes 13.9 0 0.869 0.725 0.565 0.382 0.266 0.101
No (Kluger 2021) N/A - 0 0.772 0.627 0.491 0.343 0.208 -

No Yes 8 0 0.8728 0.7521 0.6098 0.4378 0.2547 0.0837
No Yes 8 1 0.8558 0.7401 0.6024 0.4297 0.2863 0.0888
No Yes 8 2 0.8584 0.7419 0.6049 0.4350 0.2815 0.0860
No Yes 16 0 0.9092 0.8297 0.7173 0.5513 0.1920 0.0548
No Yes 16 1 0.8888 0.8038 0.6890 0.5218 0.2258 0.0609
No Yes 16 2 0.8881 0.8043 0.6902 0.5210 0.2317 0.0616
No Yes 24 0 0.9133 0.8420 0.7346 0.5698 0.1855 0.0512
No Yes 24 1 0.8930 0.8183 0.7120 0.5500 0.2167 0.0547
No Yes 24 2 0.8943 0.8159 0.7042 0.5348 0.2169 0.0595
No Yes 32 0 0.9177 0.8546 0.7576 0.6006 0.1755 0.0458
No Yes 32 1 0.8782 0.8051 0.7067 0.5534 0.2415 0.0573
No Yes 32 2 0.8904 0.8201 0.7184 0.5562 0.2267 0.0534
No Yes 40 0 0.9113 0.8487 0.7503 0.5918 0.1869 0.0486
No Yes 40 1 0.8936 0.8258 0.7335 0.5818 0.2141 0.0500
No Yes 40 2 0.8903 0.8229 0.7276 0.5729 0.2196 0.0528
pos S->R 23.3 0 0.9124 0.8353 0.7262 0.5628 0.1852 0.0530

pos + neg S->R 24.5 0.5 0.9059 0.8288 0.7211 0.5594 0.1961 0.0539
pos R->S 31.8 0 0.9259 0.8617 0.7617 0.6017 0.1612 0.0456

pos + neg R->S 31.7 0.3 0.9265 0.8616 0.7614 0.6010 0.1603 0.0457

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

a method that can produce accurate fits of multiple convex primitives, some “negative,” to complex
indoor scenes represented in RGBD images. Our method really can be computed from data, and in
accuracy significantly outperforms SOTA.

Limitations The method requires ensembling a number of regressors, with consequent costs in
training and inference time. While we can evaluate accuracy, it is difficult to usefully assess the
extent to which the method is parsimonious, apart from looking at the relatively small number of
primitives used. We have shown partial progress on simplifying reasoning tasks (the depth implied by
the primitives is quite good, and the segmentation is fair but not competitive with the best semantic
segmenters). In this work we selected a modest network size and small benchmark dataset (to temper
compute requirements and perform evaluation); scaling the model architecture and dataset is a natural
extension.

8 16 24 32 40
Ktotal

0

25

50

75

100

125

150

175

200

Fr
eq

ue
nc

y

Histogram of Ktotal for S->R

(a) Ktotal, S → R

0 1 2
K

0

50

100

150

200

250

300

350

400

Fr
eq

ue
nc

y

Histogram of K for S->R

(b) K−, S → R

8 16 24 32 40
Ktotal

0

50

100

150

200

250

Fr
eq

ue
nc

y

Histogram of Ktotal for R->S

(c) Ktotal, R → S

0 1 2
K

0

100

200

300

400

500

Fr
eq

ue
nc

y

Histogram of K for R->S

(d) K−, R → S

Figure 4: We analyze our ensembling procedure by breaking down which models are ultimately
chosen when selecting then refining (top row) or refining then selecting (bottom row). When
selecting then refining, all primitive counts are well represented in the ensemble, with 16 slightly
preferred. When refining then selecting, the model strongly favors more primitives, whereby 32 is
the most commonly picked. Interestingly, some scenes prefer fewer primitives, which can be due
to fitting difficulties for a particular test image with larger numbers of primitives. While one would
expect more primitives to lead to better quality, we observe a drop-off in quality around 32 primitives,
noting that 40 is chosen less often than 32. This could be due to bias-variance issues in the network
and challenges in optimizing larger numbers of primitives. (right column) Our method generally
prefers not using negative primitives, but occasionally selects them, indicating they are genuinely
useful in some scenes.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

RGB 8/0 16/0 24/0 32/0 40/0

GT Depth

GT Normals

GT Seg

Figure 5: We present qualitative evaluation of our ensembling procedure. The first column shows GT
information, including the RGB input and GT Depth map accepted by the model. The remaining
columns show generated results with Ktotal/K− shown in the first row. The model chosen by
ensembling (comparing AbsRel of the depth from primitives against GT depth) is boxed in green.
Depth/normals from primitives is obtained by ray-marching from the original camera view; predicted
segmentations are obtained by assigning each primitive’s face the most common GT label within its
support.

