
Large Language Models as Recommender Systems: A Study of
Popularity Bias

Jan Malte Lichtenberg∗
jlichten@amazon.de

Amazon Music
Germany

Alexander Buchholz∗
buchhola@amazon.de
Amazon Web Services

Germany

Pola Schwöbel∗
schwobel@amazon.de
Amazon Web Services

Germany

ABSTRACT
The issue of popularity bias—where popular items are dispropor-
tionately recommended, overshadowing less popular but potentially
relevant items—remains a significant challenge in recommender
systems. Recent advancements have seen the integration of general-
purpose Large Language Models (LLMs) into the architecture of
such systems. This integration raises concerns that it might exac-
erbate popularity bias, given that the LLM’s training data is likely
dominated by popular items. However, it simultaneously presents a
novel opportunity to address the bias via prompt tuning. Our study
explores this dichotomy, examining whether LLMs contribute to
or can alleviate popularity bias in recommender systems. We in-
troduce a principled way to measure popularity bias by discussing
existing metrics and proposing a novel metric that fulfills a se-
ries of desiderata. Based on our new metric, we compare a simple
LLM-based recommender to traditional recommender systems on
a movie recommendation task. We find that the LLM recommender
exhibits less popularity bias, even without any explicit mitigation.

CCS CONCEPTS
• Information systems → Personalization; Language models;
Information retrieval diversity; Recommender systems.

KEYWORDS
Popularity Bias, Recommender Systems, Large Language Models.

1 INTRODUCTION
Recently, general-purpose large languagemodels (LLMs) have achieved
astonishing successes across a wide range of tasks such as sum-
marization, information extraction and content creation. In many
domains, LLMs are used as foundation models—multipurpose tools
that replace task-specific machine learning models. The broad ap-
plicability of LLMs, coupled with their potential for use in intent-
following or conversational recommender systems, has spurred
interest in exploring their role in this domain [18, 21, 39, 54, 58].
Our work analyzes LLMs as recommender systems along a specific
dimension, popularity bias.
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Popularity bias occurs when a recommender system dispropor-
tionally surfaces popular items (see Sections 2 and 3 for details),
and has been present in recommender systems for decades [8, 52].
It is still present today in applications such as modern streaming
services that rely on recommender systems to guide the user’s con-
sumption and exploration behavior. The potential negative impact
of this bias ranges from filter bubbles over reduced user satisfaction,
unfairness towards content producers to lost economic opportunity
for platform providers. Strategies to quantify, explain, and mitigate
popularity bias have seen growing interest lately, see [34] for a
recent survey.

Just like with standard recommender systems, popularity-biased
behavior would not be unexpected for an LLM-based recommender:
during training, the model has likely encountered popular content
more often than lesser known content. Training data biases have
been shown to propagate into model generations in other contexts
such as geographical [48, 61] and gender-occupation biases [28, 37,
43]. On the other hand, LLMs also provide a new opportunity to
mitigate popularity bias due to their natural language interface.
We can simply ask the LLM to recommend more niche content.
Such self-debiasing [47] has been proven effective across a range
of bias-mitigation tasks [40].

With the aim of quantifying the popularity bias in LLM-based
recommender systems, we face a fundamental challenge: the lit-
erature lacks a consensus on what is an appropriate metric for
measuring popularity bias [34]. Therefore, our first contribution is
the development of a principled framework for measuring popu-
larity bias in recommender systems. We start by outlining a set of
desiderata that a metric should satisfy, focusing on interpretability
and statistical robustness. We then assess existing metrics against
these desiderata and introduce a new metric that satisfies them.

To conduct our experiments, we propose a simple LLM-based
recommender system, which can be built on top of any general-
purpose LLM, and evaluate its popularity bias against a suite of
baselines. We then mitigate the bias via prompting and study the
resulting accuracy/popularity-bias trade-off.

2 BACKGROUND AND RELATEDWORK
2.1 Traditional top-k recommender systems
Traditional top-k recommender systems (RS) serve the purpose
of selecting a set of 𝑘 most relevant items out of a much larger
content pool. Common RS such as collaborative-filtering meth-
ods [26, 42, 53] operate on item-level. That is, these models learn an
embedding space representing each candidate item and then recom-
mend the k unseen items that are closest in embedding space to the
items previously consumed by the user (item-based collaborative
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filtering) or items consumed by similar users (user-based collab-
orative filtering). Different algorithms provide different ways of
learning such embedding spaces but they are almost always trained
on past user interaction data such as attributed clicks, purchases,
or subscriptions.

Several researchworks have studied popularity bias in traditional
recommender systems [1, 13, 34, 59], and have investigated possible
sources. Most arguments revolve around the idea that the historical
interaction data used to train the recommender system contain,
almost by definition, more behavioral signals from popular items
than from unpopular ones. Collaborative filtering algorithms then
naturally give more weight (on average) to the “naturally more
popular” items, unless explicitly avoided by the algorithm [1, 31, 46].
Once such a recommender system is deployed, the popular items
receive even more exposure and thus engagement. Consequently,
the behavioral data that is gathered to train future generations
of the recommender system will be even more popularity biased,
resulting in a vicious circle of ever-increasing popularity bias [13].

2.2 Large language models as top-k
recommender systems

LLM-based top-k recommenders take a fundamentally different
approach in that they are language-based and operate on a token-
level. In their simplest form, these models generate free-form text
recommendations based on a prompt that describes the recommen-
dation task and the user. The recommendations in text form are
then parsed and resolved to the respective items in a catalogue
before they are shown to the user.

