
Under review as submission to TMLR

Graph Masked Language Models

Anonymous authors
Paper under double-blind review

Abstract

Language Models (LMs) and Graph Neural Networks (GNNs) have shown great promise in
their respective areas, yet integrating structured graph data with rich textual information
remains challenging. In this work, we propose Graph Masked Language Models (GMLM), a
novel dual-branch architecture that combines the structural learning of GNNs with the con-
textual power of pretrained language models. Our approach introduces two key innovations:
(i) a semantic masking strategy that utilizes graph topology to selectively mask nodes based
on their structural importance, and (ii) a soft masking mechanism that interpolates between
original node features and a learnable mask token, ensuring smoother information flow during
training. Extensive experiments on multiple node classification and language understanding
benchmarks demonstrate that GMLM not only achieves state-of-the-art performance but also
exhibits enhanced robustness and stability. This work underscores the benefits of integrating
structured and unstructured data representations for improved graph learning.

1 Introduction

Graph Neural Networks (GNNs) Scarselli et al. (2009), Zhou et al. (2021) have demonstrated remarkable
success in tasks such as node classification, link prediction, and graph classification. However, most existing
GNN architectures primarily focus on structural information and local neighborhood features, potentially
overlooking rich semantic relationships between nodes. While recent advances in natural language processing,
particularly pre-trained language models like BERT Devlin et al. (2019), have revolutionized our ability to
capture contextual information, their integration with graph learning remains largely unexplored.

Graph Attention Networks (GATs) Veličković et al. (2018) have shown promise in selectively aggregating
neighborhood information through learnable attention mechanisms. However, their effectiveness can be limited
by the challenge of capturing long-range dependencies and semantic relationships in graphs. Meanwhile,
masked language modeling, a key innovation in BERT, has proven highly effective for learning contextual
representations in text data. This raises an intriguing question: Can we adapt masked modeling techniques
to enhance graph representation learning?

Traditional node masking approaches in GNNs Mishra et al. (2021) often employ random masking strategies
or complete removal of features, which can lead to information loss and suboptimal learning. Furthermore,
these approaches typically ignore the structural importance of nodes in the graph topology, potentially
masking critical nodes that are essential for understanding the global graph structure.

In this paper, we present a novel framework that bridges these gaps by combining the structural learning
capabilities of GATs with the contextual understanding of BERT-style masked modeling. Our approach
introduces two key innovations: (1) a semantic masking strategy that considers node importance in the graph
topology, and (2) a soft masking mechanism that allows for partial information flow during training. This
combination enables our model to learn both structural and semantic patterns effectively, leading to more
robust node representations.

Our main contributions of this work can be summarized as follows:

1. We propose a novel dual-branch architecture that effectively combines Graph Attention Networks
with BERT-style masked modeling for enhanced node representation learning.

1

Under review as submission to TMLR

2. We introduce a semantic masking strategy that selectively masks nodes based on their structural
importance in the graph, ensuring that the model learns from topologically significant nodes. We
also develop a soft masking mechanism that creates interpolated node representations, allowing for
gradual information flow during training and better preservation of feature relationships Fig. 1.

3. We design a multi-layer fusion network that effectively combines structural and semantic information
from the graph and language model branches.

2 Related Works

Graph Neural Networks (GNNs) Zhou et al. (2021) provide a powerful framework for learning from graph-
structured data. Building upon early spectral and spatial convolutional methods, Graph Attention Networks
(GATs) Veličković et al. (2018) integrated self-attention Vaswani et al. (2017). This allows adaptive weighting of
neighbors during message passing, enhancing model expressivity and suitability for irregular graph structures,
as detailed in recent surveys.

Efforts to adapt the Transformer architecture, initially designed for sequences, to graph data aim to capture
long-range dependencies via global self-attention, potentially overcoming limitations of traditional message
passing Ying et al. (2021), Yun et al. (2020). These Graph Transformers, reviewed systematically Shehzad
et al. (2024), can incorporate positional information, handle diverse graph scales, achieve competitive results,
and leverage language model pretraining benefits on text-rich graphs.

Masked Pretraining Strategies, popularized by language models Devlin et al. (2019) that learn contextual
representations via masked token prediction, have been adapted for graphs. The Masked Graph Autoencoder
(MaskGAE) Li et al. (2023) framework, for instance, masks graph edges and trains the model to reconstruct
them, thereby learning robust representations for downstream tasks like link prediction and node classification.

Integration of Language Models and Graph Structures seeks to combine textual and structural
information. Key directions include: fusing pretrained language models (LMs) with GNNs for joint reasoning
over text and structure Plenz & Frank (2024); injecting structural information directly into LMs using
graph-guided attention mechanisms, potentially removing the need for separate GNN modules Yuan & Färber
(2024); interpreting Transformers as GNNs operating on complete graphs, allowing explicit modeling of edge
information Henderson et al. (2023); and jointly training large LMs and GNNs to leverage both contextual
understanding and structural learning capabilities Ioannidis et al. (2022).

3 Methodology

Given an attributed graph G = (V, E) with node feature matrix X ∈ R|V |×d and binary adjacency matrix
A ∈ {0, 1}|V |×|V |, our goal is to learn robust node representations that capture both the graph structure and
semantic context. Each node vi ∈ V is associated with a feature vector xi ∈ Rd and belongs to one of C
classes. To achieve this, we introduce (i) a Semantic Node Masking strategy that selectively perturbs node
features based on structural importance, and (ii) a Dual-Branch Architecture that integrates graph-based
and language-based embeddings.

3.1 Semantic Node Masking

Conventional random masking treats all nodes uniformly, often masking nodes that are crucial for maintaining
graph connectivity. In contrast, our semantic masking strategy uses degree centrality to determine the
importance of each node. By doing so, we ensure that nodes with higher connectivity, which are more
influential in maintaining the overall structure are masked in a controlled manner. This design is inspired
by graph theory concepts related to network resilience and influence maximization, where highly connected
nodes play a pivotal role. Algorithm 1 provides an overview of the first step as seen in Fig. 1.

2

Under review as submission to TMLR

Mask Ratio (20% - 40%)Input Graph

Select Masked Node

Sample Nodes based
on Degree

Calculate Node
Degrees

Semantic Masking

Final Masked
Features

Keep Original Featuresnew_feature = (1-β) × original + β × mask_token

Masked
Node No

Yes

Original Features

Soft Masking

Figure 1: Semantic and Soft Masking of Nodes allows partial information to flow instead of binary on/off
masking, the model can learn from both masked and original information simultaneously, creating a smoother,
more continuous learning space with improved gradient flow.

Algorithm 1 Semantic Node Mask Generation
Require: Graph data with:

• Node features X ∈ RN×d

• Edge index E

• Boolean training mask train_mask (size N)
• Mask ratio r ∈ (0, 1)

Ensure: Boolean mask vector mask of length N
1: train_idx← {i | train_mask[i] = True}
2: num_train← |train_idx|
3: num_mask ← max(1, ⌊r · num_train⌋)
4: for each node i ∈ train_idx do
5: Compute degree: di ←

∑
j∈N (i) 1

6: end for
7: Compute total degree: D ←

∑
i∈train_idx di

8: for each node i ∈ train_idx do
9: Set sampling probability: pi ← di

D
10: end for
11: Sample without replacement a set S ⊆ train_idx of num_mask nodes according to probabilities {pi}
12: Initialize mask as a Boolean vector of length N with all entries False
13: for each node i ∈ S do
14: Set mask[i] ← True
15: end for
16: return mask

3.1.1 Degree-based Node Selection

We compute the degree di of a node vi as:

di =
∑
j∈V

Aij .

