ReZero: Enhancing LLM search ability by trying one-more-time

Anonymous ACL submission

Abstract

Retrieval-Augmented Generation (RAG) sys-
tems enhance Large Language Models (LLMs)
but often falter when initial search queries fail.
Existing approaches typically focus on query
formulation or reasoning over results, lack-
ing mechanisms to explicitly encourage per-
sistence after a search failure. We introduce
ReZero (Retry-Zero), a novel framework em-
ploying Group Relative Policy Optimization
(GRPO) reinforcement learning to address this.
ReZero incorporates a specific reward compo-
nent, reward_retry, that directly incentivizes
the LLM to retry search queries following an
unsuccessful initial attempt, conditional on suc-
cessful final answer generation. Experiments
on the Apollo 3 mission dataset demonstrate
ReZero’s effectiveness: it achieved a peak ac-
curacy of 46.88%, significantly outperforming
a25.00% baseline trained without the retry in-
centive. This highlights that rewarding persis-
tence enhances LLM robustness in information-
seeking scenarios where initial queries may
prove insufficient.

1 Introduction

Retrieval-Augmented Generation (RAG) enhances
Large Language Models (LLMs) by grounding
them in external knowledge (Fan et al., 2024; Jeong
etal., 2024; Kim et al., 2024). However, RAG effec-
tiveness depends on the LLM-retriever interaction.
Initial queries can fail, and complex tasks often
require multi-step interaction (Trivedi et al., 2023;
Yao et al., 2023).

Existing work often focuses on refining reason-
ing over retrieved documents (Madaan et al., 2023;
Sun et al., 2025) or optimizing query generation
for a single successful retrieval (Jiang et al., 2025).
These methods may not sufficiently incentivize per-
sistence when initial searches fail. The ability to
recognize inadequacy and retry the search is crucial
but underexplored.

Verifier Wrong Wrong

c
Retry Retry orrect

Input Actual
) | Query 1 Query N |ammslp | answer

] Query 2

cccccc

Figure 1: ReZero rewards the LLM for retrying search
after failure.

To address this, we introduce ReZero (Retry-
Zero), a novel framework improving LLM search
ability by explicitly incentivizing persistence. We
augment standard RAG reinforcement learning
(RL) with a reward component specifically for
retrying search queries after initial failures (Fig-
ure 1). Unlike approaches rewarding only final
answer correctness or retrieval relevance, ReZero
directly rewards the *process* of retrying, mirror-
ing the human strategy: "if at first you don’t suc-
ceed, try, try again."

ReZero uses RL to encourage exploration of dif-
ferent query strategies and learn when persistence
is beneficial, avoiding premature abandonment or
hallucination after a failed search.

Our contributions are: (1) ReZero, an RL frame-
work rewarding search retries in RAG to foster
persistence. (2) A novel reward function incentiviz-
ing this "retry" mechanism. (3) Positioning ReZero
relative to work on RAG reasoning/query optimiza-
tion, highlighting its unique focus on rewarding
persistence.

2 Related Work

Our work intersects with research in Retrieval-
Augmented Generation (RAG) and the application
of Reinforcement Learning (RL) to enhance LLM
reasoning and search.

2.1 Retrieval-Augmented Generation (RAG)

RAG systems (Fan et al., 2024; Jeong et al., 2024;
Xu et al., 2024) ground LLMs in external knowl-
edge. While early work used single retrieval
steps, complex tasks often require multi-step RAG
(Trivedi et al., 2023; Yao et al., 2023). Methods like
Self-Ask (Press et al., 2023) and IRCoT (Trivedi
et al., 2023) integrate reasoning (e.g., CoT) with it-
erative retrieval for incremental information gather-
ing. However, these often assume effective retrieval
or rely on prompting. ReZero distinctively targets
the robustness of the retrieval interaction itself by
directly encouraging retries after initial failures, a
specific aspect of persistence less explored than
sequential information gathering.

2.2 Learning and Search for Reasoning in
RAG

Recent methods apply RL and process supervision
to improve RAG reasoning. For instance, (Sun
et al., 2025) focuses on enhancing the trustworthi-
ness of multi-step reasoning over retrieved docu-
ments using PRMs and PEMs with MCTS/KTO
(Ethayarajh et al., 2024; Pang et al., 2024). In
contrast, ReZero focuses on incentivizing retries
during the search interaction itself if initial attempts
fail, complementing approaches that prioritize rea-
soning quality given retrieved context.

