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ABSTRACT

Describing a scene in terms of primitives — geometrically simple shapes that offer
a parsimonious but accurate abstraction of structure — is an established and difficult
fitting problem. Different scenes require different numbers of primitives, and these
primitives interact strongly; however, any proposed solution can be evaluated at
inference time. The state of the art method involves a learned regression procedure
to predict a start point consisting of a fixed number of primitives, followed by a
descent method to refine the geometry and remove redundant primitives. Methods
are evaluated by accuracy in depth and normal prediction and in scene segmentation.
This paper shows that very significant improvements in accuracy can be obtained
by (a) incorporating a small number of negative primitives and (b) ensembling
over a number of different regression procedures. Ensembling is by refining each
predicted start point, then choosing the best by fitting loss. Extensive experiments
on the standard NYUv2 dataset confirm that negative primitives are useful, and
that our refine-then-choose strategy outperforms choose-then-refine, confirming
that the fitting problem is very difficult. Our ensembling with boolean primitives
approach strongly outperforms existing methods; additionally we present several
improvements to the underlying primitive generation process enabling us to obtain
better decompositions with fewer primitives. Code will be released upon acceptance
of the paper.

1 INTRODUCTION

Geometric representations of scenes and objects as primitives — simple geometries that expose
structure while suppressing detail — should allow simpler, more general reasoning. It is easier to
plan moving a cuboid through stylized free space than moving a specific chair through a particular
living room. As another example, an effective primitive representation should simplify selecting and
manipulating objects in scenes as in image-based scene editing (Bhat et al., 2023 |Vavilala et al.|
2023). But obtaining primitive representations that abstract usefully and accurately has been hard
(review Sec. [2).

There are two main types of method. A descent method chooses primitives for a given geometry
by minimizing a cost function. Important obstacles include: different geometries require different
numbers of primitives; the choice of primitive appears to be important in ways that are opaque; the
fitting problem has large numbers of local minima; and finding a good start point is difficult. In
particular, incremental fitting procedures are often defeated by interactions between primitives. A
regression method uses a learned predictor to map geometry to primitives and their parameters.
These methods can pool examples to avoid local minima, but may not get the best prediction for a
given input.

The SOTA method (Vavilala & Forsyth, [2023) for parsing indoor scenes uses a regression method
to predict a start point consisting of a fixed set of primitives. An important feature of this class of
problem is that, at run time, one can evaluate a predicted solution efficiently and accurately. The start
point is polished using a descent method on a fitting loss, comparing the prediction with depth and
segmentation maps from a suitable pretrained network, with backward selection to remove redundant
primitives. Finally, evaluation is by comparing the primitive geometry to reference depth, normal and
segmentation.
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Figure 1: We present a method that advances the SOTA for primitive decomposition of indoor scenes
by using ensembling and boolean primitives. We present qualitative comparison with prior work here.
(Bottom row) In the fourth column, notice how a negative primitive helps explain free space on the
bottom left; in the last column, notice how a negative primitive helps represent the chair in the center.

This paper shows two procedures that yield significant (over 40% relative error) improvements in
accuracy. First, we allow a small number of negative primitives in the sense of constructive solid
geometry (CSG). Second, we show that an appropriately constructed ensembling method produces
very strong improvements in accuracy.

For negative primitives, the predicted geometry is the set difference between the union of positive
primitives and the union of negative primitives. As our ablation experiments show, this significantly
expands the geometries we can encode and significantly complicates the fitting problem. On their
own, negative primitives produce small improvements in accuracy. With ensembling we obtain
significant improvements in accuracy. We ensemble by using multiple predictors, each trained
to predict a start point with a different number of primitives; some predictors use only positive
primitives, others use both positive and negative primitives. Each predicted start point is then polished
by minimizing a fitting loss, and the best resulting set of primitives by fitting loss is reported. This
polish-then-choose strategy yields very strong improvements in accuracy. Notably, for some scenes
only positive primitives are used, whereas for others both positive and negative primitives are used.

Our contributions are:

1. We believe our method is the only one that can fit CSG with a set differencing operator to
indoor scenes.

2. Our novel ensembling method results in large improvements in accuracy and allows the user
to control the level of abstraction. We are unaware of another method using ensembling to
improve primitive generation.

3. Our primitive decomposition method for indoor scenes is an effective procedure that sub-
stantially outperforms SOTA on established metrics on the benchmark NYUv2 dataset.

2 RELATED WORK

Primitives date to the origins of computer vision. Roberts worked with blocks (Roberts|, [1963));
Binford with generalized cylinders 1971)); Biederman with geons (Biederman, [1987).

Ideally, complex objects might be handled with simple primitives (Chen et al.,|2019) where each

primitive is a semantic part (Biederman} [1987}Binford, [T971} [van den Hengel et al.,[2015)). Primitives
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can be recovered from image data (Nevatia & Binford, |1977; Shafer & Kanade, |1983)), and allow
simplified geometric reasoning (Ponce & Hebert, |1982).

