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ABSTRACT

In this paper, we investigate the characteristics that define a good representation
or model. We propose that such a representation or model should possess univer-
sality, characterized by: (i) discriminability: performing well on training samples;
(ii) generalization: performing well on unseen datasets; and (iii) transferability:
performing well on unseen tasks with distribution shifts. Despite its importance,
current self-supervised learning (SSL) methods lack explicit modeling of universal-
ity, and theoretical analysis remains underexplored. To address these issues, we
aim to explore and incorporate universality into SSL. Specifically, we first revisit
SSL from a task perspective and find that each mini-batch can be viewed as a
multi-class classification task. We then propose that a universal SSL model should
achieve: (i) learning universality by minimizing loss across all training samples,
and (ii) evaluation universality by learning causally invariant representations that
generalize well to unseen datasets and tasks. To quantify this, we introduce a
σ-measurement that assesses the gap between the performance of SSL model and
optimal task-specific models. Furthermore, to model universality, we propose the
GeSSL framework. It first learns task-specific models by minimizing SSL loss,
then incorporates future updates to enhance discriminability, and finally integrates
these models to learn from multiple mini-batch tasks. Theoretical and empirical
evidence supports the effectiveness of GeSSL.

1 INTRODUCTION

Self-supervised learning (SSL) has revolutionized machine learning by enabling models to learn
meaningful representations from unlabeled data, thereby significantly reducing reliance on large
labeled datasets (Gui et al., 2024). SSL methods are generally divided into two categories: discrimi-
native SSL (D-SSL) and generative SSL (G-SSL). D-SSL approaches, such as SimCLR (Chen et al.,
2020a), BYOL (Grill et al., 2020), and Barlow Twins (Zbontar et al., 2021), focus on distinguishing
between different augmented views of the same image, learning representations by maximizing
the similarity between positive pairs and minimizing it with negative ones. In contrast, G-SSL
methods like MAE (Hou et al., 2022) aim to reconstruct missing or corrupted parts of the input
data, learning representations by capturing inherent visual structures and patterns. Both D-SSL and
G-SSL have demonstrated remarkable performance, excelling in tasks such as unsupervised learning,
semi-supervised learning, transfer learning, and few-shot learning. Their capacity to learn good
representations from unlabeled data has significantly advanced the field across diverse applications.

Whether using D-SSL or G-SSL methods, most research focuses on determining which factors, e.g.,
network architectures (Caron et al., 2021), optimization strategies (Ni et al., 2021), prior assumptions
(Ermolov et al., 2021), inductive biases (Grill et al., 2020), etc., lead to effective representations or
models. However, a fundamental question persists: What exactly defines a “good” representation
or model? To address this, the common practice is to evaluate the learned representations or models
on various downstream tasks, that is, if the performance is strong, the representation or model is
deemed good. Yet, a key challenge remains in understanding why certain approaches result in higher
performance. In other words, we often lack direct explanations of how specific methodological
choices influence the quality of the representation or model. For instance, why does an asymmetric
dual-branch network architecture in methods like BYOL enhance performance on downstream tasks?
Similarly, why does enforcing a uniform distribution on feature representations serve as an inductive
bias for obtaining good representations or models in methods like SimCLR?
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To address the aforementioned challenges, this work shifts focus from considering SSL methods
and their subsequent developments in terms of “what to do” to directly exploring what constitutes a
good representation or model. We concentrate on the question: What characteristics should a good
representation or model possess? Inspired by the evaluation methods of most SSL and unsupervised
representation learning approaches (Chen et al., 2020a; Grill et al., 2020; Hou et al., 2022), we propose
that a good representation or model should satisfy three constraints: 1) Discriminability: For a single
task, the model should achieve the expected performance on the training set; 2) Generalizability:
For a single task, the trained model should generalize to unseen datasets while maintaining its
performance; 3) Transferability: The trained model should generalize to multiple different tasks
while guaranteeing its performance. Based on these three constraints, we provide, for the first time in
this paper, the formulation of a good representation or model—namely, Universality.

With the precise definition of “Universality” provided (i.e., Definition 3.1 within the main text),
another significant challenge is formalizing the properties of discriminability, generalizability, and
transferability within the SSL learning process. Notably, if a model can accurately predict all samples
of a task based on the learned representations, it possesses good discriminability, which is reflected
in a low training loss. Furthermore, as shown by Schölkopf et al. (2021) and Ahuja et al. (2023),
the causality of representations is a sufficient condition for generalizability. Finally, Ni et al. (2021)
demonstrates that SSL and meta-learning are closely related, and meta-learning is an effective
approach to modeling transferability (Finn et al., 2017a). Therefore, designing a new SSL paradigm
based on meta-learning can imbue the features learned by SSL methods with transferability. Based
on these insights, we propose a novel SSL framework called GeSSL to explicitly model universality
in the SSL learning process. Specifically, for discriminability, GeSSL employs the Kullback-Leibler
divergence to enable the SSL model to use the future state to distill the current state, thereby achieving
lower training loss. For generalizability, GeSSL extracts causal features by learning across multiple
tasks. For transferability, GeSSL introduces a bi-level optimization mechanism to formulate the
SSL learning behavior in a meta-learning style. In essence, GeSSL incorporates discriminability,
generalizability, and transferability into the SSL method from three dimensions: optimization
objective, parameter update mechanism, and learning paradigm.

Our contributions: (i) We theoretically define SSL universality, encompassing discriminability,
generalizability, and transferability, and introduce a σ-measurement to quantify it (Sections 3.1,
3.2). (ii) We propose GeSSL, a novel framework that models universality through a self-motivated
target for discriminability, a multi-batch collaborative update mechanism for generalizability, and a
task-based bi-level learning paradigm for transferability (Section 3.3). (iii) Theoretical and empirical
evaluations on benchmark datasets demonstrate the superior performance of GeSSL (Sections 4, 5).

2 REVISITING SSL FROM A TASK PERSPECTIVE

During the training phase, the data is organized into mini-batches, each denoted as Xtr,l = {xi}N,l
i=1,

where xi represents the i-th sample in the mini-batch, l is the index of mini-batch, and N is the
batch size. In D-SSL methods, each sample xi undergoes stochastic data augmentation to generate
two augmented views, denoted as x1

i and x2
i . In G-SSL methods, each sample xi is partitioned into

multiple small blocks, some blocks are masked, and the remaining blocks are reassembled into a new
sample x1

i . The original sample is then referred to as x2
i . Consequently, each augmented dataset in

both D-SSL and G-SSL is represented as Xaug
tr,l = {x1

i , x
2
i }

N,l
i=1. Each {x1

i , x
2
i } constitutes the i-th

sample pair, and the SSL objective is to learn a feature extractor f from these pairs.

D-SSL methods typically have two main objectives: alignment and regularization (Chen et al., 2020a;
Grill et al., 2020; Zbontar et al., 2021; Oord et al., 2018; Hjelm et al., 2018). The alignment objective
maximizes the similarity between paired samples in the embedding space, while the regularization
objective constrains the learning behavior via inductive biases. For example, SimCLR (Chen et al.,
2020a) enforces a uniform distribution over the feature representations. G-SSL methods (Hou et al.,
2022) can also be viewed as implementing alignment within a pair using an encoding-decoding
structure: sample x1

i is input into this structure to generate an output that is made as consistent as
possible with sample x2

i . Notably, alignment in D-SSL is often implemented using anchor points,
where one sample in a pair is viewed as the anchor, and the training process gradually pulls the other
sample towards this anchor. This concept of an anchor is also applicable to G-SSL, where x2

i is
treated as the anchor, and the training process involves constraining x1

i to approach x2
i .
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Building upon the previous discussion, by considering the anchor as a positively labeled sample, each
mini-batch in the SSL training phase can be viewed as a multi-class classification task. Specifically,
the augmented dataset Xaug

tr,l = {x1
i , x

2
i }

N,l
i=1 can be regarded as containing data from N categories,

where each pair {x1
i , x

2
i } represents the positive samples for the i-th category. Moreover, due to

the variability of data across mini-batches, each batch corresponds to a distinct training task. More
details about SSL task construction are provided in Appendix G.5.

3 METHODOLOGY

In this section, we first analyze the manifestation of universality in SSL and give a mathematical
definition with theoretical support. Then, we propose the σ-measurement to help quantify universality.
Next, we propose a novel SSL framework (GeSSL) to explicitly model universality in SSL. Finally,
we illustrate the relationship between universality and GeSSL.

3.1 DEFINITION OF UNIVERSALITY

Wang et al. (2022) and Huang et al. (2021) theoretically proved that to obtain a good representation
or model, SSL methods need to constrain the feature of samples to be discriminative, that is,
compact within classes and separated between classes. However, this explanation does not clarify
why an SSL model trained on one dataset (e.g., ImageNet (Deng et al., 2009a)) can generalize
to different downstream tasks. Ni et al. (2021) explains the generalizability of SSL methods to
different downstream tasks from the perspective of tasks but does not address the discriminability and
generalizability of SSL models themselves. These gaps motivated us to propose new understandings
and insights into the effectiveness of SSL methods in this paper. Therefore, we first provide a
definition of a good representation or model, namely, universality. This definition suggests that a good
representation should possess the properties of discriminability, generalizability, and transferability.

Considering a single mini-batch of SSL as a multi-class classification task, as mentioned in Section 2,
we present the definition of universality as follows:

Definition 3.1 (Universality) Given a set of training mini-batch tasks Xaug
tr = {Xaug

tr,l }
Mtr

l=1 and
a set of target mini-batch tasks Xaug

te = {Xaug
te,l }

Mte

l=1 without class-level overlap, where each task
contain N samples, the model fθ is said to exhibit universality if achieve:

• Learning universality: For Xaug
tr , the model fθ trained on each task Xaug

tr,l can achieve
L(fθ, Xaug

tr,l ) ≤ ϵ with iteration t ≤ Tmax through few samples |Xaug
tr,l | = αN , where

0 < α≪ 1, ϵ > 0, Tmax and L(·) denote the maximum number of iteration and the loss.

• Evaluation universality: For Xaug
te , the trained model fθ can achieve L(fθ, Xaug

te ) ≤ ϵ with
all the optimal task-specific models on all the target tasks.

For a specific mini-batch task, a model exhibits good discriminability if it can accurately predict all
samples of the task based on the learned representations. This is reflected by the model fθ achieving
the lowest loss on all samples of the task. Therefore, discriminability is a key component of learning
universality. According to Ahuja et al. (2020), if a model achieves good performance across multiple
different tasks, it can be considered to have learned causal representations. Moreover, Schölkopf et al.
(2021) and Ahuja et al. (2023) conclude that causality in representations is a sufficient condition for
generalizability. Thus, a generalizable representation should be causally invariant across multiple
tasks, enabling the model to achieve very low loss on these tasks using the same representation.
Furthermore, since the training tasks and target tasks have no class-level overlap, the model’s ability
to perform well on unseen tasks demonstrates transferability. Consequently, evaluation universality
encompasses both generalizability and transferability.

For the differences and relation of learning and evaluation universality: (i) Differences: learning
universality refers to the rapid adaptation of the model to each task during training, referring to
discriminability, while evaluation universality refers to the performance of the trained model in
various tasks, referring to generalizability and transferability. The differences are reflected in the two
stages of training vs. evaluation, and the performance of each single task vs. all tasks. (ii) Relation:
they cover all stages of training and testing, and jointly require the model to be close to universality.
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This paper introduces a fundamental concept of universality that surpasses previous works focused
on universal representations (Eastwood et al., 2023; Balazevic et al., 2024) and transferability (Hsu
et al., 2018; Ni et al., 2021) for two main reasons: (i) It incorporates both learning and evaluation
universality, thereby constraining the discriminability, generalizability, and transferability of SSL,
whereas prior studies focused solely on transferability. (ii) While earlier research emphasized task
performance, particularly in meta-learning (Hsu et al., 2018; Ni et al., 2021), this work evaluates the
model’s effects across diverse samples and tasks. More specifically, meta-learning operates under a
supervised framework, whereas GeSSL employs an unsupervised SSL approach. Additionally, the
outer model’s updates in meta-learning depend on the inner model’s performance, often constrained
by minimal samples, such as in 5-way 1-shot tasks, which can hinder discriminability. Furthermore,
generalization is assessed through query sets, potentially leading to overfitting on training tasks and
undermining broader generalizability.

3.2 MEASUREMENT OF UNIVERSALITY

In this subsection, we propose a σ-measurement to help quantify universality. According to Definition
3.1, the sufficient and necessary condition for universality is that the SSL model achieves low losses
on all the training samples, unseen datasets, and unseen tasks. Thus, we propose σ(f∗

θ ) to measure
the performance gap between the trained SSL model f∗

θ and the task-specific optimal models (ground-
truth with 100% accuracy, f∗

ϕl
). In other words, the more universality f∗

θ is, the more accurate the
output is, the closer the effect on a specific task is to f∗

ϕl
. Thus, we propose the following definition:

Definition 3.2 (σ-measurement) Given a set of unseen mini-batch tasks Xaug
te = {Xaug

te,l }
Mte

l=1 ,
assume that the optimal parameter θ∗ is independent of Xaug

te , i.e., not change due to the distribution
of test tasks, and the covariance of θ∗ satisfies Cov[θ∗] = (R2/d)Id, where R is a constant, d is the
dimension of the model parameter, and Id is a identity matrix, the error rate σ(f∗

θ ) is:

σ(f∗
θ ) =

∑
Xaug

te,l ∈Xaug
te

∑
x∈Xaug

te,l
KL(π(f∗

θ (x))|π(f∗
ϕl
(x))), (1)

where KL(p|q) =
∫
p(x) log

(
p(x)
q(x)

)
dx is the calculation of Kullback-Leibler Divergence which is

estimated via variational inference, π is the auxiliary classification head employed to generating the
class probability distribution.

Based on Section 2, a mini-batch can be regarded as an N -class classification task, where the samples
in each pair are the positive samples of a particular class. Therefore, we can employ a classifier π to
output the class probability distribution for each sample. Also, this measurement directly inspires the
design of the objective (Eq.4). More details are provided in Appendix B.1, including the analyses of
assumptions, the detailed calculation of KL term, and the detailed implementation, etc. Meanwhile,
we also conduct experiments to evaluate universality with σ-measurement in Appendix F.4.

3.3 EXPLICIT MODELING OF UNIVERSALITY

Based on the Definition 3.1 and 3.2, in this section, we explicitly model universality into SSL and
propose a general SSL framework as shown in Figure 1, called GeSSL. It learns universal knowledge
through a bi-level optimization over a set of SSL tasks conducted as described in Section 2. The
whole learning process of GeSSL can be divided into three steps:

Step 1: In this step, GeSSL aims to learn task-specific models by minimizing SSL loss over mini-
batches. The learning process of each mini-batch can be expressed as:

f l
θ ← fθ − α∇fθℓ(fθ, X

aug
tr,l ), (2)

where ℓ(fθ, X
aug
tr,l ) denotes the SSL loss, utilized in methods such as SimCLR, BYOL, and Barlow

Twins. Here, α is the learning rate, fθ is the initialized neural network, f l
θ is the task-specific model

for the mini-batch task Xaug
tr,l .

Unlike existing SSL methods, we input M mini-batches simultaneously in this step, resulting in M
task-specific models. During training, f l

θ typically undergoes K updates, executing Eq.2 K times.
This step is motivated by: (i) simulating a multi-task training environment to facilitate multi-task
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Figure 1: Overview of GeSSL and the learning gradients. The purple line refers to Step 1, the green
line refers to Step 2, and the red line refers to Step 3. The pseudo-code is shown in Appendix A.

learning; and (ii) improving the discriminability of task-specific models, as multiple updates lead to a
smaller training loss for f l

θ. Also, from a bi-level optimization perspective, this step can be regarded
as the inner-loop optimization.

Step 2: Given the constraints of mini-batch size and training complexity, K in Step 1 is typically
set to 1, leading to underfitting (Ravi & Larochelle, 2016; Wang et al., 2024a; Nakamura & Harada,
2019), which compromises the discriminability of task-specific models. To address this, we introduce
σ-measurement and propose the following optimization objective:

L(f l
θ, X

aug
tr,l ) =

∑
x∈Xaug

tr,l

KL(π(f l,K+λ
θ (x))|π(f l,K

θ (x))), (3)

where f l,K
θ is the obtained f l

θ that performs Eq.2 K times and f l,K+λ
θ is the obtained f l

θ that
performs Eq.2 another λ times further. We call f l,K+λ

θ the self-motivated target. Here, an auxiliary
classification head is employed to implement π, generating the class probability distribution.

