
How do Active Dendrite Networks Mitigate
Catastrophic Forgetting?

Sankarshan Damle1∗ Satya Lokam2 Navin Goyal2
1LIA, EPFL 2Microsoft Research India

sankarshan.damle@epfl.ch {satya.lokam,navingo}@microsoft.com

Abstract

We investigate the efficacy of Active Dendrite Networks (ADNs) in mitigating
catastrophic forgetting in Continual Learning (CL). We consider Sparse Parity and
Modular Addition to be our CL-task sequences. ADNs mitigate forgetting for
Sparse Parity, but not for Modular Addition. For Sparse Parity, we perform an in-
terpretability analysis to highlight the effectiveness of orthogonal (or uncorrelated)
context vectors and task vectors in mitigation. We demonstrate that uncorrelated
context vectors facilitate the creation of distinct subnetworks within ADNs, aiding
in task separation. We also look at task uncorrelatedness to explain the difference
in ADN’s performance for Sparse Parity and Modular Addition.

1 Introduction

Continual learning (CL) is a challenging problem in artificial neural networks (ANNs), where models
must learn new tasks sequentially without forgetting previously learned tasks [12]. When sequentially
trained, ANNs suffer from catastrophic forgetting [4], i.e., the model’s performance on earlier tasks
degrades as it learns new ones. This is in sharp contrast to humans and other animals who appear to
learn in a continual fashion [3].

This paper explores the potential of Active Dendrite Networks (ADNs) [6] to address this issue,
focusing on two specific tasks: Sparse Parity [1] and Modular Addition [9]. Focusing on these
synthetic tasks and simple ADNs enables an interpretability analysis to identify aspects of dendritic
architecture and task structures that help (and do not help) avoid catastrophic forgetting. ADNs
define a neural network architecture designed to mimic the complex processing and local learning
capabilities of biological neurons. ADNs replace point neurons of ANNs with pyramidal neurons
that have dendrites to process non-linearity. Dendrites process context signals that encode task
information and modulate the feed-forward activity of excitatory neurons [11].

Existing literature [6, 11] hypothesizes that ADNs overcome catastrophic forgetting through task
separation, i.e., through distinct (task-specific) subnetworks modulated by dendrites. This paper
provides further evidence for continual learning abilities and stability-plasticity trade-offs in ADN’s
by demonstrating how they learn from context vectors and task similarities. Our takeaway is that
uncorrelated context & task vectors and uncorrelated tasks help ADNs to overcome forgetting.

Concretely, first, we show that uncorrelated context vectors and uncorrelated task vectors (i.e., task
IDs appended to the feature set) help mitigate forgetting for Sparse Parity with non-overlapping
support. However, when the support for different Sparse Parity tasks overlap, we see a 5% drop
in ADN’s performance even when the context and task vectors are uncorrelated. Second, ADNs do
not overcome forgetting in Modular Addition. This, along with the drop in ADN’s performance
for overlapping Sparse Parity, motivates task uncorrelatedness (i.e., the correlation between

∗Most of this work was done while the author was at Microsoft Research India.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

subsequent CL tasks) as the third criterion for overcoming forgetting. We measure task correlation
by the number of epochs Task j takes to generalize when initialized with Task (j − 1) weights. For
Modular Addition and overlapping Sparse Parity, Task j generalizes faster with (j− 1) weights
than with random initialization. In contrast, non-overlapping Sparse Parity takes more epochs to
generalize, suggesting that task support orthogonality aids task separation.

2 Background and Continual Learning (CL) Setup

Active Dendrite Neural Networks (ADNs). ADNs [6] augment the standard multi-layer perceptron
architecture with the following biological properties:

1. The point neuron-architecture is replaced with a pyramidal neuron-architecture. Biological
neurons are pyramidal and have complex dendrites that process inputs non-linearly. In ADNs,
these pyramidal neurons process feed-forward inputs using a linear weighted sum and contextual
inputs via independent dendrite segments with separate weights.
Given an input vector x, weights w, and bias b, the pyramidal neuron computes: t̂ = wTx+ b.
Each dendrite segment j with weight uj and context vector c, is used to select the segment with
the strongest response to the context when computing dendrite activation d, as d = ⟨uj⋆ , c⟩ where
j⋆ = argmaxj |⟨uj , c⟩| .