For individual objects, neural methods could predict the right set of primitives by predicting solutions
for test data that are “like” those that worked for training data. Tulsiani ef al. parse 3D shapes into
cuboids, trained without ground truth segmentations (Tulsiani et al.,[2017). Zou et al. parse with
a recurrent architecture (Zou et al.,[2018)). Liu et al. produce detailed reconstructions of objects in
indoor scenes, but do not attempt parsimonious abstraction (Liu et al., 2022)). Worryingly, 3D recon-
struction networks might rely on object semantics (Tatarchenko et al.,2019). Deng et al. (CVXNet)
represent objects as a union of convexes, again training without ground truth segmentations (Deng
et al.l 2020). An early variant of CVXNet can recover 3D representations of poses from single
images, with reasonable parses into parts (Deng et al., 2019). Meshes can be decomposed into
near convex primitives, by a form of search (Wei et al.,[2022)). Part decompositions have attractive
editability (Hertz et al.,|2022)). Regression methods face some difficulty producing different numbers
of primitives per scene (CVXNet uses a fixed number; (Tulsiani et al.,[2017)) predicts the probability
a primitive is present; one also might use Gumbel softmax (Jang et al.,[2017)). Primitives that have
been explored include: cuboids (Calderon & Boubekeur, |2017} |Gadelha et al.| 2020; Mo et al., [2019;
Tulsiani et al.,|[2017; [Roberts et al., 2021} Smirnov et al.,2019; |Sun & Zou, [2019; |Kluger et al.| [2021);
superquadrics (Barr, [1981}; Jaklic€ et al., 20005 Paschalidou et al., 2019); planes (Chen et al., 2019;
Liu et al.||2018a); and generalized cylinders (Nevatia & Binford, |1977;[Zou et al.| |2017a}|L1 et al.|
2018)). There is a recent review in (Fu et al., [2021)).

Neural Parts (Paschalidou et al.| 2021)) decomposes an object given by an image into a set of non-
convex shapes. CAPRI-Net (Yu et al., [2022)) decomposes 3D objects given as point clouds or voxel
grids into assemblies of quadric surfaces. DeepCAD (Wu et al.l 2021) decomposes an object into
a sequence of commands describing a CAD model, but requires appropriately annotated data for
training. Point2Cyl (Uy et al.,[2022) is similar, but predicts the 2D shapes in form of an SDF. Notably,
Yu et al.| (2022); |Wu et al. (2021)); Uy et al.|(2022) also utilise CSG with negative primitives or parts
but, unlike our work, focus on CAD models of single objects instead of complex real-world scenes.

Hoiem et al parse outdoor scenes into vertical and horizontal surfaces (Hoiem et al., 20055 [2007);
Gupta et al demonstrate a parse into blocks (Gupta et al., 2010). Indoor scenes can be parsed into: a
cuboid (Hedau et al., 2009; Vavilala & Forsyth,2023)); beds and some furniture as boxes (Hedau et al.}
2010); free space (Hedau et al.,2012)); and plane layouts (Stekovic et al.,2020; |Liu et al.,|[2018b). If
RGBD is available, one can recover layout in detail (Zou et al.,|2017b). Patch-like primitives can be
imputed from data (Fouhey et al.||2013)). Jiang demonstrates parsing RGBD images into primitives
by solving a 0-1 quadratic program (Jiang}, 2014)). Like that work, we evaluate segmentation by
primitives (see Jiang| (2014)), p. 12), but we use original NYUv2 labels instead of the drastically
simplified ones in the prior work. Also, our primitives are truly convex. Monnier et al and Alaniz
et al decompose scenes into sets of superquadrics using differentiable rendering, which requires
calibrated multi-view images as input (Monnier et al., 2023} |Alaniz et al.l [2023). Most similar to
our work is that of Kluger et al, who identify cuboids sequentially with a RANSAC-like greedy
algorithm (Fischler & Bolles| |1981; Kluger et al., [2020; 2021} 2024; |Kluger & Rosenhahn} 2024)).

The success of a descent method depends critically on the start point, typically dealt with using
greedy algorithms (rooted in RANSAC (Fischler & Bolles, [1981)); note the prevalence of RANSAC
in a recent review (Kang et al.| [2020)); randomized search (Ramamonjisoa et al., [2022; |Hampali
et al.,|[2021)); or multiple starts. Regression methods must minimize loss over all training data, so
at inference time do not necessarily produce the best representation for the particular scene. The
prediction is biased by the need to get other scenes right, too. To manage this difficulty, we use a
mixed reconstruction strategy — first, predict primitives using a network, then polish using descent.

3 METHOD

Our work is based on the architecture and losses of [Vavilala & Forsyth| (2023) and maintains its basic
inference procedure:

1. Predict initial convex parameters from an RGBD image via a convolutional neural network.
2. Refine the fit by directly optimizing convex parameters against the training losses.
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We note that generally, GT primitive decompositions are not available and instead a variety of losses
supervise the fitting process. Unlike prior primitive generation work, we employ an ensemble of
networks that predict varying numbers of convexes, and select the prediction which yields the lowest
error after refinement (Sec. [3.T). This allows us to abandon the pruning heuristic used by [Vavilala
& Forsyth| (2023)) to control the number of convexes for each scene. We furthermore introduce
negative boolean primitives for scene decomposition (Sec. [3.2). As visualised in Fig. [2] boolean
primitives allow for a more parsimonious description of complex geometry. An additional biasing
loss, annealing schedule, data augmentation, and thorough hyperparameter search yield further
accuracy gains (Sec.[3.3). Fig.[8|provides an overview of our inference pipeline.

Our method is RGBD input. Our losses require a point cloud that is extracted from the depth image
via the heuristic described in |Vavilala & Forsyth| (2023). Our method works both when GT depth
is and is not available, and we evaluate both scenarios, using MIDAS (Ranftl et al.,[2022) to obtain
inferred depth maps.

3.1 ENSEMBLING

We remark that much of the literature on primitive decomposition fits a fixed number of primi-
tives |Deng et al.| (2020). Other work starts from a fixed number of primitives and removes excess
primitives according to a greedy algorithm (Vavilala & Forsyth, [2023)). The problem with these
approaches is that it is difficult to know a priori what initial settings are best for a given test image.
For example, post-training refinement could get stuck in a local minimum if the start point isn’t good.

