
CoCo-Bench: A Comprehensive Code Benchmark For Multi-task Large
Language Model Evaluation

Anonymous ACL submission

Abstract001

Large language models (LLMs) play a crucial002
role in software engineering, excelling in tasks003
like code generation and maintenance. How-004
ever, existing benchmarks are often narrow in005
scope, focusing on a specific task and lack a006
comprehensive evaluation framework that re-007
flects real-world applications. To address these008
gaps, we introduce CoCo-Bench (Comprehen-009
sive Code Benchmark), designed to evaluate010
LLMs across four critical dimensions: code011
understanding, code generation, code modifi-012
cation, and code review. These dimensions013
capture essential developer needs, ensuring014
a more systematic and representative evalua-015
tion. CoCo-Bench includes multiple program-016
ming languages and varying task difficulties,017
with rigorous manual review to ensure data018
quality and accuracy. Empirical results show019
that CoCo-Bench aligns with existing bench-020
marks while uncovering significant variations021
in model performance, effectively highlight-022
ing strengths and weaknesses. By offering a023
holistic and objective evaluation, CoCo-Bench024
provides valuable insights to guide future re-025
search and technological advancements in code-026
oriented LLMs, establishing a reliable bench-027
mark for the field.028

1 Introduction029

In recent years, the application of artificial intel-030

ligence in software engineering (AI4SE) (McDer-031

mott et al., 2020) has rapidly evolved, from code032

generation and bug detection to software testing.033

However, these advancements have exposed the034

limitations of existing code benchmarks. Many035

benchmarks fail to comprehensively assess large036

language models (LLMs), often overestimating037

their true performance and leading to biased con-038

clusions.039

As shown in Table 1, current benchmarks like040

HumanEval (Chen et al., 2021) and MBPP (Austin041

et al., 2021) focus on simple test cases readily avail-042

able online, making them prone to overfitting by043

models. Benchmarks such as CoderEval (Zhang 044

et al., 2024b) and ClassEval (Du et al., 2023) tar- 045

get specific LLM capabilities but lack comprehen- 046

sive coverage for a holistic evaluation. There is 047

an urgent need for an objective, systematic, and 048

comprehensive benchmark to support the contin- 049

ued development of AI4SE. 050

We propose that an effective benchmark should 051

align closely with real-world scenarios and evaluate 052

LLMs across four key dimensions of programmer 053

capabilities: code understanding (CU, the ability to 054

comprehend existing code), code generation (CG, 055

the ability to generate code based on given con- 056

text), code modification (CM, the ability to detect 057

error and modify code), and code review (CR, the 058

ability to assess and improve code quality). These 059

four dimensions provide a robust framework for 060

evaluating LLMs, ensuring a detailed and system- 061

atic measurement of their performance in practical 062

development contexts. 063

To address these needs, we introduce CoCo- 064

Bench, a Comprehensive Code Benchmark de- 065

signed to assess LLMs across four key dimensions. 066

It evaluates a range of programming languages and 067

tasks of varying difficulty, with rigorous manual 068

review to ensure quality and accuracy. Unlike ex- 069

isting benchmarks, CoCo-Bench features innova- 070

tive task designs, such as reverse reasoning for CU 071

and multi-level code completion for CG, offering 072

a more comprehensive evaluation of model capa- 073

bilities. CoCo-Bench ensures task diversity and 074

practical alignment by including both simple and 075

complex tasks. This approach prevents overfitting 076

and better reflects model performance in real-world 077

development environments, providing a nuanced 078

framework that identifies strengths and weaknesses 079

across different capability dimensions. 080

Our empirical results demonstrate that CoCo- 081

Bench not only aligns well with existing bench- 082

marks but also reveals significant variations in 083

model performances across different capability di- 084

1

🎯 CU (Code Understanding)

🖋 CG (Code Generation) 🔧 CM (Code Modification)

🔍 CR (Code Review)

 📌 Work Scenarios
Reading and Maintaining Legacy Code
Bug Localization and Debugging
Architecture Analysis

 📌 Work Scenarios
New Feature Development
API and Interface Development
Boilerplate Code Creation

 📌 Work Scenarios
Code Refactoring
Bug Fixing
Code Upgrades

 📌 Work Scenarios
Pull Request Review
Code Quality Control
Security and Performance Audits

 💻 How Code LLMs Can Help
Automatic Code Comment Generation
Code Summarization
Code Dependency Analysis

 💻 How Code LLMs Can Help
Functional Code Generation
Code Completion
Code Template Generation

 💻 How Code LLMs Can Help
Automated Refactoring Suggestions
Bug Fix Assistance
Library and Framework Updates

 💻 How Code LLMs Can Help
Code Quality Checks
Automated Review Comments
Security Vulnerability Detection

❓ bug-free code

yes

no

✅ bug-free code📄 code snippet

update

Figure 1: Overview of the core evaluation dimensions in CoCo-Bench. The framework assesses four critical
capabilities of code LLMs: code understanding (CU), code generation (CG), code modification (CM), and code
review (CR). The evaluation flow highlights the interconnected nature of these capabilities in real-world software
development scenarios.

mensions. This effectively points out the strengths085

and weaknesses of various code LLMs. By offer-086

ing a more holistic and objective evaluation, CoCo-087

Bench aims to guide future research, drive techno-088

logical advancements in the development of code-089

oriented LLMs, and establish a reliable standard090

for the field of software engineering.091

2 Related Work092

Code benchmarks for LLMs have undergone093

significant evolution recently, reflecting notable094

advancements in the field. Early works like095

HumanEval (Chen et al., 2021), Mostly Basic096

Programming Problems (MPBB) (Austin et al.,097

2021) and The Code/Natural Language Challenge098

(CoNaLa) (Yin et al., 2018) focused on fundamen-099

tal CG tasks. HumanEval evaluated models’ ability100

to generate Python functions using real-world tasks,101

while MPBB included 974 tasks aimed at entry-102

level programmers, assessing CG from complex103

textual descriptions.104

Most code benchmarks primarily concentrate105

on tasks related to CG. APPS (Hendrycks et al.,106

2021) challenges models to generate Python code107

from natural language, simulating real-world de-108

veloper tasks. CoderEval (Zhang et al., 2024b) ex-109

panded evaluations by focusing on non-standalone110

Code Benchmarks CU CG CM CR

CoNaLA ✓ ✗ ✗ ✗

Concode ✓ ✗ ✗ ✗

HumanEval ✗ ✓ ✗ ✗

MBPP ✓ ✗ ✗ ✗

APPS ✓ ✗ ✗ ✗

PandasEval ✓ ✗ ✗ ✗

NumpyEval ✓ ✗ ✗ ✗

AixBench ✓ ✗ ✗ ✗

ClassEval ✓ ✗ ✗ ✗

CoderEval ✓ ✗ ✗ ✗

CodeFuseEval ✓ ✓ ✗ ✗

UltraEval ✗ ✓ ✗ ✗

CodeXGLUE ✓ ✓ ✓ ✗

NaturalCodeBench ✓ ✗ ✗ ✗

CodeScope ✓ ✓ ✓ ✗

Mercury ✓ ✗ ✗ ✗

ENAMEL ✓ ✗ ✗ ✗

CoCo-Bench ✓ ✓ ✓ ✓

Table 1: Task coverage across various code benchmarks.
✓ indicates coverage of certain type of task, while ✗
indicates no coverage.