While such models are currently difficult to scale and use in
practice due to their slow auto-regressive generation procedure
and arguably have not yet reached state-of-the-art performance in
traditional recommender evaluation protocols, they provide various
advantages that open up entirely new possibilities for recommender
systems: First, LLM-based recommenders can be built on top of
(open-source) general-purpose foundational models [18, 58], reduc-
ing the need for behavioral data collection and model training. 1
Second, LLM-based recommenders can generalize across different
content types of a single domain (e.g., music, video, podcast in
a media streaming service) or even across domains (e.g., the P5
model [22]). Cross-domain generalization is notoriously difficult
with feature-based recommender systems because of disjoint fea-
ture sets and varying consumption across domains. Third, due to
their natural-language interface, LLM-based recommenders enable
novel paradigms including intent-based recommmenders [9, 41]
that allow the user to formulate their complex intent in natural
language (e.g., “I want to watch a New York gangster movie featuring
a female lead role”, “Movies that likely inspired the cinematographic
style of Wes Anderson” ). In conversational recommenders [30], the
initial intent-based recommendations can additionally be refined
by the user through follow-up requests.

However, as for standard RS, LLMs will be tilted towards what
they have learned in their training set, and are prone to predicting
popular items at overly high rates, resulting in popularity bias.

1This is particularly true for the movie domain because the training data of most
current LLMs is based on the internet, which includes large amounts of movie reviews,
discussions, and data bases.

2.3 Popularity bias of recommender systems
The literature has produced an abundance of metrics formalizing
different interpretations of popularity bias [1, 13, 34, 59, 60]. This di-
versity inmetric selection, while reflective of varied study objectives
and applications, poses a challenge in achieving generalizability
across research findings, in particular because the normative com-
mitments as to why a particular metric has been selected often
remain unstated.

Following Klimashevskaia et al.[34], we start with the general
definition of popularity bias as a property of a recommender system
that is present “when the recommendations provided by the system
focus on popular items to the extent that they limit the value of the
system or create harm for some of the involved stakeholders” [34, p.8].

Stakeholders include the service provider (e.g., a media stream-
ing service or a job board), the content provider (e.g., artists, labels,
companies that hire), and the user of the service (e.g. music listen-
ers, job seekers). Popularity bias can have negative effects on all
three stakeholders: the user might be bored by repeatedly receiving
obvious or unoriginal “mainstream” recommendations; the service
provider might suffer customer churn because of their decreased
engagement or recommend only items that would have been sold
anyways (and thus miss out on long-tail sales [5]); and new or niche
content providers might have a hard time entering or be driven
out of the market due to limited exposure. Specifically, if a recom-
mender system inordinately promotes items by a group of already
popular artists, it may limit exposure of historically disadvantaged
groups of content creators, hereby reinforcing this inequality [15].
This is a common concern in the fair ML literature: existing biases
are picked up and exacerbated by ML-based systems [7, 51].

Note that while Klimashevskaia et al.’s definition of popular-
ity bias does not prescribe a specific way of how the bias should
be quantified, it excludes some existing definitions. For example,
unlike in the popularity bias definition by Zhao et al. [60], it is
acceptable for some items to be more popular than others a priori.
It is equally acceptable to recommend popular items at higher rates;
this would constitute popularity bias according to the definition
by Abdollahpouri et al. [1] which is reminiscent of the fairness
metric demographic parity [12]. Instead, we argue that recommend-
ing more popular items more often is acceptable if they indeed
are more relevant to the user, following an interpretation similar
to equality of opportunity [24]. Predicting popular items starts to
“limit the value of the system or create harm for some of the involved
stakeholders” when predicted popularities exceed the user’s base
popularity in expectation. We will formalize this in the following
section.

3 QUANTIFYING POPULARITY BIAS
In working towards reducing the ambiguity of existing popularity
bias measures, we propose a framework for defining a popularity
bias metric for a given problem and data set. More specifically,
we first define a parametrized formulation of popularity bias that
generalizes several existing popularity bias metrics for specific
parameter settings. We then define a set of theoretical desiderata
for an interpretable and statistically robust popularity bias metric
and evaluate existing metrics against these standards. Finally, we
introduce a new metric that satisfies our desiderata.



As motivated in Section 2.3, we quantify popularity bias of a
recommender system with respect to the user’s experience. A rec-
ommender system is positively (negatively) popularity biased if it
recommends popular items at higher (lower) rates than appropriate
for that user.

We establish the following basic assumptions on how popularity
is measured:

(1) Data. The data set provides raw popularity scores 𝜙 (𝑎) for
every item 𝑎. Raw scores are an aggregate consumption mea-
sure over all users (e.g., total number of reviews for a movie,
or total number of plays for a song). Online consumption
patterns tend to have heavy tails, i.e., a few items account
for the major share of interactions. Empirically, item popu-
larity follows a power law (Pareto distribution) arising from
"rich get richer" dynamics, [6, 14, 44]. Power laws (and more
specifically Pareto-distributions) have probability density
functions of the form 𝑝 (𝑥) ∝ 𝑥−𝛼 , for 𝑥 ≥ 𝑥𝑚𝑖𝑛 > 0, where
∝ denotes proportional up to a constant. The coefficient 𝛼
determines the tail behavior of the distribution. Power laws
𝛼 ≤ 2 do not have a finite mean and for 2 < 𝛼 ≤ 3 the
variance is infinite (and consequently all higher moments).
Hence, any metric based on averages (like mean, standard
deviation, variance, skew and kurtosis) are ill-defined, as em-
pirical averages do not converge. Consequently popularity
bias metrics with potentially huge fluctuations will have lit-
tle scientific value. Therefore, raw popularity bias scores are
often transformed implicitly by a function 𝑔(𝜙 (𝑎)) : R→ R
for all items 𝑎. For instance, 𝑔 normalizes popularity scores
to a certain range, or removes heavy tails. These transfor-
mations are often done without explanation, a point that we
address below.