Similarly, (Jiang et al., 2025) uses RL (PPO)
to optimize query generation or rewriting for bet-
ter retrieval metrics (Recall, NDCG). While Deep-
Retrieval optimizes the quality of a single query
attempt for maximal retrieval success, ReZero en-
courages multiple attempts by directly rewarding
the retry mechanism, focusing on persistence.

2.3 Reinforcement Learning for LL.Ms

RL is widely used for LLM alignment (RLHF)
(Ouyang et al., 2022) and enhancing capabilities
like reasoning (DeepSeek-Al et al., 2025) and tool
use (Schick et al., 2023). Techniques like ReFT
(Wu et al., 2024) apply RL based on outcome or
process rewards. ReZero leverages this concept
but introduces a novel reward signal specifically

for the retry action in a search context, targeting
persistence in information retrieval.

Self-correction methods (Huang et al., 2024;
Madaan et al., 2023) also involve iterative improve-
ment, but typically focus on refining the LLM’s
generated output (reasoning, answers) based on
feedback. ReZero differs by encouraging retries
of the external tool interaction (search), addressing
failures at the information-gathering stage.

In summary, ReZero uniquely uses RL to incen-
tivize search persistence in RAG. Unlike work fo-
cusing on reasoning quality (ReARTeR) or single-
query optimization (DeepRetrieval), ReZero re-
wards the "retry" mechanism itself, aiming for
more robust information seeking.

3 Methodology

3.1 Overview

ReZero is a reinforcement learning (RL) frame-
work designed to enhance the search capabilities
of large language models (LLMs) in retrieval-
augmented generation (RAG) systems. Inspired
by recent advancements in RL for reasoning tasks
(DeepSeek-Al et al., 2025) and motivated by find-
ings suggesting RL fosters better generalization
compared to supervised fine-tuning, ReZero uti-
lizes Group Relative Policy Optimization (GRPO)
(Shao et al., 2024) to explicitly incentivize persis-
tence—rewarding the model for retrying search
queries when initial attempts fail.

3.2 Reinforcement Learning Framework

ReZero operates within a search environment
where the LLM interacts with an external retrieval
system. We employ the Group Relative Policy Opti-
mization (GRPO) algorithm, noted for its effective-
ness in training LLMs for reasoning tasks without
requiring a separate critic model. The RL loop in-
volves standard components: the State (current
conversation history and retrieved information),
the Action (LLM generation, including thoughts,
searches, or answers, and potentially retries), the
Reward (scalar signal from evaluation functions
acting as a self-teacher), and the Policy (LLM strat-
egy, fine-tuned via GRPO).

3.3 Reward Functions

ReZero employs multiple reward functions to guide
the training via GRPO. These evaluate correctness,
format adherence, retrieval quality, search strategy,
diversity, and crucially, search persistence. See

Appendix A for full details. The key functions
include:

1. reward_correctness: Evaluates final an-
swer accuracy and structure (binary).

2. reward_format: Checks adherence to con-
versational format and tag usage (binary).

3. reward_retry: This reward function encour-
ages the model to persist when initial search
attempts do not yield sufficient information.
It assigns a positive reward for each subse-
quent <search> query issued after the first
one within a single generation sequence (i.e.,
for retries). The magnitude of the reward
could potentially diminish with each addi-
tional retry to encourage efficiency. Crucially,
this reward is conditional on task comple-
tion, it is only awarded if the model’s final
generated output in the sequence includes
the complete <answer>...</answer> tags.
If the sequence concludes without a well-
formed answer enclosed in these tags, the
reward_retry component contributes zero to
the total reward for that trajectory, regardless
of how many retries were performed. This
mechanism prevents the model from learning
to accumulate reward simply by retrying re-
peatedly without ever successfully generating
a final answer.

4. reward_em_chunk: Verifies correct chunk re-
trieval via exact match (binary).

5. reward_search_strategy: Evaluates the
quality and flow of the search process
(graded).

6. reward_search_diversity: Assesses query
variety and penalizes repetition (graded).

3.4 Training Process

The LLM is fine-tuned directly from a pre-trained
base model using GRPO within an interactive
framework involving a search engine verifier (Snell
et al., 2025), drawing parallels to setups studied for
improving generalization via RL (Chu et al., 2025).
The initial reference policy () is the base model
itself.

The core training involves several steps: (1) Iter-
ative Interaction Loop (Rollout): The LLM inter-
acts with the verifier (Figure 1), potentially issuing

multiple <search> queries within one sequence be-
fore generating an <answer>. (2) Reward Calcu-
lation: The completed sequence is evaluated using
the reward functions (Section 3.3) to get a total
trajectory reward. (3) Policy Update (GRPO): Re-
wards from multiple trajectories update the LLM
parameters (f) via GRPO, comparing trajectory
rewards to the batch average and stabilizing with
KL divergence against 7. (4) Noise Injection
for Robustness: Noise is added at the vector DB
level during training to simulate imperfect retrieval,
encouraging robust retry mechanisms.

