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Abstract
The definition of metrics for evaluating reconstruction image
data from machine learning generative methods are well es-
tablished for applications involving natural images. However,
machine learning models applied to weather field precipita-
tion data in the context of weather generators are still not suf-
ficiently addressed. In this work, we discuss the use of various
metrics for weather data generation and we propose the use of
the Fréchet Inception Distance metric based on weights from
a weather dataset.

Introduction
Synthetic data generation using Generative Adversarial Net-
works (GAN) (Goodfellow et al. 2014) and Variational au-
toencoders (VAE) (Kingma and Welling 2014) has gained
a lot of attention in recent years, particularly for generat-
ing natural images (Karras et al. 2018; Brock, Donahue,
and Simonyan 2019). Although there are many works that
discuss the evaluation of these models, most of them are
focused on the context of natural images. Theis, van den
Oord, and Bethge (2016) alerted the scientific community
about the issue of evaluating synthetic data according to
their application and that a good performance with respect to
one criterion might not necessarily imply good performance
with respect to another criteria. Then, subsequent works on
generative models came to expose the complex question of
how to select metrics depending on the applications (Borji
2019; Abdella and Uysal 2020; Ding, Wang, and Zhao 2019;
Mukherjee, Praveen, and Madumbu 2018). Borji (2019), for
example, discusses pros and cons of GAN evaluation strate-
gies, describing multiple qualitative and quantitative metrics
for image synthesis.

Besides evaluation, another important reason to study
metrics is to create better alternative training losses for dif-
ferent applications. Ding, Wang, and Zhao (2019) propose a
new loss more suitable for generating trajectories in the con-
text of autonomous cars, while Abdella and Uysal (2020)
use the structural similarity index (SSIM) as part of a loss
for a VAE in order to obtain better results for the well-know
datasets MNIST and Fashion-MNIST. Mukherjee, Praveen,
and Madumbu (2018) present a deep neural network to im-
prove the visual quality of images captured under adverse
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weather conditions, like rain and fog. They use a perceptual
loss to train the model and evaluate their results with SSIM
and peak signal-to-noise ratio (PSNR) metrics.

Synthetic data has played an important role in the con-
text of extreme weather impact studies. Impact models re-
quire long series of weather data representing different cli-
mate scenarios (Verdin et al. 2018), which are usually not
available. Deep generative models have also been applied in
the context of weather data generation: the authors in (Bha-
tia, Jain, and Hooi 2020) use a GAN to create precipitation
scenarios, and Klemmer et al. (2021) propose a GAN to gen-
erate spatiotemporal patterns conditioned on extreme events.
Oliveira et al. (2021), on the other hand, use a VAE to gen-
erate precipitation scenarios, claiming that it is possible to
control the VAE generation without the need of auxiliary
variables. However, the authors provide only a comparison
of the distributions of generated samples, without a quanti-
tative analysis on the samples’ quality.

It is important to notice that the requirements that define
a proper sample in the context of weather might be differ-
ent than those of natural images. In this case, metrics widely
used in computer vision tasks, such as the Frechet Inception
Distance (FID) (Heusel et al. 2017), might not be suitable for
assessing the quality of synthetic weather data. Ullrich et al.
(2021) adopt some metrics to compare two statistical mod-
els that generate precipitation data. The authors emphasize
the importance of maintaining some characteristics such as
daily mean precipitation, daily extreme precipitation (99.9th
percentile), wet-to-dry transition probabilities and wet day
frequencies.

In this work, we propose an investigation of several met-
rics in the context of precipitation data synthesis with deep
generative models. We use the VAE presented in (Oliveira
et al. 2021) as the base model in our experiments and an-
alyze the behavior of several metrics under different train-
ing conditions. We focus on the reconstruction quality of the
VAE, that is, we compute the metrics comparing precipita-
tion samples with their respective reconstructions. Addition-
ally, we compare the FID metric using an Inception model
trained on a weather dataset and another on the Imagenet
dataset. The precipitation experiments cover seven regions
of the world, addressing a great diversity of climate scenar-
ios.



Method
The proposed methodology consists of analyzing the quality
of precipitation samples generated with a VAE trained with
different dataset sizes. More specifically, we investigate the
reconstruction quality of the VAE when precipitation sam-
ples from the dataset are used as inputs. For this analysis,
several metrics are used and we also propose an FID metric
based on weather data.

We performed five different controlled transformations on
the data to understand the response of each metric: blurring,
shifting, additive bias, Gaussian noise, and swirl transform.