2

functions commonly found in open-source projects,111

providing a platform for assessing functional cor-112

rectness. ClassEval (Du et al., 2023) introduced a113

benchmark for class-level CG, addressing gaps in114

existing evaluations by focusing on more complex115

tasks. Concode (Iyer et al., 2018) targets generating116

Java class member functions from English docu-117

mentation, addressing challenges in class member118

function generation. CodeXGLUE (Lu et al., 2021)119

and CodeEditorBench (Guo et al., 2024) advance120

research in code understanding and editing, evalu-121

ating tasks like debugging and requirement switch-122

ing.123

As task complexity increased, new benchmarks124

emerged to cover a broader range of scenarios.125

DyPyBench (Bouzenia et al., 2024) is the first com-126

prehensive benchmark for dynamic program anal-127

ysis of Python projects. SWE-BENCH (Jimenez128

et al., 2024) evaluates models’ ability to generate129

patches that pass real tests by linking GitHub is-130

sues with merged pull requests. CRUXEval (Gu131

et al., 2024) tests models on practical coding tasks132

using 800 different Python functions, while De-133

bugbench (Tian et al., 2024) focuses on assess-134

ing debugging capabilities, reflecting the need135

for more complex evaluations beyond CG. Live-136

CodeBench (Jain et al., 2024) adopts a dynamic ap-137

proach by continuously sourcing new programming138

challenges from competitive platforms to evalu-139

ate models’ real-world capabilities, particularly in140

code self-repair and test output prediction. Code-141

Mind (Liu et al., 2024) introduces dimensions like142

independent execution reasoning and specification143

reasoning to assess models’ performance in com-144

plex tasks beyond simple CG.145

Multi-task benchmarks have also gained im-146

portance. CodeFuseEval (Di et al., 2024) com-147

bines the standards of HumanEval-x and MPBB,148

introducing multi-task scenarios like code comple-149

tion and cross-language translation. UltraEval (He150

et al., 2024) provides a lightweight, comprehensive151

framework to assess LLMs across various tasks,152

offering a unified evaluation platform.153

3 Task Definition154

In CoCo-Bench, we define four primary tasks to155

comprehensively evaluate the capabilities of LLMs156

in software engineering. Each task is formally157

defined using mathematical notation to provide158

clarity and precision in assessment. Figure 2 shows159

some demonstrations.160

161

3.1 Code Understanding (CU) 162

CU is formalized as a bidirectional inference prob- 163

lem. Let C denote the set of all possible code 164

snippets, I represent the set of all possible input 165

parameters, and O denote the set of all possible 166

outputs. The CU task comprises two functions: 167

fCU : C × I → O and f−1
CU : C × O → P(I). 168

Here, fCU(C, I) = O predicts the output O given 169

the code snippet C and input parameters I , and 170

f−1
CU (C,O) = I ′ deduces the set of possible input 171

parameters I ′ ⊆ I that could produce the output 172

O when executed with code C. 173

Formally, for a given code snippet C ∈ C, input 174

I ∈ I, and output O ∈ O, fCU(C, I) = O if and 175

only if execute(C, I) = O, and f−1
CU (C,O) = 176

{I ′ ∈ I | execute(C, I ′) = O}. 177

CU emphasizes the model’s deep understand- 178

ing of code logic and its ability to perform 179

both forward and reverse inferences. To ensure 180

wide applicability, the collected code snippets 181

span multiple technical domains, including ar- 182

tificial intelligence and machine learning, data 183

processing and analysis, web development, and 184

database management. For example, in web de- 185

velopment and data processing, we utilize key 186

tools such as PyTorch (Paszke et al., 2019), 187

TensorFlow (Abadi et al., 2016), Keras (Chol- 188

let, 2015), Scikit-learn (Pedregosa et al., 2018), 189

NumPy (Harris et al., 2020), Pandas (McKinney, 190

2010), and Matplotlib (Hunter, 2007). 191

Specifically, the CU task consists of two sub- 192

tasks: predicting the code output (CUF) and de- 193

ducing the code input (CUR). For instance, given 194

the function def add(a, b): return a + b 195

and inputs (3, 5), the model should accurately pre- 196

dict the result 8. Conversely, based on the output 197

8, the model should deduce potential inputs such 198

as {(3, 5), (4, 4), (6, 2)}. By assessing the model’s 199

accuracy in both CUF and CUR, we can compre- 200

hensively measure its understanding of code logic. 201

3.2 Code Generation (CG) 202

CG is defined as the transformation of natural lan- 203

guage descriptions into executable code. Let D 204

represent the set of all possible natural language de- 205

scriptions, and C denote the set of all possible code 206

snippets. The CG task is represented by the func- 207

tion fCG : D → C, where fCG(D) = C generates 208

the code snippet C corresponding to the natural lan- 209

guage description D. Formally, for a given descrip- 210

3

Task 1: Code Understanding

Task 1: Code Understanding

Task 2: Code Generation

Task 2: Code Generation

Task 3: Code Modification

Task 3: Code Modification

Task 4: Code Review

Task 4: Code Review

The task demonstrates the transition from using numpy.matrix,
which is deprecated, to the recommended numpy.array for matrix
operations. The expected output is used to ensure that the
updated code produces the correct results, and the test cases
validate the success of the modification. Key word detection, such
as np.matrix, is used to check the necessary code changes.

The review points out several critical concerns: performance inefficiencies, severe security risks associated with the use of eval() function on user inputs, non-
standard naming convention for the variable temp value, and the absence of logical errors. Such detailed evaluations are essential for improving software
quality and security.

This code snippet is about PyTorch application which is aimed at
slicing tensors and applying activation functions (ReLU and Tanh) to
different segments. The function then performs an element-wise
multiplication of the activated segments to produce the final output
tensor. The input tensor is provided, along with the expected and
actual outputs generated by the LLM. This sample passes when the
expected output matches the actual output.

LLM Output: "[0, 0, 0, -0.7616, 5, 0]" LLM Output: "[0, 0, 0, -0.7616, 5, 0]"

LLM Output: "[0, 0, 0, -0.7616, 5, 0]"

LLM Output: "[0, 0, 0, -0.7616, 5, 0]"

This code snippet is about PyTorch application which is aimed at
slicing tensors and applying activation functions (ReLU and Tanh) to
different segments. The function then performs an element-wise
multiplication of the activated segments to produce the final output
tensor. The input tensor is provided, along with the expected and
actual outputs generated by the LLM. This sample passes when the
expected output matches the actual output.

This task focuses on generating specific lines of code within a Python
function designed to process a 2D Numpy array. The provided incomplete
code includes placeholders marked ”TODO”, where the code needs to be
completed. The expected output shows what needs to be filled in to achieve
the desired functionality.

Expected Output:

Test Cases:

OR

OR

This task focuses on generating specific lines of code within a Python
function designed to process a 2D Numpy array. The provided
incomplete code includes placeholders marked ”TODO”, where the
code needs to be completed. The expected output shows what needs
to be filled in to achieve the desired functionality.

Test Cases: OR

Test Cases: OR

The task demonstrates the transition from using numpy.matrix, which
is deprecated, to the recommended numpy.array for matrix
operations. The expected output is used to ensure that the updated
code produces the correct results, and the test cases validate the
success of the modification. Key word detection, such as np.matrix, is
used to check the necessary code changes.

Expected Output:

Performance Issues:

Irregular naming:

Logical errors and others:

Security issues:

Description:
 Incomplete Python function that processes a 2D numpy array by applying conditional filters, sorting rows based on specific conditions, and performing
selective transformations. The main function relies on a helper function, which needs to be completed to perform these operations.

Code: Expected Output:

Test Cases:

Make informed decisions and come up with
better strategies by identifying the

strengths and vulnerabilities of your project

Description:
 PyTorch function to manipulate and process a tensor. The function performs slicing to select specific elements, applies different activation functions
(ReLU and Tanh) to different slices, then multiplies these results element-wise and returns the final tensor.

Code:

Input: "[1, -2, 3, -4, 5, -6]"
Expect Output: "[0, 0, 0, -0.7616, 5, 0]"

Description:
 PyTorch function to manipulate and process a tensor. The function
performs slicing to select specific elements, applies different activation
functions (ReLU and Tanh) to different slices, then multiplies these results
element-wise and returns the final tensor.

Code:

Input: "[1, -2, 3, -4, 5, -6]"
Expect Output: "[0, 0, 0, -0.7616, 5, 0]"

Description:
 Incomplete Python function that processes a 2D numpy array by
applying conditional filters, sorting rows based on specific conditions, and
performing selective transformations. The main function relies on a helper
function, which needs to be completed to perform these operations.

Code:

Description:
 A function to demonstrate the transition from using the deprecated numpy.matrix to the recommended numpy.array for matrix operations.

Details:
 The numpy.matrix class is deprecated due to its limitations and inconsistencies with numpy.ndarray. The updated method uses numpy.array which is
more versatile and consistent for all types of array manipulations, including matrix operations.

Code: Expected Output:

Description:
 A function to demonstrate the transition from using the deprecated
numpy.matrix to the recommended numpy.array for matrix operations.

Details:
 The numpy.matrix class is deprecated due to its limitations and
inconsistencies with numpy.ndarray. The updated method uses
numpy.array which is more versatile and consistent for all types of array
manipulations, including matrix operations.

Code:

Key word Detection: np.matrix

Key word Detection: np.matrix

Description:
 Review of a Python code snippet for syntax errors, logical errors, performance issues, and security vulnerabilities.

