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ABSTRACT

3D shape analysis has been largely focused on traditional 3D data of point clouds
and meshes, but the discrete nature of these data makes the analysis susceptible
to variations in input resolutions. Recent development of neural fields brings in
level-set parameters from signed distance functions as a novel, continuous, and
numerical representation of 3D shapes, where the shape surfaces are defined as
zero-level-sets of those functions. This motivates us to extend shape analysis
from the traditional 3D data to these novel parameter data. Since the level-set
parameters are not Euclidean like point clouds, we establish correlations across
different shapes by formulating them as a pseudo-normal distribution, and learn
the distribution prior from the respective dataset. To further explore the level-
set parameters with shape transformations, we propose to condition a subset of
these parameters on rotations and translations, and generate them with a hyper-
network. We demonstrate the potential of the novel continuous representation in
pose-related shape analysis through applications to shape classification, retrieval
under arbitrary poses, and 6D object pose estimation. Code and data in this re-
search are anonymously provided at this github link.

1 INTRODUCTION

3D surfaces are traditionally represented as point clouds or meshes on digital devices for visualiza-
tion and geometry processing. This convention results in the current predominance of those data
in 3D shape analysis, though the discrete nature of point clouds and polygon meshes can make the
analysis approaches susceptible to variations in data resolutions (Qi et al., 2017a; Wang et al., 2019d;
Li et al., 2018; Lei et al., 2020; Hanocka et al., 2019; Hu et al., 2022). The recent advancements
in neural fields enable manifold surfaces to be continuously represented by the zero-level-set of
their signed distance functions (SDFs) (Park et al., 2019a; Sitzmann et al., 2020b; Xie et al., 2022).
Specifically, SDFs compute a scalar field by mapping each coordinate x ∈ R3 to a scalar v ∈ R
using a deep neural network, where the scalar v indicates the signed distance of a point to its closest
point on the surface boundary. Let θ be the optimized parameters of the neural network. The shape
surface can be numerically represented as θ, which we refer to as the level-set parameters. A typical
example of 3D surface representation with level-set parameters could be [nx, ny, nz, d] for a 3D
plane of n⊺x + d = 0, where n = [nx, ny, nz]

⊺ and ∥n∥ = 1. The level-set parameters bring in
novel 3D data for continuous shape analysis.

To initiate the novel shape analysis, we first have to construct the level-set parameters for each shape
independently and with good accuracy in the dataset of interest. This differs from most methods in
the SDF research domain, which are reconstruction-oriented and use a shared decoder together with
various latent codes to improve the surface quality (Park et al., 2019a; Mescheder et al., 2019; Erler
et al., 2020; Chen & Zhang, 2019; Peng et al., 2020; Chibane et al., 2020). However, the level-set
parameters do not conform to Euclidean or metric geometry, unlike 3D point clouds. This presents
a critical challenge for establishing good correlations in the parameter data of different shapes. Our
solution is to formulate those parameters in high dimension as a pseudo-normal distribution with
expectation µ and identity covariance matrix I, that is,

θ = µ+∆θ. (1)

We associate ∆θ with each individual shape, while the parameter µ is shared by all shapes to (i)
align different shapes in the parameter space, and (ii) initialize the SDF networks of individual
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shapes. Previous works train per-category SDF initializations using all training shapes (Sitzmann
et al., 2020a) or a particular shape (Erkoç et al., 2023) in the category, which are either computation-
intensive or dependent on the specific shape chosen. In contrast, we seek an initialization that
generalizes to all categories of the dataset. Therefore, we take the trade-off of Sitzmann et al. (2020a)
and Erkoç et al. (2023) to use a few shapes from each category to learn µ. Other than learning an
initialization, there are also methods employing identical random settings to initialize (Luigi et al.,
2023), which we empirically show yield insufficient correlations among shapes.

Level-set parameters have rarely been considered as a data modality in shape analysis. Luigi et al.
(2023) had to rely on the traditional data (i.e., point cloud and meshes) to extract shape seman-
tics from level-set parameters using an encoder-decoder, due to their suboptimal SDF initializations.
Erkoç et al. (2023) utilized a small SDF network for tractable complexity in shape diffusion, whereas
a small SDF network can undermine the representation quality of level-set parameters for complex
shapes. More importantly, both methods are limited to shape analysis in the reference poses, ignor-
ing the important shape transformations such as rotation and translation. In contrast, we explore the
level-set parameters with transformations and extend the shape analysis to be pose-related.

Usually, transformations of shapes represented by level-set parameters only affect a typical subset
of the parameters (e.g., those in the first layer of SDF). We propose to condition those subset param-
eters on rotations and translations and generate them with a hypernetwork to facilitate the analysis.
The inherent separation of pose-dependent and pose-independent subsets in level-set parameters en-
ables classification of continuous shapes in arbitrary poses to be simple and outperform equivariant
neural networks for point clouds (Deng et al., 2021; Chen & Cong, 2022). Our work focuses on
demonstrating the viability of level-set parameters as an independent data modality for continuous
shape analysis. This contrasts with existing approaches that leverage neural fields to learn invariant
features from discrete data for semantic analysis (Kwon et al., 2023).

To acquire experimental data, we construct level-set parameters for shapes in the ShapeNet (Chang
et al., 2015) and Manifold40 (Hu et al., 2022; Wu et al., 2015) datasets. We demonstrate the potential
of the proposed data through applications in shape classification of arbitrary poses, shape retrieval,
and 6D object pose estimation. In pose estimation, we consider the problem of estimating shape
poses from their partial point cloud observations, given that the level-set parameters are provided.
This is similar to a partial-to-whole registration task (Dang et al., 2022). The main contributions of
this work are summarized as below:

• We introduce level-set parameters as a novel data modality for 3D shapes, and demonstrate
their potential with pose-related shape analysis. A new hypernetwork is contributed to
transform the shapes in the level-set parameter space to facilitate the analysis.

• We present an encoder that is able to accept the high-dimensional level-set parameters as
inputs and extract the shape semantics in arbitrary poses for classification and retrieval.

• We propose a correspondence-free registration approach that estimates the 6D object poses
from their partial point cloud observations based on the SDF reconstruction loss.

• We opensource our code and level-set parameter data on github.