RGB 8/1 16/1 24/1 32/1 40/1

GT Depth

GT Normals

GT Seg

Figure 6: Additional qualitative evaluation with negative primitives. In this case, 40 primitives (with
1 negative primitive) were chosen. The negative primitive in 40/1 was placed in the bottom right of
the image to indicate free space.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Stephan Alaniz, Massimiliano Mancini, and Zeynep Akata. Iterative superquadric recomposition of
3d objects from multiple views. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 18013–18023, 2023.

Barr. Superquadrics and angle-preserving transformations. IEEE Computer Graphics and Applica-
tions, 1:11–23, 1981.

Shariq Farooq Bhat, Niloy J. Mitra, and Peter Wonka. Loosecontrol: Lifting controlnet for generalized
depth conditioning, 2023.

I Biederman. Recognition by components : A theory of human image understanding. Psychological
Review, (94):115–147, 1987.

TO Binford. Visual perception by computer. In IEEE Conf. on Systems and Controls, 1971.

Stéphane Calderon and Tamy Boubekeur. Bounding proxies for shape approximation. ACM Transac-
tions on Graphics (TOG), 36:1 – 13, 2017.

Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net: Generating compact meshes via binary
space partitioning. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 42–51, 2019.

Boyang Deng, Simon Kornblith, and Geoffrey Hinton. Cerberus: A multi-headed derenderer. In
Workshop on 3D Scene Understanding, 2019.

Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton, and Andrea
Tagliasacchi. Cvxnet: Learnable convex decomposition. June 2020.

M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting with
applications to image analysis and automated cartography. Comm. ACM., 24(6):381–395, 1981.

David F. Fouhey, Abhinav Gupta, and Martial Hebert. Data-driven 3D primitives for single image
understanding. In ICCV, 2013.

K. Fu, J. Peng, and Q. He et al. Single image 3d object reconstruction based on deep learning: A
review. Multimed Tools Appl, 80:463–498, 2021.

Matheus Gadelha, Giorgio Gori, Duygu Ceylan, Radomír Mech, Nathan A. Carr, Tamy Boubekeur,
Rui Wang, and Subhransu Maji. Learning generative models of shape handles. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 399–408, 2020.

Abhinav Gupta, Alexei A. Efros, and Martial Hebert. Blocks world revisited: Image understanding
using qualitative geometry and mechanics. In ECCV, 2010.

Shreyas Hampali, Sinisa Stekovic, Sayan Deb Sarkar, Chetan Srinivasa Kumar, Friedrich Fraundorfer,
and Vincent Lepetit. Monte carlo scene search for 3d scene understanding. 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13799–13808, 2021.

V. Hedau, D. Hoiem, and D. Forsyth. Recovering the Spatial Layout of Cluttered Rooms. In Proc.
ICCV, 2009.

V. Hedau, D. Hoiem, and D. Forsyth. Recovering Free Space of Indoor Scenes from a Single Image.
In Proc. CVPR, 2012.

Varsha Hedau, Derek Hoiem, and David Forsyth. Thinking Inside the Box: Using Appearance
Models and Context Based on Room Geometry. In Proc. ECCV, 2010.

A. Hertz, O. Perel, O. Sorkine-Hornung, and D. Cohen-Or. Spaghetti: editing implicit shapes through
part aware generation. ACM Transactions on Graphics, 41(4):1–20, 2022.

D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface layout from an image. IJCV, 2007.

Derek Hoiem, Alexei A. Efros, and Martial Hebert. Automatic photo pop-up. ACM Transactions on
Graphics / SIGGRAPH, 24(3), August 2005.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aleş Jaklič, Aleš Leonardis, and Franc Solina. Segmentation and recovery of superquadrics. In
Computational Imaging and Vision, 2000.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=rkE3y85ee.

Hao Jiang. Finding approximate convex shapes in rgbd images. In European Conference on Computer
Vision, pp. 582–596. Springer, 2014.

Zhizhong Kang, Juntao Yang, Zhou Yang, and Sai Cheng. A review of techniques for 3d reconstruc-
tion of indoor environments. ISPRS Int. J. Geo Inf., 9:330, 2020.

Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang Wang,
Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models are
zero-shot video generators, 2023. URL https://arxiv.org/abs/2303.13439.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything. arXiv:2304.02643, 2023.

Florian Kluger and Bodo Rosenhahn. PARSAC: Accelerating Robust Multi-Model Fitting with
Parallel Sample Consensus. In AAAI, 2024.

Florian Kluger, Eric Brachmann, Hanno Ackermann, Carsten Rother, Michael Ying Yang, and Bodo
Rosenhahn. CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus. In CVPR,
2020.

Florian Kluger, Hanno Ackermann, Eric Brachmann, Michael Ying Yang, and Bodo Rosenhahn.
Cuboids revisited: Learning robust 3d shape fitting to single rgb images. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Florian Kluger, Eric Brachmann, Michael Ying Yang, and Bodo Rosenhahn. Robust shape fitting for
3d scene abstraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, L. Yi, and Leonidas J. Guibas. Supervised fitting
of geometric primitives to 3d point clouds. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2647–2655, 2018.