3

Under review as submission to TMLR

The probability of selecting a node for masking is proportional to its degree, computed over the training set
Vtrain:

P (vi) = di∑
j∈Vtrain

dj
.

This selection strategy ensures that:

• Highly connected nodes, which are crucial for graph connectivity, are more likely to be masked.

• The masking probability distribution is adaptive to the topology of the graph.

• Only training nodes are considered for masking, thereby preserving the integrity of validation and
test sets.

3.2 Soft Masking Mechanism

Algorithm 2 provides an overview of the second step, as illustrated in Figure 1. Unlike binary masking
approaches that completely remove a node’s feature information, we propose a soft masking strategy that
interpolates between the original feature vector and a learnable mask token m ∈ Rd. This design ensures that
critical information is not abruptly removed, improving gradient flow and optimizing information retention.

Specifically, for a node vi, the masked feature x̃i is computed as follows:

x̃i =
{

(1− β)xi + β m, if vi is selected for masking,

xi, otherwise.
(1)

The interpolation coefficient β ∈ [0, 1] controls the degree of masking. In our experiments, we set β = 0.7,
striking a balance between preserving original node features and introducing masked noise. This gradual
transformation allows partial information to persist, leading to:

• Improved Gradient Flow: Unlike hard masking, which creates sharp discontinuities in the loss
landscape, soft masking ensures a smoother optimization process. This continuous transition reduces
gradient variance and mitigates training instability.

• Enhanced Information Retention: Soft masking maintains a partial connection between masked
nodes and their original features, preserving important semantic and structural information.

• Alignment with Information Theory Concepts: Inspired by the information bottleneck principle
Tishby et al. (2000), soft masking ensures that only a controlled amount of information is removed,
reducing redundancy while preserving essential task-relevant features.

3.3 Dual-Branch Architecture

The novelty of GMLM also lies in its dual-branch design that integrates a GAT branch with a BERT branch.
The GAT branch captures the intrinsic graph structure using attention mechanisms, while the BERT branch
extracts rich semantic representations from node-associated text. A multi-layer fusion network then combines
these embeddings to produce a robust node representation that benefits from both structural and semantic
perspectives. This synergistic combination overcomes the limitations seen in methods that rely exclusively on
one modality.

3.3.1 Graph Attention Branch

Our model consists of two branches that extract complementary features from the graph. The first GAT
layer computes hidden representations as:

h
(1)
i = ELU

(
BN

(∥∥K1

k=1

∑
j∈Ni

α
(1)
ij,kW

(1)
k x̃j

))
,

4

Under review as submission to TMLR

Algorithm 2 Soft Masking of Node Features
Require: • Node feature matrix X ∈ RN×d

• Boolean mask vector mask (length N)
• Learnable mask token m ∈ Rd

• Interpolation coefficient β ∈ [0, 1]
Ensure: Soft-masked feature matrix X̃ ∈ RN×d

1: X̃ ← X ▷ Copy original features
2: for each node i = 1 to N do
3: if mask[i] is True then
4: Update feature: X̃[i]← (1− β) ·X[i] + β ·m
5: end if
6: end for
7: return X̃

where:

• K1 = 4 is the number of attention heads.

• Ni denotes the set of neighbors of node vi.

• W
(1)
k ∈ Rd′×d is the learnable weight matrix for head k.

• α
(1)
ij,k are attention coefficients computed by:

α
(1)
ij,k =

exp
(
LeakyReLU(aT

k [W (1)
k x̃i ∥ W

(1)
k x̃j])

)∑
l∈Ni

exp
(
LeakyReLU(aT

k [W (1)
k x̃i ∥ W

(1)
k x̃l])

) ,

with ak ∈ R2d′ being the attention vector for head k, and ∥ denoting concatenation.

• BN and ELU denote batch normalization and the Exponential Linear Unit activation function,
respectively.

The second GAT layer refines the representations as:

h
(2)
i = ELU

(
BN

(∥∥K2

k=1

∑
j∈Ni

α
(2)
ij,kW

(2)
k h

(1)
j

))
,

where K2 = 2 denotes the number of attention heads in the second layer.

3.3.2 BERT Branch

We use DistilBERT Sanh et al. (2020) as our masking model. The BERT branch processes node states as
tokens:

ti =
{

“[MASK]”, if vi is masked,

“node”, otherwise.

The token is then processed by BERT:

bi = BERT(tokenize(ti)),

yielding the BERT embedding bi ∈ Rdb for node vi. These embeddings capture contextual information that
complements the structural cues obtained from the GAT branch.

5

Under review as submission to TMLR

Determinism at Inference During testing, DistilBERT runs with frozen weights and inference-mode
(dropout disabled), so identical tokens ("node" or "[MASK]") always yield identical embeddings.

Why a PLM instead of Static Vectors? We fine-tune a PLM rather than learn two random vectors
because:

1. Rich Initialization Embeddings inherit semantic priors from large-scale pre-training.

2. Task Adaptation Fine-tuning aligns them for optimal fusion with GAT structural features.

3. Higher Capacity The transformer architecture models complex interactions that fixed vectors
cannot.

3.3.3 Multi-layer Fusion Network

The fusion network combines the graph structural features and the BERT contextual embeddings. First, the
two embeddings are concatenated:

zi =
[
h

(2)
i ∥ bi

]
.

Next, the concatenated vector is passed through a two-layer fully-connected network with residual connections
and layer normalization:

fi = LayerNorm
(

W2 ReLU
(
LayerNorm(W1zi)

))
,

where W1 and W2 are learnable weight matrices. This fusion step ensures that both structural and semantic
features are effectively integrated while maintaining stable training dynamics.

3.4 Node Classification

The final node representations fi are used to perform node classification. A classification head maps the
fused representations to class probabilities:

ŷi = softmax
(

Wc ReLU(Whfi)
)

,

where Wh and Wc are learnable projection matrices. The softmax function ensures that the output ŷi ∈ RC

represents a valid probability distribution over the C classes.

4 Training

All experiments and evaluations were run using a singular V100(32GB). The average VRAM usage was
between 22GB, with a peak usage at 30GB VRAM usage.

4.1 Node Classification & Graph Classification

To train GMLM for node classification tasks we follow the below described procedure. We also provide
dataset details such as node and edge counts in Appendix D.1.

Our training framework consists of two phases:

1. Contrastive Pretraining: Learn robust node representations by aligning embeddings from different
views of the graph.

2. Supervised Fine-Tuning: Adapt the pretrained representations for node classification using a
label-smoothed cross-entropy loss.

4.1.1 Contrastive Pretraining

The goal of the contrastive pretraining phase is to maximize the agreement between different views of the
same node while ensuring separation from other nodes.