2 RELATED WORK

2.1 SHAPE ANALYSIS WITH TRADITIONAL 3D DATA

Semantic Analysis. The traditional 3D data, point clouds and polygon meshes, represent shape sur-
faces discretely in Euclidean space. Point clouds, as orderless collections of points, result in early-
stage MLP-based neural networks (Qi et al., 2017a; Klokov & Lempitsky, 2017; Qi et al., 2017b)
to introduce permutation-invariant operations for semantic learning from such data. Graph convolu-
tional networks (Lei et al., 2020; Wang et al., 2019c; Wu et al., 2019; Thomas et al., 2019) enable
point clouds to be processed with convolutional operations which handle spatial hierarchies of data
better than MLPs. Transformer-based networks (Zhao et al., 2021; Guo et al., 2021; Wu et al., 2022)
treat each point cloud as a sequence of 3D points, offering another approach. Point clouds can also
be voxelized into regular grids and processed by 3D convolutional neural networks (Wu et al., 2015;
Maturana & Scherer, 2015; Riegler et al., 2017; Graham et al., 2018). Polygon meshes, which are
point clouds with edge connections on the shape surface, provide more information about the shape
geometry. Different approaches have been proposed to learn shape semantics from meshes (Hanocka
et al., 2019; Hu et al., 2022; Smirnov & Solomon, 2021; Lei et al., 2023).
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Furthermore, a variety of equivariant networks have been presented to incorporate rotation and trans-
lation equivariance for the method to maintain its effectiveness when the discrete data are trans-
formed (Deng et al., 2021; Chen & Cong, 2022; Esteves et al., 2018; Cohen et al., 2018; Thomas
et al., 2018; Poulenard & Guibas, 2021). In contrast, we study shape semantics from their continuous
representations using level-set parameters, requiring no equivariant modules for transformations.

Geometric Analysis. 6D object pose estimation is crucial for various applications such as robotics
grasping (Tremblay et al., 2018), augmented reality (Marchand et al., 2015), and autonomous driv-
ing (Geiger et al., 2012). It requires accurately determining the rotation and translation of an object
relative to a reference frame. Despite the predominance of estimating object poses from RGB(D)
data (Wang et al., 2019a;b; Peng et al., 2019; Park et al., 2019b), this task can alternatively be defined
as a registration problem based on point cloud data. It involves registering the partial point cloud
of an object (observation) to its full point cloud (reference) (Dang et al., 2022; Jiang et al., 2023).
We are interested in the potential of level-set parameters in the geometric analysis of 3D shapes
and therefore represent the reference objects using level-set parameters instead of full point clouds.
Leveraging the SDF reconstruction loss, we propose a registration method that requires no training
data (Zeng et al., 2017), correspondences (Choy et al., 2019; Wang & Solomon, 2019; Huang et al.,
2021; Ao et al., 2023) or global shape features (Huang et al., 2020; Aoki et al., 2019). We compare
it with other optimization-based registration algorithms that also require no training data, includ-
ing ICP (Besl & McKay, 1992), FGR (Zhou et al., 2016), and TEASER(++) (Yang et al., 2020).
Go-ICP (Yang et al., 2015) is excluded here due to its high time complexity.

2.2 NEURAL FIELDS FOR 3D RECONSTRUCTION

Neural fields utilize coordinate-based neural networks to compute signed distance fields (Park et al.,
2019a; Sitzmann et al., 2020b) or occupancy fields (Mescheder et al., 2019) for 3D reconstructions.
Many methods in this domain employ a shared decoder to reconstruct 3D shapes across an entire
dataset or a specific category using different shape latent codes (Park et al., 2019a; Mescheder et al.,
2019; Erler et al., 2020; Chen & Zhang, 2019; Atzmon & Lipman, 2020; Gropp et al., 2020). The
modelling function can be denoted as fθ : R3×Rm→R, with z ∈ Rm being the shape latent code,
which is learned by an encoder from various inputs (Mescheder et al., 2019), or randomly initialized
and optimized as in DeepSDF (Park et al., 2019a). Some works extend the concept of latent codes
from per-shape to per-point for improved surface quality (Peng et al., 2020; Chibane et al., 2020).
In contrast, SIREN (Sitzmann et al., 2020b) applies an SDF network to instance-level surface recon-
struction using periodic activations, which does not involve latent codes. It employs an unsupervised
loss function, eliminating the need for ground-truth SDF values as in DeepSDF. We note that neural
radiance fields (NeRFs) (Martin-Brualla et al., 2021; Wang et al., 2021; Yu et al., 2022; Yariv et al.,
2021) reconstruct 3D surfaces with entangled neural parameters for surface geometry and photom-
etry, where the latter is view-dependent. We therefore focus on surface geometry and utilize the
level-set parameters from SDFs in our study. Our SDF network is adapted from the common 8-layer
MLP utilized by others (Park et al., 2019a; Atzmon & Lipman, 2020; Gropp et al., 2020).

2.3 LEVEL-SET PARAMETERS AS 3D DATA

Few works have studied the level-set parameters as an alternative data modality for 3D research,
and each has utilized a different SDF network. Luigi et al. (2023) initialized the SDF network of
SIREN (Sitzmann et al., 2020b) with identical random settings and trained the parameters indepen-
dently for each shape, resulting in insufficient shape correlations in the parameter space. To extract
shape semantics from the level-set parameters, theyo utilized an encoder-decoder architecture with
additional supervision from traditional data. In contrast, our proposed method constructs the pa-
rameter data with improved shape correlations, enabling the learning of shape semantics using an
encoder without relying on traditional data. We note that the periodic activation functions of SIREN
cause undesired shape artifacts in empty spaces compared to ReLU activations (Ben-Shabat et al.,
2022). Erkoç et al. (2023) utilized a much smaller SDF network with ReLU activations for continu-
ous shape generation. They initialized the network using overfitted parameters of a particular shape
and trained the parameters of each shape within the same category independently. Yet, small SDF
networks cannot represent complex shapes with good accuracy. Dupont et al. (2022) aimed to ex-
plore the parameters of diverse neural fields as continuous data representations, but instead resorted
to their modulation vectors (Mehta et al., 2021; Chan et al., 2021) for simplicity. They exploited the
strategy of meta-learning (Sitzmann et al., 2020a; Finn et al., 2017; Tancik et al., 2021) to construct
those modulation vectors.
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The existing works are restricted to shape analysis in reference poses. We leverage the potential of
level-set parameters and explore them with rotations and translations in pose-related analysis.