(2) Recommender popularity. The popularity of a top-k rec-
ommendation is an aggregate popularity score of all items
in the slate,

𝐴𝑔𝑔𝑃 (𝑟 ) = ℎ
(
{𝑔(𝜙 (𝑎))}𝑎∈𝑝𝑟

)
,

whereℎ : R𝑘 ↦→ R is a function thatmaps scores {𝑔(𝜙 (𝑎))}𝑎∈𝑝𝑟
to a single value,2 𝑘 = |𝑝𝑟 |, and 𝑝𝑟 is the set of all items cho-
sen by the recommender.

(3) User popularity. A user’s popularity preference is defined
by the aggregate popularity score of all (or the last n) items
the user consumed in the past (e.g., watch history for a movie
streaming service),

𝐴𝑔𝑔𝑃 (𝑢) = ℎ
(
{𝑔(𝜙 (𝑎))}𝑎∈𝑝𝑢

)
,

with ℎ as above and 𝑝𝑢 denotes the set of items a user inter-
acted with.

To define a complete metric, one therefore has to make choices
on (a) how the recommendation popularity 𝐴𝑔𝑔𝑃 (𝑟 ) and user pop-
ularity preference 𝐴𝑔𝑔𝑃 (𝑢) are aggregated on the recommender
and user level and how they are combined to calculate the actual
bias metric (with a slight abuse of notation, we will denote such
a function by 𝑀 (𝑢, 𝑟 )), and (b) how (if at all) the raw popularity
scores are transformed by a function 𝑔(𝜙 (𝑎)) : R→ R for all items
𝑎. Most popularity bias studies only focus on the definition of 𝑀

2As an example consider the empirical average, that maps scores to one value.

and ℎ, while treating 𝑔 independently. We argue that the properties
of a popularity bias evaluation framework depend jointly on𝑀 , ℎ
and 𝑔.

To make principled choices of 𝑀 , ℎ, and 𝑔, we define a set of
desiderata for our final metric. We then discuss existing metrics
and define our own metric.

3.1 Desiderata for a popularity bias metric
We define the following desiderata for a popularity bias metric
𝑀 (𝑟,𝑢) and raw popularity transformation function 𝑔.

(1) Well behaved. We want our metric to be well behaved in a
statistical sense, i.e., more data leads to more stable results.
Our aggregation function ℎ and transformation 𝑔 must be
chosen such that 𝐴𝑔𝑔𝑃 (𝑢) (and 𝐴𝑔𝑔𝑃 (𝑟 ) respectively) be-
come more precise with more data (i.e., when |𝑝𝑢 |, |𝑝𝑢 | →
∞). This is crucial for reproducible and coherent statements
about the popularity bias of a system. Without this require-
ment resulting metrics are meaningless as they measure
random fluctuation in the data. This desideratum ensures
construct reliabilty [29].

(2) Centered around 0. If𝐴𝑔𝑔𝑃 (𝑟 ) = 𝐴𝑔𝑔𝑃 (𝑢) then𝑀 (𝑟,𝑢) = 0.
If there is no difference in aggregate popularity between
recommendations and baseline popularity for a user, the
metric should map to 0. This requirement influences𝑀 , and
how we compare the sets 𝑝𝑢 and 𝑝𝑟 .

(3) Anti-symmetry. 𝑀 (𝑟,𝑢) = −𝑀 (𝑢, 𝑟 ). Popularity bias can
be “positive” or “negative”. While most of the literature is
concerned with “positive” popularity bias, i.e., recommend-
ing too popular items, “negative” popularity bias can have
detrimental effects on the relevance of recommended items.
We treat “positive” and “negative” popularity bias equally.
We want to discover and mitigate both directions in our
experiments. This will again influence the choice of𝑀 .

(4) Sensitivity to the long tail. Our metric must be robust to
large popularity valueswhile at the same time being sensitive.
The same absolute difference for large popularity values
matters less than the same difference for small popularity
values.
We define two sets of recommendations 𝑟 and 𝑟 where the
main difference is that · has an overall higher popularity
than then items in · . We keep fixed the set of user items 𝑢.
We then want that

|𝑀 (𝑟 ⊕ 𝜖,𝑢) −𝑀 (𝑟,𝑢) | > |𝑀 (𝑟 ⊕ 𝜖,𝑢) −𝑀 (𝑟,𝑢) |,

where ⊕ denotes an increase of the popularity of one item
by 𝜖 > 0. A shift in popularity for high popularity items of a
recommender is relatively smaller than a shift in popularity
of less popular items. This will influence all choices of𝑀 , ℎ
and 𝑔. This is important as a small change in the tail of the
less popular items should have a relatively stronger influence
than an increase in popularity of the most popular items.

(5) Componentwise monotonicity. We want a metric mono-
tonic in the popularity scores. If popularity scores are in-
creased by 𝜖 > 0 for the recommender this should lead to the
metric becoming larger (respectively smaller for an increase



on the user side). This requirements reads as

𝑀 (𝑟 ⊕ 𝜖,𝑢) −𝑀 (𝑟,𝑢) > 0,

using the same notation as before. This is important as the
overall level of popularity matters, which is assured by mono-
tonic behavior.

3.2 Existing metrics and our desiderata
We review a subset of existing metrics commonly used in the litera-
ture and discuss them in light of the above desiderata. We selected
metrics that are consistent with our previously stated base assump-
tions. In particular, they can all be formalized within the same
framework for specific functions ℎ, 𝑔, and𝑀 , as shown in Table 1.
While this list of metrics is by no means exhaustive, we think that
the selected metrics are representative of the main ideas and as-
sumptions underlying most existing metrics in the literature. Table
1 provides a condensed overview of the alignment between these
metrics and our desiderata.

Average popularity lift. Abdollahpouri et al. [3] use the lift of
group average popularity as a metric to quantify popularity bias.
Their metric is based on groups of users. For the sake of simplicity,
we focus on overall average popularity (i.e., assuming only one
single group). Average popularity at the user level 𝑢 (respectively,
at the recommender level 𝑟 ) is defined as

𝐴𝑃 (𝑢) =
∑
𝑎∈𝑝𝑢 𝜙 (𝑎)
|𝑝𝑢 |

, 𝐴𝑃 (𝑟 ) =
∑
𝑎∈𝑝𝑟 𝜙 (𝑎)
|𝑝𝑟 |

.