6

Under review as submission to TMLR

4.1.2 View Generation

For each training iteration, two views of the graph are generated by applying distinct random masks to the
node features:

X̃1 = Mask(X, r1), X̃2 = Mask(X, r2),

where the mask ratios r1 and r2 are independently sampled from:

r1, r2 ∼ Uniform(0.2, 0.4).

This procedure provides complementary views that challenge the model to learn invariant representations.

4.1.3 Contrastive Loss

We adopt the NT-Xent (Normalized Temperature-scaled Cross Entropy) loss Sohn (2016) to align the
embeddings from the two views. Let zi and z′

i denote the ℓ2-normalized embeddings for node vi from the two
views. The loss is defined as:

Lcont = 1
2N

N∑
i=1

[
− log

exp
(
zT

i z′
i/τ

)∑2N
k=1 1[k ̸=i] exp

(
zT

i zk/τ
)]

,

where:

• τ = 0.5 is the temperature parameter.

• N is the number of nodes.

• 1[k ̸=i] is an indicator function that excludes the positive pair from the denominator.

4.1.4 Supervised Fine-Tuning

In the fine-tuning phase, the pretrained model is optimized for the node classification task.

4.1.5 Loss Function with Label Smoothing

We utilize a cross-entropy loss with label smoothing to prevent overconfidence. The loss function is given by:

Lcls = −
∑

i∈Vtrain

[
(1 − ϵ) yi log(ŷi) + ϵ

∑
j ̸=yi

1
C − 1 log(ŷj)

]
,

where:

• ϵ = 0.1 is the smoothing parameter.

• yi denotes the ground-truth label (expressed in one-hot encoding).

• ŷi is the predicted probability for the correct class.

• C is the number of classes.

4.1.6 Learning Rate Strategy

Different components of the model are optimized with different learning rates:

η =

10−3 for graph parameters,

10−5 for BERT parameters,

10−4 for other parameters.

7

Under review as submission to TMLR

We employ cosine annealing with warm restarts to update the learning rate during training:

ηt = ηmin + 1
2(ηmax − ηmin)

(
1 + cos

(
Tcur

Ti
π

))
,

where:

• Tcur is the number of epochs since the last restart.

• Ti is the total number of epochs in the current cycle.

• The initial cycle is set to T0 = 20 epochs.

• A multiplication factor Tmult = 2 is used to extend each subsequent cycle.

4.2 Language understanding

While GLUE tasks do not provide explicit graph structures, we construct a token-level graph for each input
sequence. Specifically, given an input sentence or sentence pair tokenized as x = [x1, x2, . . . , xn], we define a
fully connected undirected graph G = (V, E), where V = {x1, x2, . . . , xn} and E = {(xi, xj) | 1 ≤ i, j ≤ n}.

Each node xi is initialized with its corresponding token embedding, and edges are used to compute pairwise
attention scores, similar to standard self-attention but within a graph neural network framework. This allows
GMLM to process GLUE inputs by treating them as dense graphs over token embeddings, enabling the model
to capture contextual relationships.

To train GMLM for language understanding tasks, we follow a two-phase setup similar to node classification.
However, instead of using fixed hyperparameters, we employ grid search for hyperparameter tuning. We also
provide dataset details and their evaluation metrics in Appendix D.2.

5 Results

5.1 Node Classification

Table 1 summarizes the test accuracy and standard deviation across six benchmarks. Our Graph Masked
Language Model (GMLM) is compared against self-supervised methods (BGRL Sohn (2016), S3-CL Ding
et al. (2022), GraphMAE Hou et al. (2022)) and semi/unsupervised baselines (GCN Kipf & Welling (2017),
SUGRL Mo et al. (2022)). Results follow the evaluation protocols in Veličković et al. (2018); Ju et al. (2023);
Ding et al. (2022), averaged over 7 runs.

GMLM achieves SOTA performance on multiple datasets: 87.5% on Cora, 75.7% on Citeseer, and 86.2%
on Pubmed Yang et al. (2016). On Coauthor CS and Amazon Photo Shchur et al. (2019), GMLM
reaches 93.7% and 93.6%, respectively.

Ablation results show that GMLM w/o Semantic Masking maintains high mean accuracy but suffers from
higher standard deviations, notably 1.1 on Citeseer and 6.8 on Amazon Computers. GMLM w/o Soft
Masking degrades significantly, particularly on Amazon Computers (71.8 ± 11.6).

The full GMLM, combining both masking strategies, consistently delivers the highest accuracy and stability.

5.2 Graph Classification

Table 2 reports the graph classification accuracies across four benchmark datasets from TUDatasets Morris
et al. (2020). GMLM shows strong performance on social network datasets such as COLLAB and IMDB-B,
achieving the highest accuracy on IMDB-B and third best on COLLAB. However, on bioinformatics datasets
like PROTEINS and MUTAG, GMLM trails behind leading methods. These results underline GMLM’s
effectiveness in capturing the structure of social graphs, while highlighting limitations in modeling more
complex biological topologies.

8

Under review as submission to TMLR

Method Cora Citeseer Pubmed Amazon P Amazon Comp. Coauthor CS
DGI 81.7 ± 0.6 71.5 ± 0.7 77.3 ± 0.6 83.1 ± 0.3 83.6 ± 0.2 90.0 ± 0.3
MVGRL 82.9 ± 0.7 72.6 ± 0.7 79.4 ± 0.3 87.3 ± 0.1 82.8 ± 0.1 91.3 ± 0.1
GRACE 80.0 ± 0.4 71.7 ± 0.6 79.5 ± 1.1 81.8 ± 0.8 89.5 ± 0.3 71.1 ± 0.2
CCA-SSG 84.2 ± 0.4 73.1 ± 0.3 81.6 ± 0.4 93.1 ± 0.1 88.7 ± 0.3 93.3 ± 0.2
SUGRL 83.4 ± 0.5 73.0 ± 0.4 81.9 ± 0.3 93.2 ± 0.4 88.9 ± 0.2 92.2 ± 0.5
S3-CL 84.5 ± 0.4 74.6 ± 0.4 80.8 ± 0.3 89.0 ± 0.5 N/A 93.1 ± 0.4
GraphMAE 84.2 ± 0.4 73.1 ± 0.4 83.9 ± 0.3 90.7 ± 0.4 79.4 ± 0.5 93.1 ± 0.1
GraphMAE2 84.4 ± 0.5 73.4 ± 0.3 81.4 ± 0.5 N/A N/A N/A
UGMAE 85.1 ± 0.4 73.9 ± 0.3 82.2 ± 0.1 N/A N/A N/A
GMI 82.7 ± 0.2 73.3 ± 0.3 77.3 ± 0.6 83.1 ± 0.3 N/A 91.0 ± 0.0
BGRL 83.8 ± 1.6 72.3 ± 0.9 86.0 ± 0.3 93.2 ± 0.3 90.3 ± 0.2 93.3 ± 0.1
GCN 81.5 ± 1.3 71.9 ± 1.9 77.8 ± 2.9 91.2 ± 1.2 82.6 ± 2.4 91.1 ± 0.5
GAT 81.8 ± 1.3 71.4 ± 1.9 78.7 ± 2.3 85.7 ± 20.3 78.0 ± 19.0 90.5 ± 0.6
MoNet 81.3 ± 1.3 71.2 ± 2.0 78.6 ± 2.3 91.2 ± 1.3 83.5 ± 2.2 90.8 ± 0.6
GS-mean 79.2 ± 7.7 71.6 ± 1.9 77.4 ± 2.2 91.4 ± 1.3 82.4 ± 1.8 91.3 ± 2.8
GS-maxpool 76.6 ± 1.9 67.5 ± 2.3 76.1 ± 2.3 90.4 ± 1.3 N/A 85.0 ± 1.1
GS-meanpool 77.9 ± 2.4 68.6 ± 2.4 76.5 ± 2.4 90.7 ± 1.6 79.9 ± 2.3 89.6 ± 0.9
MLP 58.2 ± 2.1 59.1 ± 2.3 70.0 ± 2.1 69.6 ± 3.8 44.9 ± 5.8 88.3 ± 0.7
LogReg 57.1 ± 2.3 61.0 ± 2.2 64.1 ± 3.1 73.0 ± 6.5 64.1 ± 5.7 86.4 ± 0.9
LabelProp 74.4 ± 2.6 67.8 ± 2.1 70.5 ± 5.3 72.6 ± 11.1 70.8 ± 8.1 73.6 ± 3.9
LabelProp NL 73.9 ± 1.6 66.7 ± 2.2 72.3 ± 2.9 83.9 ± 2.7 75.0 ± 2.9 76.7 ± 1.4
GMLM (w/o Semantic Masking) 86.8 ± 0.6 75.6 ± 1.1 85.3 ± 0.3 92.9 ± 0.4 78.3 ± 6.8 93.0 ± 0.3
GMLM (w/o Soft Masking) 85.2 ± 1.8 74.8 ± 1.1 85.4 ± 0.1 93.5 ± 0.8 71.8 ± 11.6 92.4 ± 0.6
GMLM 87.5 ± 0.9 75.7±0.6 86.2±0.2 93.6±0.5 85.1±1.7 93.7±0.3