3 DATASET OF LEVEL-SET PARAMETERS

Preliminaries. We adopt the well-established SDF architecture from previous research (Park et al.,
2019a; Atzmon & Lipman, 2020), which comprises an 8-layer MLP with a skipping concatenation
at the 4th layer. We utilize 256 neurons for all interior layers other than the skipping layer which
has 253 neurons due to the input concatenation. Note that shape latent codes are not required.
We employ smoothed ReLU as the activation function and train the SDF network f(x;θ) with the
unsupervised reconstruction loss of SIREN (Sitzmann et al., 2020b), i.e.,

LSDF = λ1Lp
dist + λ2Ln

dist + λ3Leik + λ4Lp
norm. (2)

Lp
dist,Ln

dist are the respective distances of positive and negative points to the surface. Leik is the
Eikonal loss (Gropp et al., 2020) andLp

norm imposes normal consistency. The constants λ1∼4 balance
different objectives.

The SDF network only provides level-set parameters for each shape in their reference poses. How-
ever, pose-related shape analysis requires surface transformations to be enabled in the level-set pa-
rameter space. To address this, we propose a hypernetwork that conditions a subset of the SDF
parameters on rotations and translations in SE(3) in § 3.1.

3.1 SURFACE TRANSFORMATION

We introduce a hypernetwork hϕ conditioned on rotations R and translations t to generate weights
and biases for the first SDF layer. Let m∈[256] be the row index, and n∈[4] be the column index,
where [i]={1, 2, . . . , i}. We index each parameter to be generated for the first SDF layer as θmn

1 .
The trainable parameters ϕ in the hypernetwork are composed of two components, including (1) the
neural parameters η of all fully connected layers, (2) the small latent matrices {Ymn∈RI×J} for
each θmn

1 in the first SDF layer. We use I=2 and J=8 as dimensions of Ymn in our experiments.
The computation of each θmn

1 from the hypernetwork is expressed as

θmn
1 = h(R, t;η,Ymn). (3)

Instead of generating the first layer parameters directly as h(R, t;η), we introduce the latent ma-
trices {Ymn} to guarantee that our generated SDF parameters satisfy the geometric initializations
recommended by SAL (Atzmon & Lipman, 2020). This is critical for the network convergence and
good performance.

Generally, the hypernetwork calculates a compact matrix B=h(R, t;η) of size 256×4×I×J ac-
cording to R, t, which contains the pose-dependent coefficient matrices Bmn associated with each
latent matrix Ymn. Each pair of matrices Bmn and Ymn is combined to compute a vector zmn,
normalized into ẑmn to satisfy the standard normal distribution. In the last layer of hϕ, two branches
of fully connected layers accept zmn and ẑmn, respectively, to initialize the biases and weights in
{θmn

1 } accordingly. See appendix for the details. We note that the tanh activation in the final com-
putation of B (see Fig. B) helps to constrain all of its values within the range of [−1, 1].
By incorporating this hypernetwork hϕ into the SDF network, we obtain a transformation-enabled
SDF architecture, referred to as HyperSE3-SDF. It can transform the surface in the level-set param-
eter space by adaptively modifying {θmn

1 } in θ. Although we can also apply the formulas

W′ = WR−1,b′ = −WR−1t+ b, (4)

to the weights W and biases b in the 1st and 5th layers of the utilized SDF network for simplified
surface transformations, the Euclidean nature of these computations yields transformed parameters
with shape semantics that are incomparable to those produced by HyperSE3-SDF. We show this
empirically with experiments. Derivations of the formulas are provided in the appendix.

3.2 DATASET CONSTRUCTION

As introduced in Eq. (1), we decompose the level-set parameters θ into µ+∆θ. This is inspired by
the reparameterization trick in variational autoencoders (Kingma et al., 2019). It emulates a normal
distribution with expectation µ and homogeneous standard deviation 1. We follow this decomposi-
tion to construct a dataset of level-set parameters with shape transformations in two stages.
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Algorithm 1

1: for each batch of shapes do
2: Get their points and normals {Pb,Nb}.
3: Sample a batch of transformations {Rb, tb}.
4: Transform the shapes as {PbRb+tb,NbRb}.
5: Get their SDF parameters {θb} for {Rb, tb}.
6: Compute SDF values with {f(PbRb+tb;θb)}.
7: Calculate the SDF loss based on Eq. (7).
8: Compute gradients and update the parameters.
9: end for

In the first stage, we train HyperSE3-SDF
with a small number of shapes to obtain
the shared prior µ. The parameters in µ
are divided into (1) the pose-dependent
{µmn

1 } for the first SDF layer, and (2)
the remaining {µmn

ℓ |ℓ>1}. Following
Eq. (3), each µmn

1 is computed as

µmn
1 = h(R, t;η,Ymn). (5)

We propose Algorithm 1 in the right
to train the parameters η, {Ymn}, and
{µmn

ℓ |ℓ>1} in HyperSE3-SDF.

In Algorithm 1, Pb and Nb represent the point cloud and point normals of a shape b, respectively.
Rb and tb denote the random transformation applied, and θb is the corresponding SDF parameters.
It shares the parameters {µmn

ℓ |ℓ>1} with µ, but not {µmn
1 }. Instead, we compute each θmn

1 in θb
by replacing the Ymn in Eq. (3) with Ymn+∆Ymn, where {∆Ymn} are the trainable matrices
associated with the specific shape. We find this strategy necessary for network convergence. After
training, we discard {∆Ymn}. The optimized parameters η, {Ymn}, {µmn

ℓ |ℓ>1} will be frozen.

In the second stage, we initialize HyperSE3-SDF with the frozen parameters from stage one and
train ∆θ for each individual shape. The trainable parameters associated with each shape include
{∆Ymn} and {∆amn

ℓ |ℓ>1}, all initialized as zeros. We compute each element in ∆θ as

∆θmn
ℓ =


1

I×J

∑
i,j

Bmn⊙tanh(∆Ymn), ℓ = 1;

tanh(∆amn
ℓ ), ℓ > 1,

(6)

with {∆θmn
1 } being pose-dependenet. ⊙ denotes the Hadamard product. The tanh function con-

strains ∆θ to be in the range [−1, 1]. We train the above parameters similarly based on Algorithm 1.
The major difference from stage one is that all shapes in a batch become clones of the individual
shape being fitted. In addition, note that θ = µ+∆θ in the Algorithm in this stage.