2. Contextual inputs on active dendrites modulate the neuron’s response, increasing its likelihood
to fire. Given σ(·) as the sigmoid function and f(·) as a modulation function, the output of each
pyramidal neuron is ŷ = f(w,b,uj⋆ ;x, c) =

(
wTx+ b

)
× σ (⟨uj⋆ , c⟩) .

3. Neural activity and connectivity are highly sparse. In ADNs, this sparsity is enforced using a
κ-Winner-Take-All (κWTA) function to ensure sparse activations. Formally, for each pyramidal
neuron i, κWTA(ŷi) = ŷi if ŷi is one of the top κ activations over all i, and zero otherwise.

CL Tasks. In this paper, we consider the following tasks.

1. Sparse Parity [8]. Consider the (n, k)-parity function, where we have a dataset X consisting of
records xi ∈ {−1,+1}n. Based on X , we define two types of parity tasks:
• Parity1. Given k ≪ n and a random permutation π of [n], we construct tasks by dividing the

vector indices into disjoint segments of size k. Specifically, for each task j, and for each record
xi ∈ X , the label yi,j is computed as yi,j =

∏k(j+1)
m=(kj+1) xi,π(m). This means that the indices

[n] are divided into n/k segments, where the j-th segment is associated with Task j.
• Parity2. Given k ≪ n and a random permutation π of [n], Parity2 tasks are defined by

overlapping segments. For each task j, and for each record xi ∈ X , we compute the label
yi,j as yi,j =

∏k+j
m=(j+1) xi,π(m). Each task j is defined by k consecutive positions under π,

resulting in overlapping support between adjacent tasks.
To summarize, in Parity1, each task’s parity computation is performed on disjoint vector seg-
ments, ensuring pair-wise orthogonality. In contrast, Parity2 computes parity over overlapping
segments, with adjacent tasks sharing part of their support.
For both parity tasks, we have the CL setup given by {{(xi, j), yi,j}i∈[|X|]}j∈[τ], where τ is the
total number of tasks and (xi, j) the feature-tuple comprising the task vector j for each task j.

2. Modular Addition [2, 9]. Consider the cyclic group Cp for any prime p. For all pair of elements
a, b ∈ Cp let xi = a||b, where a and b are one-hot vectors of a and b, respectively. For each such
xi, we set the corresponding label as yi = (a+ b) mod p.
For modular addition, the CL setup includes sequentially training a model on different groups
Cpj , where pj , ∀j ∈ [τ] is a prime. We also append the feature set with a unique task vector j
corresponding to each set, i.e., (xi, j) is the feature tuple for the task j.

Grokking [10]. Grokking is a phenomenon where models suddenly exhibit a significant performance
improvement after a prolonged training period, often without any changes in the training process.
Recent literature has observed grokking for both tasks: sparse parity [1, 8] and modular addition [2, 9].

Average Accuracy (AA) [12]. Let ai,j ∈ [0, 1] be the accuracy of a model on the test-set of the
jth task after sequential training for the ith task (where j ≤ i). Then, AA is the model’s overall
performance at the ith task: AAi =

1
i

∑i
j=1 ai,j .

2

100 101 102 103

0.4

0.5

0.6

0.7

0.8

0.9

1

Epoch

A
cc

u
ra

cy

Sparse Parity (MLP)

Train
Test

100 101 102 103
0.5

0.6

0.7

0.8

0.9

1

Epoch

Sparse Parity (ADN)

Train
Test

101 102 103

0

0.2

0.4

0.6

0.8

1

Epoch

Modular Addition (MLP)

Train
Test

101 102 103

0

0.2

0.4

0.6

0.8

1

Epoch

Modular Addition (ADN)

Train
Test

Figure 1: Grokking: Train and test accuracies for Sparse Parity and Modular Addition.