This process directly fine-tunes the base LLM
using RL, teaching it not only to answer correctly
but also to strategically and persistently use the
search tool, even when facing retrieval imperfec-
tions, without an intermediate supervised fine-
tuning stage.

4 Experiments and Results

We implemented the ReZero framework (Sec-
tion 3), fine-tuning a base LLM using Group Rel-
ative Policy Optimization (GRPO) (Shao et al.,
2024) within an interactive search environment
(Snell et al., 2025), without intermediate super-
vised fine-tuning. We used the Apollo 3 mis-
sion dataset and the Llama3.2-3B-Instruct model
(Grattafiori et al., 2024). Specific implementation
details, dataset splits, and training parameters are
provided in Appendix B.

To isolate the impact of the reward_retry
mechanism, we compared two configurations: the
Baseline (trained with all reward functions except
reward_retry) and ReZero (trained with all re-
wards, including the crucial reward_retry compo-
nent). Both models started from the same weights
and used the same GRPO training procedure, dif-
fering only in the inclusion of the reward_retry
signal.

Model performance was evaluated periodically
on a held-out evaluation set using accuracy. The re-
sults (Figure 2) clearly indicate the effectiveness of
the reward_retry component. The ReZero model
achieved a peak accuracy of 46.88% (at 250 steps),
significantly outperforming the Baseline model’s
peak of 25.00% (at 350 steps). ReZero also showed
a faster initial learning rate. Both models exhibited
a decline after their peaks, dropping to 0% accuracy
later in training, suggesting potential RL instability
or overfitting.

The substantial gap in peak accuracy (46.88%

Accuracy Comparison during Training

80 T T T 11 1T 1 Tt 1 T 17
70 | —m— ReZero (with reward_retry) |
| —a— Baseline (without reward_retry) |
~ 60| 8
§ - N
< 501 46.88% |
5\‘ [-
g 40 i 8
8 30+ 25.00% .
< 20}, .
10 1

0 100 200 300 400 500 600 700 800 900 1000

Training Steps

Figure 2: Comparison of evaluation accuracy between
the ReZero model (incorporating the reward_retry
component) and the Baseline model (lacking the retry in-
centive) over 1000 training steps on the held-out Apollo
3 dataset chunks. Peak accuracies are highlighted.

vs 25.00%) strongly suggests that explicitly re-
warding the act of retrying search queries via the
reward_retry function significantly enhances the
model’s ability to effectively utilize the search tool
and ultimately arrive at correct answers, particu-
larly in scenarios where initial queries might be
insufficient.

5 Discussion

The nearly doubled peak accuracy of ReZero over
the baseline (Section 4) strongly validates that ex-
plicitly rewarding search retries enhances LLM
information retrieval. However, the subsequent per-
formance decline in both models highlights chal-
lenges, likely related to RL training stability (e.g.,
GRPO instability, overfitting), requiring further in-
vestigation beyond the scope of this work (see Sec-
tion 6).

6 Conclusion

We introduced ReZero, an RL framework using
GRPO to enhance RAG system robustness by ex-
plicitly rewarding search persistence. Unlike meth-
ods focused on query formulation or reasoning,
ReZero uses a reward_retry component to incen-
tivize retrying after initial search failures, condi-
tional on generating a final answer.

Experiments on the Apollo 3 dataset vali-
date this approach. The ReZero model (with
reward_retry) significantly outperformed a base-
line lacking this incentive, achieving nearly dou-

ble the peak accuracy (46.88% vs 25.00%) and
faster initial learning. This confirms that reward-
ing retries improves the LLM’s ability to overcome
search failures.

However, performance declined after the peak
for both models, indicating potential RL training
instability or overfitting challenges common in RL
(Chu et al., 2025), suggesting a need for further
optimization. A key limitation acknowledged in
Section 6 is the evaluation on a single domain;
generalizability needs further validation.

Future work should focus on validating ReZero
across diverse datasets and stabilizing the RL train-
ing. Exploring reward_retry refinements and in-
tegrating ReZero with complementary RAG tech-
niques are also promising directions.

In conclusion, ReZero demonstrates that directly
rewarding persistence improves LLM effectiveness
in information seeking, highlighting the value of in-
corporating human-like problem-solving strategies
into RAG frameworks.