Table 1: Mean test set accuracy and standard deviation on Node Classification tasks across 7 runs in percent.
Highest scores are in bold, second highest are underlined.

5.3 Link Prediction

In Table 3 we see the performance of GMLM on link prediction tasks (CORA, CiteSeer and PubMed). We
clearly see it having comparable performance with GAE, VGAEKipf & Welling (2016) with the baselines,
giving the best performance on Cora and only being 0.2% off on PubMed when compared to GAE.

5.4 Language Understanding

Through extensive grid search, we identified the best-performing hyperparameters for each dataset in the
GLUE benchmark Wang et al. (2019). We optimized three key variables: temperature, pre_train_epochs,
and finetune_epochs. The best-performing settings for each task are summarized in Table 7.

Table 4 shows the performance on the following tasks CoLA, MRPC, RTE, SST-2, STS-B, and WNLI. We
compare GMLM against well-established models such as ELMo Peters et al. (2018), BERT-base Devlin
et al. (2019), and DistilBERT Sanh et al. (2020).

GMLM, using DistilBERT as its masking model, demonstrates a performance improvement of 1.1 points
on average compared to the baseline DistilBERT. Notably, GMLM achieves the best results on MRPC and
WNLI, surpassing even the performance of BERT-base.

6 Ablation Studies

We present two-dimensional embeddings of the node representations learned by our Graph Masked Language
Model (GMLM). We use both t-SNE and UMAP to project the high-dimensional embeddings onto two
dimensions. CITESEER contain nodes (papers) from different research areas, labeled as Agents, AI, DB, IR,
ML, and HCI.

9

Under review as submission to TMLR

Model COLLAB IMDB-B PROTEINS MUTAG
GK 72.84 ± 0.28 65.87 ± 0.98 71.67 ± 0.55 81.58 ± 2.11
WL 79.02 ± 1.77 73.40 ± 4.63 74.68 ± 0.49 82.05 ± 0.36
PSCN 72.60 ± 2.15 71.00 ± 2.29 75.89 ± 2.76 92.63 ± 4.21
GCN 81.72 ± 1.64 73.30 ± 5.29 75.65 ± 3.24 87.20 ± 5.11
GFN 81.50 ± 2.42 73.00 ± 4.35 76.46 ± 4.06 90.84 ± 7.22
GraphSAGE 79.70 ± 1.70 72.40 ± 3.60 65.90 ± 2.70 79.80 ± 13.9
GAT 75.80 ± 1.60 70.50 ± 2.30 74.70 ± 2.20 89.40 ± 6.10
DGCNN 73.76 ± 0.49 70.03 ± 0.86 75.54 ± 0.94 85.83 ± 1.66
PPGN 81.38 ± 1.42 73.00 ± 5.77 77.20 ± 4.73 90.55 ± 8.70
CapsGNN 79.62 ± 0.91 73.10 ± 4.83 76.28 ± 3.63 86.67 ± 6.88
DSGC 79.20 ± 1.60 73.20 ± 4.90 74.20 ± 3.80 86.70 ± 7.60
GIN-0 80.20 ± 1.90 75.10 ± 5.10 76.20 ± 2.80 89.40 ± 5.60
IEGN 77.92 ± 1.70 71.27 ± 4.50 75.19 ± 4.30 84.61 ± 10.0
U2GNN 77.84 ± 1.48 77.00 ± 3.45 78.53 ± 4.07 89.97 ± 3.65
GraphMAE 75.52 ± 0.66 75.30 ± 0.39 80.32 ± 0.46 88.19 ± 1.26
GraphMAE2 73.88 ± 0.53 74.86 ± 0.34 77.59 ± 0.22 86.63 ± 1.33
UGMAE 76.06 ± 0.59 76.78 ± 0.22 81.66 ± 0.12 88.26 ± 1.19
GMLM (w/o Semantic Masking) 78.12 ± 1.27 75.64 ± 1.93 68.45 ± 5.31 79.49 ± 3.58
GMLM (w/o Soft Masking) 74.36 ± 2.01 74.84 ± 3.58 65.37 ± 5.70 77.98 ± 4.57
GMLM 80.00 ± 0.93 77.00 ± 1.73 71.61 ± 3.14 82.80 ± 4.20

Table 2: Mean test set accuracy and standard deviation on Graph Classification tasks using standard practices
as described in TUDatasets. Highest scores are denoted by bold.

Method Cora Citeseer Pubmed
AUC AP AUC AP AUC AP

SC 84.6±0.01 88.5±0.00 80.5±0.01 85.0±0.01 84.2±0.02 87.8±0.01
DW 83.1±0.01 85.0±0.00 80.5±0.02 83.6±0.01 84.4±0.01 84.1±0.00
GAE* 84.3±0.02 88.1±0.01 78.7±0.02 84.1±0.02 82.2±0.01 87.4±0.00
VGAE* 84.0±0.02 87.7±0.01 78.9±0.03 84.1±0.02 82.7±0.01 85.7±0.01
GAE 91.0±0.02 92.0±0.03 89.5±0.04 89.9±0.05 96.4±0.00 96.5±0.00
VGAE 91.4±0.01 92.6±0.01 90.8±0.02 92.0±0.02 94.4±0.02 94.7±0.02
GMLM 92.1±0.00 92.4±0.00 87.3±0.01 89.2±0.01 96.2±0.00 96.3±0.00

Table 3: Mean test set accuracy and standard deviation on link prediction tasks. * indicates models without
input features. Bold denotes the best performing method.