Due to the learned initializations from stage one, we can obtain the level-set parameters of each
shape with hundreds of training iterations in stage two. This facilities the acquisition of a dataset of
level-set parameters with transformations, and enhances shape correlations in the parameter space.

Why not meta-learning like MetaSDF? MetaSDF (Sitzmann et al., 2020a) applies the meta-
learning technique (Finn et al., 2017) to per-category shape reconstruction of DeepSDF. It intro-
duces a large number of additional parameters (i.e., per-parameter learning rates) to train the net-
work, which is computation-intensive. Besides, its three gradient updates of the network during
inference stage often result in unsatisfactory surface quality (Chou et al., 2022). Moreover, the loss
function we employ in Eq. (7) for unsupervised surface reconstruction requires input gradients of the
SDF network to be computed with backpropagation at every iteration, prohibiting the application of
MetaSDF or MAML (Finn et al., 2017).

4 SHAPE ANALYSIS WITH LEVEL-SET PARAMETERS

4.1 ENCODER-BASED SEMANTIC LEARNING

We format the level-set parameters into multiple tensors for shape analysis. Specifically, the weights
and biases in the first SDF layer are concatenated into a tensor of size 256×4. Further, we concate-
nate all parameters from layer 2 to 7 into a tensor of size 6×256×257, while zero-padding is applied
to the parameters of the skipping layer. Regarding the final SDF layer, its parameters are combined
into a tensor of size 1×257. Thus, each shape surface is continuously represented as a tuple of three
distinct tensors (Θ1∈R256×4,Θ2∈R6×256×257,Θ3∈R1×257). See appendix for an illustration.

The proposed semantic learning network has three branches, each processing a different component
in the input tensors (Θ1,Θ2,Θ3), as depicted in Fig. 2(a). It builds upon the BaseNet and BasePool
blocks shown in Fig. 2(b). The BaseNet block comprises two fully connected layers followed by
batch normalization (Ioffe & Szegedy, 2015). The first layer applies ReLU activation. For batch
normalization, we flatten the first two dimensions of the input tensor. For example, the resulting
dimensions for Θ1, Θ2, Θ⊺

2 , Θ3 will be 1024, 1536×257, 1542×256, 257, where Θ⊺
2 indicates

5
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Figure 2: Encoder-based semantic learning from level-set parameters. The network in (a) processes
input tensors Θ1, Θ2, and Θ3 with different branches. Their outputs are concatenated into a unified
shape feature A∈R8×256, which is then processed by a single-layer transformer to obtain a global
shape feature sg . We apply this global feature to shape classification and retrieval. BaseNet1 and
BaseNet3 follow configurations of the BaseNet block in (b), while BasePool2A and BasePool2B
use the BasePool block in (b), comprising BaseNet followed by unflattening and average pooling.

the transpose of Θ2. The BasePool block consists of BaseNet followed by unflattening and aver-
age pooling, which are required for processing the three-dimensional Θ2 and Θ⊺

2 . Specifically, we
perform average pooling along the second dimension of the unflattened features.

The BaseNet1 and BaseNet3 modules compute branch features a1∈R256 and a3∈R256, respectively,
based on Θ1 and Θ3. Meanwhile, BasePool2A and BasePool2B each compute features of identical
size 6×256, which are summed to form the branch feature a2. These branch features are then
concatenated to produce a unified surface feature A∈R8×256, which is subsequently processed by a
single-layer transformer (Vaswani et al., 2017).We flatten the output feature to form a global shape
feature sg∈R2048 and apply it to both shape classification and retrieval. The network is trained using
cross-entropy loss, and the classifier comprises a single fully connected layer.

Our analysis considers level-set parameters from all layers of SDF, which forms a complete shape
representation. In contrast, prior works utilized partial level-set parameters. For instance, Luigi
et al. (2023) did not include the first layer parameters, while Erkoç et al. (2023) excluded the final
layer parameters. Further, given our proposed decomposition of θ and the fact that µ is shared by
all shapes, we normalize the level-set parameters with µ and study shape semantics with ∆θ, the
instance parameters of each shape. Additionally, we go beyond reference poses and evaluate the
network in semantic learning from continuous shapes under different transformation settings.

4.2 REGISTRATION-BASED 6D POSE ESTIMATION

We train the SDF network to estimate shape poses, which entails incorporating the pose parameters
R, t into the optimizable parameters of the plain SDF network. To achieve, we can either (1) gener-
ate the 1st layer parameters with the hypernetwork, or (2) compute the pose-dependent parameters
in the 1st and 5th layers based on Eq. (4). We provide estimation results for both options in our
experiments.

Problem setting. Given a partial point cloud observation of a shape and the level-set parameters θ
representing the shape in its reference pose, we estimate the pose of the observation by optimizing
the pose-dependent level-set parameters for the point cloud. This process follows the standard train-
ing procedures of the SDF network. During training, we maintain the reference level-set parameters
θ frozen. The pose parameters are trained using the distances of points to surface, i.e., the Lp

dist loss
in Eq. (7) for SDF reconstruction. We consider all points as samples on the surface of the shape.

Pose initialization. We define the rotation parameters using Euler angles ω = (α, β, γ). The pose
estimation involves 3 parameters for rotation and 3 parameters for translation. In the context of SDF,
we consider only small translations in the registration. Therefore, we always initialize the translation
as t = 0. For the rotation angles, we uniformly partition the space of [0, 2π]×[0, 2π]×[0, 2π] into
distinct subspaces, and initialize ω with the centers of each subspace. This results in a total of T 3

initializations for ω, denoted as Ω =
{
( 2πtαT ,

2πtβ
T ,

2πtγ
T )

∣∣tα, tβ , tγ ∈ [T ]
}

.

Candidate Euler angles. For each initialization with ω∈Ω and t=0, we compute the pose-
dependent level-set parameters. Using the updated parameters, we predict the SDF values of each
point in the partial point cloud, and compute the registration error Ereg using Lp

dist. This results in a
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number of T 3 registration errors, denoted as {Ei
reg}T

3

i=1. We sort these registration errors and select
the candidate Euler angles Ω∗={ωi}Si=1 corresponding to the top S smallest registration errors.

Algorithm 2

1: Compute candidate Euler angles Ω∗ = {ωi}Si=1.
2: for i = 1 to S do
3: ω ← ωi, t← 0.
4: for j = 1 to N do
5: Freeze t, optimize ω for M iterations.
6: Freeze ω, optimize t for M iterations.
7: end for
8: Record the optimized (ω̂i, t̂i) and Ei

reg.
9: end for

10: Get the index s of the smallest loss in {Ei
reg}Si=1.