Limitations

Our study has several limitations. Firstly, the per-
formance of both ReZero and the baseline model
declined significantly after reaching peak accuracy
during the 1000-step training process. This sug-
gests potential challenges with the stability of the
Group Relative Policy Optimization (GRPO) algo-
rithm over extended training, possible overfitting to
training data chunks, or suboptimal reward balanc-
ing, highlighting a need for further investigation
into optimizing the RL training dynamics for sus-
tained performance.

Secondly, our experiments were conducted
solely on the Apollo 3 mission dataset. While this
provided a controlled comparison, it represents a
specific domain. Therefore, the generalizability
of ReZero’s observed performance benefits to di-
verse knowledge domains, query types, and task
complexities requires further validation through
evaluation on a broader range of datasets.

References

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang
Tong, Saining Xie, Dale Schuurmans, Quoc V. Le,
Sergey Levine, and Yi Ma. 2025. Sft memorizes,
rl generalizes: A comparative study of foundation
model post-training. Preprint, arXiv:2501.17161.

dCaples. 2022. Autodidact. https://github.com/
dCaples/AutoDidact. Accessed: 2025-04-11.

https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2501.17161
https://github.com/dCaples/AutoDidact
https://github.com/dCaples/AutoDidact
https://github.com/dCaples/AutoDidact

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.
2025. Deepseek-rl: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Model align-
ment as prospect theoretic optimization. In Proceed-
ings of the 41st International Conference on Machine
Learning, ICML 24. JMLR.org.

Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang,
Hengyun Li, Dawei Yin, Tat-Seng Chua, and Qing
Li. 2024. A survey on rag meeting llms: Towards
retrieval-augmented large language models. In Pro-
ceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, KDD ’24,
page 6491-6501, New York, NY, USA. Association
for Computing Machinery.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The 1lama 3 herd of
models. Preprint, arXiv:2407.21783.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan,
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun
Zhang, Yuanzhuo Wang, Wen Gao, Lionel Ni,
and Jian Guo. 2025. A survey on llm-as-a-judge.
Preprint, arXiv:2411.15594.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2024. Large language
models cannot self-correct reasoning yet. In The
Twelfth International Conference on Learning
Representations.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju
Hwang, and Jong Park. 2024. Adaptive-RAG: Learn-
ing to adapt retrieval-augmented large language mod-
els through question complexity. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long
Papers), pages 7036-7050, Mexico City, Mexico. As-
sociation for Computational Linguistics.

Pengcheng Jiang, Jiacheng Lin, Lang Cao, Runchu Tian,
SeongKu Kang, Zifeng Wang, Jimeng Sun, and Ji-
awei Han. 2025. Deepretrieval: Hacking real search
engines and retrievers with large language models via
reinforcement learning. Preprint, arXiv:2503.00223.

Jaehyung Kim, Jachyun Nam, Sangwoo Mo, Jongjin
Park, Sang-Woo Lee, Minjoon Seo, Jung-Woo Ha,

and Jinwoo Shin. 2024. Sure: Summarizing re-
trievals using answer candidates for open-domain
qa of llms. Preprint, arXiv:2404.13081.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730-27744.
Curran Associates, Inc.

Richard Yuanzhe Pang, Weizhe Yuan, He He,
Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason E
Weston. 2024. Iterative reasoning preference opti-
mization. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah Smith, and Mike Lewis. 2023. Measuring and
narrowing the compositionality gap in language mod-
els. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 5687-5711, Singa-
pore. Association for Computational Linguistics.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. In Thirty-seventh Conference on Neural
Information Processing Systems.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

Charlie Victor Snell, Jachoon Lee, Kelvin Xu, and Avi-
ral Kumar. 2025. Scaling LLM test-time compute
optimally can be more effective than scaling param-
eters for reasoning. In The Thirteenth International
Conference on Learning Representations.

Zhongxiang Sun, Qipeng Wang, Weijie Yu, Xiaoxue
Zang, Kai Zheng, Jun Xu, Xiao Zhang, Song Yang,
and Han Li. 2025. Rearter: Retrieval-augmented rea-
soning with trustworthy process rewarding. Preprint,
arXiv:2501.07861.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2023. Interleaving retrieval