The metrics we evaluate are:

• Statistical: mean precipitation, variogram, Kling Gupta
Efficiency (KGE), Mean Squared Error (MSE), Mean
Absolute Error (MAE)

• Connectivity: Connectivity and Two-point probability
function (Renard and Allard 2013; Torquato, Beasley,
and Chiew 1988; Torquato and Haslach Jr 2002)

• Geometrical: fractal dimension (Bouda, Caplan, and
Saiers 2016), Structural Similarity (Wang et al. 2004)

• Spectral: 95% of the maximum energy in a spectrum
• Signal processing: Peak signal-to-noise ratio (PSNR)
• Distances: Fréchet Inception Distance Climate dataset

(FID) climate, Fréchet Inception Distance Imagenet
dataset (FID) (Heusel et al. 2017; Fréchet 1906; Alt and
Godau 1992)

Variational Autoencoder
VAEs (Kingma and Welling 2014) are an encoder decoder
generative model that enables stochastic synthesis by regu-
larizing the latent space to a known distribution. VAEs pa-
rameterize a posterior distribution q(z|x) of discrete latent
random variables z given the input data x, a prior distribu-
tion p(z), and a decoder with a distribution p(x|z) over input
data.

The standard VAE loss has two components (Kingma and
Welling 2014): a reconstruction term, accounting for sample
quality, and a regularization term, that encourages the latent
space to follow a known distribution.

Table 1 shows the architecture of the VAE used in our
experiments. It is a 2D-structure that learn the latitude and
longitude relation.

Frechet Inception Distance for climate data
Heusel et al. (2017) introduced the Frechet Inception Dis-
tance (FID) to evaluate the results of deep generative models
such as GANs. The generated samples are fed into an Incep-
tion model (trained on ImageNet) and the output features
are used to compute the distance metric. The FID consid-
ers a comparison between two ensembles of samples and it
is suitable for natural images. More recently, Dai and Wipf
(2019) proposed to compare samples from VAEs and GANs
using the FID measure also based on ImageNet.

We understand that to use the FID metric in the context of
weather data generation, the extracted features from the In-
ception network may not be adequate. One reason is that the
data does not have three channels like color images. Also,

Table 1: Architecture of the 2-D VAE networks. In the Pro-
cessing columns, we indicate the kernel size and the number
of channels for the convolutional layers, and the number of
units in the dense layers. The convolutional layers (conv) and
the transposed convolutional layers (convt) have stride 2

Encoder Decoder
Input x (dim=64×64) Input z (dim=30)

Layer Processing Layer Processing

conv 1-1 3× 3, 128 dense 256
conv 1-2 3× 3, 128 reshape 8× 8
conv 1-3 3× 3, 128 convt 2-1 3× 3, 128

dense 500 convt 2-2 3× 3, 128
dense-µx 30 convt 2-3 3× 3, 128
dense-σx 30 convt 2-4 3× 3, 1
sampling - -

the weather data do not have a reasonable representation in
the Imagenet database. Thus, to calculate the FID we re-
train, with 50 epochs, the Inception network with weights
acquired from a 12-class classification task, where each class
is a weather variable of the ERA5 and CHIRPS datasets. De-
tails about the classes are in the Section . For this classifica-
tion task we used 5000 samples of training/validation from
January/2000 to December/2009 in 50 epochs, while the test
was performed with 1000 samples from January/2015 to De-
cember/2019.

Experiments
Both experiments, the data reduction and the transforma-
tions involve 20 different samples for each task, where most
metrics are related to pairwise comparisons, in which case
their average values are calculated. In the case of FID met-
rics, the calculation is performed involving the 20 input sam-
ples and 20 simulated ones.

Data
We used daily precipitation from the CHIRPS dataset (Funk,
Peterson, and Landsfeld 2015) to create our training and
test datasets. CHIRPS is a quasi-global rainfall dataset with
0.05◦ of resolution, ranging from 1981 to near-present.
For our experiments, we used samples from seven differ-
ent places with a size of 3.2◦×3.2◦ from January 1981 to
December 2019. The data is around Belem-Brazil, Sydney-
Australia, Parana-Brazil, Dhaka-Bangladesh, Alabama-
United States, Barcelona-Spain, and Accra-Ghana.