#1 #2 #3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Tasks

A
v
e
ra

g
e
A
cc

u
ra

cy
(A

A
)

Parity1

#1 #2 #3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Tasks

Parity2
MLP ADN (C C) ADN (U C) ADN (C U) ADN (U U)

#1 #2 #3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Tasks

Modular Addition

Figure 2: Average Accuracy (AA) scores for Sparse Parity and Modular Addition. ADN (x_y),
x, y ∈ {U,C}, represents different setups with x corresponding to uncorrelated/correlated context
vectors and y task operators. For Task #0, all 5 models generalize, i.e., AA = 1.0.

3 Results

Setup. We train an ADN model with 2 hidden layers of 2048 pyramidal neurons each with a
classification head. Unlike prior work [6, 11], we train each task till generalization. We also train a
2-layer MLP with 2048 neurons in each hidden layer for our baseline. For both, we use the Adam
optimizer [7] with constant weight decay and learning rate across all CL tasks. We refer the reader to
Appendix A for details on other hyperparameters.

Context Vectors (c) & Task Vectors (j). Iyer et al. [6] use the mean of the task-set of permutedM-
NIST [5] as its choice for context vectors. Unlike permutedMNIST, features for Sparse Parity and
Modular Addition are not well-separated in the feature space, so we randomly sample task-wise (i)
uncorrelated (or orthogonal) and (ii) correlated context vectors. We also append task vectors to
each feature. We randomly append task-wise (i) uncorrelated (or orthogonal) and (ii) correlated
task vectors. We use ADN (x_y), where x, y ∈ {U,C}, to denote these setups with x corresponding
to context vectors and y task operators. Lastly, the input to ADN is ((xi, j), c), where the neurons
receive the features (xi, j) as input, and the dendrites use the context c for modulation.

Sparse Parity. From [8], we set n = 40, k = 3 and τ = 4. We minimize the hinge loss, i.e.,
l(y, ŷ) = max(0, 1− y · ŷ), where y and ŷ is the ground truth and the model output, respectively.

Modular Addition. Motivated from [9], we consider a CL setup for τ = 4 with primes p1 =
113, p2 = 107, p3 = 103 and p4 = 101. We treat these as a classification task with the dimension of
the model’s output head fixed at 113. We minimize the cross-entropy loss [2].

ADNs Exhibit Grokking. We first study grokking in ADNs (refer to Figure 1). For these, we mimic
the training details and other hyperparameters for both MLP and ADN from Merrill et al. [8] for
Sparse Parity and Chughtai et al. [2] for Modular Addition. The generalization accuracy of
ADNs also sees a sudden increase post memorization, i.e., ADNs also grok.

ADN-CL: Results. Figure 2 presents the average and standard deviation of average accuracy
(AA), computed across 3 different runs. Our vanilla-MLP baseline shows catastrophic forgetting.
Unsurprisingly, we see that ADNs overcome forgetting compared to the baseline. The AA at the end
of the 4th task for ADN (U_U) is 0.951±0.0084 (+0.284 over MLP) for Parity1 and 0.903±0.0338

3

(a) Pre-training: Task 0 (b) Pre-training: Task 3

(c) Post-training: Task 0 (d) Post-training: Task 3

Figure 3: ADN (U_U): Plotting σ
(
uT
j⋆c

)

(a) Pre-training: Task 0 (b) Pre-training: Task 3

(c) Post-training: Task 0 (d) Post-training: Task 3

Figure 4: ADN (C_C): Plotting σ
(
uT
j⋆c

)
(+0.283 over MLP) for Parity2. For Modular Addition, AA for ADN (C_C) at the end of the 4th

task is 0.622 ± 0.0014 (+0.21 over MLP). Appendix B presents results for (i) (n = 40, k = 3) with
τ = 10 and (ii) (n = 80, k = 3) with τ = 4. Further observations are available in Appendix B.1.