Code: Expected Output:

None

Description:
 Review of a Python code snippet for syntax errors, logical errors,
performance issues, and security vulnerabilities.

Code:

Performance Issues:

Irregular naming:

Logical errors and others:

Security issues:

Expected Output:

None

The review points out several critical concerns: performance
inefficiencies, severe security risks associated with the use of eval()
function on user inputs, non-standard naming convention for the
variable temp value, and the absence of logical errors. Such detailed
evaluations are essential for improving software quality and security.

Figure 2: Illustration of the four primary tasks in CoCo-Bench—Code Understanding (CU), Code Generation (CG),
Code Modification (CM), and Code Review (CR)—each defined to evaluate the capabilities of large language
models (LLMs) in software engineering.

tion D ∈ D, C = fCG(D) such that execute(C)211

performs the task described by D.212

This function enables programmers to quickly213

translate ideas into code and allows non-technical214

individuals to contribute to software development.215

By automating routine programming tasks, CG re-216

duces human errors, improves code quality and217

consistency, and accelerates the product iteration218

cycle. We design both function-level CG tasks and219

sentence-level CG tasks to test the models’ capabil-220

ities.221

3.3 Code Modification (CM)222

CM involves altering existing code to meet spe-223

cific requirements or to improve its functionality.224

Let Cold represent the set of original code snippets,225

R denote the set of all possible modification re-226

quests or requirements, and Cnew denote the set of227

modified code snippets. The CM task is defined228

by the function fCM : Cold × R → Cnew, where229

fCM(Cold, R) = Cnew generates the modified code230

snippet Cnew that satisfies the modification request231

R. Formally, for given Cold ∈ Cold and R ∈ R,232

Cnew = fCM(Cold, R) such that execute(Cnew)233

meets the requirements R.234

This task is crucial for maintaining software re-235

liability and adapting to evolving needs. Our sam- 236

ples include code modification, where the model 237

updates code based on error messages, and API 238

updates, where the model revises code to reflect the 239

latest API changes. These scenarios test whether 240

code LLMs can enhance software reliability and 241

keep applications up-to-date with the latest techno- 242

logical advancements. 243

3.4 Code Review (CR) 244

CR is structured as a multi-label classification prob- 245

lem, where each code snippet is evaluated across 246

several criteria. Let C represent the set of all possi- 247

ble code snippets and E denote the set of evaluation 248

criteria. The CR task is defined by the function 249

fCR : C → P(E), where fCR(C) = E ′ assigns a 250

subset of evaluation criteria E ′ ⊆ E that the code 251

snippet C satisfies or violates. Formally, for a 252

given code snippet C ∈ C, E ′ = fCR(C) where 253

E ′ = {e ∈ E | C exhibits characteristic e}. 254

The key areas of evaluation include security is- 255

sues, performance problems, adherence to naming 256

conventions, and logical errors. Specifically, se- 257

curity issues involve vulnerabilities such as SQL 258

injections, buffer overflows, and insecure data han- 259

dling. Performance problems pertain to code seg- 260

4

ments that may lead to inefficiency, including un-261

necessary computations, suboptimal algorithms,262

and resource-heavy operations. Adherence to nam-263

ing conventions means the compliance with es-264

tablished coding standards and naming practices,265

which enhance code readability and maintainability.266

Logical errors involve flaws that might cause in-267

correct execution, such as infinite loops, improper268

condition checks, and erroneous data manipulation.269

4 Analysis270

In this section, we first analyze the overall scores271

of all the LLMs. Then, in Section 4.2, we examine272

the correlations between different sub-tasks and273

datasets. In Section 4.3, we analyze the impact of274

context length on model inference. In Section 4.4,275

we focus on the impact of decoding strategies on276

the models, primarily including top-k, top-p, and277

Max New Tokens.278

4.1 Comprehensive Performance Evaluation279

We present the leaderboard results in Table 2, in280

which the empirical results reveal that DeepSeek-281

Coder-V2-Instruct and ChatGPT-4.0 outperform282

other leading LLMs across various code-related283

tasks. This superior performance primarily stems284

from the scaling up of model parameters and the285

volume of data used during their pre-training pro-286

cesses.287

Model scaling plays a pivotal role in enhancing288

performance. Larger models, such as DeepSeek-289

Coder-V2-Instruct, consistently outperform smaller290

models like DeepSeek-Coder-1.3b and DeepSeek-291

Coder-6.7b. This scaling trend is not uniformly292

observed across all model families, suggesting293

that factors such as training data diversity and294

fine-tuning strategies play critical roles in maxi-295

mizing the benefits of larger model architectures.296

For instance, while DeepSeek-Coder-33b-instruct297

achieves significant performance gains, similar298

scaling within the CodeLlama series does not yield299

comparable improvements, pointing to potential in-300

efficiencies or bottlenecks in their respective train-301

ing paradigms.302

The superiority of instruction-tuned models over303

their base counterparts is consistently observed304

across both CoCo-Bench and HumanEval bench-305

marks. This trend underscores the critical im-306

portance of instruction fine-tuning in enhancing307

models’ ability to follow complex directives and308

perform specialized tasks. The enhanced perfor-309

mance of larger instruction-tuned models further 310

suggests that combining scale with targeted fine- 311

tuning yields synergistic benefits, enabling models 312

to achieve higher levels of proficiency in intricate 313

code-related tasks. 314

4.2 Correlation Analysis 315

Correlation between tasks: We visualize the 316

Spearman correlation heatmap among the tasks in 317

Figure 3, which provides further insight into the 318

interdependencies between different code-related 319

tasks. Notably, a strong correlation is observed 320

between CUF and CG (0.94), as well as between 321

CUR and CG (0.84). These high correlation val- 322

ues indicate that proficiency in code understand- 323

ing (CU) significantly enhances a model’s abil- 324

ity to generate (CG) code effectively. This inter- 325

connectedness suggests that improvements in one 326

task—such as CU—can lead to better performance 327

in related tasks like CG. It highlights the integrated 328

nature of these tasks in real-world applications, 329

where advances in one area may catalyze progress 330

in others, ultimately fostering more versatile and 331

capable code models. 332

CUF
CUR CG CM CR

CUF

CUR

CG

CM

CR

1.00 0.72 0.94 0.32 0.45

0.72 1.00 0.84 0.26 0.29

0.94 0.84 1.00 0.36 0.29

0.32 0.26 0.36 1.00 0.40

0.45 0.29 0.29 0.40 1.00

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3: The correlation between each two of the five
tasks (CUF, CUR, CG, CM, CR) on CoCo-Bench.

However, the relatively lower correlation be- 333

tween CU and CR indicates that CR involves ad- 334

ditional competencies beyond mere code compre- 335

hension, such as assessing code quality, efficiency, 336

and adherence to best practices. We also observe 337

a relatively low correlation between CG and CM 338

(0.36), suggesting that the performance in CG does 339

not necessarily contribute to CM. This distinction 340

underscores the necessity for models to possess not 341

only a deep understanding of code but also the capa- 342

bility to evaluate and improve it critically, reflecting 343

the multifaceted nature of software engineering. 344

5

Model
CU

CG CM CR CoCo-Score
CUF CUR

CodeLlama-7b-hf 12.93 3.33 11.45 30.00 39.39 16.87
CodeLlama-7b-Instruct-hf 9.92 5.17 16.41 15.00 25.71 12.94
CodeLlama-13b-hf 19.01 4.17 19.23 20.00 32.26 16.67
CodeLlama-13b-Instruct-hf 13.45 6.78 18.60 25.00 31.43 17.14
CodeLlama-34b-hf 15.83 6.67 21.71 15.00 20.00 14.50
CodeLlama-34b-Instruct-hf 14.88 4.24 19.08 20.00 29.41 15.48

DeepSeek-Coder-1.3b-base 14.88 3.31 15.27 20.00 31.43 14.84
Deepseek-Coder-1.3b-instruct 15.13 5.98 19.85 20.00 25.71 15.62
DeepSeek-Coder-6.7b-base 26.05 5.08 25.78 25.00 28.57 19.68
Deepseek-Coder-6.7b-instruct 35.65 11.93 46.92 44.44 28.12 30.62
DeepSeek-Coder-33b-base 21.37 8.40 23.81 35.00 32.35 21.91
Deepseek-Coder-33b-instruct 33.88 10.74 39.53 50.00 37.14 31.05

ChatGPT4 53.72 15.70 44.27 15.00 45.71 32.06
DeepSeek-R1-Distill-Qwen-7B 57.02 9.09 35.88 20.00 34.29 28.26
o1-mini 66.12 9.09 55.73 45.00 45.71 39.60

Table 2: Leaderboard of model performance comparison on CoCo-Bench, with the first-place models highlighted
in shadow , the second-place models in bold, and the third-place models underlined. The table compares the
performance across different tasks: CU, CG, CM, and CR for five major model series: DeepSeek-Coder,
CodeLlama, R1, GPT and o1. CUF and CUR are two kinds of sub-tasks of CU. The metric CoCo-Score (see C)
provides an aggregated evaluation of model capabilities.