Chen Liu, Kihwan Kim, Jinwei Gu, Yasutaka Furukawa, and Jan Kautz. Planercnn: 3d plane detection
and reconstruction from a single image. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4445–4454, 2018a.

Chen Liu, Jimei Yang, Duygu Ceylan, Ersin Yumer, and Yasutaka Furukawa. Planenet: Piece-wise
planar reconstruction from a single rgb image. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2579–2588, 2018b.

Haolin Liu, Yujian Zheng, Guanying Chen, Shuguang Cui, and Xiaoguang Han. Towards high-fidelity
single-view holistic reconstruction of indoor scenes. In European Conference on Computer Vision,
pp. 429–446. Springer, 2022.

D. Marr and H. K. Nishihara. Representation and recognition of the spatial organization of three-
dimensional shapes. Proceedings of the Royal Society of London. Series B. Biological Sciences,
200(1140):269–294, 1978. ISSN 0080-4649. doi: 10.1098/rspb.1978.0020. URL https:
//doi.org/10.1098/rspb.1978.0020.

Kaichun Mo, Paul Guerrero, L. Yi, Hao Su, Peter Wonka, Niloy Jyoti Mitra, and Leonidas J. Guibas.
Structurenet: Hierarchical graph networks for 3d shape generation. ACM Trans. Graph., 38:
242:1–242:19, 2019.

Tom Monnier, Jake Austin, Angjoo Kanazawa, Alexei Efros, and Mathieu Aubry. Differentiable
blocks world: Qualitative 3d decomposition by rendering primitives. Advances in Neural Informa-
tion Processing Systems, 36:5791–5807, 2023.

12

https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://arxiv.org/abs/2303.13439
https://doi.org/10.1098/rspb.1978.0020
https://doi.org/10.1098/rspb.1978.0020

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor segmentation and support
inference from rgbd images. In ECCV, 2012.

R. Nevatia and T.O. Binford. Description and recognition of complex curved objects. Artificial
Intelligence, 1977.

Despoina Paschalidou, Ali O. Ulusoy, and Andreas Geiger. Superquadrics revisited: Learning 3d
shape parsing beyond cuboids. 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 10336–10345, 2019.

Despoina Paschalidou, Angelos Katharopoulos, Andreas Geiger, and Sanja Fidler. Neural parts:
Learning expressive 3d shape abstractions with invertible neural networks. In CVPR, 2021.

J. Ponce and M. Hebert. A new method for segmenting 3-d scenes into primitives. In Proc. 6 ICPR,
1982.

Michael Ramamonjisoa, Sinisa Stekovic, and Vincent Lepetit. Monteboxfinder: Detecting and
filtering primitives to fit a noisy point cloud. ArXiv, abs/2207.14268, 2022.

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards
robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020.

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards
robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(3), 2022.

Dominic Roberts, Aram Danielyan, Hang Chu, Mani Golparvar Fard, and David A. Forsyth. Lsd-
structurenet: Modeling levels of structural detail in 3d part hierarchies. 2021 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pp. 5816–5825, 2021.

L. G. Roberts. Machine Perception of Three-Dimensional Solids. PhD thesis, MIT, 1963.

S. Shafer and T. Kanade. The theory of straight homogeneous generalized cylinders. In Technical
Report CS-083-105, Carnegie Mellon University, 1983.

Dmitriy Smirnov, Matthew Fisher, Vladimir G. Kim, Richard Zhang, and Justin M. Solomon. Deep
parametric shape predictions using distance fields. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 558–567, 2019.

Sinisa Stekovic, Shreyas Hampali, Mahdi Rad, Sayan Deb Sarkar, Friedrich Fraundorfer, and Vincent
Lepetit. General 3d room layout from a single view by render-and-compare. In European
Conference on Computer Vision, pp. 187–203. Springer, 2020.

Chun-Yu Sun and Qian-Fang Zou. Learning adaptive hierarchical cuboid abstractions of 3d shape
collections. ACM Transactions on Graphics (TOG), 38:1 – 13, 2019.

Maxim Tatarchenko, Stephan R. Richter, René Ranftl, Zhuwen Li, Vladlen Koltun, and Thomas Brox.
What do single-view 3d reconstruction networks learn? 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3400–3409, 2019.

Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, and Jitendra Malik. Learning shape
abstractions by assembling volumetric primitives. In Computer Vision and Pattern Regognition
(CVPR), 2017.

Mikaela Angelina Uy, Yen-Yu Chang, Minhyuk Sung, Purvi Goel, Joseph G Lambourne, Tolga
Birdal, and Leonidas J Guibas. Point2cyl: Reverse engineering 3d objects from point clouds to
extrusion cylinders. In CVPR, 2022.

A. van den Hengel, C. Russell, A. Dick, J. Bastian, L. Fleming D. Poo-ley, and L. Agapito. Part-based
modelling of compound scenes from images. In CVPR, 2015.