4 Interpreting ADNs for Parity1

Similar to prior works [6, 11], we hypothesize that ADNs create task-specific distinct subnets that
help mitigate catastrophic forgetting. This section presents interpretability measures that show that
uncorrelated context vectors and task vectors lead to task-specific distinct subnets. We begin by
isolating these subnetworks.

Isolating Subnetworks for Parity1. After training of the 4th task, we take the mean of the task-wise
activations of the 2048 pyramidal neurons from the two layers separately on the test dataset for ADN
(U_U) and ADN (C_C). We sort the neurons based on the mean activations and pick the top 1% of
neurons for each task as its ‘active’ set of neurons2.

Distinct Subnetworks for ADN (U_U). Here, we look at the overlap between active subnets for
each task (refer to Table C.1). For ADN (U_U), the maximum fractional overlap for Layer 0 is 0.0
and 0.05 for Layer 1. However, for ADN (C_C), the maximum fractional overlap for Layer 0 is 1.0
and 0.95 for Layer 1. That is, uncorrelated dendrite segments result in distinct subnetwork formation.

Q: How do Uncorrelated Context Vectors Enforce Subnets?

We now explore how uncorrelated context vectors create these subnets. Figures 3 and 4 plot σ
(
uT
j⋆c

)
pre and post-training for ADN (U_U) and ADN (C_C), respectively. We see that ADN (C_C)
results in higher σ

(
uT
j⋆c

)
values for all tasks. In contrast, ADN (U_U) has higher σ

(
uT
j⋆c

)
for

distinct tasks. For ADN (U_U), the dendrite segments selected through κWTA create distinct subnets.
Given a task, distinct neurons are more likely to fire and hence, more likely that κWTA selects them –
leading to distinct subnets. For ADN (C_C), any neuron can fire and consequently pass the κWTA
filter leading to overlapping active subnets.

We further visualize the dendrites “on-off” mechanism to create distinct subnets in Figures C.1 and
C.2 (Appendix C.1) by plotting σ

(
uT
j c

)
, ∀j ∈ [4]. For any task t and ADN (U_U), any dendrite

uj “switches-off” its pyramidal neuron by aligning orthogonally to task context vector c resulting in
a post-sigmoid value of ≈ 0.5. To switch the neuron on, the context and dendrites align parallelly.

Q: Why do Uncorrelated Context Vectors Work?

We now define a couple of progress measures [9] to understand how uncorrelated context vectors
assist in distinct subnet formation.

2This active subnet is also functional as it realizes the full model’s predictions (Appendix C.1).

4

Figure 5: Dendrite Weight Movement (left) and Dendrite Activation Movement (right) for ADN
(U_U) and Parity1. The dashed vertical lines are task boundaries and the thick blue horizontal
lines denote the mean value.

Dendrite Weight Movement (DWM). For each active neuron i for a task j, we plot ||ui,t − ui,0||∞
as epoch t increases. Figure 5 (left) depicts the results. We see a pattern: for the active neurons of
the jth task, their segments see an increase in the weight movement value as the jth task starts. The
weight movement tends to saturate once the jth task ends.

Dendrite Activation Movement (DAM). For each active neuron i for a task j, we plot
|⟨ui,t, cj⟩ − ⟨ui,0, cj⟩| as epoch t increases. Figure 5 (right) depicts the results. While the task-
specific pattern is obvious, we also see that the uncorrelated context vectors actively bring the dendrite
activation to initialization levels for tasks for which the neuron is not active.

Note: When the fraction overlap between active subnets is high (e.g., for ADN (C_C)), we (trivially)
get similar DWM and DAM plots across all four tasks (refer to Figure C.3).