11: return (ω̂s, t̂s).

Pose estimation. Given the candidate Eu-
ler angles Ω∗, we employ Algorithm 2 to
estimate the optimal pose. Specifically, for
each candidate ωi, we alternate between
optimizing the initialized ω and t, each for
M iterations, over N rounds. We record
the optimized pose (ω̂i, t̂i) and registra-
tion loss Ei

reg of each candidate ωi. The
optimal pose (ω̂s, t̂s) is determined as the
pair resulting in the smallest registration
loss Es

reg. To enhance accuracy in practice,
we continue optimizing (ω̂s, t̂s) by repeat-
ing steps 5-6 in Algorithm 2 until conver-
gence. In our experiments, we set T=15,
S=20, N=20, and M=10.

5 EXPERIMENT

ShapeNet (Chang et al., 2015) and Manifold40 (Hu et al., 2022) provide multi-category 3D shapes
that are well-suited for geometric research in computer graphics and robotics. For the interested
shape analysis, we construct Level-Set Parameter Data (LSPData) as continuous shape representa-
tions for these datasets. The two-stage training of HyperSE3-SDF in § 3.2 is adopted in this process.
In the first stage of constructing the LSPData, we utilize 20 shapes from each class in ShapeNet and
7 shapes per class in Manifold40 to train the pose-dependent initialization µ. The point clouds of
each shape for SDF are sampled from the shape surfaces in Manifold40 and sourced from previ-
ous work (Mescheder et al., 2019) in ShapeNet. We did not consider the loudspeaker category in
ShapeNet due to the intricate internal structures of the shapes.

5.1 UNDERSTAND THE PARAMETER DATA

In the proposed dataset construction, we train HyperSE3-SDF for all shapes to create the LSPData
with transformations for continuous shape analysis. To validate the approach, we conduct two extra
experiments based on the plain SDF network to construct the LSPData, using different settings for µ.
In the first experiment, we randomly initialize µ and apply it to all shapes as Luigi et al. (2023). In
the second, we learn µ using the same training samples as those used for HyperSE3-SDF.

In this ablation study, we compare the constructed LSPData for five major categories of
ShapeNet (Park et al., 2019a). We present the t-SNE embeddings (Van der Maaten & Hinton,
2008) of the data constructed by random and learned µ in Fig. 3. We note that the embeddings
for our HyperSE3-SDF in pose (I,0) are similar to Fig. 3(b). It can be seen that the learned µ
significantly enhances shape semantics compared to the randomly initialized counterpart. Table 1
compares the shape classification results of the different LSPData under different rotation setups
with the same baseline encoder. ‘(I,0)’ represents testing with data in reference poses. ‘z/SO(3)’
indicates training with data rotated around z axis but testing on data arbitrarily rotated in SO(3) (Es-
teves et al., 2018). We obtain the transformed LSPData of plain SDF by applying Eq. (4). Notably,
the transformed LSPData from HyperSE3-SDF surpasses those from Euclidean computations, while

(a) Random µ. (b) Learned µ.

Table 1: Shape semantics of different LSPData.

Network plain SDF HyperSE3-
SDF

Initialization (µ) random learned learned
∆θ (I,0) 41.77 97.0 96.79
∆θ (z/SO(3)) - 86.73 95.76
θ (z/SO(3)) - 75.48 80.39

Figure 3: t-SNE embeddings of level-set parameter data obtained with different µ, randomly ini-
tialized in (a) and learned in (b). Table 1 compares the shape classification accuracy of differently
constructed LSPData, under different rotation setups. (I,0) represents data in reference poses, z
indicates data rotated around the vertical axis, and SO(3) stands for data rotated randomly.
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the normalized LSPData ∆θ outperforms the unnormalized θ. We also conduct ablation studies to
identify the optimal pose-dependent subset within the level-set parameters for the hypernetwork to
generate. Details can be found in the appendix.

5.2 SHAPE CLASSIFICATION AND RETRIVAL

Figure 4: Surface quality of ShapeNet.

We apply the level-set parameters to semantic analysis on
ShapeNet and Manifold40. For time concern, a maxi-
mum of 2000 shapes are reconstructed for each class in
ShapeNet. We filter the continuous shapes based on their
Chamfer distances to ensure surface quality. This results
in a dataset of 17,656 shapes for ShapeNet and 10,859
for Manifold40. Figure 4 plots the mean and standard
deviation of Chamfer distance (CD1) for each class in
ShapeNet, illustrating the surface quality represented by
our LSPData. Additionally, the mean and standard devia-
tion of CD1 for all classes in Manifold40 are 0.7102 and
0.1443, respectively. Note that our chamfer distances are
averaged across multiple random poses due to the introduced surface transformation. Besides, our
training set in ShapeNet comprises 200 shapes per class, while in Manifold40, it contains 50% of
the shapes per class, up to 200 shapes.

Table 2: Shape classification with discrete and continuous representations on ShapeNet.
Method pose OA plane bench cab car chair disp lamp rifle sofa table phone vessel
PointNet (Qi et al., 2017a)

z/
SO

(3
)

27.34 17.01 33.16 27.41 13.87 29.83 21.88 35.28 61.11 12.36 11.74 22.61 38.13
DGCNN (Wang et al., 2019d) 24.41 81.76 4.82 19.31 43.75 13.60 4.28 59.87 0.00 4.09 4.65 8.38 22.16
VN-DGCNN (Deng et al., 2021) 90.40 97.01 81.84 93.35 98.35 86.98 83.62 89.05 96.17 89.39 80.95 92.95 93.13
PaRI-Conv (Chen & Cong, 2022) 91.94 97.65 83.69 93.46 99.45 90.66 86.92 93.48 98.51 92.23 79.32 94.68 91.94
LSPData (∆θ) 93.03 98.36 83.09 89.10 98.70 94.65 92.79 93.65 98.51 89.31 86.63 94.95 94.78
PointNet (Qi et al., 2017a)

(I
,0

) 92.48 97.60 86.46 95.02 98.56 94.07 90.59 87.37 98.15 91.81 81.68 91.76 94.18
PointNet++ (Qi et al., 2017c) 93.36 98.36 84.87 94.70 99.04 92.07 90.95 92.98 99.15 90.64 86.26 96.01 94.85
LSPData (∆θ) 93.22 98.59 84.54 91.07 99.52 94.39 93.03 92.73 99.43 91.14 83.90 95.48 93.51