Vaibhav Vavilala and David Forsyth. Convex decomposition of indoor scenes. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9176–9186, October 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Vaibhav Vavilala, Seemandhar Jain, Rahul Vasanth, Anand Bhattad, and David Forsyth. Blocks2world:
Controlling realistic scenes with editable primitives, 2023.

X. Wei, M. Liu, Z. Ling, and H. Su. Approximate convex decomposition for 3d meshes with
collision-aware concavity and tree search. ACM Transactions on Graphics, 41(4), 2022.

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-aided
design models. In ICCV, 2021.

Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth
anything: Unleashing the power of large-scale unlabeled data. In CVPR, 2024.

Fenggen Yu, Zhiqin Chen, Manyi Li, Aditya Sanghi, Hooman Shayani, Ali Mahdavi-Amiri, and Hao
Zhang. Capri-net: Learning compact cad shapes with adaptive primitive assembly. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11768–11778,
2022.

Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, and Derek Hoiem. 3d-prnn: Generating
shape primitives with recurrent neural networks. 2017 IEEE International Conference on Computer
Vision (ICCV), pp. 900–909, 2017a.

Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, and Derek Hoiem. 3d-prnn: Generating shape
primitives with recurrent neural networks. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), Oct 2017b.

Chuhang Zou, Alex Colburn, Qi Shan, and Derek Hoiem. Layoutnet: Reconstructing the 3d room
layout from a single rgb image. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

A APPENDIX

Table 3: We present metrics without finetuning, and with GT depth available at test time. Notice how
metrics are much worse without post-training refinement.

Ensemble Refine Ktotal K− AbsRel ↓ Normalsmean ↓ Normalsmedian ↓ Segacc ↑
No No 8 0 0.1669 40.4625 37.3284 0.5370
No No 8 1 0.1862 41.4633 38.0116 0.5328
No No 8 2 0.1872 42.5348 39.3306 0.5335
No No 16 0 0.1547 41.3356 37.6371 0.6027
No No 16 1 0.1627 42.0006 38.5059 0.5963
No No 16 2 0.1797 43.1610 39.5093 0.5912
No No 24 0 0.1566 41.6409 38.4479 0.6264
No No 24 1 0.1695 43.2274 39.4391 0.6166
No No 24 2 0.1726 42.9552 39.7228 0.6103
No No 32 0 0.1549 44.2891 40.1252 0.6579
No No 32 1 0.2145 46.0952 41.7799 0.6026
No No 32 2 0.1871 43.1564 39.6844 0.6188
No No 40 0 0.1672 42.0187 39.0446 0.6524
No No 40 1 0.1642 47.1960 42.4641 0.6620
No No 40 2 0.1667 43.3853 39.8320 0.6304

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 4: We present quantitative evaluation of the 15 models we trained, but the best strategy by
far is to ensemble (bottom block). Best AbsRel was the criteria used to select a model for a given
test image. Generally, refine-then-select (R→S) is significantly better than select-then-refine (S→R),
likely because the fitting problem is extremely hard, so the start point for refining is not a good guide
to how well the refinement will proceed. In the bottom block, the K− indicates the average number
of negative primitives used per image, suggesting the best fit for a significant fraction of images
has one or more negative primitives. First two rows show recent prior work. Any individual model
as well as any ensemble generally outperforms prior work across all error metrics. Final row: the
very best depth accuracy, as measured by AbsRel, was achieved by using an ensemble with negative
primitives. Boolean primitives improved AbsRel and Segmentation accuracy on average when we use
8 primitives, but hurt the quality on average for more than 8 primitives. The implication is that fitting
boolean primitives remains hard. However, the advantage of ensembling is that boolean primitives
will only be used where they are helpful.

Ensemble Refine Ktotal K− AbsRel ↓ Normalsmean ↓ Normalsmedian ↓ Segacc ↑
No (Vavi-
lala 2023)

Yes 13.9 0 0.098 37.355 32.395 0.618

No (Vavi-
lala 2023)

Yes 15.7 0 0.096 37.355 32.700 0.630

No Yes 8 0 0.0949 36.9861 31.7493 0.5741
No Yes 8 1 0.0944 37.7630 32.4935 0.5743
No Yes 8 2 0.0911 38.2590 32.7630 0.5774
No Yes 16 0 0.0714 35.7310 30.0465 0.6525
No Yes 16 1 0.0741 36.6899 30.8987 0.6455
No Yes 16 2 0.0754 36.7649 30.9506 0.6456
No Yes 24 0 0.0662 35.2619 29.8957 0.6776
No Yes 24 1 0.0712 36.5494 30.8535 0.6642
No Yes 24 2 0.0707 36.5984 31.3036 0.6653
No Yes 32 0 0.0613 35.4398 29.7855 0.6970
No Yes 32 1 0.0782 37.0885 31.4945 0.6721
No Yes 32 2 0.0721 36.4009 30.8432 0.6742
No Yes 40 0 0.0645 35.1675 29.7039 0.6942
No Yes 40 1 0.0697 36.8514 31.3076 0.6942
No Yes 40 2 0.0712 36.0667 30.4413 0.6832
pos S->R 23.3 0 0.0666 35.5563 29.9633 0.6662
pos + neg S->R 24.5 0.5 0.0672 35.8283 30.1908 0.6679
pos R->S 31.8 0 0.0561 35.1100 29.5008 0.6984
pos + neg R->S 31.7 0.3 0.0545 35.2119 29.5695 0.6975

Table 5: We ablate the choice to perform learning rate decay (halved once midway through training,
again after 75% of the steps, (LR DECAY ON) versus leaving it at a constant value (LR DECAY
OFF). AbsRel values shown in the table for varying numbers of total and negative primitives, on a
portion of the NYUv2 test set. The results generally favor using LR decay.