Importantly, no transformation of the raw scores is performed, that
is, 𝑔 is just the identity and the score aggregation function is given
by the empirical mean. The final metric, average popularity lift, is
then given by

Δ𝐴𝑃 (𝑟,𝑢) = 𝐴𝑃 (𝑟 ) −𝐴𝑃 (𝑢)
𝐴𝑃 (𝑢) . (1)

This metric, unfortunately, is at odds with several of our desider-
ata. Regarding Desideratum (1), note that the above metric is given
as an empirical average of the samples of a random variable, that
is, the raw popularity scores. Therefore, we would expect that the
average converges to its expectation, i.e., 𝐴𝑃 (𝑢) → E𝜙 (𝑎) as the
number of samples |𝑝𝑢 | = 𝑛 → ∞. However, if raw popularity
scores follow a power law, as we argue at the top of Section 3, this
might not be the case; the metric might not converge to anything
meaningful even with an infinite amount of data. The same rea-
soning is also valid for metrics that are derived from some form of
average popularity, such as those proposed in [15] and [35], which
use a popularity bias metric based on empirical moments of the
raw scores.

Furthermore, the metric in (1) also does not satisfy the desidera-
tum on anti-symmetry. Consider a user with𝐴𝑃 (𝑢) = 0.5 and a rec-
ommendation with 𝐴𝑃 (𝑟 ) = 1 Then Δ𝐴𝑃 (𝑟,𝑢) = 1 but Δ𝐴𝑃 (𝑢, 𝑟 ) =
−0.5. In other words, (1) reports relative change (popularity bias in
this case is 1, or 100%, because the recommendation popularity is
100% larger than the user base popularity). Although this could be
fixed by omitting the numerator, this would only fix the required
anti-symmetry, not the other desiderata. Finally, the metric in (1)
also weighs changes of the popularity equally, regardless of the

scale, putting it at odds with our required long tail sensitivity. On
the other hand the metric is monotonic, satisfying Desideratum (5).

Gini index. The Gini index [23] is a global measure of inequality
of a distribution. For the case of popularity, we define it by consid-
ering the set of items consumed by a user and the items surfaced
by a recommender as

𝐺𝑖𝑛𝑖 (𝑟 ) =
|𝑝𝑟 |∑︁
𝑖=1

(
2𝑖 − |𝑝𝑟 | − 1

|𝑝𝑟 |

) (
𝜙 (𝑎𝑖 )∑

𝑎𝑖 ∈𝑝𝑟 𝜙 (𝑎𝑖 )

)
,

𝐺𝑖𝑛𝑖 (𝑢) =
|𝑝𝑢 |∑︁
𝑖=1

(
2𝑖 − |𝑝𝑢 | − 1

|𝑝𝑢 |

) (
𝜙 (𝑎𝑖 )∑

𝑎𝑖 ∈𝑝𝑢 𝜙 (𝑎𝑖 )

)
.

For the specific purpose of this metric we assume that the items
𝜙 (𝑎𝑖 ) are sorted in increasing order (i.e., 𝜙 (𝑎𝑖 ) ≤ 𝜙 (𝑎𝑖+1)), see also
[4, 11]. As these measures are defined at the level of the recom-
mender (respectively the user) we need some way of comparing
these two values. We suggest to use either some form of (relative)
difference or ratio:

Δ𝐺𝑖𝑛𝑖 (𝑟,𝑢) = 𝐺𝑖𝑛𝑖 (𝑟 ) −𝐺𝑖𝑛𝑖 (𝑢),

%Δ𝐺𝑖𝑛𝑖 (𝑟,𝑢) = Δ𝐺𝑖𝑛𝑖 (𝑟,𝑢)
𝐺𝑖𝑛𝑖 (𝑢) ,

%𝐺𝑖𝑛𝑖 (𝑟,𝑢) = 𝐺𝑖𝑛𝑖 (𝑟 )
𝐺𝑖𝑛𝑖 (𝑢) .

This comparison finally amounts to comparing the inequality of
popularity in the recommender profile vs. the inequality of popular-
ity in the user profile. Note that only the first metric Δ𝐺𝑖𝑛𝑖 (𝑢, 𝑟 ) is
anti-symmetric and zero centered, which fulfills our Desiderata (2)
and (3). The metric𝐺𝑖𝑛𝑖 (𝑟 ) is well defined in case of finite variance
and reasonable estimators exist in the case of infinite variance, see
[20, 56], satisfying Desideratum (1). A small change in a large pop-
ularity value has smaller impact than the change of the popularity
value of a small value, which fulfills our requirement of the long
tail sensitivity. However, as a measure of inequality within a distri-
bution, the Gini index is, in general, not monotonic. Imagine a case
of an equal popularity of all items. If now all popularity values of
the recommender are lifted by an equal increment, the Gini index
remains unchanged, as the overall inequality is not varied, which
is at odds with Desideratum (5).