5 Task Uncorrelatedness: The Final Piece!

#0 #1 #2 #3

10

20

30

40

50

60

Tasks

E
p
o
ch

s

Sparse Parity

Parity1 Parity2

C113 C107 C103 C101

0

500

1,000

1,500

2,000

2,500

3,000

Tasks

Modular Addition

Random (j − 1)th

Figure 6: Number of epochs for Task j to gener-
alize when continually trained up to Task (j − 1).
For Modular Addition, the baseline (Random)
represents the epochs needed for ADN to general-
ize with random weight initialization. For Sparse
Parity, Task #0 is the baseline as the supports
are random.

Figure 2 shows that pair-wise orthogonality of
context vectors and task vectors in ADNs over-
comes catastrophic forgetting. The difference
in performance for Parity1 and Parity2 sug-
gests another criterion: task uncorrelatedness.
For Parity2 (with overlapping supports) the
average accuracy at the end of 4th task is ≈ 5%
less than Parity1 (with non-overlapping sup-
ports). By isolating task-specific subnets for
Parity2, we see an increase in active neuron
overlap, highlighting the effect of the lack of
task uncorrelatedness (Appendix C.2).

This criterion explains ADN’s ineffectiveness in
overcoming forgetting for Modular Addition.
Specifically, we empirically show that Modular
Addition (i.e., C113, C107, C103 and C101) is
also pair-wise correlated. To quantify adjacent
task uncorrelatedness, in Figure 6, we plot the
mean and standard deviation (across 3 runs) of
the number of epochs ADN takes to generalize for Task j when continually trained till Task (j − 1).
When the tasks are pair-wise uncorrelated (Parity1), we see an increase in the epochs taken for
generalization. That is, Task (j − 1)th weights are used as ‘initialization’ for Task j, and an increase
in epochs taken for Task j represents the difference in the two tasks. Whereas, for Parity2 and
Modular Addition, we see a significant drop in the epochs taken. This shows that tasks are
correlated as Task (j − 1)th weights used for initialization aid Task j in generalizing faster.

5

References
[1] Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang.

Hidden progress in deep learning: Sgd learns parities near the computational limit. Advances in
Neural Information Processing Systems (NeurIPS), 35:21750–21764, 2022.

[2] Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy model of universality: reverse
engineering how networks learn group operations. In Proceedings of the 40th International
Conference on Machine Learning (ICML), 2023.

[3] Joseph Cichon and Wen-Biao Gan. Branch-specific dendritic ca2+ spikes cause persistent
synaptic plasticity. Nature, 520(7546):180–185, 2015.

[4] Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive
sciences, 3(4):128–135, 1999.

[5] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

[6] Abhiram Iyer, Karan Grewal, Akash Velu, Lucas Oliveira Souza, Jeremy Forest, and Subu-
tai Ahmad. Avoiding catastrophe: Active dendrites enable multi-task learning in dynamic
environments. Frontiers in neurorobotics, 16:846219, 2022.

[7] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[8] William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: Grokking as
competition of sparse and dense subnetworks. arXiv preprint arXiv:2303.11873, 2023.

[9] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress
measures for grokking via mechanistic interpretability. In The Eleventh International Conference
on Learning Representations (ICLR), 2023.

[10] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

[11] Fahad Sarfraz, Elahe Arani, and Bahram Zonooz. A study of biologically plausible neu-
ral network: The role and interactions of brain-inspired mechanisms in continual learning.
Transactions on Machine Learning Research, 2023.

[12] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: theory, method and application. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

6

In this technical appendix, we provide additional training details (Appendix A), results for different
Sparse Parity setups (Appendix B), and further interpretability analysis for Parity1 and Parity2
(Appendix C).

A Training Details

Table A.1 provides the complete list of hyperparameters used for Sparse Parity and Modular
Addition. Furthermore, similar to [8], for Spare Parity we perform training with batch size 32. For
Modular Addition, similar to [9], we do full batch training.