40 50 60 70 80
HumanEval@1

10

15

20

25

30

35

40

45

50

CG
 p

as
s@

1

CodeLlama-7b-base

CodeLlama-7b-instruct

CodeLlama-13b-base

CodeLlama-13b-instruct

CodeLlama-34b-base
CodeLlama-34b-Instruct-hf

deepseek-coder-1.3b-base

deepseek-coder-1.3b-instruct

deepseek-coder-6.7b-base

deepseek-coder-6.7b-instruct

deepseek-coder-33b-base

deepseek-coder-33b-instruct

ChatGPT4

CG pass@1 vs. HumanEval@1
Model Series

CodeLlama
deepseek
ChatGPT4

Figure 4: Comparative analysis of model performance
on CoCo-Bench and HumanEval benchmarks: This
figure illustrates the relationship between model per-
formance on the CoCo-Bench (CG pass@1) and Hu-
manEval (HumanEval@1) benchmarks. Colors distin-
guish the training methods, with blue representing base
models and orange representing instruct-tuned models.
The size of each point reflects the model’s parameter
count, where larger points correspond to larger mod-
els. Different shapes indicate the model family: circles
for CodeLlama, crosses for DeepSeek-Coder and plus
signs for ChatGPT models. The dashed trend line and
shaded area indicate the general correlation between
performance on the two benchmarks.

Correlation between datasets: Figure 4 and Fig- 345

ure 3 collectively demonstrate that CoCo-Bench 346

provides a more stringent and discriminative eval- 347

uation compared to simpler benchmarks like Hu- 348

manEval. The positive correlation between CoCo- 349

Bench and HumanEval scores indicates that foun- 350

dational capabilities are consistent across bench- 351

marks. Moreover, the analysis reveals that increas- 352

ing model size generally correlates with enhanced 353

performance, particularly within the DeepSeek- 354

Coder series. 355

46
0-9

47

94
7-1

43
4

14
34

-19
22

19
22

-24
09

24
09

-28
97

28
97

-33
84

33
84

-38
71

38
71

-43
59

43
59

-48
46

48
46

-53
34

53
34

-58
21

58
21

-63
09

Token Count Range (Bucket)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

CodeLlama-7b Accuracy
CodeLlama-7b Base
CodeLlama-7b Instruct
CodeLlama-7b Base
CodeLlama-7b Instruct

46
0-9

47

94
7-1

43
4

14
34

-19
22

19
22

-24
09

24
09

-28
97

28
97

-33
84

33
84

-38
71

38
71

-43
59

43
59

-48
46

48
46

-53
34

53
34

-58
21

58
21

-63
09

Token Count Range (Bucket)

CodeLlama-13b Accuracy
CodeLlama-13b Base
CodeLlama-13b Instruct
CodeLlama-13b Base
CodeLlama-13b Instruct

46
0-9

47

94
7-1

43
4

14
34

-19
22

19
22

-24
09

24
09

-28
97

28
97

-33
84

33
84

-38
71

38
71

-43
59

43
59

-48
46

48
46

-53
34

53
34

-58
21

58
21

-63
09

Token Count Range (Bucket)

CodeLlama-34b Accuracy
CodeLlama-34b Base
CodeLlama-34b Instruct
CodeLlama-34b Base
CodeLlama-34b Instruct

46
0-9

47

94
7-1

43
4

14
34

-19
22

19
22

-24
09

24
09

-28
97

28
97

-33
84

33
84

-38
71

38
71

-43
59

43
59

-48
46

48
46

-53
34

53
34

-58
21

58
21

-63
09

Token Count Range (Bucket)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

deepseek-coder-1.3b Accuracy
deepseek-coder-1.3b Base
deepseek-coder-1.3b Instruct
deepseek-coder-1.3b Base
deepseek-coder-1.3b Instruct

46
0-9

47

94
7-1

43
4

14
34

-19
22

19
22

-24
09

24
09

-28
97

28
97

-33
84

33
84

-38
71

38
71

-43
59

43
59

-48
46

48
46

-53
34

53
34

-58
21

58
21

-63
09

Token Count Range (Bucket)

deepseek-coder-6.7b Accuracy
deepseek-coder-6.7b Base
deepseek-coder-6.7b Instruct
deepseek-coder-6.7b Base
deepseek-coder-6.7b Instruct

46
0-9

47

94
7-1

43
4

14
34

-19
22

19
22

-24
09

24
09

-28
97

28
97

-33
84

33
84

-38
71

38
71

-43
59

43
59

-48
46

48
46

-53
34

53
34

-58
21

58
21

-63
09

Token Count Range (Bucket)

deepseek-coder-33b Accuracy
deepseek-coder-33b Base
deepseek-coder-33b Instruct
deepseek-coder-33b Base
deepseek-coder-33b Instruct

Figure 5: Performance differences between instruct and
base versions of the same models on CoCo-Bench

6

0.75 & 10 0.80 & 20 0.85 & 30 0.90 & 40 0.95 & 50
top_p & top_k

0.0

0.1

0.2

0.3

0.4

0.5
Ac

cu
ra

cy
Task: CG (Base)

0.75 & 10 0.80 & 20 0.85 & 30 0.90 & 40 0.95 & 50
top_p & top_k

Task: CM (Base)

0.75 & 10 0.80 & 20 0.85 & 30 0.90 & 40 0.95 & 50
top_p & top_k

Task: CR (Base)

0.75 & 10 0.80 & 20 0.85 & 30 0.90 & 40 0.95 & 50
top_p & top_k

Task: CUF (Base)

0.75 & 10 0.80 & 20 0.85 & 30 0.90 & 40 0.95 & 50
top_p & top_k

Task: CUR (Base)

CodeLlama-13b-base CodeLlama-34b-base CodeLlama-7b-base deepseek-coder-1.3b-base deepseek-coder-33b-base deepseek-coder-6.7b-base

0.75 & 10 0.80 & 20 0.85 & 30 0.90 & 40 0.95 & 50
top_p & top_k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Task: CG (Instruct)

0.75 & 10 0.80 & 20 0.85 & 30 0.90 & 40 0.95 & 50
top_p & top_k

Task: CM (Instruct)

0.75 & 10 0.80 & 20 0.85 & 30 0.90 & 40 0.95 & 50
top_p & top_k

Task: CR (Instruct)

0.75 & 10 0.80 & 20 0.85 & 30 0.90 & 40 0.95 & 50
top_p & top_k

Task: CUF (Instruct)

0.75 & 10 0.80 & 20 0.85 & 30 0.90 & 40 0.95 & 50
top_p & top_k

Task: CUR (Instruct)

CodeLlama-13b-instruct CodeLlama-34b-instruct CodeLlama-7b-instruct deepseek-coder-1.3b-instruct deepseek-coder-33b-instruct deepseek-coder-6.7b-instruct