Popularity rank correlation. For the rank correlation of a popu-
larity bias metric we use the definition of [62] and adjust it to our
notation. The popularity rank correlation measures how strong the
popularity measured by the popularity scores 𝜙 (𝑎) of a set of items
is correlated with the rank decided by a recommender. We define
PRU as

𝑃𝑅𝑈 (𝑟,𝑢) = 𝑆𝑅𝐶 [{𝜙 (𝑎) ∈ 𝑝𝑢 ∩ 𝑝𝑟 }, rank𝑟 ({𝑎 ∈ 𝑝𝑢 ∩ 𝑝𝑟 })] ,
where 𝑆𝑅𝐶 denotes the Spearman-rank correlation, 𝑝𝑢 ∩𝑝𝑟 denotes
the intersection of items that are both part of the recommender
profile and the user profile and rank𝑟 (·) is the function that assigns
to every item 𝑎 a rank decide by the recommender 𝑟 . Note that
this definition requires a notion of ranking by the recommender
which is not required by the other metrics. Additionally, this metric
intersects items from the user and recommender profile, which puts
it slightly at odds with our imposed framework. The metric is well-
behaved as ranks can be computed without additional requirements



Desiderata (Group) Average
popularity lift [3]

Gini
index [4, 11]

Popularity
rank

correlation [62]

Herfindahl-
Diversity [4]

Log popularity
difference (ours)

(1) well behaved ✗ ✓ ✓ ✓ ✓

(2) zero centered ✓ ✓ ✗ ✓ ✓

(3) anti symmetric ✗ ✓ ✗ ✓ ✓

(4) long tail
sensitivity ✗ ✓ ✗ ✗ ✓

(5) monotonicity ✓ ✗ ✗ ✗ ✓

Aggregation ℎ mean Gini coefficient identity sum of squares mean

Transformation 𝑔 identity normalization by
total popularity rank normalization by

total popularity log

Comparison𝑀 relative difference difference correlation difference difference
Table 1: Overview of common popularity bias metrics. We choose the aggregation function𝑀 (amongst Δ,Δ% and %) such that
most desiderata are satisfied, indicated by ✓.

over user and recommender profiles. However, the metric is neither
zero centered, nor anti-symmetric. This metric does not satisfy the
long tail sensitivity and monotonicity desiderata as changes in the
value of the popularity score have no influence as long as the rank
is not changed.

Herfindhal index. The Herfindhal-index [27] was originally de-
veloped as a measure of economic concentration and has since been
applied to measure popularity dispersion, see [4]. We define it at
the level of a recommender (a user respectively) as

𝐻 (𝑟 ) =
∑︁
𝑎∈𝑝𝑟

(
𝜙 (𝑎)∑

𝑎∈𝑝𝑟 𝜙 (𝑎)

)2
, 𝐻 (𝑢) =

∑︁
𝑎∈𝑝𝑢

(
𝜙 (𝑎)∑

𝑎∈𝑝𝑢 𝜙 (𝑎)

)2
.

The metrics are again defined at the user and recommender level,
therefore we need an approach for computing a measure of popu-
larity bias based on the two. Analogous to above we identify the
following form of (relative) difference or ratio:

Δ𝐻 (𝑟,𝑢) = 𝐻 (𝑟 )−𝐻 (𝑢), %Δ𝐻 (𝑟,𝑢) = Δ𝐻 (𝑟,𝑢)
𝐻 (𝑢) , %𝐻 (𝑟,𝑢) = 𝐻 (𝑟 )

𝐻 (𝑢) .

The metric normalizes individual popularity scores by the sum
of all scores in the profile, making it well-behaved (the metric is
bounded between 0 and 1). By choosing the difference of the values,
we can satisfy Desiderata (2) and (3). However, large popularity
values have an overall dominant effect (due to the squaring of the
values), putting it at odds with Desideratum (4), Desideratum (5)
(monotonicity) is also not fulfilled.

3.3 Properties of the log popularity difference
metric

We suggest a new metric, denoted log popularity difference, that
satisfies all our desiderata. It is conceptually similar to the average
popularity lift metric but drops its normalization term (to ensure
anti-symmetry) and introduces a log transformation of the raw pop-
ularity values (to ensure statistical robustness). The log popularity
difference metric is defined as

Δ𝑀 (𝑟,𝑢) =
∑
𝑎∈𝑝𝑟 log𝜙 (𝑎)

|𝑝𝑟 |
−

∑
𝑎∈𝑝𝑢 log𝜙 (𝑎)

|𝑝𝑢 |
. (2)

For data with popularity scores 𝜙 (𝑎) following a Pareto distribu-
tion, this metric satisfies all Desiderata: Desideratum (1): it is well-
behaved because the log transformation of a Pareto-distributed ran-
dom variable follows an exponential distribution with well-defined
mean and variance; (2): it is centered around zero; (3): the metric is
anti-symmetric; and (4): changes in the tail (for high popularity val-
ues) have a weaker impact than changes for small popularity values
due to the log transformation. Finally, the metric satisfies Desidera-
tum (5) because the log transformation is monotonic itself and thus
preserves the monotonicity of the average popularity aggregation
function. We will use this new metric to measure popularity bias
in our experiments.

4 EXPERIMENTS
We aim to answer the following research questions in our experi-
ments:

• (RQ1) How does a recommender based on off-the-shelf LLMs
compare to traditional behavioral recommenders in terms
of both recommendation accuracy and popularity bias ?

• (RQ2) How effective are simple prompt-based popularity bias
mitigation strategies? How do these mitigation strategies
trade off popularity bias against recommendation accuracy?

We conduct our experiments in the movie recommendation do-
main using the ‘MovieLens 10M‘ data set [25]. The data set contains
10 million ratings on 10,000 movies from 72,000 users. We chose
this dataset for the following reasons: 1) we expect general-purpose
LLMs to be fairly good off-the-shelf movie recommenders, given
the vast amount of movie-related content on the internet including
reviews and discussions; and 2) we use the LensKit [17] library
to evaluate standard recommendation algorithms on the task and
compare popularity bias and relevance of the LLM recommender
to such classical methods. We start by defining the LLM-based
recommender.