Ktotal = 8 Ktotal = 24
K− 0 1 2 0 1 2

LR DECAY OFF 0.098 0.099 0.108 0.067 0.073 0.081
LR DECAY ON 0.090 0.091 0.093 0.067 0.076 0.077

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
Finetuning Steps

0.08

0.10

0.12

0.14

0.16

0.18

De
pt

h
Ab

sR
el

K = 0
Ktotal = 16, MIDAS=True
Ktotal = 16, MIDAS=False
Ktotal = 32, MIDAS=True
Ktotal = 32, MIDAS=False

0 100 200 300 400 500
Finetuning Steps

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

De
pt

h
Ab

sR
el

K = 1

0 100 200 300 400 500
Finetuning Steps

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

De
pt

h
Ab

sR
el

K = 2

0 100 200 300 400 500
Finetuning Steps

36

38

40

42

44

46

No
rm

al
s m

ed
ia

n

Ktotal = 16, MIDAS=True
Ktotal = 16, MIDAS=False
Ktotal = 32, MIDAS=True
Ktotal = 32, MIDAS=False

0 100 200 300 400 500
Finetuning Steps

38

40

42

44

46

No
rm

al
s m

ed
ia

n

0 100 200 300 400 500
Finetuning Steps

37

38

39

40

41

42

43

44

No
rm

al
s m

ed
ia

n

0 100 200 300 400 500
Finetuning Steps

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Se
gm

en
ta

tio
n

Ac
cu

ra
cy

Ktotal = 16, MIDAS=True
Ktotal = 16, MIDAS=False
Ktotal = 32, MIDAS=True
Ktotal = 32, MIDAS=False

0 100 200 300 400 500
Finetuning Steps

0.58

0.60

0.62

0.64

0.66

Se
gm

en
ta

tio
n

Ac
cu

ra
cy

0 100 200 300 400 500
Finetuning Steps

0.58

0.60

0.62

0.64

0.66

Se
gm

en
ta

tio
n

Ac
cu

ra
cy

Figure 7: We demonstrate why finetuning is important for primitive generation. Running a primitive
generation model alone gives reasonable start points, but note how after a small amount of finetuning,
all metrics get much better. This is true across primitive counts (we show Ktotal ∈ [16, 32] here),
presence of negative primitives (a different K− shown in each column), and whether GT depth is
available at test time (MIDAS = True) or not (MIDAS = False). To perform test-time refinement,
we directly optimize the parameters of the primitives with respect to the training losses. In this work,
we use 250 refinement steps per test image, a reasonable balance between speed and quality. We
note that previous work has established that refining from a random start point does not yield good
results (Vavilala & Forsyth, 2023).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
inside bias weight

0.08

0.10

0.12

0.14

0.16

0.18

0.20

De
pt

h
Ab

sR
el

K =1

Ktotal = 8, MIDAS = True
Ktotal = 8, MIDAS = False
Ktotal = 24, MIDAS = True
Ktotal = 24, MIDAS = False
Ktotal = 40, MIDAS = True
Ktotal = 40, MIDAS = False

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
inside bias weight

0.08

0.10

0.12

0.14

0.16

0.18

0.20

De
pt

h
Ab

sR
el

K =2

Ktotal = 8, MIDAS = True
Ktotal = 8, MIDAS = False
Ktotal = 24, MIDAS = True
Ktotal = 24, MIDAS = False
Ktotal = 40, MIDAS = True
Ktotal = 40, MIDAS = False

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
inside bias weight

36.5

37.0

37.5

38.0

38.5

39.0

39.5

40.0

40.5

No
rm

al
s m

ea
n

Ktotal = 8, MIDAS = True
Ktotal = 8, MIDAS = False
Ktotal = 24, MIDAS = True
Ktotal = 24, MIDAS = False
Ktotal = 40, MIDAS = True
Ktotal = 40, MIDAS = False

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
inside bias weight

37

38

39

40

41

42
No

rm
al

s m
ea

n

Ktotal = 8, MIDAS = True
Ktotal = 8, MIDAS = False
Ktotal = 24, MIDAS = True
Ktotal = 24, MIDAS = False
Ktotal = 40, MIDAS = True
Ktotal = 40, MIDAS = False