ShapeNet. We conduct pose-related semantic analysis on ShapeNet using rotation setups of z/SO(3)
and (I,0). Table 2 demonstrates the feasibility of shape analysis based on level-set parameters with-
out dependence on point clouds and meshes (Luigi et al., 2023). We compare our results to point
cloud-based methods. It can be seen that the proposed continuous representation shows compara-
ble performance to point clouds in shape classification of pose (I,0). In the challenging setup of
z/SO(3), our encoder-based network for continuous shapes outperforms the rotation-equivariant net-
works for point clouds. This is attributed to the separation of pose-dependent and pose-independent
parameters in the continuous representations. In addition, we observe that our classification network
converges rapidly within a few epochs, consistent with the findings in (Dupont et al., 2022).

Table 3: Shape classification and retrieval on Manifold40.

Method Pose classification retrieval (mAP)
OA mAcc top1 top5 top10

PointNet

SO
(3

)

79.33 70.63 63.99 59.88 56.84
DGCNN 82.70 74.98 70.82 67.14 64.85
VN-DGCNN 84.61 78.25 80.02 77.13 74.99
PaRI-Conv 85.14 76.44 82.51 80.39 78.82
LSPData (∆θ) 86.89 79.36 85.19 83.78 82.75

Manifold40. We also compare the ef-
fectiveness of LSPData in shape classi-
fication and retrieval with point clouds
under the rotation setup SO(3)/SO(3),
abbreviated as SO(3) in Table 3. For
retrieval, we extract features before the
classifier to match shapes in the feature
space via Euclidean distances. We eval-
uate the retrieval performance using mean Average Precision (mAP) alongside the top-1/5/10 recalls.
It can be noticed that our results based on continuous shapes using LSPData outperform those for
point clouds. We note that the performance gap between Manifold40 and ShapeNet is mainly at-
tributed to the restricted number of shapes in certain classes of Manifold40.

5.3 OBJECT POSE ESTIMATION

Data preparation. To prepare the partial point clouds for pose estimation, we select three cate-
gories from ShapeNet: airplane, car, and chair, with 10 shapes utilized in each category. For every
shape, we create 10 ground-truth transformations with random rotations in the range of [0, 2π] and
translations in the range of [−0.1, 0.1]. For each transformed shape, we create the partial point cloud
from its full point cloud representation, using hidden point removal (Katz et al., 2007). This results
in 300 pairs that covers partial and full point clouds with limited overlaps and large rotations. We
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Table 4: Optimization-based registration for pose estimation.

Method σ=0 σ=0.01 σ=0.03 σ=0.01, 30% outlier
RRE↓ RTE↓ RRE↓ RTE↓ RRE↓ RTE↓ RRE↓ RTE↓

ICP (Besl & McKay, 1992) 134.08 27.71 - - - - - -
FGR (Zhou et al., 2016) 105.88 19.91 - - - - - -
TEASER++ (Yang et al., 2020) 12.98 4.91 126.82 60.26 - - - -
Proposed (V1) 0.12 0.16 0.21 0.32 1.36 1.65 1.35 0.55
Proposed (V2) 0.06 0.12 0.78 0.29 1.38 1.63 1.25 0.54

 with 30% outlier
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Figure 5: Registration of Teaser++ and ours on an airplane. RRE/RTE metrics are shown, with RTE
scaled by ×100. The ground-truth Euler angles in this case are ω=(202.97◦, 352.18◦, 256.89◦).

introduce different levels of noise, σ∈{0.01, 0.03}, and an outlier ratio of 30% to the partial point
clouds for further challenges.

Given challenges posed by the absence of training data, we focus our comparison on optimization-
based registration methods rather than deep learning-based approaches. For readers interested in
the deep learning alternatives, we provide the performance of the pretrained GeoTransformer (Qin
et al., 2023) on our data in the appendix. Among the optimization-based methods, we compare the
estimation quality of our method, Proposed V1 and V2 (see § 4.2), with ICP (Besl & McKay, 1992),
FGR (Zhou et al., 2016), and TEASER++ (Yang et al., 2020) in Table 4. Their performance is eval-
uated based on the relative rotation/translation errors (RRE/RTE). See the appendix for definitions
of the two metrics. RRE is reported in degrees, and RTE is scaled by ×100. Notably, the proposed
method effectively estimates poses with arbitrary rotations from partial-view point clouds, even in
the presence of significant noise and outliers. Visualized examples are provided in Fig. 5 and Fig. 6.
We notice that while TEASER++ recovers most poses in the clean data, its performance drops with
noise and outliers. ICP and FGR struggle with estimating large rotations even for clean point clouds.
If a method fails in simpler settings, we cease testing it on more challenging data. The proposed
method takes ∼50 seconds to estimate the poses accurately.

6 CONCLUSION

This paper extends shape analysis beyond traditional 3D data by introducing level-set parameters as
a continuous and numerical representation of 3D shapes. We establish shape correlations in the non-
Euclidean parameter space with learned SDF initialization. A novel hypernetwork is proposed to
transform the shape surface by modifying a subset of level-set parameters according to rotations and
translations in SE(3). The resulting continuous representations facilitate semantic shape analysis in
SO(3) compared to the Euclidean-based transformations of continuous shapes. We also demonstrate
the efficacy of level-set parameters in geometric shape analysis with pose estimation. The SDF

9
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Figure 6: Registrations of Teaser++ and our method on a car and a chair.

reconstruction loss is leveraged to optimize the pose parameters, yielding accurate estimations for
poses with arbitrarily large rotations, even when the data contain significant noise and outliers.

Limitations. Level-set parameters summarize the overall topology of 3D shapes and can be applied
to global feature learning of continuous shapes. However, they are not suitable for learning local
features of 3D shapes, as there is no correspondence between the local structures of the shape and
subsets of the level-set parameters. Researchers have explored local modulation vectors (Bauer
et al., 2023) to improve the image classification performance of continuous representations, but
with limited success. Mixtures of neural implicit functions (You et al., 2024) may offer enhanced
local encoding in the continuous representations. Besides, distinguishing the level-set parameters
into pose-dependent and independent subsets, and making them learnable from arbitrarily posed
point clouds, could be important for continuous shape representations and analysis in the future.
Extending continuous representations from shapes to real-world surfaces also merits exploration.
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A THE SDF NETWORK

A.1 TENSORS OF LEVEL-SET PARAMETERS

We show the 8-layer SDF network with skipping concatenation in Fig. A. The resulting level-set
parameters Θ1,Θ2,Θ3 have dimensions 256×4, 6×256×257, and 1×257, respectively. We use the
proposed hypernetwork hϕ to generate the first layer parameters for surface transformation.
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Figure A: The SDF network and its resulting level-set parameters for shape representation.