When π(f l,K+λ
θ (x)) is fixed, Eq.3 can be interpreted as distilling the current model using a more

discriminative one, thereby enhancing its discriminability. Instead of directly performing K + λ
updates in Step 1, we use Eq.3 to improve the discriminability of the task-specific model. This
approach is chosen because (i) the optimal K + λ is unknown, and (ii) as noted in Zou et al. (2022),
Wang et al. (2024a), and Chen et al. (2022), excessively large K + λ values may lead to overfitting.
Compared to direct updates, Eq.3 offers better control and acts primarily as a regularizer, reducing
constraints on the task-specific model and partially mitigating overfitting.

Step 3: In this step, GeSSL aims to learn the final model f∗
θ based on task-specific models and Eq.3.

The learning process can be expressed as:

f∗
θ ← fθ − β

∑M
l=1∇fθL(f l

θ, X
aug
tr,l ), (4)

where β is the learning rate, L(f l
θ, X

aug
tr,l ) is given in Eq.3, and π(f l,K+λ

θ (x)) is fixed.

First, as shown in Eq.4, the goal of GeSSL is to derive f∗
θ , which is based on multiple task-specific

models and mini-batch tasks, framing the learning process as a multi-task process. Second, from
Eq.2, f l

θ is a function of the initialized neural network fθ. Moreover, from Eq.3, L(f l
θ, X

aug
tr,l ) is a

function of f l
θ, making it a first-order gradient function of fθ. Consequently, the optimization of f∗

θ
is a second-order gradient-based process with respect to fθ. Finally, from a bi-level optimization
perspective, this step corresponds to outer-loop optimization.

In summary, GeSSL initially constructs a series of mini-batch tasks to learn intermediate task-specific
models. It then introduces a distillation loss, whose minimization enhances the performance of
these intermediate models. Finally, by simulating the multi-task learning paradigm, minimizing the
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distillation loss, and employing a bi-level optimization mechanism, GeSSL yields the final model.
Besides, the key idea of GeSSL is concluded as: Once a model reaches optimality, future updates
will no longer affect it. However, if the model remains suboptimal, these updates will enhance its
performance. Step 3 essentially constrains the model to achieve optimality, as its optimization
process aims to align the performance of the current model with that of the future model
obtained through further updates. This alignment is only possible if fθ reaches optimality.

3.4 THE RELATIONSHIP BETWEEN UNIVERSALITY AND GESSL

According to Subsection 3.3, the objective function of GeSSL can be written as:

min
fθ

∑M
l=1L(f

l
θ, X

aug
tr,l ), s.t. f l

θ = argmin
fθ

ℓ(fθ, X
aug
tr,l ), l = 1, ...,M. (5)

Based on the Definition 3.1, we obtain that modeling discriminability, generalizability, and trans-
ferability is the key to modeling universality. From Eq.5, the constraints on the three properties of
universality within GeSSL are reflected in the following:

• Discriminability: Based on the illustration presented in the last paragraph of Subsection 3.3,
we can conclude that optimizing Eq.5 enables GeSSL to learn a better model compared with
traditional SSL methods that only update Eq.2 once. The key reason is that we minimize the
term L(f l

θ, X
aug
tr,l ). Thus, we can safely assert that GeSSL enhances model discriminability

by minimizing the loss
∑M

l=1L(f l
θ, X

aug
tr,l ).

• Generalizability: As shown in Subsection 3.1, training a model across different tasks
enables it to extract causal features from the data, thereby endowing the model with gen-
eralizability. Specifically, as illustrated in Step 1 and Step 3, GeSSL learns fθ through
multiple mini-batch tasks. To ensure that the final model achieves optimal performance on
all training tasks, GeSSL proposes updating the network parameters using a second-order
gradient method. Therefore, we conclude that GeSSL models generalizability through a
parameter update mechanism involving second-order gradients.

• Transferability: From Figure 1, we observe that the training process of GeSSL can be
regarded as an episodic learning process. Specifically, each episode of GeSSL consists of
M mini-batch tasks, and the entire learning process can be divided into multiple episodes.
Based on Section 2, we consider the learning process of GeSSL as estimating the true task
distribution from discrete training tasks, which enables the GeSSL model to generalize to
new, unseen tasks (i.e., test tasks). Therefore, we conclude that GeSSL achieves model
transferability through its learning paradigm.

Finally, GeSSL models discriminability, generalizability, and transferability into the SSL method
from three dimensions: optimization objective, parameter update mechanism, and learning paradigm.

4 THEORETICAL EVALUATION

In this section, we provide performance guarantees for GeSSL. Specifically, we restrict our attention
to the noise-less setting (true expectation) and analyze how the performance around f l

θ changes by
updating fθ. We assume the output of KL(·) is differentiable and convex with a minimum value of 0.

Theorem 4.1 Let f̃θ and fθ be SSL models before and after learning universal knowl-
edge based on Eq.4, and KLf (fθ1(X

aug
tr,l ), fθ2(X

aug
tr,l )) be the the abbreviation of∑

x∈Xaug
tr,l

KL(π(fθ1(x))|π(fθ2(x))), the update process for each mini-batch Xaug
tr,l satisfies:

f̃θ − fθ = β
αKLf (f l,K+λ

θ (Xaug
tr,l ), f

l,K
θ − αG⊤g(Xaug

tr,l ))

−β
αKLf (f l,K+λ

θ (Xaug
tr,l ), f

l,K
θ (Xaug

tr,l )) + o(β(α+ β)),
(6)

where G⊤ =M⊤M∈ Rnθ×nθ with the (transposed) JacobianM of f l,K
θ . When the learning rates

α and β are sufficiently small, there exists a self-motivated target that yields f̃θ − fθ ≤ o(β(α+ β)).

6
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Table 1: The Top-1 and Top-5 classification ac-
curacies of linear classifier on the ImageNet-100
dataset and ImageNet dataset (200 Epochs) with
ResNet-50 as feature extractor.

Method
ImageNet-100 ImageNet

Top-1 Top-5 Top-1 Top-5

SimCLR Chen et al. (2020a) 70.15 ± 0.16 89.75 ± 0.14 68.32 ± 0.31 89.76 ± 0.23
MoCo Chen et al. (2020b) 72.80 ± 0.12 91.64 ± 0.11 67.55 ± 0.27 88.42 ± 0.11
SimSiam Chen & He (2021) 73.01 ± 0.21 92.61 ± 0.27 70.02 ± 0.14 88.76 ± 0.23
Barlow Twins Zbontar et al. (2021) 75.97 ± 0.23 92.91 ± 0.19 69.94 ± 0.32 88.97 ± 0.27
SwAV Caron et al. (2020) 75.78 ± 0.16 92.86 ± 0.15 69.12 ± 0.24 89.38 ± 0.20
DINO Caron et al. (2021) 75.43 ± 0.18 93.32 ± 0.19 70.58 ± 0.24 91.32 ± 0.27
W-MSE Ermolov et al. (2021) 76.01 ± 0.27 93.12 ± 0.21 70.85 ± 0.31 91.57 ± 0.20
RELIC v2 Tomasev et al. (2022) 75.88 ± 0.15 93.52 ± 0.13 70.98 ± 0.21 91.15 ± 0.26
LMCL Chen et al. (2021) 75.89 ± 0.19 92.89 ± 0.28 70.83 ± 0.26 90.04 ± 0.21
ReSSL Zheng et al. (2021) 75.77 ± 0.21 92.91 ± 0.27 69.92 ± 0.24 91.25 ± 0.12
CorInfoMax Ozsoy et al. (2022) 75.54 ± 0.20 92.23 ± 0.25 70.83 ± 0.15 91.53 ± 0.22
MEC Liu et al. (2022a) 75.38 ± 0.17 92.84 ± 0.20 70.34 ± 0.27 91.25 ± 0.38
VICRegL Bardes et al. (2022) 75.96 ± 0.19 92.97 ± 0.26 70.24 ± 0.27 91.60 ± 0.24

SimCLR + GeSSL 72.43 ± 0.18 91.87 ± 0.21 69.65 ± 0.16 90.98 ± 0.19
MoCo + GeSSL 73.78 ± 0.19 93.28 ± 0.23 69.47 ± 0.28 90.34 ± 0.28
SimSiam + GeSSL 75.48 ± 0.19 94.83 ± 0.31 71.74 ± 0.19 89.28 ± 0.30
Barlow Twins + GeSSL 76.83 ± 0.19 93.23 ± 0.18 71.89 ± 0.22 89.32 ± 0.14
SwAV + GeSSL 76.38 ± 0.20 95.47 ± 0.19 71.47 ± 0.10 90.28 ± 0.28
DINO + GeSSL 76.84 ± 0.25 94.98 ± 0.24 72.84 ± 0.19 93.54 ± 0.18
VICRegL + GeSSL 77.58 ± 0.22 95.46 ± 0.15 73.54 ± 0.29 93.17 ± 0.30

Table 2: The semi-supervised learning accura-
cies (± 95% confidence interval) on the Ima-
geNet dataset with the ResNet-50 pre-trained on
the Imagenet dataset.

Method Epochs
1% 10%

Top-1 Top-5 Top-1 Top-5

MoCo Chen et al. (2020b) 200 43.8 ± 0.2 72.3 ± 0.1 61.9 ± 0.1 84.6 ± 0.2
BYOL Grill et al. (2020) 200 54.8 ± 0.2 78.8 ± 0.1 68.0 ± 0.2 88.5 ± 0.2

MoCo + GeSSL 200 46.2 ± 0.3 74.3 ± 0.2 63.4 ± 0.2 85.3 ± 0.1
BYOL + GeSSL 200 56.9 ± 0.2 79.6 ± 0.1 70.8 ± 0.2 89.9 ± 0.2
SimCLR Chen et al. (2020a) 1000 48.3 ± 0.2 75.5 ± 0.1 65.6 ± 0.1 87.8 ± 0.2
MoCo Chen et al. (2020b) 1000 52.3 ± 0.1 77.9 ± 0.2 68.4 ± 0.1 88.0 ± 0.2
BYOL Grill et al. (2020) 1000 56.3 ± 0.2 79.6 ± 0.2 69.7 ± 0.2 89.3 ± 0.1
SimSiam Chen & He (2021) 1000 54.9 ± 0.2 79.5 ± 0.2 68.0 ± 0.1 89.0 ± 0.3
Barlow Twins Zbontar et al. (2021) 1000 55.0 ± 0.1 79.2 ± 0.1 67.7 ± 0.2 89.3 ± 0.2
RELIC v2 Tomasev et al. (2022) 1000 55.2 ± 0.2 80.0 ± 0.1 68.0 ± 0.2 88.9 ± 0.2
LMCL Chen et al. (2021) 1000 54.8 ± 0.2 79.4 ± 0.2 70.3 ± 0.1 89.9 ± 0.2
ReSSL Zheng et al. (2021) 1000 55.0 ± 0.1 79.6 ± 0.3 69.9 ± 0.1 89.7 ± 0.1
SSL-HSIC Li et al. (2021) 1000 55.4 ± 0.3 80.1 ± 0.2 70.4 ± 0.1 90.0 ± 0.1
CorInfoMax Ozsoy et al. (2022) 1000 55.0 ± 0.2 79.6 ± 0.3 70.3 ± 0.2 89.3 ± 0.2
MEC Liu et al. (2022a) 1000 54.8 ± 0.1 79.4 ± 0.2 70.0 ± 0.1 89.1 ± 0.1
VICRegL Bardes et al. (2022) 1000 54.9 ± 0.1 79.6 ± 0.2 67.2 ± 0.1 89.4 ± 0.2

SimCLR + GeSSL 1000 50.4 ± 0.2 77.5 ± 0.1 66.9 ± 0.2 89.4 ± 0.3
MoCo + GeSSL 1000 53.5 ± 0.2 78.7 ± 0.1 70.9 ± 0.2 89.0 ± 0.2
BYOL + GeSSL 1000 58.7 ± 0.3 81.4 ± 0.2 71.5 ± 0.1 90.7 ± 0.2
Barlow Twins + GeSSL 1000 57.4 ± 0.2 80.2 ± 0.1 68.8 ± 0.2 91.4 ± 0.2

Table 3: The results of transfer learning on object detection and instance segmentation with C4-
backbone as the feature extractor. “AP” is the average precision, “APN” represents the average
precision when the IoU (Intersection and Union Ratio) threshold is N%.

Method
VOC 07 detection VOC 07+12 detection COCO detection COCO instance segmentation

AP50 AP AP75 AP50 AP AP75 AP50 AP AP75 APmask
50 APmask APmask

75

Supervised 74.4 42.4 42.7 81.3 53.5 58.8 58.2 38.2 41.2 54.7 33.3 35.2

SimCLR Chen et al. (2020a) 75.9 46.8 50.1 81.8 55.5 61.4 57.7 37.9 40.9 54.6 33.3 35.3
MoCo Chen et al. (2020b) 77.1 46.8 52.5 82.5 57.4 64.0 58.9 39.3 42.5 55.8 34.4 36.5
BYOL Grill et al. (2020) 77.1 47.0 49.9 81.4 55.3 61.1 57.8 37.9 40.9 54.3 33.2 35.0
SimSiam Chen & He (2021) 77.3 48.5 52.5 82.4 57.0 63.7 59.3 39.2 42.1 56.0 34.4 36.7
Barlow Twins Zbontar et al. (2021) 75.7 47.2 50.3 82.6 56.8 63.4 59.0 39.2 42.5 56.0 34.3 36.5
SwAV Caron et al. (2020) 75.5 46.5 49.6 82.6 56.1 62.7 58.6 38.4 41.3 55.2 33.8 35.9
MEC Liu et al. (2022a) 77.4 48.3 52.3 82.8 57.5 64.5 59.8 39.8 43.2 56.3 34.7 36.8
RELIC v2 Tomasev et al. (2022) 76.9 48.0 52.0 82.1 57.3 63.9 58.4 39.3 42.3 56.0 34.6 36.3
CorInfoMax Ozsoy et al. (2022) 76.8 47.6 52.2 82.4 57.0 63.4 58.8 39.6 42.5 56.2 34.8 36.5
VICRegL Bardes et al. (2022) 75.9 47.4 52.3 82.6 56.4 62.9 59.2 39.8 42.1 56.5 35.1 36.8

SimCLR + GeSSL 77.4 49.1 51.2 84.3 57.4 62.9 58.5 39.6 43.1 56.3 35.0 36.1
MoCo + GeSSL 78.5 49.3 53.9 85.2 59.3 65.5 60.7 41.6 44.2 58.2 36.1 38.0
BYOL + GeSSL 78.5 49.4 51.7 83.5 57.9 63.2 59.8 39.1 43.0 55.6 34.6 37.9
SimSiam + GeSSL 79.3 50.0 53.7 84.6 58.9 65.2 61.5 41.7 43.4 57.6 36.5 39.0
SwAV + GeSSL 77.2 48.8 51.0 84.1 57.5 65.0 61.4 39.7 43.3 56.2 36.5 37.4
VICRegL + GeSSL 77.4 49.7 53.2 84.5 58.0 64.7 62.1 41.9 44.6 58.1 36.8 38.4

The theorem shows that any self-motivated target, even in the absence of noise, can drive model
updates towards better performance, i.e., as α and β become small or even zero, we get f̃θ − fθ ≤ 0
where f̃θ achieves performance improvements over previous fθ. By using KL divergence to quantify
the difference between the model’s output distributions, the theorem ensures that controlled gradient
updates gradually reduce the model’s deviation from the target distribution. As the parameter β
decreases, the KL divergence term diminishes, indicating the model’s steady convergence towards a
more optimal state. The proof of this theorem and more analyses are provided in Appendix B.

5 EMPIRICAL EVALUATION

In this section, we first introduce the datasets in Section 5.1. Next, we conduct experiments on multi-
ple scenarios for evaluation in Sections 5.2-5.5, including unsupervised learning, semi-supervised
learning, transfer learning, and few-shot learning. We introduce the experimental setups in the
corresponding sections. More details are provided in Appendix C. Finally, we perform ablation
studies in Section 5.6. All results reported are the averages of five runs performed on NVIDIA RTX
4090 GPUs. More experiments are shown in Appendix F and G due to space limitations.

5.1 BENCHMARK DATASETS

For unsupervised learning, we evaluate GeSSL on CIFAR-10 Krizhevsky et al. (2009), CIFAR-100
Krizhevsky et al. (2009), STL-10 Coates et al. (2011), Tiny ImageNet Le & Yang (2015), ImageNet-
100 Tian et al. (2020a) and ImageNet Deng et al. (2009a). For semi-supervised learning, we evaluate
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Table 4: Few-shot learning accuracies (± 95% confidence interval) on miniImageNet, Omniglot, and
CIFAR-FS with C4. See Appendix E for the baselines’ details, and Appendix F for full results.