To train the Inception network for our proposed FID based
on weather data, we used ERA5 (Di Napoli et al. 2021) and
CHIRPS. The ERA5 dataset has global coverage in the reso-
lution of 0.25◦ with hourly information, but here, we used its
daily averages. We selected 11 variables from ERA5 (along
with the precipitation from CHIRPS) to create a classifica-
tion dataset where each variable defines a class. The ERA5
variables are:

• Surface variables: 2 metre temperature, Volumetric soil
water layer 1,10 metre U wind component, 10 metre V



wind component, Mean sea level pressure, Sea surface
temperature

• Pressure level variables: Geopotential at 500mb, Geopo-
tential at 150mb, Temperature at 10mb, Component of
wind U at 200mb, Component of wind V at 200mb.

Gradual data transformations
We consider the same test data used in the VAE experiments
for the transformations. For the blurring transform, we vary
sigma values from 0 to 9. For shifting transform, we ap-
ply a shift of pixels ranging from 0 to 9 lines on the test
samples. In the Gaussian noise case, we gradually increase
sigma from 0.001 to 0.01, and for the swirl transform, we use
strengths from 0 to 9. Finally, for additive bias, we increased
the intensity values of the samples from 0.0% to 2.19%.

VAE gradual reduction data training
Given the total number of samples for the training data, we
created five smaller datasets, with reductions of 25%, 50%,
75%, 90%, and 95%, respectively. We train the VAE with
each dataset and compare the results of the trained models.
The idea is to capture the degradation of the reconstruction
quality caused by the decreasing number of training sam-
ples. As we randomly selected examples to compose the
smaller datasets, we performed this five times to analyze the
variability of the results. We trained a different VAE for each
region considered.

Results
The target metrics of this study were calculated for all trans-
formations and VAE generation varying the number of train-
ing samples. Figure 1 depicts the five VAE reconstructions
for each reduction of data and Figure 2 shows the metrics
computed for these reconstructions for all 7 places includ-
ing the proposed climate FID metric.

Figure 3 shows all transformations and the respective
level of distortion and Figure 4 depicts the computed metrics
to twenty samples against the twenty simulated one along
the increasing of transformation level intensity.

The results of the reconstruction of weather scenarios us-
ing VAE, depicted in Figure 1 show a level of blurring that
increases with the gradual reduction of samples in the train-
ing phase. When we gather the results of all the regions cov-
ered, presented in Figure 2, it is noticeable that each VAE
model presents very different results and that the metrics do
not always indicate the same trend along the reduction of
data reduction for all locations. Regarding the comparison
between FID climate, our proposal, and FID Imagenet, the
results for FID climate are stable throughout the process of
degradation of the reconstructions. However the results of
FID Imagenet show a slight tendency to decrease the dis-
tance between the collections of samples of input and simu-
lated, which does not reflect reality.

To better understand this behavior, we can analyze the re-
sults of the metrics for each type of transformation. Figure 4
shows that the FID climate has a greater capacity to rep-
resent blurring degradation, which we understand to be the

Figure 1: Sequences of VAE reconstruction results of
Alabama-United States for each dataset reduction (5 times)
for each percentage of reduction.

main effect in the VAE reconstructions. While the FID Im-
agenet no longer represents the blurring increase from the
value σ = 2. The same happens with the swirl transforma-
tion in which the FID Imagenet can not represent the gradual
change of the samples.

Even though it is obvious that FID climate is better than
FID imagenet in blurring transformation, we believe it is
necessary to elaborate a more complex classification task to
be solved by Inception network so that we can perform more
tests with VAE.

Still regarding the VAE training data reduction experi-
ment, it is important to analyze some other metrics that were
noteworthy, such as structural similarity, PSNR and KGE,
which show a good ability to represent the degradation of
results for the 7 locations.

On the other hand, some metrics were established as not
suitable for this data reduction task as binary fractal dimen-
sion, energy and connectivity.

Conclusion
The generation of climate scenarios is important to mainly
simulate events that happen less frequently. Thus, we need
to advance in the correct evaluation of these reconstructions,
finding domain metrics that better represent this data. In this
work we identify metrics that can be used for these precipita-
tion data in addition to the FID metric with specific weights
based on a climate database with 12 modalities. The results
presented in some transformations indicate that exploration
in this direction may be promising for the advancement of
the area of deep weather generators.
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Figure 2: Metrics computed for reconstruction VAE evaluation with twenty samples for each place on gradual reduction training
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Figure 3: Lines sequences of transformations: blurring, shifting, Gaussian noise, swirl transform and additive bias.
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