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.1145/3637528.3671470
https://doi.org/10.1145/3637528.3671470
https://doi.org/10.1145/3637528.3671470
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2411.15594
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://doi.org/10.18653/v1/2024.naacl-long.389
https://doi.org/10.18653/v1/2024.naacl-long.389
https://doi.org/10.18653/v1/2024.naacl-long.389
https://doi.org/10.18653/v1/2024.naacl-long.389
https://doi.org/10.18653/v1/2024.naacl-long.389
https://arxiv.org/abs/2503.00223
https://arxiv.org/abs/2503.00223
https://arxiv.org/abs/2503.00223
https://arxiv.org/abs/2503.00223
https://arxiv.org/abs/2503.00223
https://arxiv.org/abs/2404.13081
https://arxiv.org/abs/2404.13081
https://arxiv.org/abs/2404.13081
https://arxiv.org/abs/2404.13081
https://arxiv.org/abs/2404.13081
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://openreview.net/forum?id=4XIKfvNYvx
https://openreview.net/forum?id=4XIKfvNYvx
https://openreview.net/forum?id=4XIKfvNYvx
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=Yacmpz84TH
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://arxiv.org/abs/2501.07861
https://arxiv.org/abs/2501.07861
https://arxiv.org/abs/2501.07861
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557

with chain-of-thought reasoning for knowledge-
intensive multi-step questions. In Proceedings of
the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 10014—-10037, Toronto, Canada. Association
for Computational Linguistics.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus
Geiger, Dan Jurafsky, Christopher D Manning, and
Christopher Potts. 2024. ReFT: Representation fine-
tuning for language models. In The Thirty-eighth
Annual Conference on Neural Information Process-
ing Systems.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2024. RE-
COMP: Improving retrieval-augmented LMs with
context compression and selective augmentation. In
The Twelfth International Conference on Learning
Representations.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

A Reward Function Details

This appendix provides the detailed descriptions of
the reward functions used in ReZero, supplement-
ing Section 3.3.

1. reward_correctness: Evaluates the final an-
swer’s accuracy against a ground-truth, checks
response structure validity, and outputs a bi-
nary reward. The binary reward is determined
by the model itself, acting as a self-judge
(LLM-as-a-Judge) (Gu et al., 2025) using the
base model’s capabilities.

2. reward_format: Ensures adherence to the re-
quired conversational format and tag usage
(e.g., tag sequence, valid markup), outputting
a binary reward.

3. reward_retry: (See Section 3.3 for full de-
scription in main text).

4. reward_em_chunk: Verifies if the correct in-
formation chunk was retrieved by comparing
the content in <information> tags against a
ground-truth chunk using exact matching, out-
putting a binary reward.

5. reward_search_strategy: Evaluates the
quality of the search process by checking
adherence to a desired conversational flow:
initiating a broad <search>, analyzing re-
trieved <information> (verified by specific

B

keywords within <think> tags), executing
subsequent refined <search> queries based
on this analysis, and finally synthesizing an
<answer> grounded in the analyzed informa-
tion. Outputs a graded score (0.0-1.0) based
on the successful execution of these sequential
phases.

6. reward_search_diversity: Assesses the

variety within the sequence of <search>
queries used during generation. It rewards
distinct query concepts and semantic dissim-
ilarity between queries (measured using nor-
malized string comparison). Bonus rewards
are allocated for the effective use of diverse
search operators (e.g., site:, "", OR). Penalties
are applied to discourage submitting exact du-
plicate or highly similar queries, promoting
broader exploration. Outputs a graded score
(0.0-1.0) rewarding unique queries and opera-
tor diversity, while penalizing repetition and
high similarity.

Experimental Setup Details

This appendix provides details for the experiments
described in Section 4.

e Base Model: Llama3.2-3B-Instruct
(Grattafiori et al., 2024).

» Dataset: Apollo 3 mission dataset, divided
into 341 chunks (309 training, 32 evaluation).

* Training Procedure: Group Relative Pol-
icy Optimization (GRPO) (Shao et al., 2024)
within an interactive environment using a
search engine as a verifier (Snell et al., 2025).
No intermediate supervised fine-tuning.

* Hardware: Single NVIDIA H200 GPU.

* Duration: 1000 steps (approx. 3 epochs over
training data).

* Libraries: Implementation utilized unsloth
and borrowed from (dCaples, 2022).

https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://openreview.net/forum?id=fykjplMc0V
https://openreview.net/forum?id=fykjplMc0V
https://openreview.net/forum?id=fykjplMc0V
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X

	Introduction
	Related Work
	Retrieval-Augmented Generation (RAG)
	Learning and Search for Reasoning in RAG
	Reinforcement Learning for LLMs

	Methodology
	Overview
	Reinforcement Learning Framework
	Reward Functions
	Training Process

	Experiments and Results
	Discussion
	Conclusion
	Reward Function Details
	Experimental Setup Details