Method Omniglot miniImageNet CIFAR-FS
(5,1) (5,5) (20,1) (5,1) (5,5) (20,1) (5,1) (5,5) (20,1)

Unsupervised Few-shot Learning

CACTUs Hsu et al. (2018) 65.29 ± 0.21 86.25 ± 0.19 49.54 ± 0.21 39.32 ± 0.28 53.54 ± 0.27 31.99 ± 0.29 40.02 ± 0.23 58.16 ± 0.22 35.88 ± 0.25
UMTRA Khodadadeh et al. (2019) 83.32 ± 0.37 94.23 ± 0.35 75.84 ± 0.34 39.23 ± 0.34 51.78 ± 0.32 30.27 ± 0.34 41.61 ± 0.40 60.55 ± 0.38 37.10 ± 0.39
LASIUM Khodadadeh et al. (2020) 82.38 ± 0.36 95.11 ± 0.36 70.23 ± 0.36 42.12 ± 0.38 54.98 ± 0.37 34.26 ± 0.35 45.33 ± 0.32 62.65 ± 0.33 38.40 ± 0.33
SVEBM Kong et al. (2021) 87.07 ± 0.28 94.13 ± 0.27 73.33 ± 0.28 44.74 ± 0.29 58.38 ± 0.28 39.71 ± 0.30 47.24 ± 0.25 63.10 ± 0.28 40.10 ± 0.28
GMVAE Lee et al. (2021) 90.89 ± 0.32 96.05 ± 0.32 81.51 ± 0.33 42.28 ± 0.36 56.97 ± 0.38 39.83 ± 0.36 47.45 ± 0.36 63.20 ± 0.35 41.55 ± 0.35
PsCo Jang et al. (2023) 96.18 ± 0.21 98.22 ± 0.23 89.32 ± 0.23 46.35 ± 0.24 63.05 ± 0.23 40.84 ± 0.27 51.77 ± 0.27 69.66 ± 0.26 45.08 ± 0.27

Self-supervised Learning
SimCLR Chen et al. (2020a) 90.83 ± 0.21 97.67 ± 0.21 81.67 ± 0.23 42.32 ± 0.38 51.10 ± 0.37 36.36 ± 0.36 49.44 ± 0.30 60.02 ± 0.29 39.29 ± 0.30
MoCo Chen et al. (2020b) 87.83 ± 0.20 95.52 ± 0.19 80.03 ± 0.21 40.56 ± 0.34 49.41 ± 0.37 36.52 ± 0.38 45.35 ± 0.31 58.11 ± 0.32 37.89 ± 0.32
SwAV Caron et al. (2020) 91.28 ± 0.19 97.21 ± 0.20 82.02 ± 0.20 44.39 ± 0.36 54.91 ± 0.36 37.13 ± 0.37 49.39 ± 0.29 62.20 ± 0.30 40.19 ± 0.32
SimCLR + GeSSL 94.15 ± 0.26 98.46 ± 0.15 90.15 ± 0.19 46.34 ± 0.25 62.18 ± 0.20 39.28 ± 0.19 52.18 ± 0.32 67.01 ± 0.19 46.23 ± 0.27
MoCo + GeSSL 92.78 ± 0.24 97.26 ± 0.23 88.01 ± 0.24 46.66 ± 0.25 60.48 ± 0.25 40.38 ± 0.19 50.98 ± 0.24 65.56 ± 0.11 44.23 ± 0.17
SwAV + GeSSL 95.48 ± 0.16 97.98 ± 0.20 91.17 ± 0.25 48.15 ± 0.18 63.28 ± 0.09 41.32 ± 0.28 51.98 ± 0.31 69.28 ± 0.29 47.28 ± 0.18

GeSSL on ImageNet Deng et al. (2009a). For transfer learning, we select PASCAL VOC Everingham
et al. (2010) and COCO Lin et al. (2014a) for analysis. For few-shot learning, we select Omniglot
Lake et al. (2019), miniImageNet Vinyals et al. (2016a), and CIFAR-FS Bertinetto et al. (2018). More
details are provided in Appendix D.

5.2 UNSUPERVISED LEARNING
Table 5: Ablation study of hyperparameter λ for self-
motivated target with different K on miniImageNet.

K λ K+λ Acc (%) Training Time (h)
1 5 10 15 1 5 10 15 2 6 10 11 15 16 20 25 30
✓ ✓ ✓ 41.1 ± 0.3 3.15
✓ ✓ ✓ 44.3 ± 0.4 3.28
✓ ✓ ✓ 46.5 ± 0.3 3.40
✓ ✓ ✓ 45.7 ± 0.3 3.51

✓ ✓ ✓ 45.4 ± 0.2 3.69
✓ ✓ ✓ 47.0 ± 0.3 3.80
✓ ✓ ✓ 46.9 ± 0.3 4.01

✓ ✓ ✓ 47.1 ± 0.3 4.27
✓ ✓ ✓ 46.8 ± 0.4 4.52

✓ ✓ ✓ 47.2 ± 0.3 5.07

Experimental setup. We adopt the
most commonly used protocol Chen et al.
(2020a), freezing the feature extractor
and training a supervised linear classifier
on top of it. We use the Adam optimizer
Kingma & Ba (2014) with Momentum
and weight decay set at 0.8 and 10−4.
The linear classifier runs for 500 epochs
with a batch size of 128 and a learning rate that starts at 5 × 10−2 and decays to 5 × 10−6. We
use ResNet-18 as the feature extractor for small-scale datasets (CIFAR-10, CIFAR-100, STL-10,
and Tiny ImageNet), while using ResNet-50 for the medium-scale dataset (ImageNet-100) and the
large-scale dataset (ImageNet). The λ of the self-motivated target is set to 10.

Results. Table 1 shows the top-1 and top-5 linear classification accuracies on ImageNet-100 and
ImageNet. We can observe that applying GeSSL significantly outperforms the state-of-the-art (SOTA)
methods on all datasets and all the SSL baselines. The results demonstrate its ability to enhance the
performance of SSL. The full results and more analyses are provided in Appendix F.1.

5.3 SEMI-SUPERVISED LEARNING

Experimental setup. We adopt the commonly used protocol Zbontar et al. (2021) and create two
balanced subsets by sampling 1% and 10% of the training dataset. We fine-tune the models for 50
epochs with different learning rates, i.e., 0.05 and 1.0 for the classifier and 0.0001 and 0.01 for the
backbone on the 1% and 10% subsets. The λ is set to 10 with K = 1.

Results. Table 2 shows the results on ImageNet. We can observe that the performance after applying
our GeSSL is superior to the SOTA methods. Specifically, when only 1% of the labels are available
in 1000 epochs, the improvement brought by GeSSL reaches an average of 2.7% on Top-1 and an
average of 1.4% on Top-5. When only 10% of the labels are available in 1000 epochs, applying
GeSSL yields better top-1 and top-5 accuracy, increasing by 1.3% and 2.0%, respectively.

5.4 TRANSFER LEARNING

We construct three experiments for transfer learning, including the most commonly used object
detection and instance segmentation protocol Chen et al. (2020a); Zbontar et al. (2021), transfer to
other domains, and transfer on video-based tasks. The last two scenarios are shown in Appendix F.2.
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Figure 5: Universality performance of different models on five image-based tasks.

Experimental setup. We use Faster R-CNN Ren et al. (2015) for VOC detection and use Mask
R-CNN He et al. (2017) and a 1× schedule for COCO detection and segmentation with the same
C4-backbone Wu et al. (2019). During training, we train the Faster R-CNN model on the VOC 07+12
set (16K images) and reduce the initial learning rate by 10 at 18K and 22K iterations, while training
on the VOC 07 set (5K images) with fewer iterations. For the Mask R-CNN, we train it on the COCO
2017 train split and report the results on the val split. More details are shown in Appendix F.2.

Results. Table 3 shows the transfer learning results. The results show the great performance
improvements achieved by GeSSL: (i) for the VOC 07 detection task, SimSiam + GeSSL and MoCo
+ GeSSL achieve the best performance; (ii) for the VOC 07+12 detection task, MoCo + GeSSL
outperforms other methods; (iii) for the COCO detection task, GeSSL applied to VICRegL obtains
the best results; and (iv) for the COCO instance segmentation task, MoCo + GeSSL and VICRegL +
GeSSL obtain the best results. Therefore, our GeSSL continues to exhibit remarkable performance.

5.5 FEW-SHOT LEARNING

Experimental setup. We adopt the commonly used protocol Jang et al. (2023) and select on three
benchmarks, i.e., miniImageNet, Omniglot, and CIFAR-FS. For the few-shot SSL task, we randomly
select N samples without class-level overlap for each task, and then apply 2-times data augmentation,
obtaining a N -way 2-shot task with N classes and 2N samples. We use the stochastic gradient
descent (SGD) optimizer, setting the momentum and weight decay values to 0.9 and 10−4 respectively.
We evaluate the trained model’s performance in some unseen samples sampled from a new class.

Results. Table 4 shows the standard few-shot learning results of GeSSL compared with the baselines.
From the results, we can see that our framework still achieves remarkable performance improvement,
demonstrating the superiority of GeSSL. Specifically, we can observe that: (i) applying GeSSL
outperforms the SOTA few-shot learning baselines on almost all the datasets; and (ii) applying GeSSL
to the SSL models results in significant performance improvement (an average of nearly 8%) across
all tasks. We also conduct experiments on the cross-domain few-shot learning scenario, and the
results still proved the outstanding effect of our method. More details are illustrated in Appendix F.3.

5.6 ABLATION STUDY AND ANALYSIS

Influence of λ. We evaluate the performance of SimCLR + GeSSL with different λ under different
K (the number of inner-loop update steps), following the same settings in Section 5.5. The results in
Table 5 show that the trade-off performance is optimal when λ = 10 under K = 1 or K = 5, which
is also the hyperparameter setting for implementation. Meanwhile, the limited performance variation
with changes in K suggests its adaptability and ease of adjustment in practical applications.
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Model efficiency. We evaluate the trade-off performance of multiple baselines using GeSSL on STL-
10 Coates et al. (2011) with ResNet-50 backbone. The results in Figure 2 show that GeSSL achieves
great performance and efficiency improvements with acceptable parameter size. Combining the full
results shown in Appendix G.4, although GeSSL brings a larger memory footprint and parameter size
costs, it is relatively negligible compared to the performance and efficiency improvements.

Role of loss. We evaluate the impact of the loss functions in the outer-loop optimization. We record
the accuracy and training time of SimCLR+GeSSL with different losses, i.e., MSE Tsai et al. (2020),
Cross-Entropy De Boer et al. (2005), KL divergence Hershey & Olsen (2007), and Wasserstein
distance Panaretos & Zemel (2019). Figure 3 shows that KL divergence is the best choice.

Implementation of the bi-level optimization. The gradient update requires composing best-response
Jacobians via the chain rule, and the way of differentiation directly affects the model efficiency.
Therefore, we analyze the accuracy, training time, and memory footprint of different differentiation
methods following Choe et al. (2022); Liu et al. (2018); Zhang et al. (2019). Figure 4 shows that
approximate implicit differentiation with finite difference (AID-FD) achieves the optimal results.

Evaluation of universality. We quantify the universality of SSL baselines before and after the
introduction of GeSSL based on a provable σ−measurement (See Appendix F.4 for more results and
analysis). We choose 5 image-based and 5 video-based tasks following Liu et al. (2022b). Figure 5
shows the comparison results on image-based tasks. We can observe that the existing SSL model has
limited universality with higher σ-measurement error, but is highly improved by introducing GeSSL.

6 RELATED WORK

SSL learns representations by transferring knowledge from pretext tasks without annotation. Follow-
ing Jaiswal et al. (2020); Kang et al. (2023), existing SSL paradigms methods can mainly be divided
into two types, i.e., discriminative SSL and generative SSL. The discriminative SSL methods, e.g.,
SimCLR Chen et al. (2020a), BYOL Grill et al. (2020), and Barlow Twins Zbontar et al. (2021),
mainly use stochastic data augmentation to produce two augmented views from the same input sample,
and then maximize the similarity of the same pair in the embedding space to learn representations. In
contrast, the generative SSL methods, e.g., MAE Hou et al. (2022) and VideoMAE Tong et al. (2022),
mainly use an encoding-decoding structure to segment the input samples into multiple blocks, with
some blocks being masked and the remaining blocks reassembled in their original positions to learn
representation, and then use it to create a new sample. However, despite the empirical effect of the
existing SSL methods has been proven, they still face challenges Jaiswal et al. (2020). For example,
SSL models generalize poorly (i) when data are scarce Krishnan et al. (2022), or (ii) in real life that
have a lot of noise Goyal et al. (2021). SSL models also result in overfitting or underfitting when
facing semantic inconsistency or ambiguous data Araslanov & Roth (2021); Li et al. (2020), e.g.,
the object orientation in rotation prediction is not fixed. Moreover, their performance is affected by
the matching between pretext and downstream tasks and may be difficult to transfer well Tendle &
Hasan (2021). The experiments in Section 5 and Section F also demonstrate it. Meanwhile, existing
theories on universality remain unclear. Previous SSL studies Oord et al. (2018); Hjelm et al. (2018);
Mizrahi et al. (2024); Tian et al. (2020b); Oquab et al. (2023) are generally framed as “employing
certain methods to obtain a good representation” through experiments, without considering “what
constitutes a good representation”. In this study, we address this gap by explicitly defining “a good
representation” through formalized language, characterizing its core attributes as discriminability,
generalizability, and transferability. We also propose corresponding learning objectives to enhance
feature interpretability, enabling constraining on the universality of representations or models.

7 CONCLUSION

In this study, we explore the universality of SSL. We first unify SSL paradigms, i.e., discriminative
and generative SSL, from the task perspective and propose the definition of SSL universality. It
is a fundamental concept that involves discriminability, generalizability, and transferability. Then,
we propose GeSSL to explicitly model universality into SSL through bi-level optimization, which
introduces a σ-measurement-based self-motivated target to guide the model learn in the best direction.
Extensive theoretical and empirical analyses demonstrate the superior effectiveness of GeSSL.
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REPRODUCIBILITY STATEMENT

This work provides the source code for the algorithm with detailed implementation details which
has been submitted as supplementary material. Meanwhile, the appendix of this work also includes
clear assumptions and complete proofs for the theoretical analysis and results. For the extensive
experiments, detailed descriptions of the data processing steps and experimental setup for each
experiment (Table 6 shows the list) are also provided in the appendix.
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APPENDIX

The appendix is organized into several sections:

• Appendix A encompasses the pseudo-code of our GeSSL’s learning process.

• Appendix B contains the analyses and proofs of the presented definitions and theorems.

• Appendix C presents the implementation and architecture of our GeSSL.

• Appendix D provides details for all datasets used in the experiments.

• Appendix E provides details for the baselines mentioned in the main text.

• Appendix F showcases additional experiments, full results, and experimental details of the
comparison experiments that were omitted in the main text due to page limitations.

• Appendix G provides the additional experiments and full details of the ablation studies that
were omitted in the main text due to page limitations.

• Appendix H illustrates the differences between GeSSL and meta-learning in detail.

• Appendix I illustrates the how GeSSL deal with data issues.

Note that before we illustrate the details and analysis, we provide a brief summary about all the
experiments conducted in this paper, as shown in Table 6.

Table 6: Illustration of the experiments conducted in this work. Note that all experimental results are
obtained after five rounds of experiments.

Experiments Location Results
Experiments of unsupervised learning
on six benchmark dataset

Section 5.2 and Appendix F.1 Table 1, Table 8, Ta-
ble 7, Table 9, and
Table 13

Experiments of semi-supervised learn-
ing on on ImageNet with two settings

Section 5.3 Table 2 and Table
14

Experiment of transfer learning on three
scenarios

Section 5.4 and Appendix F.2 Table 3, Table 10,
and Table 11

Experiment of few-shot learning on stan-
dard and cross-domain scenarios

Section 5.5 and Appendix F.3 Table 4 and Table
12

Ablation study-Influence of λ Section 5.6 and Appendix G.1 Table 5

Ablation study-Model efficiency Section 5.6 and Appendix G.2 Figure 2 and Table
21

Ablation study-Role of loss Section 5.6 and Appendix G.3 Figure 3

Ablation study-Implementation of the bi-
level optimization

Section 5.6 and Appendix G.4 Figure 4

Ablation study-SSL task construction
and batchsize

Appendix G.5 Figure 8

Ablation study-The impact of the update
frequency n

Appendix G.5 Figure 9

Universality of existing SSL methods Appendix F.4 Figure 6 and Table
15

Evaluation of generative SSL on three
scenarios

Appendix F.5 Figure 7, Table 16,
Table 17, and Table
18

Evaluation on more modalities Appendix F.6 Table 19
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Algorithm 1 Pseudo-Code of the proposed GeSSL
Input: Candidate pool D; Randomly initialized model fθ with a feature extractor g(·), a projection
head h(·), and a additional classification head π(·)
Parameter: Mini-batch N ; The number of update steps K; The hyperparameter λ in the
self-motivated target; Learning rates α and β
Output: The SSL model fθ of GeSSL

1: for each task do
2: Sample a mini-batch Xtr,l from D
3: Apply random data augmentations to Xtr,l, obtaining the mini-batch task Xaug

tr,l

4: end for
5: for l = 1, ...,M do
6: for k = 1, ...,K do
7: Update f l

θ on the mini-batch task Xaug
tr,l using Eq.2

8: end for
9: Obtain f l,K

θ

10: Obtain the probabilistic distribution π(f l,K
θ (x))

11: for ι = 1, ..., λ do
12: Update f l

θ on the mini-batch task Xaug
tr,l using Eq.2

13: end for
14: Obtain the self-motivated target f l,K+λ

θ

15: Obtain the probabilistic distribution π(f l,K+λ
θ (x))

16: end for
17: Update fθ using Eq.4

A PSEUDO-CODE

The pseudo-code of GeSSL is provided in Algorithm 1.