A solution we employ in this work is ensembling the prediction from multiple networks, and selecting
the best one. Naturally, the more members of the ensemble, the better the final quality since we can
evaluate each method independently and select the best one. Our aim is simply to show one avenue
of creating a usefully rich ensemble: varying the number of positive and negative primitives. Because
primitive decomposition networks typically have several primary and regularizing losses, training
networks with diverse hyperparameters would be another way of generating an ensemble, though due
to limited compute we do not show this sort of ensemble.

Additionally, use-cases where stochasticity is desired (analogous to image generation literature)
benefit from ensembling because multiple primitive decompositions will be available for a given test
image. Prior work does not propose a method to generate and select from an ensemble if a user wants
diverse representations of a scene.

For a given test image, we can select the best method by running it through each network, evaluating
the generated primitive depth map against an inferred or GT depth, and use the best network for
subsequent refinement. In practice, we observed refine-then-choose to perform better, whereby we
refine each method first then choose the one with the best error metrics. Even though this involves
more compute, the quality gains are substantial (see Table [I).

3.2 BOOLEAN PRIMITIVES

A traditional collection of primitives is represented by an indicator function O : R — [0, 1], with
O(x) = 0 indicating free space, and O(x) = 1 indicating a query point x € R3 is inside the volume.
When introducing negative primitives, the final indicator can be composed of a CSG operation
between the union of positive primitives and union of negative primitives. Let O (z) be the indicator
of positive primitives only, and O~ (x) be the indicator of negative primitives only. The final indicator
for our representation is simply

O(z) = relu(0O*(z) — O~ (2)) €))

Our modified representation allows re-using the existing sample loss, unique parametrization loss,
and Manhattan World loss |Deng et al.| (2020); [Vavilala & Forsyth|(2023) for both O (x) and O~ (x).
However, for negative primitives only, we must modify the samples on which the overlap loss,
guidance loss, and localization loss are applied. During each training iteration, we select samples
for which the ground truth label for a point is outside, x = 0, but the indicator function is positive,
O(zx) = 1. Thus if a negative primitive moves to such a sample, its classification will become
O(zx) = 0, matching ground truth.
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Figure 2: Boolean primitives are parameter-efficient. Representing a simple box with a hole
punched in it can be challenging even with several traditional primitives, as shown in (a), where five
primitives get stuck in a local minimum. In contrast, two primitives - one positive and one negative -
can represent the geometry successfully because of the enriched vocabulary of operations. Two views
are shown in (b) and (c).

Our early experimentation showed that we are better off pretraining with positive primitives only,
and then introducing negative primitives for further training. Conceptually, this procedure allows
positive primitives to explain the scene at a high level, and then negative primitives to improve the
representation later on.

3.3 PERFORMANCE IMPROVEMENTS

Biasing sample loss The primary loss for training a convex decomposition network is

Lapproa: = Ex~R3 | ‘OA('T) - O(x)HZ (2)

We postulate that negative primitives would be most useful in regions that the positive primitives
over-explain certain geometry, i.e. they explain more inside samples correctly than outside samples.
In effect, if the positive primitives are “too big", then negative primitives will help the network carve
away unnecessary geometry. In other words, there will be more useful regions that negative primitives
can exist. We can achieve this bias by simply introducing an additional sample loss but only apply it
to points where the GT label is inside, O(x) =1

Linside = EzNR:"HOA(g:) - 1H2 (3)

We weight L;,,siqe by 0.1, and ablate that choice in Fig. @

Annealing loss weights Further, we found more stable training by annealing the weight of the overlap
loss and alignment loss, starting from 0 at the beginning of training, up to the target weight midway
through training. We preserve the annealing of the surface sample weight, whereby early in training
free space samples are prioritized in the losses, and by midway of training, all samples have an equal
weight. These performance improvements are intended to aid the network in predicting high-level
geometric structure of the scene early in training, then getting the details right towards the end.

Data augmentation Prior art did not successfully implement data augmentations in the form of
horizontal flips. A correct implementation needs to take into account the effect of camera calibration
parameters on the point cloud. We do so here and in practice, we observe substantial improvements —

see Fig. 10}

Augmentations are especially valuable given that the NYUv2 dataset is relatively small - though
clearly sufficient for getting good results. Our procedure uses the standard 795/654 train/test NYUv2
splitNathan Silberman & Fergus|(2012). We hold out 5% of training images for validation. We use
this dataset primarily to maintain consistency in evaluating against prior art. We do not consider the
volume loss or segmentation loss from [Vavilala & Forsyth| (2023)) in our experimentation, as they
were shown to have an approximately neutral effect.
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Figure 3: Inference Overview: We feed an RGBD image into an ensemble of independently trained
convolutional neural networks. Each network predicts the parameters of a set of convexes C;. The
number of convexes predicted by each network varies between 8 and 40 in this work, with up to two
of them being negative. We refine each set of convexes by minimizing the training loss w.r.t. the
input depth map. Our final decomposition consists of the set of refined convexes C; which yields the
lowest absolute relative depth error.

image

3.4 IMPLEMENTATION DETAILS

Our neural architecture is a ResNet-18 encoder (accepting RGBD input), followed by a decoder
consisting of three linear layers of sizes [1048, 1048, 2048] and LeakyRelu activations. We do not
freeze any layers during training. The dimensionality of the final output varies based on the number
of primitives the model is trained to produce (as we train different models for different numbers of
primitives in this work). We implement our procedure in PyTorch and train all networks with AdamW
optimizer, learning rate 4 x 10~4, batch size 128, mixed-precision training, for 5000 iterations, on a
single A40 GPU. It takes 26 mins to train a 8 primitive model and 67 mins to train a 40 primitive
model. Our inference procedure requires around 5 seconds for an 8 primitive model and up to 20
seconds for a 40 primitive model. We halve the learning rate after 50% and 75% of the steps during
both training and refinement. During refinement, we optimize for 250 steps, AdamW optimizer, and
learning rate 0.01. Again, we find LR decay helpful during refinement with the same schedule as
during training.