Sparse Parity
Hyperparameter Value

Batch (=32) Training with Adam Optimizer

Learning Rate 5e-4
Weight Decay 1e-6
(β1, β2) (0.9, 0.98)
Number of Samples 10000
Train-test Split 60%-40%

MLP

Input Feature Size 440
Output Size 1
Hidden Size (2048, 2048)
Activation ReLU
Dropout 0%

ADN Parameters

Input Feature Size 440
Output Size 1
Hidden Size (2048, 2048)
Context Size (c) 400
Number of Dendrites τ
κWTA 1%
Context Weight Sparsity (c) 5%
Feedforward Weight Sparsity (w) 50%
Dendrite Weight Sparsity (u) 90%

Modular Addition
Hyperparameter Value

Full Batch Training with Adam Optimizer

Learning Rate 5e-3
Weight Decay 5e-1
(β1, β2) (0.9, 0.98)
Number of Samples pj · pj ,∀j ∈ [4]
Train-test Split 60%-40%

MLP

Input Feature Size 626
Output Size 113
Hidden Size (2048, 2048)
Activation ReLU
Dropout 0%

ADN Parameters

Input Feature Size 626
Output Size 113
Hidden Size (2048, 2048)
Context Size (c) 400
Number of Dendrites τ
κWTA 5%
Context Weight Sparsity (c) 5%
Feedforward Weight Sparsity (w) 50%
Dendrite Weight Sparsity (u) 90%

Table A.1: Hyperparameters for Sparse Parity and Modular Addition

B Additional Results and Observations

Sparse Parity (n = 40, k = 3) with τ = 10. Figure B.7 depicts the results. We see that as the
number of tasks increases, both the baseline MLP and ADN (C_C) quickly tend towards a random
classifier (accuracy: 0.5). Whereas ADN (U_U)’s accuracy is ≈ 0.85 ± 0.0205 for Parity1 and
≈ 0.8± 0.01465 for Parity2. The standard deviation (denoted with error bars in Figure B.7) is also
low showing the stability of these results.

Sparse Parity (n = 80, k = 3) with τ = 4. Figure B.8 depicts the results. We see that (n =
80, k = 3) is a harder CL task for ADNs compared to (n = 40, k = 3). This is seen in the drop in
performance as τ increases. For Parity1, at the end of the 4th task, ADN (UU)’s average accuracy
drops from 0.95± 0.0084 for (n = 40, k = 3) to 0.81± 0.0204 for (n = 80, k = 3). Likewise, for
Parity2, the average accuracy drops from 0.90± 0.0338 for (n = 40, k = 3) to 0.80± 0.0075 for
(n = 80, k = 3).

B.1 Observations

Weight Decay, Grokking, and Average Accuracy. Our experiments show that higher weight decay
hurts the average accuracy. E.g., ADN (UU)’s performance drops from ≈ 0.95 with weight decay
1e-6 to almost random (≈ 0.5) with weight decay 1. Interestingly, prior works show grokking
on Sparse Parity [8] and Modular Addition [9] with larger weight decay, 1e-2/1e-3 and 1,

7

#1 #2 #3 #4 #5 #6 #7 #8 #9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Tasks

A
v
e
ra

g
e
A
cc

u
ra

cy
(A

A
)

Parity1, τ = 10

MLP ADN (C C) ADN(U U)

#1 #2 #3 #4 #5 #6 #7 #8 #9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Tasks

Parity2, τ = 10

MLP ADN (C C) ADN(U U)

Figure B.7: Average Accuracy (AA) scores for Sparse Parity (n = 40, k = 3) and τ = 10. We
use ADN (x_y), where x, y ∈ {U,C}, denotes different setups with x corresponding to corre-
lated/uncorrelated context vectors and y task operators. For Task #0, all 3 models generalize, i.e.,
AA = 1.0. We keep κWTA at 2.5% for these experiments, while the other hyperparameters remain
the same as in Table A.1.