B ANALYSES AND PROOFS

B.1 DETAILS OF DEFINITION 3.2

Definition 3.2 (σ-measurement) Given a set of unseen mini-batch tasks Xaug
te = {Xaug

te,l }
Mte

l=1 ,
assume that the optimal parameter θ∗ is independent of Xaug

te , i.e., not change due to the distribution
of test tasks, and the covariance of θ∗ satisfies Cov[θ∗] = (R2/d)Id, where R is a constant, d is the
dimension of the model parameter, and Id is a identity matrix, the error rate σ(f∗

θ ) is:

σ(f∗
θ ) =

∑
Xaug

te,l ∈Xaug
te

∑
x∈Xaug

te,l
KL(π(f∗

θ (x))|π(f∗
ϕl
(x))), (7)

where KL(p|q) =
∫
p(x) log

(
p(x)
q(x)

)
dx is the calculation of Kullback-Leibler Divergence which is

estimated via variational inference, π is the auxiliary classification head employed to generating the
class probability distribution.

This definition provides the assumption, i.e., "the optimal parameter θ∗ is independent of X te, i.e., not
change due to the distribution of test tasks, and the covariance of θ∗ satisfies Cov[θ∗] = (R2/d)Id".
We will explain these assumptions one by one, including the meaning of the assumptions and their
effects:

• θ∗ is independent of X te: Assuming that the optimal parameter θ∗ is not affected by the
distribution of test tasks X te, it means that θ∗ contains enough information to cope with
various possible test tasks during training. This is a common assumption in machine learning,
which is consistent with the training mechanism, i.e., the model approaches the optimal
based on the training data. It makes the connection between the model in the training and
testing phases clearer and more stable, and the approximation of the training model can be
achieved only by relying on the training data.
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• Cov[θ∗] = R2

d Id: This assumption states that the covariance matrix of θ∗ is the product of
a scaling factor R2

d and an identity matrix Id. This means that the variance of θ∗ in each
dimension is equal and different dimensions are independent of each other. The identity
matrix form of the covariance matrix in this assumption means that the changes in the model
parameters in each dimension are uniform and there is no preference in a specific direction.
It ensures that the model can obtain information from different data, eliminates the uneven
influence of the parameter dimension d on parameter estimation, and makes the analysis
results more universal and robust. This assumption is also a common assumption of machine
learning models.

KL Divergence Calculation The KL term KL(π(f∗
θ (x)) ||π(f∗

ϕl
(x))) evaluates the difference

between the output class probability distribution π(f∗
θ (x)) of model f∗

θ and the output distribution
π(f∗

ϕl
(x)) of the task-specific optimal model f∗

ϕl
. Since Section 6 treats an SSL mini-batch as a

multi-class task, "π is the auxiliary classification head" that outputs the class probability distribution
for a sample. Specifically, π(f∗

θ (x)) represents the predicted result of model f∗
θ , i.e., the predicted

class vector. π(f∗
ϕl
(x)) represents the output of the task-specific optimal model f∗

ϕl
, which is assumed

to output the ground truth (line 199), i.e., the true one-hot vector of the label. Thus, the KL term
calculates the difference between the predicted class vector of model f∗

θ for sample x and the
corresponding true label vector.

Example Suppose a specific task Xaug
te,l contains four original images. After augmentation, we obtain

eight samples corresponding to four classes (pseudo-labels), with two samples per class. Suppose
sample x belongs to the first class, so its true class probability distribution is [1, 0, 0, 0], which is also
the output of f∗

ϕl
. If π(f∗

θ (x)) outputs [0.81, 0.09, 0.03, 0.07], indicating that x is predicted to belong
to the first class, the KL term measures the difference between [0.81, 0.09, 0.03, 0.07] and the true
label [1, 0, 0, 0], i.e.,

DKL(P ||Q) =

4∑
i=1

P (i) log

(
P (i)

Q(i)

)
= 0.0924.

How σ(f∗
θ ) is Calculated in Practice First, "σ(f∗

θ ) measures the performance gap between the
trained SSL model f∗

θ and the task-specific optimal models," i.e.,

σ(f∗
θ ) =

∑
Xaug

te,l ∈Xaug
te

∑
x∈Xaug

te,l

KL(π(f∗
θ (x)) ||π(f∗

ϕl
(x))).

Second, the KL term measures the performance of f∗
θ on each sample. Therefore, in practice, σ(f∗

θ )
is calculated by evaluating the KL divergence between the output of model f∗

θ and the true class
probability distribution across all samples (

∑
x∈Xaug

te,l
) in all training tasks (

∑
Xaug

te,l ∈Xaug
te

).

B.2 PROOFS OF THEOREM 4.1

Theorem 4.1 Let f̃θ and fθ be SSL models before and after learning universal knowledge based on
Eq.4, and KLf (fθ1(X

aug
tr,l ), fθ2(X

aug
tr,l )) be the abbreviation of

∑
x∈Xaug

tr,l
KL(π(fθ1(x))|π(fθ2(x))),

the update process for each mini-batch Xaug
tr,l satisfies:

f̃θ − fθ = β
αKLf (f l,K+λ

θ (Xaug
tr,l ), f

l,K
θ − αG⊤g(Xaug

tr,l ))

−β
αKLf (f l,K+λ

θ (Xaug
tr,l ), f

l,K
θ (Xaug

tr,l )) + o(β(α+ β)),
(8)

where G⊤ =M⊤M∈ Rnθ×nθ with the (transposed) JacobianM of f l,K
θ . When the learning rates

α and β are sufficiently small, there exists a self-motivated target that yields f̃θ − fθ ≤ o(β(α+ β)).

Proofs. To facilitate the proof, we first introduce some useful notations. We let:
g = ∇fθℓ(fθ, X

aug
tr,l )

G⊤g = fθ − α∇fθℓ(fθ, X
aug
tr,l )

Qµ =
∑

T l
x∈Tx

∇fθL(f l
θ, X

aug
tr,l )

(9)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Then we get f̃θ = fθ − βQµ, by first-order Taylor series expansion of the SSL model with respect to
fθ around f̃θ:

f̃θ = fθ + β
〈
Qg, f̃θ − fθ

〉
+ o(β2 ∥Qµ∥22)

= fθ − β ⟨Qg,Qµ⟩+ o(β2 ∥Qµ∥22)

= fθ − β
〈
µ,G⊤g

〉
+ o(β2 ∥µ∥2G⊤)

(10)

then:
f̃θ − fθ = −β

〈
µ,G⊤g

〉
+ o(β2 ∥µ∥2G⊤) (11)

Combining the above formulas with the inner-loop optimization (Eq.2) and outer-loop optimization
(Eq.4), we can obtain:

f̃θ − fθ = β( 1
α (µ(f̃θ,G

⊤g)− µ(f̃θ, f
l
θ))) + o(αβ ∥Qw∥22) + o(β2 ∥Qµ∥22)

= β
α (µ(f̃θ,G

⊤g)− µ(f̃θ, f
l
θ)) + o(αβ ∥Qw∥22 + β2 ∥Qµ∥22)

= β
αµ(f̃θ,G

⊤g)− β
αµ(f̃θ, f

l
θ) + o(αβ ∥Qw∥22 + β2 ∥Qµ∥22)

≤ β
αµ(f̃θ,G

⊤g)− β
αµ(f̃θ, f

l
θ) + o(αβ + β2)

= β
αµ(f̃θ,G

⊤g)− β
αµ(f̃θ, f

l
θ) + o(β(α+ β))

(12)

The first item in this formula measures the distance between the two set of distributions πf̃θ
(the set

of self-motivated targets distributions) and πfθ (the distribution of fθ), and the distance measures
the learning effect. In our setting, the meta-objective is to minimize the distance between two
distributions. Therefore, the first term can be approximately 0. Finally, residuals capture distortions
due to same objective of every term in this equation. Then:

f̃θ − fθ ≤ 0− β
αµ(f̃θ, f

l
θ) + o(β(α+ β)) = β

αµ(f̃θ, f
l
θ) + o(β(α+ β)) (13)

As α and β become small or even zero, the residuals disappear exponentially, where o(β(α+β)) ≈ 0.
Then when all the above conditions are met, f̃θ − fθ ≤ 0 which means f̃θ achieves performance
improvements over previous fθ. So far, the performance guarantee of self-motivated meta-training is
completed.

C IMPLEMENTATION DETAILS

Task Construction. We build tasks based on images with a batch size of B = 16. For data
augmentation, we use the same data augmentation scheme as SimCLR to augment each image in the
batch 5 times. In simple terms, we draw a random patch (224× 224) from the original image, and
then apply a random augmentation sequence composed of random horizontal flip, cropping, color
jitter, etc.

Architecture and Settings. We use C4-backbone, ResNet-18, and ResNet-50 backbones as our
encoders for a fair comparison with different methods. The convolutional layers are followed by
batch normalization, ReLU nonlinearity, and max pooling (strided convolution) respectively. The
last layer is fed into a softmax classifier (a classification head). These architectures are pre-trained
and kept fixed during training. We optimize our model with a Stochastic Gradient Descent (SGD)
optimizer, setting the momentum and weight decay values to 0.9 and 10−4 respectively. The specific
adjustments of the experimental settings corresponding to different experiments are illustrated in
Section 5.2-Subsection 5.5 of the main text. In the ablation experiments, we adopt the experimental
settings used in the corresponding dataset, i.e., the experiment of “Influence of λ” is conducted on
miniImageNet, so we adopt the experimental settings described in Section 5.5. All the experiments
are apples-to-apples comparisons and performed on NVIDIA RTX 4090 GPUs.

Note that the training of the model is based on a mini-batch task perspective as mentioned in Section 2.
Taking a mini-batch X = (x1

i , x
2
i )

N

i=1 as an example, it can be regarded as a multi-class classification
task. Then, define the sample in the i-th augmentation pair as the anchor, and another augmented
sample in the same pair as the positive sample, then, we get (xa

i , x
+
i ), where x+

i is the center of a
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class cluster and x+
i is considered as belong to this class. All other augmented samples in the dataset

are treated as negative samples. In other words, given an anchor sample, the entire augmentation
dataset is split into a binary classification problem. For each sample, the value of it belonging to
class xa

i as va, then, the corresponding one-hot vector for it is [va, va]. Then, the whole multi-class
classification task is divided into many binary classification problem, and each one corresponds to an
anchor sample. This approach effectively models the classifier π(·) in SSL settings.

D BENCHMARK DATASETS

In this section, we briefly introduce all datasets used in our experiments. In summary, the benchmark
datasets can be divided into four categories: (i) for unsupervised learning, we evaluate GeSSL on
six benchmark datasets, including CIFAR-10 Krizhevsky et al. (2009), CIFAR-100 Krizhevsky
et al. (2009), STL-10 Coates et al. (2011), Tiny ImageNet Le & Yang (2015), ImageNet-100 Tian
et al. (2020a) and ImageNet Deng et al. (2009a); (ii) for semi-supervised learning, we evaluate
GeSSL on ImageNet Deng et al. (2009a); (iii) for transfer learning, we select two scenarios: instance
segmentation (PASCAL VOC Everingham et al. (2010)) and object detection (COCO Lin et al.
(2014a)) for analysis; (iv) for few-shot learning, we select three benchmarks for evaluation, including
Omniglot Lake et al. (2019), miniImageNet Vinyals et al. (2016a), and CIFAR-FS Bertinetto et al.
(2018). The composition of the data set is as follows:

• CIFAR-10 Krizhevsky et al. (2009) is a prevalent image classification benchmark comprising
10 classes, each containing 5000 32×32 resolution images.

• CIFAR-100 Krizhevsky et al. (2009), another widely used image classification benchmark,
consists of 100 classes, each containing 5000 images at a resolution of 32×32.

• STL-10 Coates et al. (2011) encompasses 10 classes with 500 training and 800 test images
per class at a high resolution of 96x96 pixels. It also includes 100,000 unlabeled images for
unsupervised learning.

• Tiny ImageNet Le & Yang (2015), a subset of ImageNet by Stanford University, comprises
200 classes, each with 500 training, 50 verification, and 50 test images.

• ImageNet-100 Tian et al. (2020a), a subset of ImageNet, includes 100 classes, each contain-
ing 1000 images.

• ImageNet Deng et al. (2009a), organized by the WordNet hierarchy, is a renowned dataset
featuring 1.3 million training and 50,000 test images across 1000+ classes.

• PASCAL VOC dataset Everingham et al. (2010), known for object classification, detection,
and segmentation, encompasses 20 classes with a total of 11,530 images split between VOC
07 and VOC 12.

• COCO dataset Lin et al. (2014a), primarily used for object detection and segmentation,
comprises 91 classes, 328,000 samples, and 2,500,000 labels.

• miniImageNet Vinyals et al. (2016a) is a few-shot learning dataset that consists of 100
classes, each with 600 images. The images have a resolution of 84x84 pixels.

• Omniglot Lake et al. (2019) is another dataset for few-shot learning, which comprises 1623
different handwritten characters from 50 different alphabets. The 1623 characters were
drawn by 20 different people online using Amazon’s Mechanical Turk. Each image is paired
with stroke data [x, y, t] sequences and time (t) coordinates (ms).

• CIFAR-FS Bertinetto et al. (2018) is also a dataset for few-shot learning research, derived
from the CIFAR-100 dataset. It consists of 100 classes, each with a small training set of 500
images and a test set of 100 images. The images have a resolution of 32× 32 pixels.

In addition, we further construct cross-domain few-shot learning experiments in Appendix F.3 and
introduced six benchmark data sets, including:

• CUB Welinder et al. (2010) is a dataset of 200 bird species, with 11,788 images in total and
about 60 images per species. Each image has detailed annotations, including subcategory
labels, 15 part locations, 312 binary attributes, and a bounding box.
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• Cars Krause et al. (2013) is a dataset of 196 car models, with 16,185 images in total and
about 80 images per model. Each image has a subcategory label, indicating the manufacturer,
model, and year of the car.

• Places Zhou et al. (2017) is a dataset of 205 scene categories, with 2.5 million images in total
and about 12,000 images per category. The scene categories are defined by their functions,
representing the entry-level of the environment.

• CropDiseases Mohanty et al. (2016) is a dataset of 24,881 images of crop pests and diseases,
with 22 categories, each including different pests and diseases of 4 crops (cashew, cassava,
maize, and tomato).

• ISIC Codella et al. (2018) is a dataset of over 13,000 dermoscopic images of skin lesions,
which is the largest publicly available quality-controlled archive of dermoscopic images. The
dataset includes 8 common types of skin lesions, such as melanoma, basal cell carcinoma,
squamous cell carcinoma, etc.

• ChestX Wang et al. (2017) is a dataset of 112,120 chest X-ray images, with 14 common
types of chest diseases, such as pneumonia, emphysema, fibrosis, etc. The dataset was
collected from 30,805 unique patients (from 1992 to 2015) of the National Institutes of
Health Clinical Center (NIHCC).

E BASELINES

In this section, we briefly introduce all baselines used in the experiments for comparison. We select
fifteen representative self-supervised methods as baselines. These methods cover almost all the
classic and SOTA self-supervised methods, including:

• SimCLR Chen et al. (2020a) learns visual representations by contrastive learning of aug-
mented image pairs. It uses a neural network to maximize the similarity of positive pairs
and minimize the similarity of negative pairs.

• MoCo v2 Chen et al. (2020b) improves MoCo Chen et al. (2020b), another contrastive
learning method for visual representation learning. MoCo v2 introduces a momentum
encoder, a memory bank, and a shuffling BN layer to handle limited batch size and noisy
negatives. MoCo v2 also adopts SimCLR’s data augmentation and loss function to boost the
performance.

• BYOL Grill et al. (2020) does not need negative pairs or a large batch size. It uses two
neural networks, an online network and a target network, that learn from each other. The
online network predicts the target network’s representation of an augmented image, while
the target network is updated by a slow-moving average of the online network.

• SimSiam Chen & He (2021) simplifies BYOL by removing the momentum encoder and the
prediction MLP. It consists of two Siamese networks that map an input image to a feature
vector, and a small MLP head that projects the feature vector to the contrastive learning
space. SimSiam applies a stop-gradient operation to one of the MLP outputs, and uses a
negative cosine similarity loss to maximize the similarity between the two outputs.