Figure 6: Performance differences under various top_p and top_k configurations

4.3 Context Length and Model Performance356

Figure 8 and Figure 5 illustrate how model accu-357

racy varies across different token count ranges of358

input. All models, regardless of size and type, face359

challenges in maintaining attention across longer360

contexts due to the quadratic cost of self-attention361

in transformers. Instruction tuning likely helps362

focus attention on task-relevant segments of the363

input, mitigating some of this drop in performance364

for instruction models.365

4.4 Decoding Strategies366

Top-p and Top-k: As is illustrated in Figure 6,367

top-p and top-k sensitivity varies by task. Struc-368

tured tasks like CU tasks benefit from deterministic369

outputs since code has stricter correctness require-370

ments. A narrower token distribution (lower top-p371

and top-k) is often sufficient for accurate results.372

In contrast, open-ended tasks like CM and CG re-373

quire creativity and diversity from LLMs, as there374

are multiple plausible ways to modify or improve375

code. It’s worth mentioning that LLMs are more376

sensitive to top-p and top-k variance as they gen-377

erate a wider range of plausible token predictions378

due to their richer token distribution and greater379

expressive power. When using high top-p and top-380

k for inference, the outputs of LLMs can become381

overly diverse or less coherent, potentially intro-382

ducing syntactic errors or irrelevant code snippets.383

Smaller models, by contrast, have less expressive384

token distributions, making them inherently more 385

deterministic and less impacted by high top-p and 386

top-k settings, thereby maintaining code correct- 387

ness more effectively. So, we can draw the follow- 388

ing empirical conclusion: 389

Conclusion 1. The sensitivity to top-p and top-k 390

parameters varies across different tasks. Structured 391

tasks, such as CU, tend to benefit from more deter- 392

ministic outputs, while open-ended tasks, such as 393

CM and CG, demand greater creativity and diver- 394

sity. 395

Instruction models consistently outperform base 396

models in code-related tasks. We believe this is due 397

to the exposure of instruction models to examples 398

with task-specific instructions during training, en- 399

abling them to better understand and follow coding 400

guidelines and requirements. As a result, we can 401

derive the following empirical conclusion: 402

Conclusion 2. Instruction-tuned models excel in 403

code-related tasks due to their close alignment with 404

task-specific coding objectives, which significantly 405

enhances both performance and robustness across 406

various decoding configurations. 407

Medium token ranges align well with the pre- 408

training datasets and tokenization schemes for most 409

models. Shorter tokens (e.g., 460–1191) may lead 410

to sparse representation, while longer tokens may 411

overload the model’s capacity. It’s also noted how 412

scaling laws reconcile with the outcome. Larger 413

7

25
6

51
2

10
24

20
48

max_new_tokens

0.0

0.1

0.2

0.3

0.4
Ac

cu
ra

cy
Task: CG (Base)

25
6

51
2

10
24

20
48

max_new_tokens

Ac
cu

ra
cy

Task: CM (Base)

25
6

51
2

10
24

20
48

max_new_tokens

Ac
cu

ra
cy

Task: CR (Base)

25
6

51
2

10
24

20
48

max_new_tokens

Ac
cu

ra
cy

Task: CUF (Base)

25
6

51
2

10
24

20
48

max_new_tokens

Ac
cu

ra
cy

Task: CUR (Base)

CodeLlama-13b-hf
CodeLlama-34b-hf

CodeLlama-7b-hf
deepseek-coder-1.3b-base

deepseek-coder-33b-base
deepseek-coder-6.7b-base

Average

25
6

51
2

10
24

20
48

max_new_tokens

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Task: CG (Instruct)

25
6

51
2

10
24

20
48

max_new_tokens

Ac
cu

ra
cy

Task: CM (Instruct)

25
6

51
2

10
24

20
48

max_new_tokens

Ac
cu

ra
cy

Task: CR (Instruct)

25
6

51
2

10
24

20
48

max_new_tokens

Ac
cu

ra
cy

Task: CUF (Instruct)

25
6

51
2

10
24

20
48

max_new_tokens

Ac
cu

ra
cy

Task: CUR (Instruct)

CodeLlama-13b-Instruct-hf
CodeLlama-34b-Instruct-hf

CodeLlama-7b-Instruct-hf
deepseek-coder-1.3b-instruct

deepseek-coder-33b-instruct
deepseek-coder-6.7b-instruct

Average

Figure 7: Performance differences under various max_new_tokens Configurations

models are inherently better at capturing long-414

range dependencies due to their larger parameter415

space and richer latent representations. Smaller416

models lack the capacity to encode such complexity417

effectively. This leads us to the following empirical418

conclusion:419

Conclusion 3. LLMs encounter challenges with420

longer code contexts, but instruction tuning helps421

maintain performance by focusing on relevant code422

segments. Larger models handle long-range depen-423

dencies in code more effectively than smaller ones.424

46
0-1

62
9

16
29

-27
99

27
99

-39
69

39
69

-51
39

51
39

-63
09

Token Count Range (Bucket)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ac
cu

ra
cy

Base Model Accuracy
CodeLlama-13b-base
CodeLlama-34b-base
CodeLlama-7b-base
deepseek-coder-1.3b-base
deepseek-coder-33b-base
deepseek-coder-6.7b-base
CodeLlama-13b-base
CodeLlama-34b-base
CodeLlama-7b-base
deepseek-coder-1.3b-base
deepseek-coder-33b-base
deepseek-coder-6.7b-base

46
0-1

62
9

16
29

-27
99

27
99

-39
69

39
69

-51
39

51
39

-63
09

Token Count Range (Bucket)

Instruct Model Accuracy
CodeLlama-13b-instruct
CodeLlama-34b-instruct
CodeLlama-7b-instruct
deepseek-coder-1.3b-instruct
deepseek-coder-33b-instruct
deepseek-coder-6.7b-instruct
CodeLlama-13b-instruct
CodeLlama-34b-instruct
CodeLlama-7b-instruct
deepseek-coder-1.3b-instruct
deepseek-coder-33b-instruct
deepseek-coder-6.7b-instruct

Figure 8: Performance differences between different
models of the same type on CoCo-Bench

Max New Tokens: Figure 7 shows that higher425

max new tokens directly correlates with better ac-426

curacy in tasks requiring coherent and extended427

outputs (e.g., CG and CU). It allows the model to428

generate longer sequences, potentially capturing429

more context and completing more complex out-430

puts. Some tasks like CM benefit less due to their431

inherent requirements, where longer sequences add432

minimal value. Comparably, larger models and 433

instruction-tuned models are better equipped to uti- 434

lize extended token generation due to their ability to 435

manage more extensive contexts and dependencies. 436

Based on this, the following empirical conclusion 437

can be drawn: 438

Conclusion 4. Increasing max new tokens im- 439

proves performance in code tasks that require ex- 440

tended and coherent outputs, particularly bene- 441

fiting larger and instruction-tuned models by en- 442

abling them to manage more complex code struc- 443

tures and dependencies. 444

5 Limitations and Future Work 445

While CoCo-Bench provides an effective and com- 446

prehensive evaluation framework for LLMs in 447

code-related tasks, there are areas for expansion. 448

Currently, the benchmark lacks multimodal tasks 449

that require models to integrate code with other 450

data types, such as images or natural language, 451

which are becoming increasingly relevant in mod- 452

ern development environments. Recognizing this 453

gap, we plan to introduce multimodal tasks in the 454

future, allowing us to evaluate models on more 455

complex projects and providing a more holistic as- 456

sessment of LLMs’ capabilities. To ensure CoCo- 457

Bench remains at the cutting edge of LLM eval- 458

uation, we will regularly update the benchmark 459

by incorporating new programming languages and 460

adapting to evolving development practices. 461

8

References462

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene463
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-464
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,465
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,466
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal467
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh468
Levenberg, Dan Mane, Rajat Monga, Sherry Moore,469
Derek Murray, Chris Olah, Mike Schuster, Jonathon470
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,471
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,472
Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin473
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang474
Zheng. 2016. Tensorflow: Large-scale machine learn-475
ing on heterogeneous distributed systems. Preprint,476
arXiv:1603.04467.477

Open AI. 2024. Learning to reason with llms.478

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten479
Bosma, Henryk Michalewski, David Dohan, Ellen480
Jiang, Carrie Cai, Michael Terry, Quoc Le, and481
Charles Sutton. 2021. Program synthesis with large482
language models. Preprint, arXiv:2108.07732.483

Islem Bouzenia, Bajaj Piyush Krishan, and Michael484
Pradel. 2024. Dypybench: A benchmark of exe-485
cutable python software. Proceedings of the ACM on486
Software Engineering, 1(FSE):338–358.487

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming488
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-489
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,490
Greg Brockman, Alex Ray, Raul Puri, Gretchen491
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-492
try, Pamela Mishkin, Brooke Chan, Scott Gray,493
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz494
Kaiser, Mohammad Bavarian, Clemens Winter,495
Philippe Tillet, Felipe Petroski Such, Dave Cum-496
mings, Matthias Plappert, Fotios Chantzis, Eliza-497
beth Barnes, Ariel Herbert-Voss, William Hebgen498
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie499
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,500
William Saunders, Christopher Hesse, Andrew N.501
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan502
Morikawa, Alec Radford, Matthew Knight, Miles503
Brundage, Mira Murati, Katie Mayer, Peter Welinder,504
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya505
Sutskever, and Wojciech Zaremba. 2021. Evaluat-506
ing large language models trained on code. Preprint,507
arXiv:2107.03374.508