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
inside bias weight

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

Se
gm

en
ta

tio
n

Ac
cu

ra
cy

Ktotal = 8, MIDAS = True
Ktotal = 8, MIDAS = False
Ktotal = 24, MIDAS = True
Ktotal = 24, MIDAS = False
Ktotal = 40, MIDAS = True
Ktotal = 40, MIDAS = False

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
inside bias weight

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

Se
gm

en
ta

tio
n

Ac
cu

ra
cy

Ktotal = 8, MIDAS = True
Ktotal = 8, MIDAS = False
Ktotal = 24, MIDAS = True
Ktotal = 24, MIDAS = False
Ktotal = 40, MIDAS = True
Ktotal = 40, MIDAS = False

Figure 8: We ablate choices for our biased loss term in Equation 3, which only applies when negative
primitives are present. Varying numbers of primitives, are shown with different colors and tick labels,
and regimes where GT depth is and is not available at test time are shown. Each row shows a different
error metric, and each column shows a different number of negative primitives. Overall, it appears
having a small amount of this bias term is advantageous.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Netw
ork (0,

1)
(0,

1)
0.00

0.02

0.04

0.06

0.08

0.10

De
pt

h
Ab

sR
el

Depth AbsRel
NPARTS 16
NPARTS 32

Netw
ork (0,

1)
(0,

1)
0

5

10

15

20

25

30

35

40

No
rm

al
s m

ea
n

Normalsmean

Netw
ork (0,

1)
(0,

1)
0

5

10

15

20

25

30

35

No
rm

al
s m

ed
ia

n

Normalsmedian

Netw
ork (0,

1)
(0,

1)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Se
gm

en
ta

tio
n

Ac
cu

ra
cy

Segmentation Accuracy

Figure 9: We demonstrate that initializing our refinement process with primitives predicted by a
network is advantageous. For Ktotal ∈ [16, 32], all metrics are better with network start, as opposed
to fitting with randomly initialized parameters (we show both normal and uniformly distributed
initializations). We allow each method to optimize for a very long time (3000 steps). One line of
future work could be better initialization that avoids the need to train a neural network, for example
initializing primitives near centers obtained by another method (like Wei et al. (2022)). Another line
of work could be improving the network start by scaling the network and dataset to potentially reduce
the need for refinement.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250
Finetuning Steps

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

De
pt

h
Ab

sR
el

K = 0

AUG=False, MIDAS=True
AUG=False, MIDAS=False
AUG=True, MIDAS=True
AUG=True, MIDAS=False

0 50 100 150 200 250
Finetuning Steps

0.08

0.10

0.12

0.14

0.16

0.18

0.20
De

pt
h

Ab
sR

el

K = 1

0 50 100 150 200 250
Finetuning Steps

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

De
pt

h
Ab

sR
el

K = 2

0 50 100 150 200 250
Finetuning Steps

37

38

39

40

41

42

43

44

No
rm

al
s m

ea
n

AUG=False, MIDAS=True
AUG=False, MIDAS=False
AUG=True, MIDAS=True
AUG=True, MIDAS=False

0 50 100 150 200 250
Finetuning Steps

38

39

40

41

42

43

44

45

No
rm

al
s m

ea
n

0 50 100 150 200 250
Finetuning Steps

38

39

40

41

42

43

44

No
rm

al
s m

ea
n

0 50 100 150 200 250
Finetuning Steps

0.56

0.58

0.60

0.62

0.64

Se
gm

en
ta

tio
n

Ac
cu

ra
cy

AUG=False, MIDAS=True
AUG=False, MIDAS=False
AUG=True, MIDAS=True
AUG=True, MIDAS=False

0 50 100 150 200 250
Finetuning Steps

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64

Se
gm

en
ta

tio
n

Ac
cu

ra
cy

0 50 100 150 200 250
Finetuning Steps

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64

Se
gm

en
ta

tio
n

Ac
cu

ra
cy

Figure 10: Introducing X-flip augmentations during training generally improves error metrics. We
test this on Ktotal = 16

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7
K

0.07

0.08

0.09

0.10

0.11

Ab
sR

el

Ktotal = 8
Symmetry ON, 6 Planes (default)
Symmetry OFF, 6 Planes
Symmetry OFF, 12 Planes

0 1 2 3 4 5 6 7
K

Ab
sR

el

Ktotal = 16
Symmetry ON, 6 Planes (default)
Symmetry OFF, 6 Planes
Symmetry OFF, 12 Planes

0 1 2 3 4 5 6 7
K

Ab
sR

el

Ktotal = 24
Symmetry ON, 6 Planes (default)
Symmetry OFF, 6 Planes
Symmetry OFF, 12 Planes