3.5 EVALUATION OF PRIMITIVES

Geometric primitive abstraction is a longstanding interest in computer vision ([Marr & Nishihara
(1978), Sec. 2) but finding broad applications of them is ongoing. We are aware of recent efforts to
condition image synthesis on primitives - see Vavilala et al.|(2023); Bhat et al.| (2023)). Our work can
be a useful building block for such use-cases.

To that end, we’d like to evaluate primitives appropriately for these tasks. If a user is assembling
primitives (possibly extracted from a real image) and editing their position, it is critical that the
generated image matches the requested depth. Thus, our evaluation must measure the geometric
accuracy between the generated primitives and the source depth. If we are allowed a large number
of primitives e.g. 1 per pixel, we could perfectly match the GT depth at the cost of coarse scene
abstraction; because we are instead dealing with few primitives (8-40 in this work), depth error
metrics will give a true indication of geometric scene decomposition quality. Similarly, evaluating
per-pixel normals offers a measure of geometric reconstruction quality. GT depth and normals are
available at inference time (and they can be inferred by high quality estimators like Ranftl et al.
(2020) if not). Predicted depth and normals can be obtained by ray marching the generated primitives
from the original viewpoint, obtaining a dense per-pixel estimate. Similarly, downstream use-cases
of primitives may require object-level control. We can evaluate how well our primitives enable this
capability by assigning each primitive’s face the most common GT segmentation label in its support,
and then measuring the dense per-pixel segmentation accuracy across the whole image. A high score
means that primitives map to objects quite well.
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We note that we evaluate these metrics against existing primitive generation works from RGB images
(specifically [Vavilala & Forsyth| (2023); [Kluger et al.| (2021)), not against methods that predict
segmentation, depth, or normals from RGB like |Yang et al.[(2024); Kirillov et al.| (2023). We argue
that we can evaluate primitives by looking at their predicted depth/normals/segmentation. But we’re
not trying to predict depth/normals/segmentation from RGB using primitives, for which there are
well-developed methods. Our evaluation procedure is consistent with prior art. Better metrics should
mean better primitives. This allows us to use detailed quantitative evaluations in an area that has
traditionally lacked them.

4 EXPERIMENTS

We perform extensive quantitative and qualitative evaluation of our method. To do so, we use
established evaluation procedures on the depth, normals, and segmentation inferred from the generated
primitives.

Any individual network we train beats baselines. Without ensembling, with or without negative
primitives, our method beats all baselines on nearly every metric - see Tables Here, we present
several networks with different numbers of positive and negative primitives. We apply refinement at
test time. Individually, each procedure performs quite well across a range of initial primitives. In
some cases, introducing negative primitives helps on average (we test K~ € [0,1,2]). When we
ensemble the five networks without negative primitives, we get substantially better error metrics,
particularly as measured by AbsRel of the depth map. To select the best method, we simply compare
the depth of generated primitives against GT. Ensembling with negative primitives can boost
quality. Further, when we enrich the vocabulary of operations with negative primitives, depth metrics
get better (pos+neg R->S).

Refinement improves all methods. In Fig. [/} we apply our refinement procedure on all test images
using the GT depth map. Consistent with previous work, refining is essential to getting the best results.
Observe how all error metrics, particularly AbsRel, get better with refinement. In particular, the
negative primitives we introduced get better with refinement. While we get strong results across all
numbers of primitives, the introduction of negative primitives only occasionally helps on average, in
some cases slightly hurting metrics, which indicates that our test scenes are quite diverse and different
settings are optimal for each scene. Refine-then-select performs better than select-then-refine.
When we ensemble the five positive-only networks, rows pos, all error metrics get better than any
method alone. However, the fact that we get better numbers when we select after refining indicates
that this is an extremely difficult fitting problem whereby what appears to be the best start point
may not necessarily yield the best endpoint. When comparing ensembles with negative primitives
(pos+neg), we again observe that we are better off refining then selecting. Further, on average
the network picks 0.30 negative primitives in our best ensemble - which means they are genuinely
helpful on some scenes. In Fig ] we present histograms showing how many total and negative
primitives were chosen on our test set. In practice, (left) our procedure is able to handle larger
numbers of primitives better than prior work, observing that more primitives is generally better, and
right, negative primitives can be quite helpful, noting that they are selected from the ensemble for
several scenes.

A biased sampling loss should be part of the ensemble. We ablate our decision to bias the
sampling loss to favor classifying “inside” points correctly via L;;, siqe- In Fig. [8] we test w;nside €
[0.0,0.1,0.2,0.4,0.8] with K~ € [1, 2]. Turning this loss on is generally preferred over not having
it. We thus let w;,s;4c = 0.1 in our experimentation as a reasonable mid-ground for networks with
negative primitives.

Data augmentation yields more accurate decompositions. As Fig.[I0]shows, augmenting RGBD
input data with horizontal flips during training reduces the AbsRel depth error and increases the
segmentation accuracy measurably, with more modest effects on normal accuracy.