Model Score CoLA MRPC RTE SST-2 STS-B WNLI
ELMo 66.6 44.1 76.6 53.4 91.5 70.4 56.3
BERT-base 74.3 56.3 88.6 69.3 92.7 89.0 53.5
DistilBERT 72.2 51.3 87.5 59.9 91.3 86.9 56.3
GMLM (w/o Semantic Masking) 71.6 51.5 86.8 59.8 88.4 85.9 57.7
GMLM (w/o Soft Masking) 70.6 49.7 86.4 57.9 87.6 84.8 57.2
GMLM 73.3 52.7 88.8 61.3 89.6 87.0 60.6

Table 4: Evaluation on GLUE. Bold denotes the best score, and underline denotes the second best. ELMo,
BERT, and DistilBERT results are as reported by the authors.

10

Under review as submission to TMLR

Figure 2: t-SNE embeddings (perplexity = 30) for the untrained (left) and fine-tuned (right) Graph Masked
Language Model. Points are colored by research area: Agents, AI, DB, IR, ML, and HCI.

Figure 3: UMAP embeddings (n_neighbors = 15, min_dist = 0.1) for the untrained (left) and fine-tuned
(right) Graph Masked Language Model. Each color corresponds to a different research area.

6.1 t-SNE Embeddings (Perplexity = 30)

Figure 2 shows t-SNE projections of GMLM node embeddings on CITESEER. Left: untrained model; Right:
fine-tuned model. With perplexity 30, the untrained embeddings form diffuse groups, lacking clear initial
structure. The fine-tuned model yields distinct clusters for research areas (Agents, AI, DB, IR, ML, HCI),
showing improved representations.

Figure 4 compares t-SNE embeddings for GMLM variants: (Left) without Soft Masking, (Center) without
Semantic Masking, (Right) complete GMLM. The full model produces the most compact and separate
clusters, confirming the benefit of both masking strategies for finding data structure.

6.2 UMAP Embeddings (n_neighbors = 15, min_dist = 0.1)

Figure 3 displays UMAP embeddings (n_neighbors=15, min_dist=0.1). The untrained model (left) has
weak spatial structure and high category overlap. The fine-tuned version (right) produces tight, separate
clusters, showing the learning process embeds relevant data and distinguishes classes.

Figure 5 provides UMAP projections for the ablation study: (Left) without Soft Masking, (Center) without
Semantic Masking, (Right) Full GMLM. The full model yields the clearest class divisions. This supports
that both masking methods jointly improve representation quality. See Appendix A for masking parameter
sensitivity analysis.

11

Under review as submission to TMLR

Figure 4: t-SNE visualization of embeddings for different ablated versions. (Left) w/o Soft Masking, (Center)
w/o Semantic Masking, (Right) GMLM(Full).

Figure 5: UMAP visualization of embeddings for different ablated versions. (Left) w/o Soft Masking,
(Center) w/o Semantic Masking, (Right) GMLM(Full).

7 Conclusion

This paper introduces Graph Masked Language Models (GMLM) to enhance node and graph classifcicationin
graph neural networks. GMLM utilizes a two-step masking strategy, integrating graph attention networks
(GATs) with masking utilizing pre-trained language models like BERT. This approach improves feature
learning via selective node attribute masking and reconstruction, leading to better generalization and
robustness. Extensive experiments show GMLM achieves or is competitive with state-of-the-art (SOTA) on
node and graph classification tasks. On language understanding tasks such as GLUE, GMLM surpasses
comparison models on WNLI/MRPC, ranking second overall. Our results also highlight the importance of
both Semantic and Soft Masking, which jointly contribute to more stable and reliable performance across
datasets.

8 Limitations

While we achieve state-of-the-art performance using DistilBERT, we have not yet explored the use of larger
masked language models. Our decision to use DistilBERT was driven by the need for efficiency, as larger
models come with increased computational costs and longer training times. For this study, we prioritized
a more lightweight yet effective approach to demonstrate that our framework can achieve competitive
performance compared to other self-supervised, semi-supervised, and unsupervised training methods for node
classification tasks. Future work could explore the impact of larger models on performance and assess the
trade-off between efficiency and accuracy.

12

Under review as submission to TMLR

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirec-

tional transformers for language understanding. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.),
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapo-
lis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423/.

Kaize Ding, Yancheng Wang, Yingzhen Yang, and Huan Liu. Eliciting structural and semantic global
knowledge in unsupervised graph contrastive learning, 2022. URL https://arxiv.org/abs/2202.08480.

James Henderson, Alireza Mohammadshahi, Andrei Coman, and Lesly Miculicich. Transformers as graph-to-
graph models. In Yanai Elazar, Allyson Ettinger, Nora Kassner, Sebastian Ruder, and Noah A. Smith
(eds.), Proceedings of the Big Picture Workshop, pp. 93–107, Singapore, December 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.bigpicture-1.8. URL https://aclanthology.org/
2023.bigpicture-1.8/.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang. Graphmae:
Self-supervised masked graph autoencoders, 2022. URL https://arxiv.org/abs/2205.10803.

Vassilis N. Ioannidis, Xiang Song, Da Zheng, Houyu Zhang, Jun Ma, Yi Xu, Belinda Zeng, Trishul Chilimbi,
and George Karypis. Efficient and effective training of language and graph neural network models, 2022.
URL https://arxiv.org/abs/2206.10781.

Mingxuan Ju, Tong Zhao, Qianlong Wen, Wenhao Yu, Neil Shah, Yanfang Ye, and Chuxu Zhang. Multi-task
self-supervised graph neural networks enable stronger task generalization, 2023. URL https://arxiv.
org/abs/2210.02016.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders, 2016. URL https://arxiv.org/abs/
1611.07308.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks, 2017.
URL https://arxiv.org/abs/1609.02907.

Jintang Li, Ruofan Wu, Wangbin Sun, Liang Chen, Sheng Tian, Liang Zhu, Changhua Meng, Zibin Zheng, and
Weiqiang Wang. What’s behind the mask: Understanding masked graph modeling for graph autoencoders.
In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
’23, pp. 1268–1279, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701030.
doi: 10.1145/3580305.3599546. URL https://doi.org/10.1145/3580305.3599546.

Pushkar Mishra, Aleksandra Piktus, Gerard Goossen, and Fabrizio Silvestri. Node masking: Making graph
neural networks generalize and scale better, 2021. URL https://arxiv.org/abs/2001.07524.

Yujie Mo, Liang Peng, Jie Xu, Xiaoshuang Shi, and Xiaofeng Zhu. Simple unsupervised graph representation
learning. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 7797–7805, 2022.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann.
Tudataset: A collection of benchmark datasets for learning with graphs. In ICML 2020 Workshop on
Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL www.graphlearning.io.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. Deep contextualized word representations, 2018. URL https://arxiv.org/abs/1802.05365.