4.1 WOrld Knowledge recommender (WOK): A
simple LLM-based movie recommender

We use a pre-trained LLM with a prompt template that simply asks
to recommend a list of ten movies based on the watch history of a
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Figure 1: Popularity scores of the MovieLens dataset. Left are the raw scores, i.e., counts of how often a movie has been rated.
We run a goodness-of-fit test (using the distfit package) for several heavy tailed distributions and find that a Pareto-distribution,
i.e., power law, is the best fit. The estimated coefficient is 𝛼 = 0.68, makeing both mean and variance undefined. Right are
log-transformed popularity scores.

given user. The prompt template also contains formatting instruc-
tions so that we can reliably parse the natural-language output
returned by the LLM and resolve it to a list of movie identifiers
present in the MovieLens 10M dataset. This is needed to calculate
relevance and popularity bias of the recommendation. Furthermore,
the LLMs are instructed to not recommend movies released after
2008, as these movies are not contained in the MovieLens data set,
as well as movies that a user has already watched.

We call the resulting model WOrld Knowledge recommender
(WOK) because it relies entirely on the world knowledge (also
known as parametric knowledge) acquired during pre-training, i.e.,
it has not explicitly been trained on the MovieLens 10M dataset to
recommend movies. We use various off-the-shelf LLM-APIs from
Anthropic and OpenAI as back-end LLMs and call the resulting
models WOK-model-name for different specific models during our
experiments. The Appendix contains further details on API param-
eter choices.

4.2 Baselines
In order to study the relationship between predictive performance
and popularity bias we chose a range of simple baselines to compare
our WOK recommender with. ItemKNN: A traditional collaborative
filtering algorithm, K-nearest neighbors based on item similarities.
As recommended in the literature [16] we pick 𝐾 = 30, i.e., we con-
sider the 30 most similar items for each item. UserKNN: Traditional
collaborative filtering based on K-nearest neighbors based on user
similarities [50, 53]. As before we pick 𝐾 = 30, i.e., we consider
the 30 most similar users for each test user. Top Popularity Recom-
mender: Always recommend the 𝑘 most popular items. Random
Recommender: Recommend 𝑘 items uniformly at random.

4.3 Experimental Setup
We follow a standard evaluation protocol, where the ratings of
each user are split into a training and testing set. The movies in the
training set are used to train the algorithm, or in the case of the LLM
recommender, as an input to the model at run-time (see Section
4.1). The recommender then generates a slate of recommendations.

To measure the recommendation accuracy we report top five hit
rate (HR@5) and top ten hit rate (HR@10).

To calculate the popularity bias of different algorithms, we ap-
proximate the raw popularity score of a movie by the total number
of ratings it received. The raw as well as log-normalized scores are
plotted in Fig. 1. For LLM-based recommenders, we additionally
report the number of invalid recommendations. Invalid recommen-
dations occur when the LLM violates the instructions it has received
via the prompt template. This could mean that the recommended
item is formatted incorrectly, has already been watched by the same
user in the past, is not referring to an existing movie title, or is a
movie title that does indeed exist but is not part of the MovieLens
data set. Note that the baseline recommenders have access to a
valid candidate set and thus will always recommend valid titles.

We repeat the experiment over five folds and report the average
± the standard error of the mean in Table 2. Each fold consists of
1000 users (i.e., we subsample the original dataset).

4.4 Results
Figure 2 and Table 2 show the results. A perfect recommender
would achieve HR@5=HR@10=1 while exhibiting zero popularity
bias. Regarding predictive performance, the traditional user-based
collaborative filtering algorithm (UserKNN) works best. It is also
among the least popularity biased models.

The lowest popularity bias, surprisingly, is achieved by the An-
thropic Claude-based WOK model (WOK-claude-v2.1). In fact, only
WOK-gpt-3.5 exhibits a higher popularity bias than the least-biased
baseline model. Note also that the Random recommender has a
strong negative popularity bias. This indicates that the watch his-
tories of users contained in the MovieLens data set contain movies
with much higher-than-average popularity scores.

We also note the low number of invalid items for the WOK
models, with all models returning valid movie recommendations in
at least 8.5 out of 10 cases. This means that the LLM recommenders
not only correctly format the recommendedmovies, but also respect
the query, that is, they recommend movies from valid years and
not do not recommend movies that the user has already watched.

https://erdogant.github.io/distfit/pages/html/index.html
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Random
TopPop
User-KNN
WOK-claude-v1
WOK-claude-v2.1
WOK-gpt-3.5
WOK-gpt-4

HR5 ↑ HR10 ↑ popularity bias ↓ unmatched ↓
Random 0.001 ± 0.001 0.001 ± 0.001 −4.020 ± 0.013 0
TopPop 0.005 ± 0.001 0.014 ± 0.002 1.455 ± 0.010 0
ItemKNN 0.204 ± 0.006 0.282 ± 0.006 0.957 ± 0.009 0
UserKNN 0.313 ± 0.007 0.411 ± 0.007 0.630 ± 0.010 0

WOK-claude-v1 0.044 ± 0.003 0.057 ± 0.003 0.565 ± 0.010 1.360 ± 0.016
WOK-claude-v2.1 0.042 ± 0.003 0.054 ± 0.003 0.377 ± 0.010 1.361 ± 0.018
WOK-gpt-3.5 0.047 ± 0.003 0.067 ± 0.004 0.682 ± 0.010 0.613 ± 0.013
WOK-gpt-4 0.050 ± 0.003 0.081 ± 0.004 0.392 ± 0.008 0.869 ± 0.013

Figure 2 & Table 2: Results on a subsample of the MovieLens 10M dataset. We repeat the experiments 5 times, with 1000 users in
each fold. Reported are the mean plus/minus one standard error of the mean.

The gap in predictive performance of WOK models compared to
UserKNN and ItemKNN can likely be explained by the additional
information that those models have access to. While WOK mod-
els in this current implementation only access an individual test
user’s watch history, the collaborative filtering baselines have ac-
cess to the full history of all user-item interactions. One could make
this additional information available to the WOK models by fine-
tuning them or infusing the user-item interactions via Retrieval-
Augmented Generation (RAG, [36]).