5 DISCUSSION

The key goal of primitive decompositions since the 1960s has been to demonstrate representations
that can (a) be computed from data and (b) genuinely simplify reasoning tasks. We have demonstrated
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Table 1: We quantitatively evaluate our ensembling approach. First five rows: we train a primitive
generation model according to the procedure laid out in Sec (3| The value under the method column
indicates the number of primitives, and no negative primitives are shown here. Next four rows:
ensembling strongly improves error metrics across the board (we focus on depth, normals, and
segmentation accuracy). Pos refers to five networks with only positive primitives in the ensemble
(Ktotal ¢ [8,16, 24,32, 40]); Pos+Neg refers to fifteen networks in the ensemble (where K~ €
[0,1,2]). S — R means that we evaluate a given test image on each method in the ensemble without
finetuning, then finetune the best one using the original network’s training losses. In this table, we
finetune assuming GT depth is available at test time, though our method still works even when depth
is inferred by a pretrained depth estimator. R — S means that we refine the primitives generated by
each method for a given test image, then pick the best one (as measured by AbsRel). The fact that
substantial gains can be achieved from R — S implies that the best start point may not yield the best
end point — meaning the fitting problem is hard. Time and memory estimates are presented as well.
Last row: we compare our methods against existing work. Any individual model we train obtains
better error metrics with less compute. Timings for ensembling show estimated total cost of running
all the methods and selecting the best one; memory refers to peak GPU memory usage.

Method Time (s) | Memory (GB) | AbsRel | | Normalsyean 4 | NormalSmedian & | Seg,.. T
8 5.23 2.13 0.095 37.0 31.7 0.574
16 9.39 3.76 0.0714 35.7 30.0 0.653
24 11.9 5.71 0.0662 353 29.9 0.678
32 15.9 7.15 0.0613 354 29.8 0.697
40 18.8 8.77 0.0645 35.2 29.7 0.694
Pos - S—R 16.7 8.77 0.0666 35.6 30.0 0.666
Pos + Neg S—R 25.7 8.77 0.0672 35.8 30.2 0.668
Pos - R—S 61.3 8.77 0.0561 351 29.5 0.698
Pos + Neg R—S 184 8.77 0.0545 35.2 29.6 0.698
Vavilala|2023 40.0 6.77 0.0980 374 324 0.618

Table 2: Baseline comparisons: Ensembling strongly outperforms two recent SOTA methods, using
the metrics reported by [Kluger et al.|(2021)), and using negative primitives in the ensemble produces
further improvements in some cases. We show results with only positive primitives present Qurs
(pos), five networks, Kt ¢ [8,16,24, 32,40], as well as with positive and negative primitives
Ours (pos+neg), 15 networks, K~ € [0, 1, 2]. Our ensembles significantly outperform existing work.
Further, we present results on the fifteen methods we trained, where K total /K~ is shown. Even
without ensembling, any individual method we trained generally performs better than the baselines.

Ensemble | Refine [ K™™' [ K~ | AUCaso? | AUCas0T [ AUCaiot | AUCas? | mean,,) | median,,|

No (Vavilala2023] | Yes | 139 | 0 0.869 0.725 0.565 0.382 0.266 0.101
No (Kluger[202T) | N/A ‘ - ‘ 0 ‘ 0.772 ‘ 0.627 ‘ 0.491 ‘ 0.343 ‘ 0.208 ‘ -

No Yes 8 0 | 08728 0.7521 0.6008 | 04378 | 0.2547 0.0837
No Yes 8 1 0.8558 0.7401 0.6024 | 04297 | 0.2863 0.0888
No Yes 8 2 | 0.8584 0.7419 0.6049 | 04350 | 0.2815 0.0860
No Yes 16 0 | 09092 0.8297 0.7173 | 05513 | 0.1920 0.0548
No Yes 16 1 0.8888 0.8038 0.6890 | 0.5218 | 0.2258 0.0609
No Yes 16 2 | 0.8881 0.8043 0.6902 | 0.5210 | 0.2317 0.0616
No Yes 24 0 | 09133 0.8420 0.7346 | 0.5698 | 0.1855 0.0512
No Yes 24 1 0.8930 0.8183 07120 | 0.5500 | 0.2167 0.0547
No Yes 24 2 | 0.8943 0.8159 0.7042 | 0.5348 | 0.2169 0.0595
No Yes 2 0 | 09177 0.8546 07576 | 0.6006 | 0.1755 0.0458
No Yes 32 1 0.8782 0.8051 0.7067 | 0.5534 | 0.2415 0.0573
No Yes 32 2 | 0.8904 0.8201 0.7184 | 0.5562 | 0.2267 0.0534
No Yes 40 0 | 09113 0.8487 0.7503 | 0.5918 | 0.1869 0.0486
No Yes 40 1 0.8936 0.8258 07335 | 0.5818 | 0.2141 0.0500
No Yes 40 2 | 0.8903 0.8229 07276 | 0.5729 | 0.2196 0.0528
pos S>R [ 233 [ 0 [ 09124 0.8353 07262 | 05628 | 0.1852 0.0530
pos + neg S->R | 245 | 05 | 0.9059 0.8288 0.7211 | 05594 | 0.1961 0.0539
pos R>S | 318 | 0 | 09259 0.8617 0.7617 | 0.6017 | 0.1612 0.0456
pos + neg R->S | 317 | 03 | 09265 0.8616 0.7614 | 0.6010 | 0.1603 0.0457




Under review as a conference paper at ICLR 2025

a method that can produce accurate fits of multiple convex primitives, some “negative,” to complex
indoor scenes represented in RGBD images. Our method really can be computed from data, and in
accuracy significantly outperforms SOTA.