François Chollet. 2015. keras. https://github.com/509
fchollet/keras.510

Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting511
Cai, Yang Cao, Chaoyu Chen, Dajun Chen, Hongwei512
Chen, Liang Chen, Gang Fan, Jie Gong, Zi Gong,513
Wen Hu, Tingting Guo, Zhichao Lei, Ting Li, Zheng514
Li, Ming Liang, Cong Liao, Bingchang Liu, Jiachen515
Liu, Zhiwei Liu, Shaojun Lu, Min Shen, Guangpei516
Wang, Huan Wang, Zhi Wang, Zhaogui Xu, Jiawei517
Yang, Qing Ye, Gehao Zhang, Yu Zhang, Zelin Zhao,518

Xunjin Zheng, Hailian Zhou, Lifu Zhu, and Xiany- 519
ing Zhu. 2024. Codefuse-13b: A pretrained multi- 520
lingual code large language model. In Proceedings 521
of the 46th International Conference on Software En- 522
gineering: Software Engineering in Practice, ICSE- 523
SEIP ’24. ACM. 524

Mingzhe Du, Anh Tuan Luu, Bin Ji, Qian Liu, and 525
See-Kiong Ng. 2024. Mercury: A code efficiency 526
benchmark for code large language models. Preprint, 527
arXiv:2402.07844. 528

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, 529
Junwei Liu, Yixuan Chen, Jiayi Feng, Chaofeng 530
Sha, Xin Peng, and Yiling Lou. 2023. Classe- 531
val: A manually-crafted benchmark for evaluat- 532
ing llms on class-level code generation. Preprint, 533
arXiv:2308.01861. 534

Alex Gu, Baptiste Rozière, Hugh Leather, Armando 535
Solar-Lezama, Gabriel Synnaeve, and Sida I. Wang. 536
2024. Cruxeval: A benchmark for code rea- 537
soning, understanding and execution. Preprint, 538
arXiv:2401.03065. 539

Jiawei Guo, Ziming Li, Xueling Liu, Kaijing Ma, 540
Tianyu Zheng, Zhouliang Yu, Ding Pan, Yizhi LI, 541
Ruibo Liu, Yue Wang, Shuyue Guo, Xingwei Qu, 542
Xiang Yue, Ge Zhang, Wenhu Chen, and Jie Fu. 543
2024. Codeeditorbench: Evaluating code edit- 544
ing capability of large language models. Preprint, 545
arXiv:2404.03543. 546

Yiyang Hao, Ge Li, Yongqiang Liu, Xiaowei Miao, 547
He Zong, Siyuan Jiang, Yang Liu, and He Wei. 2022. 548
Aixbench: A code generation benchmark dataset. 549
Preprint, arXiv:2206.13179. 550

Charles R Harris, K Jarrod Millman, Stéfan J Van 551
Der Walt, Ralf Gommers, Pauli Virtanen, David Cour- 552
napeau, Eric Wieser, Julian Taylor, Sebastian Berg, 553
Nathaniel J Smith, et al. 2020. Array programming 554
with numpy. Nature, 585(7825):357–362. 555

Chaoqun He, Renjie Luo, Shengding Hu, Yuanqian 556
Zhao, Jie Zhou, Hanghao Wu, Jiajie Zhang, Xu Han, 557
Zhiyuan Liu, and Maosong Sun. 2024. Ultraeval: A 558
lightweight platform for flexible and comprehensive 559
evaluation for llms. Preprint, arXiv:2404.07584. 560

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 561
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 562
Samir Puranik, Horace He, Dawn Song, and Jacob 563
Steinhardt. 2021. Measuring coding challenge com- 564
petence with apps. Preprint, arXiv:2105.09938. 565

J. D. Hunter. 2007. Matplotlib: A 2d graphics environ- 566
ment. Computing in Science & Engineering, 9(3):90– 567
95. 568

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, 569
and Luke Zettlemoyer. 2018. Mapping lan- 570
guage to code in programmatic context. Preprint, 571
arXiv:1808.09588. 572

9

https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
https://openai.com/index/learning-to-reason-with-llms
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1145/3643742
https://doi.org/10.1145/3643742
https://doi.org/10.1145/3643742
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1145/3639477.3639719
https://doi.org/10.1145/3639477.3639719
https://doi.org/10.1145/3639477.3639719
https://arxiv.org/abs/2402.07844
https://arxiv.org/abs/2402.07844
https://arxiv.org/abs/2402.07844
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2308.01861
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2404.03543
https://arxiv.org/abs/2404.03543
https://arxiv.org/abs/2404.03543
https://arxiv.org/abs/2206.13179
https://arxiv.org/abs/2404.07584
https://arxiv.org/abs/2404.07584
https://arxiv.org/abs/2404.07584
https://arxiv.org/abs/2404.07584
https://arxiv.org/abs/2404.07584
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2105.09938
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://arxiv.org/abs/1808.09588
https://arxiv.org/abs/1808.09588
https://arxiv.org/abs/1808.09588

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia573
Yan, Tianjun Zhang, Sida Wang, Armando Solar-574
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-575
codebench: Holistic and contamination free evalu-576
ation of large language models for code. Preprint,577
arXiv:2403.07974.578

Carlos E. Jimenez, John Yang, Alexander Wettig,579
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik580
Narasimhan. 2024. Swe-bench: Can language mod-581
els resolve real-world github issues? Preprint,582
arXiv:2310.06770.583

Changshu Liu, Shizhuo Dylan Zhang, Ali Reza584
Ibrahimzada, and Reyhaneh Jabbarvand. 2024. Code-585
mind: A framework to challenge large language mod-586
els for code reasoning. Preprint, arXiv:2402.09664.587

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey588
Svyatkovskiy, Ambrosio Blanco, Colin Clement,589
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-590
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-591
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-592
daresan, Shao Kun Deng, Shengyu Fu, and Shujie593
Liu. 2021. Codexglue: A machine learning bench-594
mark dataset for code understanding and generation.595
Preprint, arXiv:2102.04664.596

Tom McDermott, Dan DeLaurentis, Peter Beling, Mark597
Blackburn, and Mary Bone. 2020. Ai4se and se4ai:598
A research roadmap. Insight, 23(1):8–14.599

Wes McKinney. 2010. Data structures for statistical600
computing in python. In Proceedings of the 9th601
Python in Science Conference, pages 51 – 56.602

Tom Minka, Ryan Cleven, and Yordan Zaykov. 2018.603
Trueskill 2: An improved bayesian skill rating system.604
Technical Report.605

Adam Paszke, Sam Gross, Francisco Massa, Adam606
Lerer, James Bradbury, Gregory Chanan, Trevor607
Killeen, Zeming Lin, Natalia Gimelshein, Luca608
Antiga, Alban Desmaison, Andreas Köpf, Edward609
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,610
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-611
jie Bai, and Soumith Chintala. 2019. Pytorch: An612
imperative style, high-performance deep learning li-613
brary. Preprint, arXiv:1912.01703.614

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-615
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,616
Mathieu Blondel, Andreas Müller, Joel Nothman,617
Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vin-618
cent Dubourg, Jake Vanderplas, Alexandre Passos,619
David Cournapeau, Matthieu Brucher, Matthieu Per-620
rot, and Édouard Duchesnay. 2018. Scikit-learn: Ma-621
chine learning in python. Preprint, arXiv:1201.0490.622

Ruizhong Qiu, Weiliang Will Zeng, Hanghang Tong,623
James Ezick, and Christopher Lott. 2024. How ef-624
ficient is llm-generated code? a rigorous & high-625
standard benchmark. Preprint, arXiv:2406.06647.626

Charles Spearman. 1961. The proof and measurement627
of association between two things.628

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai 629
Lin, Yinxu Pan, Yesai Wu, Haotian Hui, Weichuan 630
Liu, Zhiyuan Liu, and Maosong Sun. 2024. De- 631
bugbench: Evaluating debugging capability of large 632
language models. Preprint, arXiv:2401.04621. 633

Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe Li, 634
Qian Chen, Wen Wang, Tingyu Lin, Weishan Zhao, 635
Li Zhu, Hari Sundaram, and Shuiguang Deng. 2024. 636
Codescope: An execution-based multilingual mul- 637
titask multidimensional benchmark for evaluating 638
llms on code understanding and generation. Preprint, 639
arXiv:2311.08588. 640