Figure 11: We perform an ablation on the number of negative primitives, K− as well as the primitive
vocabulary. By default, in this work we generate parallelepipeds (a more general form of a cuboid)
to maintain consistency in evaluation against prior work Vavilala & Forsyth (2023); Kluger et al.
(2021). To do so, our model predicts three normals and offsets per primitive, and the other three
are implied. Thus the primitives are centrally symmetric. Our experimentation shows that fitting
CSG with parallelepipeds is very difficult, as indicated by the AbsRel getting worse as we increase
the number of boolean primitives (red line). However downstream use-cases may not require the
centrality constraint and good reconstruction quality might be paramount. To that end, we try two
more ablations. First, we remove the centrality constraint and Manhattan World loss (green line).
Notice how all numbers get better and in particular primitive decompositions get better with more
boolean primitives. We then increase the number of halfplanes to 12, (blue line) and the quality is
generally better across the board. The implication is that fitting CSG is easier if we fit primitives with
a more flexible parametrization (convex polytopes) as opposed to more rigid primitives (e.g. cuboids).
We remark that within each subplot, the total number of primitives remains the same (Ktotal) and we
are simply adjusting the ratio of positive and negative primitives (K+/K−). Our implementation
supports this richer primitive vocabulary by simply tuning hyperparameters. Experiments conducted
on a portion of the NYUv2 test set.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

GT
 S

ou
rc

e
Im

ag
e

RGB GT Depth GT Normals

K
=

0

Sym. ON, 6 Planes (default) Sym. OFF, 6 Planes Sym. OFF, 12 Planes

K
=

1
K

=
2

K
=

3
K

=
4

K
=

5
K

=
6

K
=

7

Figure 12: We perform a qualitative evaluation on the number of boolean primitives, K− ∈ [0, 1, ...7],
with all images having the same Ktotal = 8. In each column, the decomposition with lowest AbsRel
selected by ensembling is boxed in green. We decompose parallelepipeds with a Manhattan World
constraint (first column), general 6-face polytopes (second column), and 12-face polytopes (third
column). Notice how boolean primitives carve away free space in the bookshelf on the left side
of each image. The final two entries of the middle column reached a degenerate state during the
optimization process and failed to recover, which further justifies the benefits of ensembling.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

GT
 S

ou
rc

e
Im

ag
e

RGB GT Depth GT Normals

K
=

0

Sym. ON, 6 Planes (default) Sym. OFF, 6 Planes Sym. OFF, 12 Planes

K
=

1
K

=
2

K
=

3
K

=
4

K
=

5
K

=
6

K
=

7

Figure 13: We perform a qualitative evaluation on the number of boolean primitives, K− ∈ [0, 1, ...7],
with all images having the same Ktotal = 8. In each column, the decomposition with lowest AbsRel
selected by ensembling is boxed in green. We decompose parallelepipeds with a Manhattan World
constraint (first column), general 6-face polytopes (second column), and 12-face polytopes (third
column). In the most extreme case, there is one positive primitive and 7 negative primitives whereby
the boolean primitives carve geometry away from the positive primitive (final row). The final two
entries of the middle column reached a degenerate state during the optimization process and failed to
recover, which further justifies the benefits of ensembling.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

GT
 S

ou
rc

e
Im

ag
e

RGB GT Depth GT Normals

K
=

0

Sym. ON, 6 Planes (default) Sym. OFF, 6 Planes Sym. OFF, 12 Planes

K
=

1
K

=
2

K
=

3
K

=
4

K
=

5
K

=
6

K
=

7

Figure 14: We perform a qualitative evaluation on the number of boolean primitives, K− ∈ [0, 1, ...7],
with all images having the same Ktotal = 16. In each column, the decomposition with lowest AbsRel
selected by ensembling is boxed in green. We decompose parallelepipeds with a Manhattan World
constraint (first column), general 6-face polytopes (second column), and 12-face polytopes (third
column). Notice how the boolean primitives help sharpen the edge of the railing in several cases.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

GT
 S

ou
rc

e
Im

ag
e

RGB GT Depth GT Normals

K
=

0

Sym. ON, 6 Planes (default) Sym. OFF, 6 Planes Sym. OFF, 12 Planes

K
=

1
K

=
2

K
=

3
K

=
4

K
=

5
K

=
6

K
=

7

Figure 15: We perform a qualitative evaluation on the number of boolean primitives, K− ∈ [0, 1, ...7],
with all images having the same Ktotal = 16. In each column, the decomposition with lowest AbsRel
selected by ensembling is boxed in green. We decompose parallelepipeds with a Manhattan World
constraint (first column), general 6-face polytopes (second column), and 12-face polytopes (third
column). Notice how the boolean primitives help carve away geometry on the chairs to better model
the seat, most evident in the third column, second to last row.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

GT
 S

ou
rc

e
Im

ag
e

RGB GT Depth GT Normals

K
=

0

Sym. ON, 6 Planes (default) Sym. OFF, 6 Planes Sym. OFF, 12 Planes

K
=

1
K

=
2

K
=

3
K

=
4

K
=

5
K

=
6

K
=

7

Figure 16: We perform a qualitative evaluation on the number of boolean primitives, K− ∈ [0, 1, ...7],
with all images having the same Ktotal = 24. In each column, the decomposition with lowest AbsRel
selected by ensembling is boxed in green. We decompose parallelepipeds with a Manhattan World
constraint (first column), general 6-face polytopes (second column), and 12-face polytopes (third
column). Notice how the boolean primitives help carve away geometry on the chair and floor.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