A.2 UNSUPERVISED SDF RECONSTRUCTION LOSS

Let Xp and Xn be point clouds sampled on and off the surface. n̂(x) and n(x) be the estimated
normal and ground truth normal, respectively. We use the loss function LSDF in Eq. (2) consisting
of four objectives Lp

dist,Ln
dist,Leik,Lp

norm for SDF reconstruction. They each are computed as

Lp
dist =

∑
x∈Xp

∥fθ(x)∥1, (7)

Ln
dist =

∑
x∈Xn

exp(−ρ∥fθ(x)∥1), ρ≫1, (8)

Leik =
∑

x∈Xp
⋃

Xn

(∥∇fθ(x)∥2 − 1)2, (9)

Lp
norm =

∑
x∈Xp

∥1− ⟨n̂(x),n(x)⟩∥1 + ∥n̂(x)− n(x)∥1. (10)

We use LSDF in the first stage of dataset construction to learn the shard parameters µ. In the second
stage, we add two regularization terms to the LSDF and train the parameters {∆Ymn

ij } and {∆amn
ℓ }

associated with shape instances with the loss below,

L = LSDF +
λreg

K

( ∑
m,n,i,j

|∆Ymn
ij |+

∑
ℓ,m,n

|∆amn
ℓ |

)
. (11)

The two extra terms encourage ∆θ to be close to zero. λreg is a hyperparameter, and K denotes the
total number of training parameters in {∆Ymn

ij } and {∆amn
ℓ }. The L1 Loss is denoted by |·|.

B SDF-BASED SURFACE TRANSFORMATION

B.1 GEOMETRIC SDF INITIALIZATION WITH THE HYPERNETWORK

Figure B illustrates the proposed hypernetwork. We sample from the standard normal distribution
to initialize all entries in each latent matrix Ymn. This matrix is combined with the pose-dependent
coefficient matrix Bmn to compute a vector zmn that follows normal distributions. Specifically, we
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Figure B: Hypernetwork for surface transformation. The hypernetwork hϕ utilizes a 4-layer MLP
with output channels of 256, 256, 256, and 16384 to compute a compact set of pose-dependent
coefficient matrices {Bmn}. They are combined with the latent matrices {Ymn} to compute the
vectors {zmn}, which are then normalized into {ẑmn} to satisfy the standard normal distribution.
In the final step, two branches of fully connected layers, FC1 and FC2, take each zmn and ẑmn as
input to generate a pose-dependent bias and weight for the first SDF layer, respectively.

formulate each element zj in z as

zj =

I∑
i=1

BijYij , j ∈ [J ], (12)

which is a linear combination of variables in the jth column of Y. The superscripts m,n are omitted.

Let N (0, 1) be the standard normal distribution. For any random variable Z=
∑

i βiYi with Yi ∼
N (0, 1) ∀i, its expectation and variance are

E(Z) =
∑
i

βiE(Yi) = 0. (13)

Var(Z) =
∑
i

β2
i Var(Yi) =

∑
i

β2
i . (14)

The normalized variable Ẑ= Z√∑
i β

2
i

∼ N (0, 1) [78]. We normalize each element in z as

ẑj=
zj√∑
i B

2
ij

to obtain a normalized vector ẑ where ẑj ∼ N (0, 1).

Given the normalized vector ẑ which strictly follows a standard normal distribution, we design two
different branches, FC1 and FC2, in the last layer of hϕ to initialize the weight and bias parameters
in {θmn

1 } according to SAL [58]. We note that the approximate Gaussian Process in [79] does not
help in generating outputs that follow the standard normal distribution for the required initializations.

Initialization to zero. We use FC1 to generate the SDF biases in {θmn
1 }. It takes each zmn as

inputs. We initialize all weights and bias of FC1 as zeros to ensure that the generated SDF biases
start at zero.

Initialization to normal distributions. The SDF weights should be initialized following certain
normal distributions N (µ, σ2), where µ=0 and σ=

√
2/256 in our SDF network. We introduce

FC2, which takes ẑmn as inputs to generate θmn
1 . Let w∈RJ be the neural weights of FC2. The

detailed computation of θmn
1 from ẑmn is given by

θmn
1 = µ+ σ

⟨w, ẑmn⟩
⟨w,w⟩

. (15)

⟨·, ·⟩ represents the scalar products between two vectors. Note that FC2 does not require biases.

The proposed hypernetwork emphasizes importance of the first SDF layer while allowing the SDF
parameters of the other layers to be shared across different poses, substantially reducing the neural
parameter size of hϕ. The introduction of the latent matrices {Ymn} is important as it enables the
hypernetwork to satisfy the geometric initializations of SDF network. Note that parameters of the
unconditioned layers (layer 2-8) in SDF are initialized the same as in SAL [58].

B.2 EUCLIDEAN-BASED SDF TRANSFORMATION

3D shapes can be transformed in the parameter space by applying Euclidean transformation to their
level-set parameters in the reference poses. Let W and b be the neural weights and biases that
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Table A: The surface quality of different methods in implicit surface transformations.