• Barlow Twins Zbontar et al. (2021) learns representations by enforcing that the cross-
correlation matrix between the outputs of two identical networks fed with different augmen-
tations of the same image is close to the identity matrix. This encourages the networks to
produce similar representations for the positive pair, while reducing the redundancy between
the representation dimensions.

• DeepCluster Caron et al. (2018) is a clustering-based method for self-supervised learning. It
iteratively groups the features produced by a convolutional network into clusters, and uses
the cluster assignments as pseudo-labels to update the network parameters by supervised
learning. DeepCluster can discover meaningful clusters that are discriminative and invariant
to transformations, and can learn competitive features for various downstream tasks.

• SwAV Caron et al. (2020) uses online swapping of cluster assignments between multiple
views of the same image to learn visual features. SwAV first computes prototypes (cluster
centers) from a large set of features, and then assigns each feature to the nearest prototype.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

The assignments are then swapped across the views, and the network is trained to predict
the swapped assignments.

• DINO Caron et al. (2021) learns visual features by using a teacher-student architecture and
a distillation loss. The teacher network is an exponential moving average of the student
network, and the distillation loss makes the student features similar to the teacher features.
DINO also applies a centering and sharpening operation to the teacher features, which
prevents feature collapse and increases feature diversity.

• W-MSE Ermolov et al. (2021) learns features by using a weighted mean squared error (MSE)
loss, which assigns higher weights to the informative and less noisy features, and lower
weights to the less informative and more noisy features.

• RELIC v2 Tomasev et al. (2022) learns visual features by predicting relative location of
image patches. RELIC v2 divides an image into a grid of patches, and randomly selects a
query and a target patch. The network is trained to predict the relative location of the target
patch with respect to the query patch, using a cross-entropy loss.

• LMCL Chen et al. (2021) learns visual features by using a large margin cosine loss (LMCL).
LMCL is a metric learning loss that makes the features of the same class closer and the
features of different classes farther in the cosine space.

• ReSSL Zheng et al. (2021) learns visual features by using a reconstruction loss and a
contrastive loss. ReSSL applies random cropping and resizing to generate two views of the
same image, and then feeds them to a reconstruction network and a contrastive network. The
reconstruction network is trained to reconstruct the original image from the cropped view,
while the contrastive network is trained to maximize the similarity between the features of
the two views.

• SSL-HSIC Li et al. (2021) learns visual features by using a Hilbert-Schmidt independence
criterion (HSIC) loss. HSIC is a measure of statistical dependence between two random
variables, and can be used to align the features of different views of the same image.

• CorInfoMax Ozsoy et al. (2022) learns visual features by maximizing the correlation
and mutual information between the features of augmented image pairs and the image
labels. CorInfoMax aims to learn features that are both discriminative and consistent, and
outperform previous methods on image classification and segmentation tasks.

• MEC Liu et al. (2022a) is a clustering algorithm that can handle large-scale data with limited
memory by using a memory-efficient clustering (MEC) loss. MEC first samples a subset of
features, and then performs k-means clustering on the subset. The cluster assignments are
then propagated to the rest of the features by a nearest neighbor search.

• VICRegL Bardes et al. (2022) learns visual features by using a variance-invariance-
covariance regularization loss (VICRegL).

In addition, for the few-shot learning scenario, we choose six advanced unsupervised few-shot
learning methods as comparison baselines.

• CACTUs Hsu et al. (2018) uses clustering and augmentation to create pseudo-labels for
unlabeled data. It then trains a classifier on the labeled data and fine-tunes it on a few labeled
examples from the target task.

• UMTRA Khodadadeh et al. (2019) uses random selection and augmentation to create tasks
with pseudo-labels from unlabeled data. It then trains a classifier on each task and adapts it
to the target task using a few labeled examples.

• LASIUM Khodadadeh et al. (2020) uses latent space interpolation to generate tasks with
pseudo-labels from a generative model. It then trains an energy-based model on each task
and adapts it to the target task using a few labeled examples.

• SVEBM Kong et al. (2021) uses a symbol-vector coupling energy-based model to learn
from unlabeled data. It then adapts the model to the target task using a diffusion process.

• GMVAE Lee et al. (2021) uses a Gaussian mixture variational autoencoder to perform
learning, and then adapts the model to the target task using a variational inference process.
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Table 7: The classification accuracies (± 95% confidence interval) of a linear classifier (linear) and
a 5-nearest neighbors classifier (5-nn) with a ResNet-18 as the feature extractor. The comparison
baselines cover almost all types of methods mentioned in Section 6. The “-” denotes that the results
are not reported. More details of the baselines are provided in Appendix E.

Method
CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet

linear 5− nn linear 5− nn linear 5− nn linear 5− nn

SimCLR Chen et al. (2020a) 91.80 ± 0.15 88.42 ± 0.15 66.83 ± 0.27 56.56 ± 0.18 90.51 ± 0.14 85.68 ± 0.10 48.84 ± 0.15 32.86 ± 0.25
MoCo Chen et al. (2020b) 91.69 ± 0.12 88.66 ± 0.14 67.02 ± 0.16 56.29 ± 0.25 90.64 ± 0.28 88.01 ± 0.19 50.92 ± 0.22 35.55 ± 0.16
BYOL Grill et al. (2020) 91.93 ± 0.22 89.45 ± 0.22 66.60 ± 0.16 56.82 ± 0.17 91.99 ± 0.13 88.64 ± 0.20 51.00 ± 0.12 36.24 ± 0.28
SimSiam Chen & He (2021) 91.71 ± 0.27 88.65 ± 0.17 67.22 ± 0.26 56.36 ± 0.19 91.01 ± 0.19 88.16 ± 0.19 51.14 ± 0.20 35.67 ± 0.16
Barlow Twins Zbontar et al. (2021) 90.88 ± 0.19 89.68 ± 0.21 66.13 ± 0.10 56.70 ± 0.25 90.38 ± 0.13 87.13 ± 0.23 49.78 ± 0.26 34.18 ± 0.18
SwAV Caron et al. (2020) 91.03 ± 0.19 89.52 ± 0.24 66.56 ± 0.17 57.01 ± 0.25 90.72 ± 0.29 86.24 ± 0.26 52.02 ± 0.26 37.40 ± 0.11
DINO Caron et al. (2021) 91.83 ± 0.25 90.15 ± 0.33 67.15 ± 0.21 56.48 ± 0.19 91.03 ± 0.12 86.15 ± 0.25 51.13 ± 0.30 37.86 ± 0.19
W-MSE Ermolov et al. (2021) 91.99 ± 0.12 89.87 ± 0.25 67.64 ± 0.16 56.45 ± 0.26 91.75 ± 0.23 88.59 ± 0.15 49.22 ± 0.16 35.44 ± 0.10
RELIC v2 Tomasev et al. (2022) 91.92 ± 0.14 90.02 ± 0.22 67.66 ± 0.20 57.03 ± 0.18 91.10 ± 0.23 88.66 ± 0.12 49.33 ± 0.13 35.52 ± 0.22
LMCL Chen et al. (2021) 91.91 ± 0.25 88.52 ± 0.29 67.01 ± 0.18 56.86 ± 0.14 90.87 ± 0.18 85.91 ± 0.25 49.24 ± 0.18 32.88 ± 0.13
ReSSL Zheng et al. (2021) 90.20 ± 0.16 88.26 ± 0.18 66.79 ± 0.12 53.72 ± 0.28 88.25 ± 0.14 86.33 ± 0.17 46.60 ± 0.18 32.39 ± 0.20
SSL-HSIC Li et al. (2021) 91.95 ± 0.14 89.99 ± 0.17 67.23 ± 0.26 57.01 ± 0.27 92.09 ± 0.20 88.91 ± 0.29 51.37 ± 0.15 36.03 ± 0.12
CorInfoMax Ozsoy et al. (2022) 91.81 ± 0.11 89.85 ± 0.13 67.09 ± 0.24 56.92 ± 0.23 91.85 ± 0.25 89.99 ± 0.24 51.23 ± 0.14 35.98 ± 0.09
MEC Liu et al. (2022a) 90.55 ± 0.22 87.80 ± 0.10 67.36 ± 0.27 57.25 ± 0.25 91.33 ± 0.14 89.03 ± 0.33 50.93 ± 0.13 36.28 ± 0.14
VICRegL Bardes et al. (2022) 90.99 ± 0.13 88.75 ± 0.26 68.03 ± 0.32 57.34 ± 0.29 92.12 ± 0.26 90.01 ± 0.20 51.52 ± 0.13 36.24 ± 0.16

SimCLR + GeSSL 93.15 ± 0.25 91.02 ± 0.16 69.23 ± 0.20 58.56 ± 0.18 93.15 ± 0.28 91.55 ± 0.17 53.54 ± 0.21 37.16 ± 0.27
MoCo + GeSSL 92.78 ± 0.19 89.15 ± 0.22 68.16 ± 0.14 59.22 ± 0.24 93.17 ± 0.18 88.96 ± 0.30 52.07 ± 0.15 37.22 ± 0.13
BYOL + GeSSL 93.85 ± 0.22 92.44 ± 0.30 69.15 ± 0.22 58.99 ± 0.16 94.45 ± 0.18 90.50 ± 0.17 54.84 ± 0.19 37.54 ± 0.26
Barlow Twins + GeSSL 92.99 ± 0.18 91.02 ± 0.17 69.56 ± 0.19 59.93 ± 0.17 93.84 ± 0.09 89.46 ± 0.25 52.65 ± 0.14 35.15 ± 0.16
SwAV + GeSSL 93.17 ± 0.20 89.98 ± 0.26 69.98 ± 0.24 59.36 ± 0.25 92.85 ± 0.29 91.68 ± 0.24 51.89 ± 0.24 36.78 ± 0.34
DINO + GeSSL 92.77 ± 0.23 92.12 ± 0.23 70.85 ± 0.18 61.68 ± 0.33 94.48 ± 0.29 91.48 ± 0.19 53.51 ± 0.26 37.89 ± 0.24

• PsCo Jang et al. (2023) uses a probabilistic subspace clustering model to learn from unlabeled
data. It then adapts the model to the target task using a few labeled examples and a subspace
alignment process.

F ADDITIONAL EXPERIMENTS

In this section, we introduce the additional experiments, full results, and experimental details of
the comparison experiments, including unsupervised learning (Appendix F.1, also Section 5.2 of
the main text), transfer learning (Appendix F.2, also Section 5.4 of the main text), and few-shot
learning (Appendix F.3, also Section 5.5 of the main text). Next, we conduct experiments based on
the proposed σ-measurement (Definition 3.2) to evaluate the universality of existing SSL methods in
Appendix F.4. Finally, we apply our method to the generative self-supervised learning task and other
modalities, e.g., text, to further evaluate the effectiveness of GeSSL in Appendix F.5 and F.6.

F.1 UNSUPERVISED LEARNING Table 8: The Top-1 and Top-5 classification accu-
racies of linear classifier on ImageNet-100 with
ResNet-50 as feature extractor.

Method Top-1 Top-5
SimCLR Chen et al. (2020a) 70.15 ± 0.16 89.75 ± 0.14
MoCo Chen et al. (2020b) 72.80 ± 0.12 91.64 ± 0.11
BYOL Grill et al. (2020) 71.48 ± 0.15 92.32 ± 0.14
SimSiam Chen & He (2021) 73.01 ± 0.21 92.61 ± 0.27
Barlow Twins Zbontar et al. (2021) 75.97 ± 0.23 92.91 ± 0.19
SwAV Caron et al. (2020) 75.78 ± 0.16 92.86 ± 0.15
DINO Caron et al. (2021) 75.43 ± 0.18 93.32 ± 0.19
W-MSE Ermolov et al. (2021) 76.01 ± 0.27 93.12 ± 0.21
RELIC v2 Tomasev et al. (2022) 75.88 ± 0.15 93.52 ± 0.13
LMCL Chen et al. (2021) 75.89 ± 0.19 92.89 ± 0.28
ReSSL Zheng et al. (2021) 75.77 ± 0.21 92.91 ± 0.27
SSL-HSIC Li et al. (2021) 74.99 ± 0.19 93.01 ± 0.20
CorInfoMax Ozsoy et al. (2022) 75.54 ± 0.20 92.23 ± 0.25
MEC Liu et al. (2022a) 75.38 ± 0.17 92.84 ± 0.20
VICRegL Bardes et al. (2022) 75.96 ± 0.19 92.97 ± 0.26

SimCLR + GeSSL 72.43 ± 0.18 91.87 ± 0.21
MoCo + GeSSL 73.78 ± 0.19 93.28 ± 0.23
SimSiam + GeSSL 75.48 ± 0.19 94.83 ± 0.31
Barlow Twins + GeSSL 76.83 ± 0.19 93.23 ± 0.18
SwAV + GeSSL 76.38 ± 0.20 95.47 ± 0.19
DINO + GeSSL 76.84 ± 0.25 94.98 ± 0.24
LMCL + GeSSL 77.38 ± 0.21 95.10 ± 0.25
ReSSL + GeSSL 76.98 ± 0.23 94.88 ± 0.24
VICRegL + GeSSL 77.58 ± 0.22 95.46 ± 0.15

In this section, we present additional results of
the unsupervised learning experiments. Specif-
ically, Table 7 shows the results on four small-
scale datasets. We can observe that applying the
proposed GeSSL framework significantly out-
performs the state-of-the-art (SOTA) methods
on all four datasets. Table 7 shows the results on
four small-scale datasets. Table 8 provides the
full comparison results of our proposed GeSSL
on the medium-scale dataset, i.e., ImageNet-
100. The results still demonstrate the proposed
GeSSL’s ability to enhance the performance of
self-supervised learning methods, achieving sig-
nificant improvements over the original models
on all baselines. Moreover, applying our GeSSL
framework to all four types of representative
SSL models as described in Section 6, including
SimCLR, MoCo, BYOL, Barlow Twins, SwAV,
and DINO, achieves an average improvement of
3% compared to the original frameworks. Table
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9 provides the comparison results of our proposed GeSSL on a large-scale dataset, i.e., ImageNet. The
results show that, (i) the self-supervised learning model applying GeSSL achieves the state-of-the-art
result (SOTA) performance under all epoch conditions; and (ii) after applying the proposed GeSSL,
the self-supervised learning models consistently outperforms the original frameworks in terms of
average classification accuracy at 100, 200 and 400 epochs. For 1000 epochs, VICRegL + GeSSL
yields the best result among other state-of-the-art methods, with an average accuracy of 78.72%.

More recent methods The effect of GeSSL is reflected in the performance improvement when
applying it to the SSL baselines. The experimental results above have demonstrated that after the
introduction of GeSSL, the effects of all SSL baselines have been significantly improved. These
results have shown the outstanding effectiveness and robustness of GeSSL. The SSL baselines we use
cover all SOTA methods on the leaderboard of the adopted benchmark datasets (before submission).
The methods proposed in 2023-24 mainly are variants of the currently used comparison baselines.

To evaluate the effect of GeSSL on recently proposed methods, we select the two SSL methods
published in ICML23 for testing Baevski et al. (2023); Joshi & Mirzasoleiman (2023), where we
follow the same experimental settings. The results are shown in Tables 13 and 14. The results still
prove the effectiveness of GeSSL. We will supplement these results in the final version.

F.2 TRANSFER LEARNING

As mentioned in Section 5.4, we construct three sets of transfer learning experiments, including
the most commonly used object detection and instance segmentation protocol Chen et al. (2020a);
Zbontar et al. (2021); Grill et al. (2020), transfer to other domains (different datasets), and transfer
learning on video-based tasks. The results of the first experiment are illustrated in Section 5.4, and
the other two sets of experiments are described below.

Transfer to other domains. To explore the nature of transfer learning of the proposed frame-
work, we leverage models that had been pre-trained on the CIFAR100 dataset, including SimCLR
Chen et al. (2020a), BYOL Grill et al. (2020), and Barlow Twins Zbontar et al. (2021), on the
CIFAR100 dataset. We then applied these models to four distinct datasets, including CIFAR10
Krizhevsky et al. (2009), Flower102 Nilsback & Zisserman (2008), Food101 Bossard et al. (2014),
and Aircraft Maji et al. (2013). We first calculate the classification performance (Top-1) based on
the existing self-supervised model on different data sets, recorded as acc(method,dataset), such as
acc(SimCLR,Flower102). Then, we calculate the model’s classification performance by incorporat-
ing GeSSL on those data sets, which is recorded as acc(method + GeSSL,dataset). Finally, we get
the improvement ∆(method,dataset) = acc(method + GeSSL,dataset)−acc(method,dataset)
in classification performance on each dataset, as shown in Table 10. The results show that the migra-
tion effect of the model after applying the GeSSL framework has been steadily improved, proving
that GeSSL has effectively improved the versatility of the SSL model.