Limitations The method requires ensembling a number of regressors, with consequent costs in
training and inference time. While we can evaluate accuracy, it is difficult to usefully assess the
extent to which the method is parsimonious, apart from looking at the relatively small number of
primitives used. We have shown partial progress on simplifying reasoning tasks (the depth implied by
the primitives is quite good, and the segmentation is fair but not competitive with the best semantic
segmenters). In this work we selected a modest network size and small benchmark dataset (to temper
compute requirements and perform evaluation); scaling the model architecture and dataset is a natural
extension.
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Figure 4: We analyze our ensembling procedure by breaking down which models are ultimately
chosen when selecting then refining (top row) or refining then selecting (bottom row). When
selecting then refining, all primitive counts are well represented in the ensemble, with 16 slightly
preferred. When refining then selecting, the model strongly favors more primitives, whereby 32 is
the most commonly picked. Interestingly, some scenes prefer fewer primitives, which can be due
to fitting difficulties for a particular test image with larger numbers of primitives. While one would
expect more primitives to lead to better quality, we observe a drop-off in quality around 32 primitives,
noting that 40 is chosen less often than 32. This could be due to bias-variance issues in the network
and challenges in optimizing larger numbers of primitives. (right column) Our method generally
prefers not using negative primitives, but occasionally selects them, indicating they are genuinely
useful in some scenes.
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RGB 8/0 16/0 24/0 32/0 40/0

GT Depth

_

GT Normals

GT Seg

Figure 5: We present qualitative evaluation of our ensembling procedure. The first column shows GT
information, including the RGB input and GT Depth map accepted by the model. The remaining
columns show generated results with K*°**! /(' shown in the first row. The model chosen by
ensembling (comparing AbsRel of the depth from primitives against GT depth) is boxed in green.
Depth/normals from primitives is obtained by ray-marching from the original camera view; predicted
segmentations are obtained by assigning each primitive’s face the most common GT label within its
support.

RGB 8/1 16/1 24/1 32/1 40/1

GT Depth

GT Normals

GT Seg

Figure 6: Additional qualitative evaluation with negative primitives. In this case, 40 primitives (with
1 negative primitive) were chosen. The negative primitive in 40/1 was placed in the bottom right of
the image to indicate free space.
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A APPENDIX

Table 3: We present metrics without finetuning, and with GT depth available at test time. Notice how
metrics are much worse without post-training refinement.

Ensemble Refine Kfotal |- H AbsRel | Normalspean 4 NormalSmedian 4 S€g,c. T

No No 8 0 0.1669 40.4625 37.3284 0.5370
No No 8 1 0.1862 41.4633 38.0116 0.5328
No No 8 2 0.1872 42.5348 39.3306 0.5335
No No 16 0 0.1547 41.3356 37.6371 0.6027
No No 16 1 0.1627 42.0006 38.5059 0.5963
No No 16 2 0.1797 43.1610 39.5093 0.5912
No No 24 0 0.1566 41.6409 38.4479 0.6264
No No 24 1 0.1695 43.2274 39.4391 0.6166
No No 24 2 0.1726 42.9552 39.7228 0.6103
No No 32 0 0.1549 44.2891 40.1252 0.6579
No No 32 1 0.2145 46.0952 41.7799 0.6026
No No 32 2 0.1871 43.1564 39.6844 0.6188
No No 40 0 0.1672 42.0187 39.0446 0.6524
No No 40 1 0.1642 47.1960 42.4641 0.6620
No No 40 2 0.1667 43.3853 39.8320 0.6304
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Table 4: We present quantitative evaluation of the 15 models we trained, but the best strategy by
far is to ensemble (bottom block). Best AbsRel was the criteria used to select a model for a given
test image. Generally, refine-then-select (R—S) is significantly better than select-then-refine (S—R),
likely because the fitting problem is extremely hard, so the start point for refining is not a good guide
to how well the refinement will proceed. In the bottom block, the K~ indicates the average number
of negative primitives used per image, suggesting the best fit for a significant fraction of images
has one or more negative primitives. First two rows show recent prior work. Any individual model
as well as any ensemble generally outperforms prior work across all error metrics. Final row: the
very best depth accuracy, as measured by AbsRel, was achieved by using an ensemble with negative
primitives. Boolean primitives improved AbsRel and Segmentation accuracy on average when we use
8 primitives, but hurt the quality on average for more than 8 primitives. The implication is that fitting
boolean primitives remains hard. However, the advantage of ensembling is that boolean primitives
will only be used where they are helpful.

Ensemble | Refine | K™% [ K~ || AbsRel | | Normalspean | | Normalspedian | Segec T

No (Vavi- Yes 13.9 0 0.098 37.355 32.395 0.618
lala|2023)

No (Vavi- Yes 15.7 0 0.096 37.355 32.700 0.630
lala[2023))

No Yes 8 0 0.0949 36.9861 31.7493 0.5741
No Yes 8 1 0.0944 37.7630 32.4935 0.5743
No Yes 8 2 0.0911 38.2590 32.7630 0.5774
No Yes 16 0 0.0714 35.7310 30.0465 0.6525
No Yes 16 1 0.0741 36.6899 30.8987 0.6455
No Yes 16 2 0.0754 36.7649 30.9506 0.6456
No Yes 24 0 0.0662 35.2619 29.8957 0.6776
No Yes 24 1 0.0712 36.5494 30.8535 0.6642
No Yes 24 2 0.0707 36.5984 31.3036 0.6653
No Yes 32 0 0.0613 35.4398 29.7855 0.6970
No Yes 32 1 0.0782 37.0885 31.4945 0.6721
No Yes 32 2 0.0721 36.4009 30.8432 0.6742
No Yes 40 0 0.0645 35.1675 29.7039 0.6942
No Yes 40 1 0.0697 36.8514 31.3076 0.6942
No Yes 40 2 0.0712 36.0667 30.4413 0.6832
pos S->R 23.3 0 0.0666 35.5563 29.9633 0.6662
pos +neg | S->R 24.5 0.5 0.0672 35.8283 30.1908 0.6679
pos R->S 31.8 0 0.0561 35.1100 29.5008 0.6984
pos +neg | R->S 31.7 0.3 0.0545 35.2119 29.5695 0.6975

Table 5: We ablate the choice to perform learning rate decay (halved once midway through training,
again after 75% of the steps, (LR DECAY ON) versus leaving it at a constant value (LR DECAY
OFF). AbsRel values shown in the table for varying numbers of total and negative primitives, on a
portion of the NYUv2 test set. The results generally favor using LR decay.