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan 641
Vasilescu, and Graham Neubig. 2018. Learning to 642
mine aligned code and natural language pairs from 643
stack overflow. Preprint, arXiv:1805.08949. 644

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, 645
Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen, 646
and Jian-Guang Lou. 2022. Cert: Continual pre- 647
training on sketches for library-oriented code genera- 648
tion. Preprint, arXiv:2206.06888. 649

Shudan Zhang, Hanlin Zhao, Xiao Liu, Qinkai Zheng, 650
Zehan Qi, Xiaotao Gu, Xiaohan Zhang, Yuxiao Dong, 651
and Jie Tang. 2024a. Naturalcodebench: Examining 652
coding performance mismatch on humaneval and 653
natural user prompts. Preprint, arXiv:2405.04520. 654

Yakun Zhang, Wenjie Zhang, Dezhi Ran, Qihao Zhu, 655
Chengfeng Dou, Dan Hao, Tao Xie, and Lu Zhang. 656
2024b. Learning-based widget matching for migrat- 657
ing gui test cases. In Proceedings of the IEEE/ACM 658
46th International Conference on Software Engineer- 659
ing, ICSE ’24. ACM. 660

10

https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1201.0490
https://arxiv.org/abs/1201.0490
https://arxiv.org/abs/1201.0490
https://arxiv.org/abs/2406.06647
https://arxiv.org/abs/2406.06647
https://arxiv.org/abs/2406.06647
https://arxiv.org/abs/2406.06647
https://arxiv.org/abs/2406.06647
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2401.04621
https://arxiv.org/abs/2311.08588
https://arxiv.org/abs/2311.08588
https://arxiv.org/abs/2311.08588
https://arxiv.org/abs/2311.08588
https://arxiv.org/abs/2311.08588
https://arxiv.org/abs/1805.08949
https://arxiv.org/abs/1805.08949
https://arxiv.org/abs/1805.08949
https://arxiv.org/abs/1805.08949
https://arxiv.org/abs/1805.08949
https://arxiv.org/abs/2206.06888
https://arxiv.org/abs/2206.06888
https://arxiv.org/abs/2206.06888
https://arxiv.org/abs/2206.06888
https://arxiv.org/abs/2206.06888
https://arxiv.org/abs/2405.04520
https://arxiv.org/abs/2405.04520
https://arxiv.org/abs/2405.04520
https://arxiv.org/abs/2405.04520
https://arxiv.org/abs/2405.04520
https://doi.org/10.1145/3597503.3623322
https://doi.org/10.1145/3597503.3623322
https://doi.org/10.1145/3597503.3623322

A Data Statistics Details661

A.1 Data Statistics662

CoCo-Bench, meticulously curated through fine-663

grained manual review, comprises 705 high-quality664

samples developed with the assistance of several665

seasoned developers, each with over 10 years of666

experience in SE. Half of CoCo-Bench samples are667

quite challenging. As shown in Figure 9, The tasks668

are diversified, with 56.7% of the samples focused669

on CU, 21.3% on CG, 17.0% on CM, and 5.0%670

on CR. This distribution emphasizes a comprehen-671

sive approach to testing the various aspects of code672

comprehension and generation.673

In addition to the challenging nature of the tasks,674

CoCo-Bench also supports a wide range of pro-675

gramming languages. Python leads the way, ac-676

counting for 54.6% of the samples, followed by677

Java at 20.4%, C++ at 19.0%, and SQL at 6.0%.678

The diversity ensures that the models are evalu-679

ated across a broad spectrum of real-world coding680

scenarios.681

Figure 9: Distribution of tasks, difficulty levels, and
programming languages in CoCo-Bench.

Task Types

Difficulty CU CG CM CR Total
Easy 74 41 17 11 143
Medium 94 54 22 15 185
Hard 232 55 81 9 377
Total 400 150 120 35 705

Table 3: Distribution of samples by difficulty levels.
This table presents the distribution of samples across
different difficulty levels in the dataset. The tasks are
categorized into four types: CU, CG, CU and CR. Each
sample is further divided into easy, medium and hard
difficulty levels.

The dataset, as summarized in Table 3, shows a682

clear emphasis on hard examples, which constitute683

the majority of the dataset with 377 tasks. Ad-684

ditionally, as shown in Table 4, each task type is685

well-represented across different languages, with686

Python being the most frequently used language687

Task Types

Code Language CU CG CM CR Total
python 208 87 55 35 385
java 80 29 35 144
C++ 70 34 30 134
SQL 42 42
Total 400 150 120 35 705

Table 4: Distribution of task types by programming lan-
guages. Each row represents a programming language,
such as Python, Java, C++ and SQL, and lists the num-
ber of tasks in each category for that language. The total
number of tasks for each language is provided, along
with the overall total for all languages.

across all categories. 688

B Benchmark Construction 689

The sample generation process of CoCo-Bench 690

is strategically organized into three main stages, 691

as shown in Figure 10: raw data collection, task- 692

specific data transformation and sample review. 693

Each part contributes to the overall effectiveness 694

and quality of the datasets. 695

Raw Data Collection: The code collection 696

phase of our dataset construction pipeline is de- 697

signed to gather a diverse set of programming sam- 698

ples that adhere to strict timeliness criteria, prevent- 699

ing data contamination and ensuring the quality 700

and relevance of the data for training and validat- 701

ing machine learning models. We source code from 702

Leetcode and various project repositories, selected 703

under stringent conditions to ensure data freshness. 704

Leetcode provides a controlled environment with 705

frequently reviewed and updated code, incorporat- 706

ing current coding practices and algorithms. This is 707

crucial for training models that must stay up-to-date 708

with the latest programming trends. Project code, 709

particularly from repositories with contributions 710

from less experienced developers, serves a dual 711

purpose. It captures common coding errors and 712

suboptimal practices, valuable for training models 713

aimed at CR and CM tasks. Additionally, it aligns 714

the dataset with real-world programming tasks, as 715

project code often involves complex, operationally- 716

driven designs. By carefully selecting sources like 717

Leetcode and project repositories, we ensure that 718

our dataset avoids outdated or irrelevant data while 719

encompassing a broad spectrum of real-world cod- 720

ing scenarios. 721

Task-Specific Data Transformation: The sec- 722

11

Figure 10: The construction pipeline of CoCo-Bench. The process starts with data collection from three primary
sources: GPT generation, Leetcode community solutions, and various projects. The collected data is then structured
into samples, which are adapted to different tasks based on their characteristics. CU: the construction of this dataset
involves structuring the collected data into forward and reverse instances. CG: this dataset involves the question
difficulty rating task, where the collected code is categorized into easy and hard instances. Easy instances are
characterized by simple, straightforward tasks with minimal code, whereas hard instances involve more complex
tasks with additional comments or incomplete parts that require completion. CM and CR datasets start with a
bug implantation process, where code snippets are intentionally altered to introduce bugs and inefficiencies. The
final stage of the pipeline involves inference and human check which ensure the correctness and relevance of
CoCo-Bench.