Moritz Plenz and Anette Frank. Graph language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 4477–4494, Bangkok, Thailand, August 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.acl-long.245. URL https://aclanthology.org/2024.acl-long.245/.

13

https://aclanthology.org/N19-1423/
https://arxiv.org/abs/2202.08480
https://aclanthology.org/2023.bigpicture-1.8/
https://aclanthology.org/2023.bigpicture-1.8/
https://arxiv.org/abs/2205.10803
https://arxiv.org/abs/2206.10781
https://arxiv.org/abs/2210.02016
https://arxiv.org/abs/2210.02016
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1609.02907
https://doi.org/10.1145/3580305.3599546
https://arxiv.org/abs/2001.07524
www.graphlearning.io
https://arxiv.org/abs/1802.05365
https://aclanthology.org/2024.acl-long.245/

Under review as submission to TMLR

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter, 2020. URL https://arxiv.org/abs/1910.01108.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009. doi: 10.1109/TNN.
2008.2005605.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls of graph
neural network evaluation, 2019. URL https://arxiv.org/abs/1811.05868.

Ahsan Shehzad, Feng Xia, Shagufta Abid, Ciyuan Peng, Shuo Yu, Dongyu Zhang, and Karin Verspoor.
Graph transformers: A survey, 2024. URL https://arxiv.org/abs/2407.09777.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In Proceedings of the
30th International Conference on Neural Information Processing Systems, NIPS’16, pp. 1857–1865, Red
Hook, NY, USA, 2016. Curran Associates Inc. ISBN 9781510838819.

Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method, 2000. URL
https://arxiv.org/abs/physics/0004057.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, pp. 6000–6010, Red Hook, NY, USA, 2017. Curran
Associates Inc. ISBN 9781510860964.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks, 2018. URL https://arxiv.org/abs/1710.10903.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=rJ4km2R5t7.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning with graph
embeddings. In Proceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, pp. 40–48. JMLR.org, 2016.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan
Liu. Do transformers really perform bad for graph representation?, 2021. URL https://arxiv.org/abs/
2106.05234.

Shuzhou Yuan and Michael Färber. GraSAME: Injecting token-level structural information to pretrained
language models via graph-guided self-attention mechanism. In Kevin Duh, Helena Gomez, and Steven
Bethard (eds.), Findings of the Association for Computational Linguistics: NAACL 2024, pp. 920–933,
Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-naacl.58. URL https://aclanthology.org/2024.findings-naacl.58/.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim. Graph transformer
networks, 2020. URL https://arxiv.org/abs/1911.06455.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review of methods and applications, 2021. URL
https://arxiv.org/abs/1812.08434.

14

https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1811.05868
https://arxiv.org/abs/2407.09777
https://arxiv.org/abs/physics/0004057
https://arxiv.org/abs/1710.10903
https://openreview.net/forum?id=rJ4km2R5t7
https://arxiv.org/abs/2106.05234
https://arxiv.org/abs/2106.05234
https://aclanthology.org/2024.findings-naacl.58/
https://arxiv.org/abs/1911.06455
https://arxiv.org/abs/1812.08434

Under review as submission to TMLR

A Parameter Sweep for Citeseer

In this section, we present the parameter sweep results for the GMLM (Graph Masked Language Model)
on the Citeseer dataset on one run. We visualize these results using parallel coordinate plots, exploring
different masking strategies. Our analysis compares three distinct configurations to understand the impact of
various masking approaches on model performance.

We examine:

1. Full GMLM with semantic and soft masking (Figure 6).

2. GMLM with only semantic masking (Figure 7).

3. GMLM with only soft masking (no semantic masking) (Figure 8).

Each figure utilizes a parallel coordinate plot to illustrate the relationship between hyperparameter variations
and model accuracy. The color bar on the right of each plot visually encodes accuracy, ranging from 71% to
76%. Within the plots, lines represent individual parameter combinations. For visualization purposes, each
parameter value is normalized along its respective vertical axis.

A.1 Full GMLM with Semantic and Soft Masking

Figure 6: Parameter sweep results for the full GMLM with both semantic and soft masking. The parallel
coordinates plot displays four axes: beta, mask_min, mask_max, and accuracy. Lines are colored according
to model accuracy.

Figure 6 illustrates the parameter sweep results when both semantic and soft masking are active in the
GMLM framework. The parameters explored in this configuration are beta, mask_min, and mask_max,
alongside the resulting model accuracy. Specifically, beta (often denoted as β) is the weighting factor that
governs the contribution of semantic masking to the overall masking strategy. The parameters mask_min
and mask_max define the minimum and maximum thresholds for applying masking, respectively. Finally,
accuracy represents the model’s performance on the Citeseer dataset.

15

Under review as submission to TMLR

Observing Figure 6, we can discern several trends. When the value of β is excessively low, the influence of
semantic masking may be insufficient. This can hinder the model’s ability to focus on semantically relevant
context, potentially leading to reduced accuracy. In contrast, a high β might cause the model to overemphasize
semantic relationships. This over-reliance could lead to the model neglecting other informative patterns that
soft masking is designed to capture, also resulting in suboptimal performance.

Furthermore, mask_min and mask_max play a crucial role in determining the aggressiveness of the masking
process. These parameters directly influence how many tokens (or nodes/edges in a graph context) are
masked during training. The level of masking difficulty, therefore, is modulated by these thresholds. The
results suggest that a moderate range for both mask_min and mask_max, when combined with a balanced β
value, tends to yield the most favorable outcomes. This is evidenced by the higher accuracy values, often in
the 75–76% range, observed in these regions of the parameter space.

Importance of Combined Semantic and Soft Masking. The effectiveness of the full GMLM configuration
stems from the synergistic interaction between semantic and soft masking. Semantic masking is designed to
prioritize the masking of tokens that are deemed more "meaningful" based on semantic relationships within
the graph. Soft masking, in contrast, provides a complementary approach by capturing more generalizable
and structural patterns present in the data.

By integrating both strategies, we achieve a more comprehensive masking approach. This ensures that
the model is exposed to a diverse set of masked positions during training. These positions include both
semantically salient elements and those capturing broader structural variations. A well-tuned β parameter is
essential to balance these two masking aspects, preventing the model from becoming overly biased towards a
single masking strategy. In conclusion, achieving an optimal balance between β and the masking ratio (defined
by mask_min and mask_max) is key. This balance facilitates the learning of rich and robust representations,
ultimately manifesting in improved model accuracy.

A.2 GMLM with Only Semantic Masking

Figure 7: Parameter sweep results for GMLM with only semantic masking. The axes are mask_min,
mask_max, and accuracy.

16

Under review as submission to TMLR

Figure 7 presents the parameter sweep results for a GMLM configuration that employs only semantic masking.
In this scenario, soft masking is disabled, and consequently, the beta parameter is not relevant and therefore
absent from the figure. The parameters under investigation are solely mask_min and mask_max, along with
the resultant accuracy.

The plot reveals how variations in mask_min and mask_max influence the intensity of semantic masking.
This, in turn, affects the difficulty of the masked language model prediction task. Notably, the highest
accuracy values are still concentrated within a specific region of the mask_min–mask_max space. This
observation suggests that both excessively aggressive and overly lenient masking ratios can negatively impact
model performance, even when relying solely on semantic masking.