Ktotal =8 Ktotal =2

K~ 0 1 2 0 1 2
LR DECAY OFF | 0.098 | 0.099 | 0.108 | 0.067 | 0.073 | 0.081
LR DECAY ON | 0.090 | 0.091 | 0.093 | 0.067 | 0.076 | 0.077

15



Under review as a conference paper at ICLR 2025

0.18

0.16

0.14

Depth AbsRel !

0.10

0.08

46

44

IS
9]

Normalsmedian ¢
»
S

w
@

36

0.70

0.68

0.66

0.64

Segmentation Accuracy T

0.60

0.58

K= =0 K- =1 K- =2
0.250
§ -e-- Kt =16, MIDAS=True t
3 total — 16, MIDAS=Fal 221 %
\“ —o— K =16, =False 0.2251 Y
\ Kl =32, MIDAS=True 0201 %
\
Y Ktotal = 32, MIDAS=False 0.2001 \
\ - - 0.18
R g e
\ ]
o e .| 0.175 ‘2016
< <
5 0.150 5014
Q o
a a
0.1251 0.12
0.10
0.100
0.08
0.075
0 100 200 300 400 500 100 200 300 400 500 0 100 200 300 400 500
Finetuning Steps Finetuning Steps Finetuning Steps
-e- K%l =16, MIDAS=True
44
—e— K'otal =16, MIDAS=False 46
Ktotal = 32, MIDAS=True 23
Ktotal = 32, MIDAS=False
- 44+ -4
] g
3 S
g £41
w42+ u
© ©
£ Eao
2 2
) 404
$=e-— *~-——-n o----- ------ . 39
38
\0‘0‘.__—0 381
37
0 100 200 300 400 500 100 200 300 400 500 0 100 200 300 400 500
Finetuning Steps Finetuning Steps Finetuning Steps
0.661 0.66
. -
> >
9 9
2 S o.64
3 0.64 3
o] o
< <
c c
o 5 0.62
®© 0.62 ®
8 ]
f=4 [=
v Q)
-e- Kb =16, MIDAS=True E E 060
/
/' —e— Kw®@ =16, MIDAS=False | & 0.60{ &
/
7 total — =
K Ktotal = 32, MIDAS=True 058
J Kt = 32, MIDAS=False
0.58-