#1 #2 #3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Tasks

A
v
e
ra

g
e
A
cc
u
ra

cy
(A

A
)

Parity1, n = 80, k = 3

MLP ADN (C C) ADN(U U)

#1 #2 #3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Tasks

Parity2, n = 80, k = 3

MLP ADN (C C) ADN(U U)

Figure B.8: Average Accuracy (AA) scores for Sparse Parity (n = 80, k = 3) and τ = 4. We
use ADN (x_y), where x, y ∈ {U,C}, denotes different setups with x corresponding to corre-
lated/uncorrelated context vectors and y task operators. For Task #0, all 3 models generalize, i.e.,
AA = 1.0. We keep κWTA at 2.5% for these experiments, while the other hyperparameters remain
the same as in Table A.1.

8

Model Tasks Parity1 Parity2
i j Layer 0 Layer 1 Layer 0 Layer 1

ADN (U_U)

0 1 0.0 0.05 0.35 0.15
0 2 0.0 0.0 0.15 0.05
0 3 0.0 0.0 0.0 0.05
1 2 0.0 0.0 0.35 0.2
1 3 0.0 0.0 0.1 0.1
2 3 0.0 0.0 0.55 0.3

ADN (U_C)

0 1 0.4 0.15 0.85 0.45
0 2 0.35 0.2 0.85 0.55
0 3 0.6 0.05 0.85 0.25
1 2 0.2 0.1 0.8 0.65
1 3 0.5 0.0 0.8 0.5
2 3 0.25 0.0 0.8 0.4

ADN (C_U)

0 1 0.0 0.0 0.35 0.4
0 2 0.0 0.1 0.2 0.25
0 3 0.0 0.2 0.0 0.15
1 2 0.0 0.2 0.45 0.45
1 3 0.0 0.1 0.2 0.25
2 3 0.1 0.3 0.3 0.35

ADN (C_C)

0 1 1.0 0.9 1.0 1.0
0 2 1.0 0.95 1.0 1.0
0 3 1.0 0.95 1.0 1.0
1 2 1.0 0.9 1.0 1.0
1 3 1.0 0.95 1.0 1.0
2 3 1.0 0.95 1.0 1.0

Table C.1: Fraction Overlap of Active Subnetworks: Top-1% of the neurons ranked by mean
activations on the test set.

respectively. While ADNs grok for these weight decays (Figure 1), we observe that for smaller
weight decays (e.g., 5e-3 for Modular Addition), they do not.

Sparsity and Average Accuracy. Sparsity is crucial in aiding task separation. In ADNs, sparsity
is enforced using κWTA. We observe that a decrease in sparsity – enforced by increasing κWTA –
reduces the average accuracy.

Comparing MLP’s Performance with ADN (C_C). We see that the comparative performance of
MLP and ADN (C_C) is dependent on the task correlation. For Parity1 – when tasks are orthogonal
– correlated context and task vectors result in a 0.0447 drop in ADN (C_C)’s performance compared
to MLP. However, increased task correlation improves ADN (C_C)’s performance. For instance,
for Parity2, ADN (C_C)’s performance compared to MLP is marginally higher (i.e., a relative
accuracy increase of 0.002). For Modular Addition – where the tasks are highly correlated – ADN
(C_C) comfortably outperforms MLP with a 0.2096 relative increase in average accuracy.

C Interpretability for Spare Parity

Appendix C.1 first provides further evidence of task separation with distinct subnets in Parity1. Next,
we show that high task correlatedness in Parity2 results in non-distinct subnetworks (Appendix C.2).

C.1 Parity1: Additional Experiments

Fraction Overlap of Active Subnetworks. In Section 4, we show that using mean activations
computed over the test set allows us to isolate the subnets for each task. For ADN (U_U) we get
distinct subnets, while for ADN (C_C) we get overlapping subnetworks. Table C.1 presents the
task-wise numbers.