Effect of Semantic-Only Masking. Utilizing semantic information in isolation can be advantageous when
the underlying dataset structure strongly aligns with semantic relationships. In such cases, focusing on
semantic masking may effectively guide the model. However, this approach also carries the risk of overfitting to
specific semantic patterns present in the training data. Without the complementary influence of soft masking,
the model’s ability to generalize to broader structural variations within the graph may be compromised.

A.3 GMLM with Only Soft Masking

Figure 8: Parameter sweep results for GMLM with only soft masking (no semantic masking). The axes are
mask_min, mask_max, and accuracy.

Figure 8 displays the results of the parameter sweep when semantic masking is deactivated and only soft
masking is used. Similar to the semantic-only configuration, the parameters under consideration are mask_min,
mask_max, and the resulting accuracy.

Analyzing this plot, we observe a similar trend to the semantic-only setup. The careful tuning of mask_min
and mask_max remains crucial for achieving competitive accuracy levels. The performance of the model
is directly related to the extent of soft masking applied. While soft masking can effectively highlight more
generalizable features within the data, it lacks the direct semantic guidance provided by semantic masking.

Effect of Soft-Only Masking. Soft masking, when used in isolation, encourages the model to learn from
a wider range of masked positions. This approach does not specifically prioritize semantically significant

17

Under review as submission to TMLR

nodes or tokens. While this broader exposure can contribute to robust generalization capabilities, the absence
of semantic information may limit the model’s capacity to concentrate on key relationships. These key
relationships are often critical for effectively tackling many graph-based tasks.

Overall we can see that both semantic and soft masking are required for any of the hyperparameters to
achieve better performance.

B Node Importance and Semantic Masking Rationale

In our framework, semantic masking is guided by the concept of node importance, with degree centrality
serving as a straightforward and effective measure. Degree centrality quantifies the number of edges incident
to a node, providing a local measure of node connectivity. Formally, for a graph G = (V, E), the degree
centrality CD(v) of a node v ∈ V is defined as:

CD(v) = deg(v) = |{u ∈ V : (v, u) ∈ E}|.

This measure reflects the immediate neighborhood of v, indicating its potential influence in local information
propagation.

B.1 Justification for Degree Centrality

Degree centrality is a strong proxy for node influence because highly connected nodes are generally more
influential in propagating information and maintaining the overall connectivity of the graph. In many
real-world datasets, these nodes are critical for ensuring that the graph remains cohesive, as their removal or
perturbation can significantly disrupt network structure.

Masking nodes with high degree centrality compels the model to learn more robust representations. By
targeting these critical nodes, we force the network to rely less on a few dominant nodes and instead capture
diverse pathways and latent structural patterns. This idea aligns with notions of network robustness in graph
theory, where the resilience of a network is evaluated by its ability to withstand the removal of key nodes.

B.2 Comparison with Other Centrality Measures

While other centrality measures such as betweenness, closeness, and eigenvector centrality offer valuable
insights into different aspects of node importance, degree centrality was chosen for its simplicity and
computational efficiency.

B.3 Betweenness Centrality

Betweenness centrality quantifies the frequency of a node appearing on shortest paths between other nodes.
It is defined as:

CB(v) =
∑

s ̸=v ̸=t

σst(v)
σst

,

where σst is the total number of shortest paths from node s to node t, and σst(v) is the number of those
paths that pass through v. While informative, the computation of betweenness centrality typically scales as
O(|V ||E|), making it prohibitive for large graphs.

B.4 Closeness Centrality

Closeness centrality measures the average distance from a node to all other nodes in the graph. It is defined
as:

CC(v) = 1∑
u∈V d(v, u) ,

where d(v, u) is the shortest-path distance between nodes v and u. This measure reflects how quickly a node
can access all other nodes in the network. However, its computation requires knowledge of all-pairs shortest
paths, which can be computationally intensive for large networks.

18

Under review as submission to TMLR

B.5 Eigenvector Centrality

Eigenvector centrality assigns relative scores to all nodes in the network based on the concept that connections
to high-scoring nodes contribute more to the score of the node in question than equal connections to low-scoring
nodes. It is defined as the principal eigenvector of the adjacency matrix of the graph. While theoretically
appealing, the computation of eigenvector centrality involves solving an eigenvalue problem, which can be
computationally expensive for large graphs.

Despite the theoretical advantages of alternative centrality measures, degree centrality offers a practical
and computationally efficient approach for semantic masking in large-scale graphs. Its simplicity allows for
real-time processing, making it an optimal choice for our semantic masking strategy.

C Justification for Combining GNNs and LMs

Let:

• G = (V, E) be a graph with a set of nodes V and a set of edges E.

• X ∈ R|V |×d be the node feature matrix, where xi ∈ Rd is the feature vector for node vi ∈ V . Assume
xi contains or represents rich textual/semantic information.

• A be the adjacency matrix representing the edge set E.

• hi ∈ Rd′ be the desired robust representation for node vi.

C.1 Graph Neural Network (GNN) Formulation (Structure-centric)

A typical GNN computes node representations iteratively. The representation of node vi at layer l, denoted
h(l)

i , is a function of its previous representation h(l−1)
i and the aggregated representations of its neighbors

N (i):

h(l)
i = UPDATE(l)

(
h(l−1)

i , AGGREGATE(l)
(
{h(l−1)

j | j ∈ N (i)}
))

• Focus: The core operation AGGREGATE explicitly uses the graph structure (via N (i), derived
from A) to combine information from neighbors. Even with attention mechanisms like in Graph
Attention Networks (GAT), where aggregation is weighted (e.g.,

∑
j∈N (i) αijWh(l−1)

j), the process
is fundamentally driven by the connectivity defined in E.

• Theoretical Limitation: While GNNs capture structural patterns and local feature context
effectively, the formulation primarily emphasizes how information propagates along edges. It may
not inherently possess the mechanisms to deeply model complex, long-range semantic relationships
within the feature vectors xi themselves, especially if these relationships are not directly mirrored by
the immediate graph topology. The paper notes GNNs primarily focus on structural information and
local features, potentially overlooking rich semantic relationships.

C.2 Language Model (LM) Formulation (Semantic-centric)

A pre-trained Language Model (LM) (like BERT) operates on sequences (text). When applied to node
features xi (assuming they are text or can be sequentialized), it produces a contextualized representation bi:

bi = LM(sequence(xi))

• Focus: LMs use mechanisms like self-attention over the input sequence. This allows them to model
dependencies and contextual relationships between elements within the sequence(xi), capturing
nuanced semantic meaning. The paper highlights the LM’s ability to capture contextual information.

19

Under review as submission to TMLR

• Theoretical Limitation: When applied node-by-node, the LM formulation inherently processes
each xi largely independently of the graph structure E. It lacks a direct mechanism to incorporate
information about how node vi is connected to other nodes vj in the graph G.