Video-based Task In order to assess the performance of our method with video-based tasks, we
transition our pre-trained model to handle a variety of video tasks, utilizing the UniTrack evaluation
framework Wang et al. (2021) as our testing ground. The findings are compiled in Table 11, which
includes results from five distinct tasks, drawing on the features from [layer3/layer4] of the Resnet-50.
The data indicates that existing SSL methods incorporating our GeSSL significantly surpass original
SSL approaches, with SimCLR achieving more than a 2% improvement in VOS Perazzi et al. (2016),
and BYOL seeing over a 3% gain in MOT Milan et al. (2016).

F.3 FEW-SHOT LEARNING

The outstanding performance of GeSSL in the few-shot learning scenario has been confirmed in
Section 5.5, where it can produce good results with limited data. However, the situation becomes
complicated in scenarios where data collection is infeasible in real life, such as medical diagnosis
and satellite imagery (Zheng, 2015; Tang et al., 2012). Therefore, the performance of the model
on cross-domain few-shot learning tasks is crucial, as it determines the applicability of the learning
model (Guo et al., 2020). To ensure that GeSSL can achieve robust performance in real-world
applications, we further conduct comparative experiments on cross-domain few-shot learning.
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Table 9: The Top-1 and Top-5 classification accuracies of linear classification on the ImageNet dataset
with ResNet-50 as the feature extractor. We record the comparison results from 100, 200, 400, and
1000 epochs.

Method
100 Epochs 200 Epochs 400 Epochs 1000 Epochs

Top-1 Top-5 Top-1 Top-5 Top-1 Top-1
Supervised 71.93 - 73.45 - 74.92 76.35

SimCLR Chen et al. (2020a) 66.54 ± 0.22 88.14 ± 0.26 68.32 ± 0.31 89.76 ± 0.23 69.24 ± 0.21 70.45 ± 0.30
MoCo Chen et al. (2020b) 64.53 ± 0.25 86.17 ± 0.11 67.55 ± 0.27 88.42 ± 0.11 69.76 ± 0.14 71.16 ± 0.23
BYOL Grill et al. (2020) 67.65 ± 0.27 88.95 ± 0.11 69.94 ± 0.21 89.45 ± 0.27 71.85 ± 0.12 73.35 ± 0.27
SimSiam Chen & He (2021) 68.14 ± 0.26 87.12 ± 0.26 70.02 ± 0.14 88.76 ± 0.23 70.86 ± 0.34 71.37 ± 0.22
Barlow Twins Zbontar et al. (2021) 67.24 ± 0.22 88.66 ± 0.19 69.94 ± 0.32 88.97 ± 0.27 70.22 ± 0.15 73.29 ± 0.13
SwAV Caron et al. (2020) 66.55 ± 0.27 88.42 ± 0.22 69.12 ± 0.24 89.38 ± 0.20 70.78 ± 0.34 75.32 ± 0.11
DINO Caron et al. (2021) 67.23 ± 0.19 88.48 ± 0.21 70.58 ± 0.24 91.32 ± 0.27 71.98 ± 0.26 73.94 ± 0.29
W-MSE Ermolov et al. (2021) 67.48 ± 0.29 90.39 ± 0.27 70.85 ± 0.31 91.57 ± 0.20 72.49 ± 0.24 72.84 ± 0.18
RELIC v2 Tomasev et al. (2022) 66.38 ± 0.23 90.89 ± 0.21 70.98 ± 0.21 91.15 ± 0.26 71.84 ± 0.21 72.17 ± 0.20
LMCL Chen et al. (2021) 66.75 ± 0.13 89.85 ± 0.36 70.83 ± 0.26 90.04 ± 0.21 72.53 ± 0.24 72.97 ± 0.29
ReSSL Zheng et al. (2021) 67.41 ± 0.27 90.55 ± 0.23 69.92 ± 0.24 91.25 ± 0.12 72.46 ± 0.29 72.91 ± 0.30
CorInfoMax Ozsoy et al. (2022) 70.13 ± 0.12 91.14 ± 0.25 70.83 ± 0.15 91.53 ± 0.22 73.28 ± 0.24 74.87 ± 0.36
MEC Liu et al. (2022a) 69.91 ± 0.10 90.67 ± 0.15 70.34 ± 0.27 91.25 ± 0.38 72.91 ± 0.27 75.07 ± 0.24
VICRegL Bardes et al. (2022) 69.99 ± 0.25 91.27 ± 0.16 70.24 ± 0.27 91.60 ± 0.24 72.14 ± 0.20 75.07 ± 0.23

SimCLR + GeSSL 68.38 ± 0.18 89.74 ± 0.22 69.65 ± 0.16 90.98 ± 0.19 71.30 ± 0.19 72.48 ± 0.29
MoCo + GeSSL 66.54 ± 0.22 88.19 ± 0.23 69.47 ± 0.28 90.34 ± 0.28 70.48 ± 0.30 72.81 ± 0.21
SimSiam + GeSSL 70.48 ± 0.19 88.34 ± 0.17 71.74 ± 0.19 89.28 ± 0.30 72.58 ± 0.18 74.55 ± 0.25
Barlow Twins + GeSSL 69.39 ± 0.20 89.40 ± 0.21 71.89 ± 0.22 90.32 ± 0.14 73.90 ± 0.19 74.91 ± 0.23
SwAV + GeSSL 68.93 ± 0.19 89.39 ± 0.16 71.47 ± 0.10 90.28 ± 0.28 72.48 ± 0.19 76.15 ± 0.18
DINO + GeSSL 69.39 ± 0.19 90.49 ± 0.21 72.84 ± 0.19 93.54 ± 0.18 73.84 ± 0.28 76.15 ± 0.20
VICRegL + GeSSL 72.38 ± 0.23 91.23 ± 0.19 73.54 ± 0.29 93.17 ± 0.30 74.15 ± 0.25 78.72 ± 0.29

Table 10: The performance of adding task information in self-supervised models on different datasets.

Evl.dataset SimCLR+GeSSL BYOL+GeSSL Barlow Twins+GeSSL VICRegL+GeSSL

CIFAR10 +3.51 +2.49 +2.12 +2.77
Flower102 +3.99 +2.05 +2.96 +3.01
Food101 +1.81 +2.35 +1.96 +1.99
Aircraft +2.55 +2.86 +2.19 +2.30

Experimental setup. We compare our proposed GeSSL with the few-shot learning baselines as
described in Table 4 (Subsection 5.5) on cross-domain few-shot learning. The details of the baselines
are illustrated in Appendix E. We adopt six cross-domain few-shot learning benchmark datasets,
and divided these datasets into two categories according to their similarity with ImageNet: i) high
similarity: CUB Welinder et al. (2010), Cars Krause et al. (2013), and Places Zhou et al. (2017); ii)
low similarity: CropDiseases Mohanty et al. (2016), ISIC Codella et al. (2018), and ChestX Wang
et al. (2017). The (N,A) in the tables means the N -way A-shot tasks with N classes and N × A
samples, where each class has A samples augmented from the same image.

Results. Table 12 presents the performance of the model trained on miniImageNet and transfer to
the six cross-domain few-shot learning benchmark datasets mentioned above. By observation, we
further validate the performance of our proposed GeSSL: i) Effectiveness: achieves better results than
the state-of-the-art baselines on almost all benchmark datasets; ii) Generalization: achieves nearly a
3% improvement compared to unsupervised few-shot Learning and self-supervised learning on the
datasets with significant differences from the training phase; iii) Robustness: achieves better results
than the PsCo Jang et al. (2023) which introduces out-of-distribution samples, even though we do not
explicitly consider out-of-distribution samples on datasets with significant differences.

F.4 UNIVERSALITY OF EXISTING SSL METHODS

Current self-supervised learning (SSL) models overlook the explicit incorporation of universality
within their objectives, and the corresponding theoretical comprehension remains inadequate, posing
challenges for SSL models to attain universality in practical, real-world applications Huang et al.
(2021); Sun et al. (2020); Ericsson et al. (2022). Therefore, we propose a provable σ−measure
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Table 11: Transfer learning on video tracking tasks. All methods use the same ResNet-50 backbone
and are evaluated based on UniTrack.

Method
SOT VOS MOT MOTS PoseTrack

AUCXCorr AUCDCF J -mean IDF1 HOTA IDF1 HOTA IDF1

SimCLR 47.3 / 51.9 61.3 / 50.7 60.5 / 56.5 66.9 / 75.6 57.7 / 63.2 65.8 / 67.6 67.7 / 69.5 72.3 / 73.5
MoCo 50.9 / 47.9 62.2 / 53.7 61.5 / 57.9 69.2 / 74.1 59.4 / 61.9 70.6 / 69.3 71.6 / 70.9 72.8 / 73.9
SwAV 49.2 / 52.4 61.5 / 59.4 59.4 / 57.0 65.6 / 74.4 56.9 / 62.3 68.8 / 67.0 69.9 /69.5 72.7 / 73.6
BYOL 48.3 / 55.5 58.9 / 56.8 58.8 / 54.3 65.3 / 74.9 56.8 / 62.9 70.1 / 66.8 70.8 / 69.3 72.4 / 73.8
Barlow Twins 44.5 / 55.5 60.5 / 60.1 61.7 / 57.8 63.7 / 74.5 55.4 / 62.4 68.7 / 67.4 69.5 / 69.8 72.3 / 74.3

SimCLR+GeSSL 50.3 / 54.0 63.1 / 53.7 62.6 / 58.5 69.7 / 77.7 60. / 65.2 67.8 / 69.9 69.0 / 71.3 73.4 / 74.5
BYOL+GeSSL 51.5 / 57.4 60.3 / 58.9 60.7 / 57.0 67.4 / 76.9 57.9 / 64.2 72.5 / 68.3 73.2 / 71.3 74.7 / 75.3

Table 12: The cross-domain few-shot learning accuracies (±95% confidence interval). We transfer
models trained on miniImageNet to six benchmark datasets with the C4-backbone. The best results
are highlighted in bold. The (N,A) means the N -way A-shot tasks with N classes and N × A
samples, where each class has A samples augmented from the same image.

Method CUB Cars Places
(5,5) (5,20) (5,5) (5,20) (5,5) (5,20)

Unsupervised Few-shot Learning

MetaSVEBM 45.893 ± 0.334 54.823 ± 0.347 33.530 ± 0.367 44.622 ± 0.299 50.516 ± 0.397 61.561 ± 0.412
MetaGMVAE 48.783 ± 0.426 55.651 ± 0.367 30.205 ± 0.334 39.946 ± 0.400 55.361 ± 0.237 65.520 ± 0.374
PsCo 56.365 ± 0.636 69.298 ± 0.523 44.632 ± 0.726 56.990 ± 0.551 64.501 ± 0.780 73.516 ± 0.499

Self-supervised Learning
SimCLR 51.389 ± 0.365 60.011 ± 0.485 38.639 ± 0.432 52.412 ± 0.783 59.523 ± 0.461 68.419 ± 0.500
MoCo 52.843 ± 0.347 61.204 ± 0.429 39.504 ± 0.489 50.108 ± 0.410 60.291 ± 0.583 69.033 ± 0.654
SwAV 51.250 ± 0.530 61.645 ± 0.411 36.352 ± 0.482 51.153 ± 0.399 58.789 ± 0.403 68.512 ± 0.466

SimCLR + GeSSL 55.541 ± 0.456 64.489 ± 0.198 43.656 ± 0.199 55.841 ± 0.248 64.846 ± 0.300 72.651 ± 0.244
MoCo + GeSSL 57.485 ± 0.235 65.348 ± 0.279 45.348 ± 0.319 55.094 ± 0.248 66.489 ± 0.198 73.983 ± 0.251
SwAV + GeSSL 55.289 ± 0.190 65.839 ± 0.498 42.015 ± 0.315 56.481 ± 0.420 64.452 ± 0.350 72.237 ± 0.481

Method CropDiseases ISIC ChestX
(5,5) (5,20) (5,5) (5,20) (5,5) (5,20)

Unsupervised Few-shot Learning

MetaSVEBM 71.652 ± 0.837 84.515 ± 0.902 37.106 ± 0.732 48.001 ± 0.723 27.238 ± 0.685 29.652 ± 0.610
MetaGMVAE 72.683 ± 0.527 80.777 ± 0.511 30.630 ± 0.423 37.574 ± 0.399 24.522 ± 0.405 26.239 ± 0.422
PsCo 89.565 ± 0.372 95.492 ± 0.399 43.632 ± 0.400 54.886 ± 0.359 21.907 ± 0.258 24.182 ± 0.389

Self-supervised Learning
SimCLR 80.360 ± 0.488 89.161 ± 0.456 44.669 ± 0.510 51.823 ± 0.411 26.556 ± 0.385 30.982 ± 0.422
MoCo 81.606 ± 0.485 90.366 ± 0.377 44.328 ± 0.488 52.398 ± 0.396 24.198 ± 0.400 27.893 ± 0.412
SwAV 80.055 ± 0.502 89.917 ± 0.539 43.200 ± 0.356 50.109 ± 0.350 21.252 ± 0.439 28.270 ± 0.417

SimCLR + GeSSL 84.298 ± 0.428 94.438 ± 0.348 47.546 ± 0.402 55.486 ± 0.345 30.560 ± 0.277 34.343 ± 0.415
MoCo + GeSSL 85.667 ± 0.374 95.520 ± 0.345 46.437 ± 0.347 56.676 ± 0.280 29.258 ± 0.344 31.468 ± 0.290
SwAV + GeSSL 85.274 ± 0.345 94.667 ± 0.350 46.463 ± 0.291 55.203 ± 0.317 27.237 ± 0.355 32.130 ± 0.211

(Definition 3.2) in Section 3.2 to help evaluate the model universality, and further build GeSSL based
on it to explicitly model universality into the SSL’s learning objective. In this Section, we specifically
quantify the universality scores of existing SSL methods based on σ−measure, and verify that our
proposed GeSSL actually improves the model universality.

Specifically, we chose two scenarios based on images and videos to evaluate the model versatility
following Liu et al. (2022b). The image-based tasks include linear probing (top-1 accuracy) with
800-epoch pre-trained models (LIN), semi-supervised classification (top-1 accuracy) using 1% subset
of training data (SEMI), object detection (AP) on VOC dataset (VOC) and COCO dataset (COCO),
instance segmentation (APmask) on COCO dataset (SEG). For video-based tasks, we compute rankings
in terms of AUC for SOT, J -mean for VOS, IDF-1 for MOT, IDF-1 for PoseTracking, and IDF-1 for
MOTS, respectively. Next, we evaluate the σ-measurement scores of different baselines before and
after the introduction of GeSSL and after training for 200 epochs. Among them, the better model is
set to the result of ground truth, and the calculation of σ-measurement score is performed on a series
of randomly sampled tasks.

Specifically, the σ-measurement score assesses the difference in performance between the learned
model and the optimal model for each task. The optimal model is assumed to output the ground truth,
and the performance difference is quantified using the KL divergence between the predicted and true
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Table 13: Top-1 validation accuracy on
ImageNet-1K dataset for ViT-B and ViT-L.

Method Epoch ViT-B ViT-L

data2vec 2.0 200/150 80.5 81.8
data2vec 2.0 + GeSSL 200/150 85.2 86.7

Table 14: Downstream classification accuracy of
SimCLR-SAS on CIFAR-10.

Method Subset Size Top-1 Accuracy (%)

SimCLR-SAS 10% 79.7
SimCLR-SAS + GeSSL 10% 82.0

(a) SimCLR (b) BYOL (c) MoCo (d) SwAV (e) SimSiam (f) BarlowTwins

(g) SimCLR (h) BYOL (i) MoCo (j) SwAV (k) InfoMin (l) InsDis

Figure 6: Universality performance of different models on five image-based tasks (top row) and five
video-based tasks (bottom row). We choose σ−measure as the measurement. It is worth noting
that the smaller the σ−measurefen score, the better the effect. Meanwhile, we normalize the results
of σ−measurefen scores on different datasets and compare the performance between baselines by
comparing the corresponding branch of the fan chart.

class probability distributions. It compares the predicted class probabilities produced by classifier π
to the true labels across SSL tasks, such as comparing the predicted values [0.81, 0.09, 0.03, 0.07]
to the true labels [1, 0, 0, 0]. Take LIN task with SimCLR as an example, we train SimCLR and
SimCLR+GeSSL on the COCO dataset for 200 epochs, then add a classification head after the feature
extractor. A new mini-batch is input into both SimCLR and SimCLR+GeSSL to generate class
probability distributions for each sample, and the KL divergence between these predicted and true
distributions is calculated. After normalization, the scores for the LIN task are obtained, with similar
evaluations conducted for other baselines and tasks.

Figure 6 shows the comparison results. Note that the lower σ−measure denotes the better performance.
From the results, we can observe that: (i) the σ-measurement score of the existing SSL model is low
and it is difficult to achieve good results in multiple domains and tasks; (ii) after the introduction
of GeSSL, the σ-measurement score of the SSL models are significantly decreased. The results
demonstrate that the existing SSL model has limited universality (proves the description in Section
1), and the performance improvement brought by GeSSL is achieved by improving the universality.