ond step in our dataset construction pipeline in-723

volves task-specific data transformation, tailoring724

code samples for different computational tasks to725

optimize model training and evaluation. For CU,726

the process creates forward instances (input-output727

pairs) and reverse instances (output-inference chal-728

lenges). In CG tasks, instances are categorized by729

difficulty, ranging from simple completions to com-730

plex corrections. For CM and CR tasks, bugs and731

inefficiencies are strategically inserted into code732

samples, using models like GPT to generate realis-733

tic scenarios, enhancing the dataset’s robustness for734

debugging and optimization tasks. The final step735

includes a thorough CR, starting with initial evalua-736

tions using high-performance open-source models737

like GPT, followed by manual review, and final738

incorporation into the benchmark library. Follow-739

ing the automated inference, the samples undergo740

a detailed manual review by experienced develop-741

ers. The manual review focuses on several critical742

aspects:743

1. Sample Correctness: Verifying that the sam-744

ple code performs the intended function without745

errors. This involves running the code against a set746

of test cases to ensure accurate outputs. 747

2. Reasonable Difficulty: Assessing whether 748

the difficulty level of the sample is appropriate. En- 749

suring that the samples are neither too easy nor ex- 750

cessively difficult, thereby maintaining a balanced 751

difficulty level across the dataset. 752

3. Practical Applicability: Evaluating the real- 753

world relevance and usefulness of the sample. En- 754

suring that the code samples reflect practical sce- 755

narios and challenges that developers are likely to 756

encounter. 757

4. Easy Readability: Checking if the sample 758

code is easy to understand and maintain. This in- 759

cludes verifying clear and concise variable names, 760

appropriate use of comments, and adherence to 761

coding standards. 762

During the manual review, each aspect is metic- 763

ulously examined to ensure that the benchmark 764

samples meet high standards of quality and robust- 765

ness. 766

C Benchmark Metric 767

To evaluate the performance of Code LLMs on the 768

CoCo-Bench, we incorporate a weighting scheme 769

12

based on the difficulty of each sample, ensuring a770

more accurate assessment of a model’s capabilities.771

We first apply TrueSkill2 (Minka et al., 2018)772

approach to assess the difficulty coefficient of each773

task, marked as µi. We then calculate wi using774

inverse normalization:775

wi =
1/µi∑5
j=1 1/µj

776

ensuring
∑5

i=1wi = 1. Let wi represent the777

weight assigned to the i-th sample, reflecting the778

contribution of each task to the overall score.779

Higher weights correspond to more complex sam-780

ples. For all tasks, we define the difficulty-aware781

pass rate (DAPR) as follows:782

DAPR =

∑n
i=1(Pass Ratei × wi)∑n

i=1wi
783

where Pass Ratei represents the pass rate for the784

i-th sample—indicating how often the model suc-785

cessfully passes this specific test case—wi is the786

difficulty weight of the i-th sample, and n is the787

total number of samples in the task.788

To compute the overall CoCo-Score, we com-789

bine DAPR of each task:790

CoCo-Score =

4∑
j=1

(nj

N
× DAPRj

)
791

where nj is the number of samples in the j-th task,792

N is the total number of samples across all tasks,793

DAPRj is the difficulty-aware pass rate for each794

respective task.795

Our approach ensures that the CoCo-Score not796

only measures the average performance of the mod-797

els but also emphasizes their ability to handle more798

complex coding challenges by using difficulty-799

aware scores, providing a comprehensive assess-800

ment of a model’s practical effectiveness and ro-801

bustness across various coding tasks.802

D Prompts for Inference803

In specific tasks within CoCo-Bench, the input804

typically consists of a prefix prompt and a suffix805

prompt. The prefix prompt includes several exam-806

ples to assist the large model in understanding the807

specific task requirements and the expected output808

format. These examples effectively guide the809

model, ensuring it performs the task correctly. The810

suffix prompt appears at the end of the input and811

serves to reinforce the required output structure, 812

ensuring that the model’s output is consistent 813

with the examples provided, which facilitates 814

subsequent automated processing. 815

816

D.1 Prompts for CU Inference 817

Prefix prompt for CUF :

Please deduce the output of the following
code based on the code snippet and the in-
put.

818

Infix prompt for CUF :

The code snippet is as follows:
819

import numpy as np
def power_sum(arr1 ,arr2):

powered_arr = np.power(arr1 ,
arr2)

result_sum = np.sum(powered_arr
)

return result_sum

820

Infix prompt for CUF :

The input is as follows:
821

[[2,3,4], [1,2,3]]

822

Suffix prompt for CUF :

Give only the deduced output of the code
snippet. Do not output any additional infor-
mation.

823

Prefix prompt for CUR :

Please deduce the input of the following
code based on the code snippet and the out-
put.

824

Infix prompt for CUR :

The code snippet is as follows:
825

import numpy as np
def power_sum(arr1 ,arr2):

powered_arr = np.power(arr1 ,
826

13

arr2)
result_sum = np.sum(powered_arr

)
return result_sum

827

Infix prompt for CUR :

The output is as follows:
828

102

829

Suffix prompt for CUR :

Give only the deduced input of the code
snippet. Do not output any additional infor-
mation.

830

D.2 Prompts for CG Inference831

Prefix prompt for CG :

Please fill in the following incomplete code
according to the description. The descrip-
tion is as follows:

832

You are given an array of positive integers
nums. Alice and Bob are playing a game. In
the game, Alice can choose either all single-
digit numbers or all double-digit numbers
from nums, and the rest of the numbers are
given to Bob. Alice wins if the sum of her
numbers is strictly greater than the sum of
Bob’s numbers. Return true if Alice can
win this game, otherwise, return false.

833

Infix prompt for CG :

The incomplete code is as follows:
834

def canAliceWin(self , nums: List[
int]) -> bool:
single =0
double =0
for it in nums:

if it >=10:
double=____

else:
single=____

return single != double

835

Suffix prompt for CG :

Give only the completed code. Do not out-
put any additional information.

836

D.3 Prompts for CM Inference 837

Preffix prompt for CM:

Please correct the following code according
to the description. The description is as
follows:

838

You are given a 0-indexed string s typed by
a user. Changing a key is defined as using
a key different from the last used key. For
example, s = "ab" has a change of a key
while s = "bBBb" does not have any. Return
the number of times the user had to change
the key. Note: Modifiers like shift or caps
lock won’t be counted in changing the key
that is if a user typed the letter ’a’ and then
the letter ’A’ then it will not be considered
as a changing of key.

839

Infix prompt for CM :

The code to be corrected is as follows:
840

def countKeyChanges(self , s: str)
-> int:
if len(s) == 1:

return 0
s = s.upper()
count = 0
for i in range(len(s) -1):

if s[i] == s[i + 1]:
count += 1

return count

841

Suffix prompt for CM:

Give only the corrected code. Do not output
any additional information.

842

D.4 Prompts for CR Inference 843

Prefix prompt for CR:

Please find errors in the following code ac-
cording to the description. The description
is as follows:

844

14

Function uses the ’eval’ function to execute
dynamic expressions from user inputs, pos-
ing serious security risks.

845

Infix prompt for CR :

The code with errors is as follows:
846

def execute_expression(user_input):
result = eval(user_input) #

Dangerous use of eval
return result

847

Suffix prompt for CR:

There are four types of errors: per-
formance_issues, security_issues, syn-
tax_errors and logical_errors. Please give
accurate error types and correct the code, in
the form of
{

"performance_issues":
"data = request.get(user_url)",

"security_issues":
"password = getpass.getpass()",

"syntax_errors":
"print(a + b)",

"logical_errors":
"continue if a > b else break"

}
848

E More Hyper Parameter Analysis849

An interesting phenomenon can be observed from850

these Figure ?? and Figure ??: models with lower851

performance seem to be more sensitive to decod-852

ing temperature. Specifically, CodeLlama-7b-hf853

achieves its highest score at a lower temperature,854

while DeepSeek-Coder-6.7b-Instruct shows greater855

score fluctuations at higher temperatures.856

This can be explained by the relationship be-857

tween a model’s generation capability and the de-858

coding temperature. Higher-performing models859

typically have stronger generation capabilities, al-860

lowing them to maintain more stable performance861

across a wider range of temperatures. In contrast,862

lower-performing models may rely on specific de-863

coding temperatures to enhance the quality of their864

outputs when tackling complex tasks. For instance,865

CodeLlama-7b-hf might produce more determinis-866

tic outputs at lower temperatures, avoiding the ran-867

domness introduced at higher temperatures, which 868

leads to better scores in certain tasks. 869

On the other hand, lower-performing models are 870

more sensitive to temperature changes, possibly 871

because they struggle to maintain coherence and 872

quality in their outputs at higher temperatures. As 873

the temperature increases, the generated text may 874

become more random, leading to a decline in task 875

performance. This also explains why CodeLlama- 876

7b-hf achieves its highest score at a lower temper- 877

ature: at lower temperatures, the model produces 878

more deterministic and consistent content, avoiding 879

the noise introduced by unnecessary randomness. 880

15

	Introduction
	Related Work
	Task Definition
	Code Understanding (CU)
	Code Generation (CG)
	Code Modification (CM)
	Code Review (CR)

	Analysis
	Comprehensive Performance Evaluation
	Correlation Analysis
	Context Length and Model Performance
	Decoding Strategies

	Limitations and Future Work
	Data Statistics Details
	Data Statistics

	Benchmark Construction
	Benchmark Metric
	Prompts for Inference
	Prompts for CU Inference
	Prompts for CG Inference
	Prompts for CM Inference
	Prompts for CR Inference

	More Hyper Parameter Analysis