C.3 Justification for Combination

The goal is to learn a node representation hi that reflects both the structural role of vi in G (informed by node
features X) and is robust to the masking strategy employed during training. Our dual-branch architecture
addresses this by combining complementary information sources:

• GNN Branch (Structure/Feature-centric): A GNN-based representation, hGNN
i = fGNN(A, X),

effectively encodes structural context and local feature information derived from the node features
X and the adjacency matrix A. However, relying solely on the GNN might be sensitive to the
information disruption caused by masking nodes.

• LM Branch (Masking State-centric): Let mi represent the masking state of node vi (i.e.,
whether it is masked or not). Our LM branch takes a static token representation corresponding to
mi (specifically, the strings "[MASK]" or "node feature" in our implementation) as input. Crucially,
it does not process the node features Xi. It produces a representation bi = fLM(token(mi)).
The value of using a PLM here arises from: [label=()]

• leveraging the PLM’s rich, pre-trained semantic space for initialization, and

• fine-tuning bi during training to optimally represent the masking state mi specifically for effective
fusion with the GNN branch via downstream task gradients. This branch inherently ignores the
graph structure A and the node features X.

Necessity for Combination: Effectively learning from masked graph data requires understanding both the
underlying graph structure/features and the implications of the masking itself. Neither branch alone captures
this completely:

• The GNN branch leverages the graph context (A, X) but lacks a dedicated mechanism to represent
the masking state mi itself in a nuanced way.

• Our LM branch provides a powerful, fine-tuned representation of the masking state mi, leveraging
pre-trained knowledge and architectural capacity, but ignores the actual graph context (A, X).

Therefore, a combined model is necessary to integrate these complementary perspectives. The proposed
dual-branch architecture formalizes this:

• One branch computes a structure-aware representation using the GNN (e.g., GAT): hGNN
i =

fGNN(A, X)

• Another branch computes a masking-state-aware representation using the fine-tuned LM: bi =
fLM(token(mi))

• These are fused via a dedicated network: hfinal
i = FUSE(hGNN

i , bi)

The combined representation hfinal
i integrates the GNN’s view of the graph structure A and node features

X with the LM’s optimized representation of the masking state mi. This allows the model to potentially
learn more robustly under the masking strategy by explicitly conditioning on both the graph context and
a nuanced representation of whether a node’s information is present or masked, aiming to overcome the
limitations of each individual approach.

20

Under review as submission to TMLR

Dataset Nodes Edges Features Classes
Cora 2,708 10,556 1,433 7
Citeseer 3,327 9,104 3,703 6
Pubmed 19,717 88,648 500 3
Amazon Photos 7,650 238,612 745 8
Amazon Computers 13,752 491,722 767 10
Coauthor CS 18,333 163,788 6,805 15

Table 5: Dataset Details for the datasets used in the node classification tasks.

D Dataset Statistics

D.1 Graph Tasks

Table 5 summarizes the key statistics for the benchmark datasets used in our node classification experiments.
These datasets represent standard citation, co-purchase, and co-authorship networks commonly employed for
evaluating Graph Neural Networks.

Dataset #Graphs Avg. Nodes Avg. Edges Classes
COLLAB 5,000 74.49 2457.78 3
IMDB-B 1,000 19.77 96.53 2
PROTEINS 1,113 39.06 72.82 2
MUTAG 188 17.93 39.58 2

Table 6: Dataset details for the datasets used in the Graph Classification tasks.

Table 6 summarizes the key statistics of the graph classification datasets used in our experiments. The
datasets vary significantly in terms of the number of graphs, the average number of nodes and edges per
graph, and the number of target classes. COLLAB consists of larger collaboration networks, while IMDB-B
contains smaller social graphs. PROTEINS and MUTAG are bioinformatics datasets representing molecular
structures and protein interactions. This diversity ensures a comprehensive evaluation across domains with
different structural properties.

D.2 GLUE Tasks

We perform grid search over three key variables: pre_train_epochs, temperature, and finetune_epochs.
The specific values considered for each parameter are as follows:

• temperature_values = {0.3, 0.5, 0.7}

• pretrain_epoch_values = {5, 10}

• finetune_epoch_values = {5, 10}

Table 7 describes the hyperparameters selected via grid search for evaluating GMLM on GLUE.

Table 8 outlines the specific tasks from the GLUE benchmark selected for evaluating the language under-
standing capabilities of our model. It details the objective, input format, evaluation metric, and approximate
size for each task.

21

Under review as submission to TMLR

Task Temperature Pretrain Epochs Finetune Epochs
WNLI 0.3 10 5
CoLA 0.3 5 10
STS-B 0.7 5 10
MRPC 0.5 5 10
SST-2 0.7 10 10
RTE 0.5 10 5

Table 7: Best hyperparameter settings for each GLUE task, determined via grid search.

Task Description Input Metric(s) Size (Train/Dev)
CoLA Corpus of Linguistic Accept-

ability: Determine if a sentence
is grammatically acceptable.

Single Sentence Matthews Corr. 8.5k / 1k

MRPC Microsoft Research Para-
phrase Corpus: Determine if
two sentences are paraphrases of
each other.

Sentence Pair Accuracy / F1 3.7k / 0.4k

RTE Recognizing Textual Entail-
ment: Determine if a premise
sentence entails a hypothesis sen-
tence.

Sentence Pair Accuracy 2.5k / 0.3k

SST-2 Stanford Sentiment Tree-
bank: Determine the sentiment
(positive/negative) of a single sen-
tence (movie review).

Single Sentence Accuracy 67k / 0.9k

STS-B Semantic Textual Similarity
Benchmark: Predict a similar-
ity score (1-5) between two sen-
tences.

Sentence Pair Pearson/Spearman Corr. 5.7k / 1.5k

WNLI Winograd NLI: A small tex-
tual entailment dataset focused
on pronoun resolution challenges.

Sentence Pair Accuracy 0.6k / 0.1k

Table 8: GLUE Benchmark Task Details. Train/Dev sizes are approximate.

22

	Introduction
	Related Works
	Methodology
	Semantic Node Masking
	Degree-based Node Selection

	Soft Masking Mechanism
	Dual-Branch Architecture
	Graph Attention Branch
	BERT Branch
	Multi-layer Fusion Network

	Node Classification

	Training
	Node Classification & Graph Classification
	Contrastive Pretraining
	View Generation
	Contrastive Loss
	Supervised Fine-Tuning
	Loss Function with Label Smoothing
	Learning Rate Strategy

	Language understanding

	Results
	Node Classification
	Graph Classification
	Link Prediction
	Language Understanding

	Ablation Studies
	t-SNE Embeddings (Perplexity = 30)
	UMAP Embeddings (n_neighbors = 15, min_dist = 0.1)

	Conclusion
	Limitations
	Parameter Sweep for Citeseer
	Full GMLM with Semantic and Soft Masking
	GMLM with Only Semantic Masking
	GMLM with Only Soft Masking

	Node Importance and Semantic Masking Rationale
	Justification for Degree Centrality
	Comparison with Other Centrality Measures
	Betweenness Centrality
	Closeness Centrality
	Eigenvector Centrality

	Justification for Combining GNNs and LMs
	Graph Neural Network (GNN) Formulation (Structure-centric)
	Language Model (LM) Formulation (Semantic-centric)
	Justification for Combination

	Dataset Statistics
	Graph Tasks
	GLUE Tasks