Considering that the above experiments evaluate the evaluation universality of SSL models, here, we
construct the following numerical experiments to evaluate learning universality: In the first 20-200
epochs of training (each epoch contains multiple tasks), we evaluate the average performance of
multiple f l

θ in each epoch. Each f l
θ is obtained by updating fθ on the corresponding training tasks

with one step. We calculate the accuracy of SimCLR before and after the introduction of GeSSL and
the ratio r of their effects on the CIFAR-10 data set. If r < 1, it means that the representation effect
learned by the model in each epoch of training is better when introducing GeSSL. The results for
every 20 epochs are shown in Table 15. The results show that: (i) r is always less than 1, which proves
that the representation effect learned after the introduction of GeSSL is significantly improved; (ii)
after the introduction of GeSSL, the accuracy of the model is significantly improved, and it becomes
stable after 80 epochs, i.e., great results can be achieved for even based on just one iteration and few
data. These results show that "the model fθ achieves comparable performance on each task quickly
with few data during training" after introducing GeSSL.
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Figure 7: Comparison of BLEU scores for different models, comparing 2 fully supervised and 3
self-supervised pre-text tasks, trained on the Flickr8k.

Table 15: The performance of introducing GeSSL during training. All results are recorded during
training using the σ-measurement.

Metric Training Epochs
20 40 60 80 100 120 140 160 180 200

Accuracy of SimCLR 20.1 43.6 51.2 60.2 70.3 77.2 82.3 86.1 88.7 88.6
Accuracy of SimCLR + GeSSL 41.9 66.3 82.1 93.5 93.4 93.0 93.6 93.7 93.7 93.8
Performance Ratio r 0.479 0.657 0.623 0.643 0.752 0.830 0.879 0.918 0.946 0.944

F.5 EVALUATION ON GENERATIVE SELF-SUPERVISED LEARNING

In this Section, we evaluate the effectiveness of the proposed GeSSL on the generative self-supervised
learning paradigm. We conduct experiments on three scenarios, including image generation, image
captioning, and object detection and segmentation.

Evaluation on Image Generation To explore the effect of GeSSL on generative SSL, we conduct a
set of experiments on ImageNet-1K dataset Deng et al. (2009b). Specifically, we begin by conducting
self-supervised pre-training on the ImageNet-1K (IN1K) training set. Following this, we carry out
supervised training to assess the representations using either (i) end-to-end fine-tuning or (ii) linear
probing. The results are reported as the top-1 validation accuracy for a single 224×224 crop. For
this process, we utilize ViT-Large (ViT-L/16) Dosovitskiy et al. (2020) as the backbone. Note that
ViT-L is very big (an order of magnitude bigger than ResNet-50 He et al. (2016)) and tends to overfit,
as shown in Table 16. The comparison results are shown in Table 17. We can observe that GeSSL
achieves stable performance improvements

Evaluation on Image Captioning We use the commonly used protocol following Mohamed et al.
(2022). The dataset we use to train the pretext task is the unlabeled part of MSCOCO dataset Vinyals
et al. (2016b), which contains 123K images with an average resolution of 640 × 480 pixels. This
dataset contains color and grayscale images. For downstream tasks, we use the Flicker8K dataset
Hodosh et al. (2013). Next, we train it using pre-trained pre-text tasks supervised by VGG-16 and
ResNet-50, as well as self-supervised pre-text tasks from SimCLR and Jigsaw Puzzle solutions. In
the next step, to evaluate the results, we use the BLEU (Bilingual Evaluation Research) score as the
evaluation metric, which evaluates the generated sentences against the reference sentences, where a
perfect match is 1 and a perfect mismatch is 0, calculating scores for 1, 2, 3 and 4 cumulative n-grams.
The results are shown in Figure 7. From the results, we can observe that after introducing the GeSSL
framework we proposed, the model effect has been further improved, stably exceeding the SOTA of
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Table 16: Comparison between models.

Method scratch, original scratch, our impl. baseline MAE MAE + Our

Top 1 76.5 82.5 85.3 87.2

Table 17: Comparisons with previous results on ImageNet-1K. The ViT models are B/16, L/16,
H/14 Dosovitskiy et al. (2020). The pre-training data is the ImageNet-1K training set (except the
tokenizer in BEiT was pre-trained on 250M DALLE data Ramesh et al. (2021)). All results are on an
image size of 224, except for ViT-H with an extra result of 448.

Method pre-train data ViT-B ViT-L ViT-H ViT-H448

DINO IN1K 82.8 - - -
MoCo IN1K 83.2 84.1 - -
BEiT IN1K+DALLE 83.2 85.2 - -
MAE IN1K 83.6 85.9 86.9 87.8

MAE+Ours IN1K 86.9 87.6 88.9 89.1

the SSL method, and even approaching the supervised learning results. The results show that our
proposed GeSSL can still achieve good results in generative self-supervised learning.

Evaluation on Object Detection and Segmentation For object detection and segmentation, we
fine-tune Mask R-CNN He et al. (2017) end-to-end on COCO Lin et al. (2014b). The ViT backbone
is adapted for use with FPN Lin et al. (2017). We report box AP for object detection and mask
AP for instance segmentation. The results are shown in Table 18. Compared to supervised pre-
training, our MAE performs better under all configurations. Our method still achieves optimal results,
demonstrating its effectiveness.

F.6 EVALUATION ON MORE MODALITIES

Table 19: Performance on for text recognition.

Methods IIIT5K IC03
SimCLR Chen et al. (2020a) 1.7 3.8
SeqCLR Aberdam et al. (2021) 35.7 43.6

SimCLR + GeSSL 19.0 19.2
SeqCLR + GeSSL 39.0 49.0

GeSSL proposed in this work can be applied in
various fields and domains, e.g., instance seg-
mentation, video tracking, sample generation,
etc., as mentioned before. Here, we provide the
experiments of GeSSL on text modality-based
datasets, i.e., IC03 and IIIT5K Yasmeen et al.
(2020), which we have conducted before. We
follow the same experimental settings as men-
tioned in Aberdam et al. (2021). The results
shown in Table 19 demonstrate that GeSSL achieves stable effectiveness and robustness in various
modalities combined with the above experiments.

Table 18: COCO object detection and segmentation using a ViT Mask R-CNN baseline. All self-
supervised entries use IN1K data without labels, and Mask AP follows a similar trend as box AP.

Method pre-train data
APbox APmask

ViT-B ViT-L ViT-B ViT-L

supervised IN1K w/ labels 47.9 49.3 42.9 43.9
MoCo v3 IN1K 47.9 49.3 42.7 44.0
BEiT IN1K+DALLE 49.8 53.3 44.4 47.1
MAE IN1K 50.3 53.3 44.9 47.2

MAE + Our IN1K 54.2 56.1 46.7 50.1
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G DETAILS OF ABLATION STUDY

In this section, we introduce the experimental details and more comprehensive analysis of the ablation
studies (Subsection 5.6), including influence of λ, model efficiency, role of loss, and implementation
of bi-level optimization. In addition, we further conduct ablation experiments for task construction,
and display the experimental settings and results in Appendix G.5

G.1 INFLUENCE OF λ

This ablation study evaluates the effect of the hyperparameter λ in the self-motivated target. Recall
that GeSSL explicitly models universality into self-supervised learning, and as mentioned in Section
3.1 of the main text, universality involves two aspects, including: (i) learning universality, i.e.,
the model fθ which learns universal representations during training, should achieve competitive
performance on each task quickly with few data; (ii) evaluation universality, i.e., the trained f∗

θ , which
has learned universal representations, should adapt to different tasks simultaneously with minimal
additional data. Therefore, we hope that GeSSL can enable the model to achieve optimal results based
on a few update steps. Our experimental setup constraints several conditions: (i) fast adaptation: keep
the update steps K of the inner-loop optimization in a small range of K ∈ [1, 15]; (ii) few data: use
miniImageNet as the benchmark dataset, and follow the settings of few-shot learning experiments;
and (iii) performance evaluation: evaluate the effect of SimCLR + GeSSL, in addition to evaluating
the accuracy under different λ, we can also compare with the results of few-shot learning experiments
(Subsection 5.5 and Table 4).

The results of the ablation experiment about “influence of λ” are presented in Table 5 of the main
text. Through further analysis, we derive two additional conclusions: (i) Combining with Table
4 of the main text, regardless of the value of K, SimCLR + GeSSL consistently outperforms
SimCLR on miniImageNet, demonstrating the performance enhancement brought by GeSSL; (ii)
Considering Figure 2 of the main text, despite the introduction of universality constraints by GeSSL,
the computational efficiency of SimCLR + GeSSL remains better than that of SimCLR, proving the
efficiency improvement brought by GeSSL.

G.2 MODEL EFFICIENCY

This ablation study explores the efficiency of self-supervised models before and after applying GeSSL.
Specifically, we choose five baselines, including SimCLR Chen et al. (2020a), MOCO Chen et al.
(2020b), BYOL Grill et al. (2020), Barlow Twins Zbontar et al. (2021), and SwAV Caron et al. (2020).
Then, we evaluate the accuracy, training hours, and parameter size of these models on STL-10 before
and after applying our proposed GeSSL. We use the same linear evaluation setting as in Section
5.1 of the main text. The setting for GeSSL is “K=1” and “λ = 10”. Finally, we plot the trade-off
scatter plot by recording the average values of five runs. The results are shown in Figure 2 of the
main text, where the horizontal axis represents the training hours and the vertical axis represents
the accuracy. The center of each circle represents the result of the training time and accuracy of
each model, and the area of the circle represents the parameter size. The numerical results of this
experiment are shown in Table 21. From the results, we can see that: (i) GeSSL can significantly
improve the performance and computational efficiency of self-supervised learning models; (ii) our
designed self-motivated target achieves the goal of guiding the model update toward universality with
few samples and fast adaptation; (iii) although GeSSL optimizes based on bi-level optimization, the
impact of the increased parameter size of GeSSL is negligible.

Table 20: Training cost per epoch of SSL models.

Methods Training Cost per Epoch (s)
SimCLR Chen et al. (2020a) 12.8
MOCO Chen et al. (2020b) 16.9
SimCLR + GeSSL 9.4
MOCO + GeSSL 11.1

Note that although the optimization method
used by GeSSL is more complex, one of its core
goals is to accelerate model convergence, i.e.,
achieve greater performance improvement per
unit of time. This does not imply that GeSSL al-
ways requires fewer epochs to reach the optimal
result. In fact, GeSSL uses approximate im-
plicit differentiation with finite difference (AID-
FD) for updates instead of conventional explicit
second-order differentiation (as mentioned in Appendix G.4). Moreover, GeSSL constructs a self-
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Table 21: Model analysis including parameter size, training time, and performance.

Methods Memory Footprint (MiB) Parameter Size (M) Training Time (h) Accuracy (%)
SimCLR 2415 23.15 4.15 90.5
MOCO 2519 24.01 4.96 90.9
BYOL 2691 25.84 6.98 91.9
BarlowTwins 2477 23.15 5.88 90.3
SwAV 2309 22.07 4.45 90.7
SimCLR+GeSSL 2713 26.05 3.36 93.1
MOCO+GeSSL 2801 27.01 4.17 94.2
BYOL+GeSSL 2902 28.05 5.64 94.5
BarlowTwins+GeSSL 2833 27.07 5.22 93.9
SwAV+GeSSL 2971 28.50 3.91 92.8
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Figure 8: The effect of batchsize in SSL task
construction (also the number of classes in SSL
task) for GeSSL.
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Figure 9: The effect of n in the outer-loop opti-
mization (also the number of SSL tasks that are
learned simultaneously) for GeSSL.

motivated target that guides the model to optimize more effectively in a specific task. Therefore, the
efficiency improvement is reflected in the computational efficiency and effectiveness of updates per
epoch, rather than simply reducing the total number of epochs. Furthermore, to verify whether the
efficiency improvement is attributable to a single epoch, we separately measured the computational
overhead of SSL baseline algorithms after integrating GeSSL for a single epoch. The results, pre-
sented in Table 20, demonstrate that with a consistent batch size, GeSSL enhances the computational
efficiency and the effectiveness of updates per epoch for the SSL baseline algorithms.

G.3 ROLE OF LOSS

This ablation study explores the role of the loss function in the outer-loop optimization of GeSSL.
The goal of the outer-loop optimization is to update the model towards universality, and the choice
of loss function directly affects the model performance. Therefore, we select four commonly used
loss functions, including MSE Tsai et al. (2020), cross-entropy De Boer et al. (2005), KL divergence
Hershey & Olsen (2007), and Wasserstein distance Panaretos & Zemel (2019). We record the
performance and training time of SimCLR + GeSSL with different losses on STL-10. These loss
functions are computed as follows:

MSE (mean squared error) Tsai et al. (2020) calculates the mean of the squared difference between
model predictions and true values. The advantage of MSE is that it is simple to calculate, and the
disadvantage is that it is sensitive to outliers. The formula for MSE is:

MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2 (14)

where y is the true value, ŷ is the predicted value, and n is the number of samples.
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Cross-entropy De Boer et al. (2005) is a loss function used for classification problems, which
calculates the difference between model-predicted probabilities and true probabilities. The advantage
of cross-entropy is that it can reflect the uncertainty of the model, and the disadvantage is that it may
cause the gradient to vanish or explode. The formula for cross-entropy is:

CE(y, ŷ) = −
n∑

i=1

yi log ŷi (15)

where y is the true probability, ŷ is the predicted probability, and n is the number of classes.

KL divergence (Kullback-Leibler divergence) Hershey & Olsen (2007) is a measure of the similarity
between two probability distributions, which can be seen as the difference between cross-entropy and
entropy. The advantage of KL divergence is that it can reflect the distance between distributions, and
the disadvantage is that it is asymmetric and may be unbounded. The formula for KL divergence is:

KL(P∥Q) =
∑
i

P (i) log
P (i)

Q(i)
(16)

where P is the true distribution, Q is the predicted distribution.

Wasserstein distance Panaretos & Zemel (2019) is a measure of the distance between two probability
distributions, which can be seen as the minimum cost of transforming one distribution into another.
The advantage of Wasserstein distance is that it can reflect the geometric structure of the distributions,
and the disadvantage is that it is computationally complex and requires regularization. The formula
for Wasserstein distance is:

WD(P,Q) = inf
γ∈Π(P,Q)

E(X,Y )∼γ [∥X − Y ∥] (17)

where P is the true distribution, Q is the predicted distribution, Π(P,Q) is the set of all joint
distributions that couple P and Q, and ∥ · ∥ is some distance measure.

From empirical analysis, Figure 3 in the main text provides the experimental results. We find that
GeSSL achieves the best balance between accuracy and computational efficiency when using self-
motivated target with KL divergence, i.e., the model achieves the highest accuracy in the shortest
training time. Specifically, whether from the accuracy or the computational efficiency, applying KL
divergence to evaluate the distribution difference and then update the model is much more efficient
than applying MSE and cross-entropy losses. Although applying Wasserstein distance achieves
similar accuracy, its computational time is significantly larger than applying KL divergence. Thus,
we use KL divergence to optimize our model in the outer-loop optimization.

From theoretical analysis, the key "optimal universality properties" for a metric in practical appli-
cations include: (i) the ability to accurately quantify subtle differences between distributions, (ii)
its utility in model optimization for stable and efficient convergence to the global optimum, (iii)
applicability to various complex distributions, and (iv) computational efficiency. Accordingly, the
superiority of KL divergence is reflected in three aspects Hershey & Olsen (2007); Goldberger et al.
(2003); Shlens (2014), meeting these properties. Firstly, KL divergence is non-negative, and it is
zero if and only if the two distributions are exactly the same, which is consistent with our intuitive
understanding of difference Gong et al. (2021). It ensures the stability of KL divergence in handling
subtle differences, meeting (i) and (iv). Secondly, KL divergence is a convex function, which means
that optimizing it is more likely to converge to the global optimum, rather than getting stuck in
the local optimum, particularly in high-dimensional problems Hershey & Olsen (2007). Thus, this
ensures that KL divergence meets (ii). Additionally, as an extension of information entropy, KL
divergence quantifies information loss and uncertainty, making it effective across various applications
Goldberger et al. (2003), especially self-rewarding learning tasks, meeting (iii). In contrast, other
metrics have notable limitations. MSE, based on Euclidean distance, is sensitive to outliers and fails
to account for non-negativity or normalization of probability distributions Marmolin (1986); Chicco
et al. (2021); Lebanon (2010), limiting its effectiveness in (i) and (iii). Cross-entropy, a special case
of KL divergence, struggles with continuous distributions or when the true distribution isn’t a one-hot
vector De Boer et al. (2005); Botev et al. (2013), limiting its ability to finely measure complex distri-
butions (i) and (iii). Lastly, while Wasserstein distance captures the overall shape difference between
distributions, its high computational complexity and requirement for smoothness conditions make it
less suited for high-dimensional cases Panaretos & Zemel (2019); Vallender (1974), hindering its
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fulfillment of (iv). Thus, KL divergence achieves the optimal balance between theoretical robustness
and computational feasibility, aligning with the "optimal universality properties" and resulting in
better model generalization and lower training costs.