9

(a) Task 0 (b) Task 1 (c) Task 2 (d) Task 3

Figure C.1: ADN (C_C): Plotting σ
(
uT
j c

)
, ∀j ∈ [4] for Parity1

(a) Task 0 (b) Task 1 (c) Task 2 (d) Task 3

Figure C.2: ADN (U_U): Plotting σ
(
uT
j c

)
, ∀j ∈ [4] for Parity1

Figure C.3: Dendrite Weight Movement (left) and Dendrite Activation Movement (right) for ADN
(C_C) and Parity1. The dashed vertical lines are task boundaries and the thick blue horizontal
lines denote the mean value.

Functional Subnetwork. Here, we show that the task-specific subnetworks isolated in Section 4
are also functional. That is, they realize the full model’s performance. To test the subnetwork’s
performance, we add a masked layer after each hidden layer that only keeps the weights of the active
neurons and zero out the weights for the others. We see that the top-1% of the neurons realize 90%
of the full model’s performance and the top-5% realize 100%.

Plotting σ
(
uT
j c

)
, ∀j ∈ [4]. We further visualize the dendrites “on-off” mechanism to create distinct

subnets in Figures C.1 and C.2 by plotting σ
(
uT
j c

)
, ∀j ∈ [4]. We see that for ADN (U_U) the

dendrites help create distinct subnets by modulating the pyramidal neuron to fire only for a single
task. In sharp contrast, for ADN (C_C), dendrites do not perform task-specific modulation and fire
for all neurons leading to overlapping subnets.

Dendrite Weight Movement (DWM) and Dendrite Activation Movement (DAM). Similar to
Figure 5, in Figure C.3, we also plot DWM and DAM for ADN (C,C). Both our progress measures
show that the dendrites fire for all four tasks, thus explaining the large overlap between task-wise
subnets.

10

(a) Pre-training: Task 1 (b) Pre-training: Task 2 (c) Post-training: Task 1 (d) Post-training: Task 2

Figure C.4: ADN (U_U): Plotting pre and post-training values of σ
(
maxj u

T
j c

)
for Parity2

C.2 Parity2

We explain the drop in ADN’s performance for Parity2, compared to Parity1, because Parity2
has correlated adjacent tasks. The lack of task uncorrelatedness results in overlapping subnetworks
compromising task separation.

Increase in Subnetwork Overlap for ADN (U_U). For Parity2, we repeat the same process of
isolating subnetworks as described for Parity1 (refer to Section 4).

We again pick the top-1% of the 2048 neurons, from each layer, for each task. Table C.1 presents the
task-wise numbers. Unlike for Parity1, we see an increase in the active set of neurons. Concretely,
for Parity2, the maximum fractional overlap increases from 0.05 for Parity1 to 0.55 for Parity2.
This increase in the overlap is due to increased correlation in tasks for Parity2 compared to
Parity1.

ADN (U_U): Plotting σ
(
uT
j⋆c

)
. Similar to Figure 3, we again plot σ

(
uT
j⋆c

)
for Parity2. For

Parity1, we saw that dendrites modulated the activations so that a single pyramidal neuron only
fires for a single task, creating task-specific subnets.

From the increased fractional overlap of active subnets for Parity2, we know that task-specific
subnet formation is relatively less disjoint in this case. Figure C.4 depicts the numbers. We see that
for several neurons, the dendrites fire for multiple tasks increasing active subnets’ fractional overlap,
thus explaining the performance drop.

11

	Introduction
	Background and Continual Learning (CL) Setup
	Results
	Interpreting ADNs for Parity1
	Task Uncorrelatedness: The Final Piece!
	Training Details
	Additional Results and Observations
	Observations

	Interpretability for Spare Parity
	Parity1: Additional Experiments
	Parity2