GT
 S

ou
rc

e
Im

ag
e

RGB GT Depth GT Normals

K
=

0

Sym. ON, 6 Planes (default) Sym. OFF, 6 Planes Sym. OFF, 12 Planes

K
=

1
K

=
2

K
=

3
K

=
4

K
=

5
K

=
6

K
=

7

Figure 17: We perform a qualitative evaluation on the number of boolean primitives, K− ∈ [0, 1, ...7],
with all images having the same Ktotal = 24. In each column, the decomposition with lowest AbsRel
selected by ensembling is boxed in green. We decompose parallelepipeds with a Manhattan World
constraint (first column), general 6-face polytopes (second column), and 12-face polytopes (third
column). Notice how the boolean primitives enhance the details of the bed, pillows, and nightstand.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a) Source Image

(b
) E

xt
ra

ct
 P

rim
iti

ve
s

“Stack of gifts” “Lego pieces”

“Cinematic Trophy” “Doll, red dress”

(c) Same primitives, different label (e) Move primitives(d) Camera move

Figure 18: Our method can decompose natural images into primitives, and be used to condition
controlled image synthesis tasks. We show results from an in-submission follow-up work, which
uses the convex decomposition method described here with identical hyperparameters and trains it on
a much larger dataset, a 1.8 million-image subset of LAION-Aesthetic. GT depth information was
obtained from Yang et al. (2024), and we allow each polytope to use 12 faces without a Manhattan
World constraint. We use reasonable camera calibration assumptions to convert the depth map into a
point cloud to supervise convex decomposition. We use the same ResNet-18 encoder and 3 FC layer
decoder. A validation set reported an AbsRel of 0.130, which is approx. twice the error we report
on NYUv2. The larger error on LAION indicates that the images are very diverse and complex in
structure as compared with NYUv2. (a) We use a convex decomposition method to extract convex
polytopes from any image. (b) We then ray-march the primitives from the original camera viewpoint
to obtain a depth map. (c) This depth map serves as conditioning to a ControlNet diffusion model,
which is finetuned to handle the unique statistics of our block arrangements. Different scenes can be
created from the same high-level geometry. (d) We can select one of the images and perform camera
moves in 3D space, obtaining images that roughly respect both the requested geometric layout and
source texture. We maintain a key-value cache to transfer texture Khachatryan et al. (2023). (e) We
can also move primitives freely in 3D space, adjusting the high-level shape of the doll’s dress.

Figure 19: Our method can decompose natural images into primitives, and be used to condition
controlled image synthesis tasks. We show results from an in-submission follow-up work. Our
primitive representation allows us to remove and add objects to a scene, in this case a boot. Bottom
row We generate an image conditioned on primitives (here, primitives extracted from a real image);
we then manipulate the primitives and the camera to obtain conditioning for the diffusion model.
Depth and primitives shown in top row, generated images in second row. Texture is preserved by
caching keys and values from a reference style image, and querying those keys and values when
generating new images in the same style.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

“L
ux

ur
y

ya
ch

t”
Pr

im
iti
ve

s

Figure 20: Our method can decompose natural images into primitives, and be used to condition
controlled image synthesis tasks. We show results from an in-submission follow-up work. Rotating
the primitives associated with the yacht rotates the yacht in view.

RGB 8/1 16/1 24/1 32/1 40/1

GT Depth

GT Normals

GT Seg

Figure 21: Additional qualitative evaluation with negative primitives. 24/1 was chosen by the
ensembling procedure, and the negative primitive was placed on the floor to indicate free space.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

RGB 8/1 16/1 24/1 32/1 40/1

GT Depth

GT Normals

GT Seg

Figure 22: Additional qualitative evaluation with negative primitives. 24/1 was chosen by the
ensembling procedure, and the negative primitive was placed on the floor to indicate free space.

RGB 8/0 16/0 24/0 32/0 40/0

GT Depth

GT Normals

GT Seg

Figure 23: Additional qualitative evaluation with only positive primitives.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

RGB 8/0 16/0 24/0 32/0 40/0

GT Depth

GT Normals

GT Seg

Figure 24: Additional qualitative evaluation with only positive primitives.

RGB 8/0 16/0 24/0 32/0 40/0

GT Depth

GT Normals

GT Seg

Figure 25: Additional qualitative evaluation with only positive primitives.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

RGB 8/0 16/0 24/0 32/0 40/0

GT Depth

GT Normals

GT Seg

Figure 26: Additional qualitative evaluation with only positive primitives.

RGB 8/0 16/0 24/0 32/0 40/0

GT Depth

GT Normals

GT Seg

Figure 27: Additional qualitative evaluation with only positive primitives.

31

	Introduction
	Related Work
	Method
	Ensembling
	Boolean primitives
	Performance improvements
	Implementation Details
	Evaluation of Primitives

	Experiments
	Discussion
	Appendix