Method Baseline Baseline++ HyperSE3-SDF HyperSE3-SDF Dataset
CD1 ↓ NC ↑ CD1 ↓ NC ↑ CD1 ↓ NC ↑ CD1 ↓ NC ↑

#epochs/runtime 10000/1 hour 500/4 minutes

airplane 2.83±3.71 0.94±0.05 0.54±0.06 0.98±0.00 0.48±0.02 0.99±0.00 0.53±0.06 0.99±0.00
1.44±0.77 0.93±0.03 0.90±0.31 0.96±0.01 0.48±0.07 0.98±0.00 0.48±0.05 0.98±0.00

car 1.50±0.50 0.95±0.01 1.20±0.41 0.96±0.01 0.73±0.18 0.98±0.00 0.66±0.18 0.98±0.00
0.97±0.12 0.95±0.00 1.33±0.42 0.93±0.01 0.72±0.03 0.96±0.00 0.74±0.04 0.96±0.00

chair 11.51±2.72 0.71±0.09 8.77±5.49 0.78±0.14 0.61±0.07 0.98±0.00 0.57±0.06 0.99±0.00
10.21±3.37 0.75±0.14 2.57±3.35 0.92±0.11 0.55±0.07 0.98±0.00 0.54±0.05 0.98±0.00

lamp 1.33±0.56 0.95±0.02 1.05±0.32 0.97±0.01 0.62±0.08 0.98±0.00 0.56±0.05 0.98±0.00
1.18±0.33 0.97±0.01 0.96±0.23 0.97±0.01 0.70±0.24 0.98±0.01 0.64±0.14 0.98±0.00

table 1.01±0.27 0.96±0.01 0.83±0.22 0.97±0.01 0.62±0.10 0.98±0.00 0.55±0.03 0.98±0.00
0.80±0.17 0.96±0.01 0.98±0.20 0.95±0.01 0.62±0.10 0.97±0.00 0.60±0.09 0.98±0.00

apply to the input coordinates x, i.e., Wx + b. For the surface transformed with R, t, resulting in
y = Rx+ t in the Euclidean space, the related parameters can be modified as

W′ = WR−1,b′ = −WR−1t+ b. (16)

It is obtained by replacing the x in Wx+ b with x = R−1(y− t). However, this Euclidean-based
SDF transformation yields level-set parameter data that require more data augmentations for shape
classification and retrieval in SO(3), similar to point cloud data.

C IMPLEMENTATION DETAILS

Hypernetwork hϕ. In the first stage of our dataset construction, we train HyperSE3-SDF with a
batch size of 50 for 50000 epochs. We utilize the Adam Optimizer [80] with an initial learning rate
of 0.001, which exponentially decays at a rate of γ=0.998 every 30 epochs to train the model. This
training process takes 3 days on a GeForce RTX 4090 GPU.

Sampling Transformations. We consider Euler angles in the range of [0, 2π] and translations in
the subspace of [−0.1, 0.1]3 in the context of SDF. For dataset construction, we randomly sample
150 pairs of (R, t), including the reference pose (I,0), which are fixed and shared across all epochs.
Additionally, in each epoch, we randomly sample another 150 (R, t) on-the-fly. These fixed and on-
the-fly transformations are collectively utilized to train the HyperSE3-SDF network. This strategy
facilitates satisfactory convergence and generalization of the model.

Augmentation of Level-Set Parameters. In the semantic shape analysis with level-set parameters,
we apply scaling operations to the level-set parameters using normal distributions with a major sigma
of σ1=0.2 and a minor sigma of σ2=0.05 for small perturbations of different θ. We also perturb
the level-set value c=0 using normal distributions with σc=0.1, and apply positional encoding to c,
denoted as PE(c). The resulting PE(c) is concatenated with Θ3 for feature extraction from the
corresponding branch. We set the level of PE(c) to 10 for ShapeNet and 16 for Manifold40. In the
transformer layer, we apply dropout with a rate of 0.3.

Other Details. We use 500 shapes from each of the five categories: airplane, chair, lamp, sofa,
table, in the experiments of § 5.1.

D POSE-DEPENDENT PARAMETERS IN θ
To verify the choice of our HyperSE3-SDF on pose-dependent level-set parameters, we introduce
two variants: Baseline and Baseline++, which condition different subsets of level-set parameters on
rotations and translations. Specifically, Baseline utilizes the hypernetwork to generate biases of the
first SDF layer, while Baseline++ generates biases of all layers with the hypernetwork. We compare
their performance to the proposed hypernetwork, which generates weights and biases of the first
SDF layer. In this study, we train the different networks without learned initializations.

We evaluate surface reconstruction using L1 Chamfer Distance (CD1×100) and Normal Consis-
tency (NC). To assess overall surface quality across various transformations, we randomly sampled
50 poses, calculating the mean and deviation of these metrics to report performance. Table A sum-
marizes the results, showing that the proposed hypernetwork significantly outperforms Baseline and
Baseline++. For reference, we provide the corresponding shape quality in our two-stage constructed
dataset. The training time for a shape in the second stage of dataset construction is 4 minutes, which
is significantly less than the 1 hour required for a hypernetwork without learned initializations.
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In the Fig. C below, we visualize the transformed surfaces of an airplane and a chair using different
hypernetworks. The first column represents the reference pose, while the subsequent columns dis-
play randomly transformed surfaces. This visualization reaffirms the superiority of HyperSE3-SDF.
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Figure C: Comparison of different hypernetworks at transforming the continuous shape surfaces.
We show the transformed point cloud with blue dots on top of the shape surface. The proposed
HyperSE3-SDF performs the best, while Baseline++ outperforms Baseline.
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E POSE ESTIMATION

Evaluation Metrics. Let R, t be the ground-truth rotation and translation, respectively, while R̂, t̂
be their estimated counterparts. We evaluate the pose estimation quality using Relative Rotation
Error (RRE) and Relative Translation Error (RTE), calculated as follows:

RRE = arccos
( tr(R̂⊺R)− 1

2

)
, RTE = ∥t̂− t∥2. (17)

We show in Fig. D distributions of the ground-truth Euler angles in our 300 point cloud pairs. It can
be seen that the angles vary from 0◦ to 360◦. Table B reports the results of GeoTransformer (Qin
et al., 2023) on ModelNet and our data, using their model pretrained on ModelNet40. It can be seen
that the method performs well for small rotations with Euler angles in the range of [0◦, 45◦] on Mod-
elNet but significantly degrades with larger rotations. On our data, its performance is unsatisfactory
even for small rotations due to the domain-gap.

Figure D: Distributions of Euler Angles for the ground-truth rotations.

Table B: GeoTransformer on ModelNet and our data.

Data ω ∈ [0◦, 45◦]3 ω ∈ [0◦, 90◦]3 ω ∈ [0◦, 180◦]3 ω ∈ [0◦, 360◦]3

RRE↓ RTE↓ RRE↓ RTE↓ RRE↓ RTE↓ RRE↓ RTE↓
ModelNet 1.01 0.7 47.65 19.10 130.33 37.10 125.92 36.20
Ours 56.82 38.40 85.89 56.60 132.04 58.60 130.54 58.0
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