200 300 400 500

Finetuning Steps

100

100

200 300
Finetuning Steps

400

500

200 300 400 500

Finetuning Steps

0 100

Figure 7: We demonstrate why finetuning is important for primitive generation. Running a primitive
generation model alone gives reasonable start points, but note how after a small amount of finetuning,
all metrics get much better. This is true across primitive counts (we show K*°*! ¢ [16,32] here),
presence of negative primitives (a different K~ shown in each column), and whether GT depth is
available at test time (MIDAS = True) or not (MIDAS = False). To perform test-time refinement,
we directly optimize the parameters of the primitives with respect to the training losses. In this work,
we use 250 refinement steps per test image, a reasonable balance between speed and quality. We
note that previous work has established that refining from a random start point does not yield good
results (Vavilala & Forsythl [2023).
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Figure 8: We ablate choices for our biased loss term in Equation which only applies when negative
primitives are present. Varying numbers of primitives, are shown with different colors and tick labels,
and regimes where GT depth is and is not available at test time are shown. Each row shows a different
error metric, and each column shows a different number of negative primitives. Overall, it appears
having a small amount of this bias term is advantageous.
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Figure 9: We demonstrate that initializing our refinement process with primitives predicted by a
network is advantageous. For Kt ¢ [16, 32, all metrics are better with network start, as opposed
to fitting with randomly initialized parameters (we show both normal and uniformly distributed
initializations). We allow each method to optimize for a very long time (3000 steps). One line of
future work could be better initialization that avoids the need to train a neural network, for example
initializing primitives near centers obtained by another method (like Wei et al| (2022)). Another line
of work could be improving the network start by scaling the network and dataset to potentially reduce
the need for refinement.
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Figure 10: Introducing X-flip augmentations during training generally improves error metrics. We
test this on Kot = 16
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Figure 11: We perform an ablation on the number of negative primitives, K ~ as well as the primitive
vocabulary. By default, in this work we generate parallelepipeds (a more general form of a cuboid)
to maintain consistency in evaluation against prior work [Vavilala & Forsyth| (2023)); Kluger et al.
(2021). To do so, our model predicts three normals and offsets per primitive, and the other three
are implied. Thus the primitives are centrally symmetric. Our experimentation shows that fitting
CSG with parallelepipeds is very difficult, as indicated by the AbsRel getting worse as we increase
the number of boolean primitives (red line). However downstream use-cases may not require the
centrality constraint and good reconstruction quality might be paramount. To that end, we try two
more ablations. First, we remove the centrality constraint and Manhattan World loss (green line).
Notice how all numbers get better and in particular primitive decompositions get better with more
boolean primitives. We then increase the number of halfplanes to 12, (blue line) and the quality is
generally better across the board. The implication is that fitting CSG is easier if we fit primitives with
a more flexible parametrization (convex polytopes) as opposed to more rigid primitives (e.g. cuboids).
We remark that within each subplot, the total number of primitives remains the same (K*°*%!) and we
are simply adjusting the ratio of positive and negative primitives (K /K ™). Our implementation
supports this richer primitive vocabulary by simply tuning hyperparameters. Experiments conducted
on a portion of the NYUV2 test set.
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Figure 12: We perform a qualitative evaluation on the number of boolean primitives, K~ € [0, 1,...7],
with all images having the same K*°**! = 8. In each column, the decomposition with lowest AbsRel
selected by ensembling is boxed in green. We decompose parallelepipeds with a Manhattan World
constraint (first column), general 6-face polytopes (second column), and 12-face polytopes (third
column). Notice how boolean primitives carve away free space in the bookshelf on the left side
of each image. The final two entries of the middle column reached a degenerate state during the
optimization process and failed to recover, which further justifies the benefits of ensembling.
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Figure 13: We perform a qualitative evaluation on the number of boolean primitives, K~ € [0, 1,...7],
with all images having the same K*°*¢! = 8, In each column, the decomposition with lowest AbsRel
selected by ensembling is boxed in green. We decompose parallelepipeds with a Manhattan World
constraint (first column), general 6-face polytopes (second column), and 12-face polytopes (third
column). In the most extreme case, there is one positive primitive and 7 negative primitives whereby
the boolean primitives carve geometry away from the positive primitive (final row). The final two
entries of the middle column reached a degenerate state during the optimization process and failed to
recover, which further justifies the benefits of ensembling.
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Figure 14: We perform a qualitative evaluation on the number of boolean primitives, K~ € [0, 1, ...7],
with all images having the same K *°*% = 16. In each column, the decomposition with lowest AbsRel
selected by ensembling is boxed in green. We decompose parallelepipeds with a Manhattan World
constraint (first column), general 6-face polytopes (second column), and 12-face polytopes (third
column). Notice how the boolean primitives help sharpen the edge of the railing in several cases.
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Figure 15: We perform a qualitative evaluation on the number of boolean primitives, K~ € [0, 1, ...7],
with all images having the same K *** = 16. In each column, the decomposition with lowest AbsRel
selected by ensembling is boxed in green. We decompose parallelepipeds with a Manhattan World
constraint (first column), general 6-face polytopes (second column), and 12-face polytopes (third
column). Notice how the boolean primitives help carve away geometry on the chairs to better model
the seat, most evident in the third column, second to last row.
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Figure 16: We perform a qualitative evaluation on the number of boolean primitives, K~ € [0, 1, ...7],
with all images having the same K *°*% = 24. In each column, the decomposition with lowest AbsRel
selected by ensembling is boxed in green. We decompose parallelepipeds with a Manhattan World
constraint (first column), general 6-face polytopes (second column), and 12-face polytopes (third
column). Notice how the boolean primitives help carve away geometry on the chair and floor.
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Figure 17: We perform a qualitative evaluation on the number of boolean primitives, K~ € [0, 1, ...7],
with all images having the same K *°*% = 24. In each column, the decomposition with lowest AbsRel
selected by ensembling is boxed in green. We decompose parallelepipeds with a Manhattan World
constraint (first column), general 6-face polytopes (second column), and 12-face polytopes (third
column). Notice how the boolean primitives enhance the details of the bed, pillows, and nightstand.
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Figure 18: Our method can decompose natural images into primitives, and be used to condition
controlled image synthesis tasks. We show results from an in-submission follow-up work, which
uses the convex decomposition method described here with identical hyperparameters and trains it on
a much larger dataset, a 1.8 million-image subset of LAION-Aesthetic. GT depth information was
obtained from|Yang et al.|(2024), and we allow each polytope to use 12 faces without a Manhattan
World constraint. We use reasonable camera calibration assumptions to convert the depth map into a
point cloud to supervise convex decomposition. We use the same ResNet-18 encoder and 3 FC layer
decoder. A validation set reported an AbsRel of 0.130, which is approx. twice the error we report
on NYUV2. The larger error on LAION indicates that the images are very diverse and complex in
structure as compared with NYUv2. (a) We use a convex decomposition method to extract convex
polytopes from any image. (b) We then ray-march the primitives from the original camera viewpoint
to obtain a depth map. (c) This depth map serves as conditioning to a ControlNet diffusion model,
which is finetuned to handle the unique statistics of our block arrangements. Different scenes can be
created from the same high-level geometry. (d) We can select one of the images and perform camera
moves in 3D space, obtaining images that roughly respect both the requested geometric layout and
source texture. We maintain a key-value cache to transfer texture |Khachatryan et al.|(2023)). (e) We
can also move primitives freely in 3D space, adjusting the high-level shape of the doll’s dress.

Figure 19: Our method can decompose natural images into primitives, and be used to condition
controlled image synthesis tasks. We show results from an in-submission follow-up work. Our
primitive representation allows us to remove and add objects to a scene, in this case a boot. Bottom
row We generate an image conditioned on primitives (here, primitives extracted from a real image);
we then manipulate the primitives and the camera to obtain conditioning for the diffusion model.
Depth and primitives shown in top row, generated images in second row. Texture is preserved by
caching keys and values from a reference style image, and querying those keys and values when
generating new images in the same style.
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Figure 20: Our method can decompose natural images into primitives, and be used to condition
controlled image synthesis tasks. We show results from an in-submission follow-up work. Rotating
the primitives associated with the yacht rotates the yacht in view.
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Figure 21: Additional qualitative evaluation with negative primitives. 24/1 was chosen by the
ensembling procedure, and the negative primitive was placed on the floor to indicate free space.
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Figure 22: Additional qualitative evaluation with negative primitives. 24/1 was chosen by the
ensembling procedure, and the negative primitive was placed on the floor to indicate free space.
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Figure 23: Additional qualitative evaluation with only positive primitives.
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Figure 24: Additional qualitative evaluation with only positive primitives.
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Figure 25: Additional qualitative evaluation with only positive primitives.
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Figure 26: Additional qualitative evaluation with only positive primitives.
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Figure 27: Additional qualitative evaluation with only positive primitives.
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