G.4 IMPLEMENTATION OF THE BI-LEVEL OPTIMIZATION

The model of GeSSL is updated based on bi-level optimization, and the model gradients for each
level are obtained by combining the optimal response Jacobian matrices through the chain rule. In
practical applications, multi-level gradient computation requires a lot of memory and computation
Choe et al. (2022), so we hope to introduce a more concise gradient backpropagation and update
method to reduce the computational complexity. Specifically, we consider two types of gradient
update methods, including iterative differentiation (ITD) Finn et al. (2017a) and approximate implicit
differentiation (AID) Grazzi et al. (2020). We provide implementations of four popular ITD/AID
algorithms, including ITD with reverse-mode automatic differentiation (ITD-RMAD) Finn et al.
(2017a), AID with Neumann series (AID-NMN) Lorraine et al. (2020), AID with conjugate gradient
(AID-CG) Rajeswaran et al. (2019), and AID with finite difference (AID-FD) Liu et al. (2018). We
also choose the recently proposed optimizer, i.e., Lookahead Zhang et al. (2019) for comparison. We
denote the the upper-level parameters and the lower-level parameters as θ and ϕ, respectively. All the
way of gradient update of the bi-level optimization are as follows:

ITD-RMAD Finn et al. (2017a), ITD with reverse-mode automatic differentiation applies the implicit
function theorem to the lower-level optimization problem and computes the gradients of the upper-
level objective with respect to the upper-level parameters using reverse-mode automatic differentiation.
The update process is as follows:

• Solve the lower-level optimization problem ϕ∗ = argminϕ L(ϕ, θ) using gradient descent.

• Compute the gradient of the upper-level objective g(θ) = F (ϕ∗, θ) with respect to θ using
reverse-mode automatic differentiation:

∇θg(θ) = ∇θF (ϕ∗, θ)−∇ϕF (ϕ∗, θ)T (∇ϕL(ϕ
∗, θ))−1∇θL(ϕ

∗, θ) (18)

• Update the upper-level parameters using gradient descent or other methods: θ ← θ −
α∇θg(θ).

AID-NMN Lorraine et al. (2020), AID with Neumann series, approximates the inverse of the Hessian
matrix of the lower-level objective using a truncated Neumann series expansion and computes the
gradients of the upper-level objective with respect to the upper-level parameters using forward-mode
automatic differentiation. The update process is as follows:

• Solve the lower-level optimization problem ϕ∗ = argminϕ L(ϕ, θ) using gradient descent.

• Compute the gradient of the upper-level objective g(θ) = F (ϕ∗, θ) with respect to θ using
forward-mode automatic differentiation:

∇θg(θ) = ∇θF (ϕ∗, θ)−∇ϕF (ϕ∗, θ)T (∇ϕL(ϕ
∗, θ))−1∇θL(ϕ

∗, θ)

≈ ∇θF (ϕ∗, θ)−∇ϕF (ϕ∗, θ)T
∑K

k=0(−1)k(∇2
ϕL(ϕ

∗, θ))k∇θL(ϕ
∗, θ)

(19)

where K is the truncation order of the Neumann series.

• Update the upper-level parameters using gradient descent or other methods: θ ← θ −
α∇θg(θ).

AID-CG Rajeswaran et al. (2019), AID with conjugate gradient, solves a linear system involving the
Hessian matrix of the lower-level objective using the conjugate gradient algorithm and computes the
gradients of the upper-level objective with respect to the upper-level parameters using forward-mode
automatic differentiation. The update process is as follows:

• Solve the lower-level optimization problem ϕ∗ = argminϕ L(ϕ, θ) using gradient descent
or other methods.
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• Compute the gradient of the upper-level objective g(θ) = F (ϕ∗, θ) with respect to θ using
forward-mode automatic differentiation:

∇θg(θ) = ∇θF (ϕ∗, θ)

−∇ϕF (ϕ∗, θ)T (∇ϕL(ϕ
∗, θ))−1∇θL(ϕ

∗, θ) ≈ ∇θF (ϕ∗, θ)

−∇ϕF (ϕ∗, θ)T v

(20)

where v is the solution of the linear system (∇2
ϕL(ϕ

∗, θ))v = ∇θL(ϕ
∗, θ) obtained by the conjugate

gradient algorithm.

• Update the upper-level parameters using gradient descent or other methods: θ ← θ −
α∇θg(θ).

AID-FD Liu et al. (2018), AID with finite difference, approximates the inverse of the Hessian matrix
of the lower-level objective using a finite difference approximation and computes the gradients of
the upper-level objective with respect to the upper-level parameters using forward-mode automatic
differentiation. The update process is as follows:

• Solve the lower-level optimization problem ϕ∗ = argminϕ L(ϕ, θ) using gradient descent
or other methods.

• Compute the gradient of the upper-level objective g(θ) = F (ϕ∗, θ) with respect to θ using
forward-mode automatic differentiation:

∇θg(θ) = ∇θF (ϕ∗, θ)

−∇ϕF (ϕ∗, θ)T (∇ϕL(ϕ
∗, θ))−1∇θL(ϕ

∗, θ)

≈ ∇θF (ϕ∗, θ)

−∇ϕF (ϕ∗, θ)T ∇θL(ϕ∗+ϵ∇θL(ϕ∗,θ),θ)−∇θL(ϕ∗,θ)
ϵ

(21)

where ϵ is a small positive constant for the finite difference approximation.

• Update the upper-level parameters using gradient descent or other methods: θ ← θ −
α∇θg(θ).

Lookahead Zhang et al. (2019) introduces a novel approach to optimization by maintaining two sets
of weights: the fast and the slow weights. The fast weights, θfast, are updated frequently through
standard optimization techniques, while the slow weights, θslow, are updated at a lesser frequency.
The key formula that updates the slow weights is given by:

θslow ← θslow + α(θfast − θslow) (22)

where α is a hyperparameter controlling the step size. This method aims to stabilize training and
ensure consistent convergence.

The results shown in Figure 4 of the main text demonstrate that approximate implicit differentiation
with finite difference also achieves optimal results on the SSL model. Our optimization process is
also based on this setting.

G.5 EFFECT OF TASK CONSTRUCTION

GeSSL learns from a series of self-supervised learning tasks that are constructed based on data
augmentation (Subsection 2 in the main text). Specifically, the augmented data from the same image
have significant entity similarity, so we assign the same class label yj ∈ Y to the augmented data from
the same image xj . Therefore, a batch of SSL can be viewed as a multi-class classification problem,
where each class contains two samples. Then, the training data of n batches of self-supervised
learning can form n self-supervised learning tasks. The reliability of this view is also well recognized
by the SSL community Oord et al. (2018); Hjelm et al. (2018); Tian et al. (2020b). Comparing them
with the task construction of this work, they all construct the task concept based on approximate view
invariance theory but with differences. Specifically, the previously proposed methods mainly focus on

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

contrastive SSL, where the classification task concept is to access the samples with the same content
features for the same class and then according to the results to calculate mutual information for
learning. This work considers both discriminative and generative self-supervised learning paradigms
and presents a unified understanding of SSL tasks based on the presented alignment and regularization
stage with pseudo-labeling. Meanwhile, we would like to clarify that understanding SSL from a
task perspective is not the core contribution of our work, but rather part of the background for our
proposed methodology.

Considering that our framework updates the self-supervised model fθ in GeSSL based on these n
tasks simultaneously, the number of sampled samples per batch of self-supervised learning directly
determines the class diversity of the data in the task. In this section, we further conduct ablation
experiments on the batch size (the number of classes) of the tasks and the number of self-supervised
learning tasks n that are learned simultaneously.

Specifically, we choose the commonly used STL-10 for unsupervised learning, ImageNet with
10% label for semi-supervised learning, and miniImageNet for few-shot learning, and evaluate the
performance of SimCLR + GeSSL under different batch sizes and different n values. Figure 8 shows
the impact of different batch sizes (i.e., the number of classes in the multi-class classification task) for
SSL. The results show that SimCLR + GeSSL always outperforms SimCLR under any batch size. A
larger batch size leads to a slightly larger performance improvement for SimCLR + GeSSL, but also
increases the computational resource consumption. Therefore, in this study, we build tasks based on
images with a batch size of B = 16 or B = 32. Figure 9 shows the impact of the update frequency n
(i.e., update fθ every n batches) for the outer-loop optimization. The results indicate that n = 8 is a
better trade-off between model accuracy and time consumption. In the setting of our GeSSL, we also
choose n = 8 as the hyperparameter setting.

Table 22: Performance on for a large batchsize.

Methods Accuracy Training Cost
SimCLR Chen et al. (2020a) 90.8 5.2
SimCLR + GeSSL 93.6 3.6

In addition, considering that GeSSL updates ev-
ery n mini-batches, we evaluate the baseline
performance under n× the original batch size.
Specifically, we adopt the same experimental
setup as in Figure 2, with the only difference
being that we increase the batch size of the Sim-
CLR baseline by a factor of n and record the
results. The results are shown in Table 22, which indicate that the performance of SimCLR, after
converging with the larger training data, remains largely unchanged and still inferior to GeSSL.

H DIFFERENCES BETWEEN GESSL AND META-LEARNING

In the main text, we have illustrated the differences between GeSSL and meta-learning and the
advantages of GeSSL. In this section, we further elaborate on this and list different meta-learning
methods for comparison.

Meta-learning Finn et al. (2017b); Wang et al. (2024b); Snell et al. (2017), often referred to as
"learning to learn", has emerged as a prominent approach to improve the efficiency and adaptability
of machine learning models, especially in scenarios with limited data. The fundamental idea behind
meta-learning is to train models that can rapidly adapt to new tasks with minimal data by leveraging
prior experiences gained from a range of related tasks.

Few-shot Learning Khodadadeh et al. (2019); Jang et al. (2023): One of the primary areas where meta-
learning has demonstrated substantial impact is in few-shot learning. Methods like Model-Agnostic
Meta-Learning (MAML) Finn et al. (2017b) aim to find a set of model parameters that are sensitive
to changes in the task, allowing for quick adaptation to new tasks with just a few examples. Variants
of MAML, such as First-Order MAML (FOMAML) and Reptile Nichol & Schulman (2018), reduce
the computational complexity of the original algorithm while maintaining competitive performance.

Metric-based Approaches: Metric-based meta-learning methods, such as Matching Networks Sung
et al. (2018) and Prototypical Networks Snell et al. (2017), learn an embedding space where similar
tasks are closer together. These models perform classification by comparing the distance between
new examples and a few labeled instances (support set) in this learned space, achieving remarkable
results in few-shot classification tasks.
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Memory-augmented Networks: Another line of research in meta-learning explores the use of external
memory structures to facilitate rapid adaptation. Santoro et al introduced Memory-Augmented
Neural Networks (MANNs) Santoro et al. (2016) that use an external memory to store and retrieve
information about past tasks, enabling the model to perform well even in tasks with highly variable
distributions.

Gradient-based Meta-learning: Beyond MAML, other gradient-based methods such as Meta-SGD
Li et al. (2017) and Learning to Learn with Gradient Descent have been proposed. These methods
modify the way gradients are used during the training of the model, either by learning the initial
parameters (as in MAML) or by learning the learning rates for different parameters, allowing for
more efficient adaptation.

Bayesian Meta-learning: Bayesian approaches to meta-learning, such as Bayesian MAML Zhang
et al. (2021), offer a probabilistic framework for capturing uncertainty and improving generalization
to new tasks. These methods have been particularly useful in scenarios where task distributions are
diverse, and the model needs to account for uncertainty in task inference.

Meta-learning for Reinforcement Learning: Meta-learning has also been successfully applied in the
domain of reinforcement learning (RL). Methods such as Meta-RL Yu et al. (2020) aim to train agents
that can quickly adapt to new environments by leveraging the experience gained in previous tasks.
These approaches have shown promise in enabling RL agents to solve tasks with minimal exploration,
a crucial aspect for real-world applications where exploration can be costly or risky.

In summary, meta-learning has rapidly evolved as a versatile framework that enhances the ability of
models to adapt quickly to new tasks, and operate efficiently in dynamic environments. Compared
meta-learning with the proposed GeSSL, we can see that the main difference is that meta-learning
only considers transferability, and does not model discriminability and generalization. First, the
update of the outer model of meta-learning depends on the performance of the inner task-specific
model. Considering that the model is based on episode training mechanism, it is only based on one
update on a specific task. Therefore, if the model update on a specific task is insufficient, then the
outer model is likely to be difficult to achieve good results on the task, affecting the discriminability.
Secondly, the generalization evaluation of the meta-learning model depends on its performance on the
query set, which pushes the model to overfit on the training tasks, thereby diminishing the model’s
ability to generalize.

I DISCUSSION OF DATA ISSUES

First, we would like to point out that even if all mini-batch data are independently and identically
distributed (i.i.d.), it does not imply that the resulting tasks are homogeneous. On the contrary, under
the i.i.d. assumption, task diversity can still be ensured in the following ways:

1. Complexity of Data Distribution: The i.i.d. assumption does not require data to be simple
or homogeneous. The distribution can be complex, covering multiple classes and diverse
sample characteristics. For instance, in a multi-class task, data can come from various
classes, with high complexity within each class. Therefore, even if the data are sampled
from the same distribution, the distribution itself can be complex enough to ensure task
diversity, reflected by a rich feature space (e.g., high-dimensional data or different input
types).

2. Diversity Through Sampling: Each mini-batch can be composed of different samples
randomly drawn from the same distribution. This means that while the samples come from
the same distribution, each mini-batch can have different sample combinations, with varying
features and class ratios, presenting different learning challenges to the model.

3. Data Augmentation: In many deep learning and self-supervised learning methods, data
augmentation is used to create diverse training tasks. Even if samples are i.i.d., using different
augmentation techniques (e.g., cropping, rotation, color transformation) can provide the
model with diverse inputs.

4. SSL Task Construction: We treat each mini-batch as a multi-class task, with each original
sample corresponding to a label. Thus, different tasks have different label distributions.
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Even if samples within a task are i.i.d., the label distribution varies across tasks, ensuring
diversity.

5. Theoretical Support: Theoretically, the i.i.d. assumption does not restrict task homogeneity.
Many theoretical works, such as Vapnik (1998) on statistical learning theory and Bengio et al.
(2013) on representation learning, discuss how samples drawn independently from the same
distribution can train models while maintaining task diversity and achieving generalization.
These studies show that even under the i.i.d. assumption, tasks can encompass different data
patterns and diverse features.

Even in cases of data scarcity or homogeneous tasks, not just data diversity, we have taken steps to
ensure learning effectiveness:

1. Definition Perspective: In machine learning, data scarcity and homogeneous tasks can
lead to overfitting to specific tasks, causing the model to learn all information, including
background, making it hard to adapt to other tasks. Therefore, if we constrain the model
to perform well on training data while maintaining effectiveness on unseen samples and
tasks, we can ensure its robustness. As mentioned in Section 3.1, the defined universality
considers both learning and evaluation levels, covering discriminability, generalizability,
and transferability, involving known samples, unknown samples, and unseen tasks. Thus,
even with data scarcity and homogeneous tasks, this definition ensures that the model learns
a universal representation to maintain effectiveness.

2. Modeling Perspective: We further proposed GeSSL to model universality, including
discriminability, generalizability, and transferability. As described in Section 3.4, for
discriminability, GeSSL extracts key features from each mini-batch using limited data to
achieve optimal performance. For generalizability, GeSSL ensures causal feature extraction
during cross-task training. Finally, for transferability, GeSSL employs bi-level optimization
to estimate the true task distribution from discrete training tasks. Thus, GeSSL models
universality to ensure model effectiveness under limited data conditions.

3. Empirical Perspective: Experiments across over 25 baselines, 16 datasets, and five settings
for both discriminative and generative SSL demonstrate stable and significant performance
improvements with GeSSL, including in few-shot and cross-domain scenarios. This empiri-
cal evidence supports the effectiveness of our work in the face of data challenges.

We mitigate the impact of data homogeneity on three levels. First, in practical applications, it is
challenging to ensure all sampled tasks are i.i.d. with homogeneous samples. Second, even under the
i.i.d. assumption, diversity can be ensured as discussed in (1). Third, even if task diversity is difficult
to achieve, we have addressed this in the definition, measurement, and modeling of universality
by constraining discriminability, generalizability, and transferability to ensure the effectiveness of
learned features. Extensive experiments support the effectiveness of the proposed method.
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