4.5 Popularity bias mitigation and
minimization via prompting

A range of mitigation strategies have recently been explored for
different types of biases in LLMs. Interventions target the training
data [61, 63], the learned representations [10, 45] or employ fine-
tuning [48]. However, a surprisingly simple approach has been
shown effective [40]. The model can be asked to ‘self-debias’ [47]
via its prompt. In our case, we attempt to leverage the model’s
world knowledge regarding whether or not a movie is popular, and
then ask it to focus on less popular items for debiasing. If successful,
this mitigation strategy would be greatly beneficial from a usability
perspective: Unlike other methods, it allows a user to configure the
desired level of popularity via a natural language interface – no ML
expertise required.

Mitigation. To evaluate this method, we add the additional
instruction “Recommend movies that match the average popularity
level of the movies the user watched in the past. For instance, if the
user mostly watched blockbusters, you should recommend movies
that are also blockbusters. If, on the other hand, the user watched less
well-known movies, you should recommend niche movies. ” to each
of the WOK recommenders. Every such recommender is marked
by a -mitigate suffix.

We use the same experimental setup as described in Section 4.3.
Table 3 and Figure 3 show the results. The popularity bias of all
mitigate-models (hollow triangles in Figure 3) is slightly decreased
when compared to the respective base models (“tripods” in Figure
3). For all base-LLMs apart from claude-v1, this reduction in bias is
traded off against a reduction in prediction performance.

Note with the exception of claude-v2.1, the popularity bias val-
ues remain relatively close to their base values, or in other words,

the mitigation strategy is not highly effective. We therefore also
try a second, more extreme mitigation strategy to study how far
we can push the WOK recommender into providing long tail rec-
ommendations.

Minimization. To this aim, we replace the mitigate-instruction
by the following instruction: “Recommend indie, niche, or less well-
known movies, avoiding mainstream blockbusters.” The resulting
models are marked by a -minimize suffix.

The results are again shown in Table 3 and Figure 3. The -
minimize strategy does indeed reduce popularity bias to a point
where the resulting models show strong negative popularity bias.
However, this strategy also results in a strongly decreased recom-
mendation accuracy across all LLMs.

Note also that the number of unmatched items increases consid-
erably when using the mitigation prompt (except for claude-v2.1),
which highlights an important limitation of this experiment. Recall
that the MovieLens data sets contains “only” 10,000 movies and that
WOK recommenders do not have access to this list of valid movies.
As a consequence, WOK models that aim to minimize popularity
bias might be punished for recommending niche movies that do
not appear in the MovieLens catalogue, but could nevertheless be
relevant to the user.

4.6 Correlation of popularity bias metrics
We compare the metrics from Table 1 with each other based on the
popularity bias values that are reported in Table 2 (8 values, original
model performance for each metric) and Table 3 (8 additional values,
model performance under twomitigation strategies for eachmetric).
In total we base the correlation analysis on 8+8 = 16 popularity bias
values for four different metrics, i.e., Gini–diversity, Herfindahl–
diversity, average popularity lift, and our suggested metric, the log
popularity difference. Unsurprisingly, log popularity difference and
average popularity lift show a very strong correlation, as measured
by Kendal’s 𝜏 [33], as shown in Figure 4. These two metrics are
strongly correlated, as both metrics are very similar in nature, but
average popularity lift does not satisfy the Desiderata (1), (3) and (4).
For an analysis of the practical implications of this, see Appendix
B.
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WOK-claude-v1 0.044 ± 0.003 0.057 ± 0.003 0.565 ± 0.010 1.360 ± 0.016

WOK-claude-v1-minimize 0.008 ± 0.001 0.010 ± 0.001 −0.295 ± 0.009 2.001 ± 0.031
WOK-claude-v1-mitigate 0.046 ± 0.003 0.059 ± 0.003 0.532 ± 0.010 1.118 ± 0.014

WOK-claude-v2.1 0.042 ± 0.003 0.054 ± 0.003 0.377 ± 0.000 1.361 ± 0.018
WOK-claude-v2.1-minimize 0.015 ± 0.002 0.020 ± 0.002 −0.385 ± 0.010 0.787 ± 0.016
WOK-claude-v2.1-mitigate 0.033 ± 0.003 0.044 ± 0.003 0.181 ±0.010 0.792 ± 0.012

WOK-gpt-3.5 0.047 ± 0.003 0.067 ± 0.004 0.682 ± 0.010 0.613 ± 0.013
WOK-gpt-3.5-minimize 0.007 ± 0.001 0.009 ± 0.001 −0.775 ± 0.013 3.393 ± 0.031
WOK-gpt-3.5-mitigate 0.037 ± 0.003 0.052 ± 0.003 0.438 ± 0.012 1.105 ± 0.022

WOK-gpt-4 0.050 ± 0.003 0.081 ± 0.004 0.392 ± 0.008 0.869 ± 0.013
WOK-gpt-4-minimize 0.004 ± 0.001 0.005 ± 0.001 −0.972 ± 0.009 1.549 ± 0.019
WOK-gpt-4-mitigate 0.045 ± 0.003 0.0652 ± 0.003 0.341 ± 0.007 0.914 ± 0.012

Figure 3 & Table 3: Results for the mitigation experiment. The results are grouped by base LLM in the WOK model. Bold
numbers indicate best performance across all models.

Herfindahl– and Gini–diversity measure fundamentally different
things than popularity lift and log popularity difference (the dif-
ference of popularity diversity between user and recommendation
vs. the difference of average popularity between user and recom-
mendation). Hence, the two families of metrics are not expected
to correlate well. In practice, we observe them to be negatively
correlated in Figure 4.

5 DISCUSSION AND FURTHERWORK
Recall that our goal was to study popularity bias in recommenders
using general-purpose LLMs to evaluate their suitability as off-the-
shelf recommenders, as opposed to constructing a state-of-the-art
recommender in terms of recommendation accuracy. We therefore
deliberately kept the LLM recommender as light-weight as possible
to ensure that our findings are reflective of the intrinsic bias in
LLMs, rather than being confounded by complex, model-specific
factors. In doing so, we aim to provide insights that are broadly
applicable across various LLM implementations, contributing to a
more generalized understanding of popularity bias in these systems.
Nevertheless, the recommendation accuracy of the WOK recom-
mender could likely be improved using various techniques, includ-
ing 1) fine-tuning on a training set of successful recommendations;
2) “grounding” the recommendations in a movie catalog to avoid
hallucinations (via RAG, [36]); or 3) more advanced prompting
techniques such as chain-of-thought prompting, or more advanced
prompt optimization techniques [19, 55]. Furthermore, these or
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Figure 4: Kendall’s Tau correlation coefficients between the
various metrics measured across experiments reported in
Tables 2 and 3.

similar automatic prompt optimization techniques could also be ap-
plied to find more balanced prompt-based mitigation strategies that
find a happy medium between the two strategies we experimented
with.

An open research question is the evaluation of intent-based per-
formance of LLM-based recommenders. As discussed in Section 2.2,



easily generating recommendations that are guided by user-intent
is a compelling promise of LLM-based RS. In order to evaluate the
performance in this task, one would require structured ground
truth, or, as a starting point, use simple proxy tasks where the
intent encodes known metadata such as director, genre, year or
similar. Similarly, while research in popularity bias is motivated
by “rich-get-richer” effects over time, we have not modeled or mea-
sured temporal dynamics (see [32, 38, 57] for dynamical modeling
approaches, and [49] for an overview).

6 CONCLUSION
We have investigated the promise of LLM-based recommender
systems focusing on a specific aspect of their performance and us-
ability: popularity bias. We started by constructing a measurement
for the phenomenon. To do so, we have formulated desiderata for a
popularity bias metric, and have evaluated existing metrics against
these desiderata. Applying some adjustments to the Popularity Lift
metric by Abdollahpouri et al. [2], we have arrived at our metric:
log popularity difference. We acknowledge that this metric may not
suit all future studies on popularity bias given the topic’s diverse
application domains and goals. However, we encourage future re-
search to examine the assumptions and theoretical properties of
their chosen metrics, with our framework potentially serving as a
useful starting point.

Using our metric, we have compared traditional RS against the
LLM-based models on the MovieLens 10M dataset. We have found
the LLM-based recommenders to have moderate amounts of popu-
larity bias; usually less than their traditional, collaborative filtering-
based counterparts. In our mitigation experiment, we have found
that it is possible to lower popularity bias further by including
additional instructions in the prompt. In the extreme case, where
the model is specifically instructed to ‘avoid mainstream block-
busters’, we achieve negative popularity bias. This is accompanied
by a drop in recommendation accuracy, which overall is lower for
our naïve LLM-based recommenders compared to collaborative
filtering baselines.

We believe that LLM-based recommender systems will see wide-
spread usage. We encourage practitioners to measure the popularity
bias of such models, and, especially in light of its simplicity, exper-
iment with popularity-debiasing via prompting before deploying
such a system.
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A IMPLEMENTATION DETAILS
A.1 Implementation details: LLM-based WOK recommender
We used OpenAI’s gpt-3.5-turbo-0613 (“gpt-3.5” in the main text) and gpt-4-1106-preview (“gpt-4” in the main text) APIs, as well as
Anthropic’s claude-instant-1.2 (“claude-v1” in the main text) and claude-2.1 (“claude-v2.1” in the main text) APIs. All LLMs used a
temperature parameter of 0.0, a top-p parameter of 1 (default for both OpenAI and Anthropic APIs), and a top-k parameter of 250 (default).
The base prompt template used for all experiments is given in Code Listing 1.

"""
You are a helpful movie -expert AI tasked with recommending a collection of movies based on a

user's watch history. The user has watched the following movies in the past:
{watch_history}

# Output instructions
- Immediately start with the movies. Do not provide an introduction.
- Provide a list of {nr_items} movies.
- For each movie , start a new line , indicate the position in the movie list (that is, 1., 2.,

...).
- Name the title of the movie (without quotation marks!) and then in parentheses the release

year.
- Do not recommend movies that the user has already watched. Those are the ones listed above.
- Do not recommend movies that are newer than 2008.

Now create the movie list!"""

Code Listing 1: Prompt template used for the LLM movie recommender. The placeholder watch_history is replaced by a list of
movies watched by the user at runtime.

B ON THE DIFFERENCE OF AVERAGE POPULARITY LIFT AND LOG POPULARITY DIFFERENCE
AND THE IMPORTANCE OF STATISTICAL WELL-BEHAVEDNESS (DESIDERATUM 1).

We have seen that average popularity lift and log popularity difference are strongly correlated (Section 4.6), but differ in that average
popularity lift does not satisfy the Desiderata (1), (3) and (4), see Table 1. We have motivated the importance of these desiderata theoretically in
Section 3.1, and investigate their practical implications here, specifically for well-behavedness (1). Figure 5 illustrates the cumulative averages
of popularities

∑𝑁
𝑖+1 𝜙 (𝑎𝑖 )/𝑁 for 𝑁 a varying number of observations (𝑥-axis) under average popularity lift (left) and log popularity difference

(right). For the average popularity lift metric, there is a sudden jump when the largest popularity item is added (around 𝑖 = 7500). This results
from the Power-law distribution of unnormalized scores (𝑔 =identity, Table 1) and the resulting ill-behavedness. As a consequence, average
popularity lift measurements will be highly sensitive to whether or not individual, high popularity items are included in recommendation or
user sets 𝑝𝑢 or 𝑝𝑟 , respectively, and will measure any differences in the low-mid popularity regime less reliably.



Figure 5: Behavior of the average popularity bias as a function of the data points.
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