
ReZero: Enhancing LLM search ability by trying one-more-time

Anonymous ACL submission

Abstract001

Retrieval-Augmented Generation (RAG) sys-002
tems enhance Large Language Models (LLMs)003
but often falter when initial search queries fail.004
Existing approaches typically focus on query005
formulation or reasoning over results, lack-006
ing mechanisms to explicitly encourage per-007
sistence after a search failure. We introduce008
ReZero (Retry-Zero), a novel framework em-009
ploying Group Relative Policy Optimization010
(GRPO) reinforcement learning to address this.011
ReZero incorporates a specific reward compo-012
nent, reward_retry, that directly incentivizes013
the LLM to retry search queries following an014
unsuccessful initial attempt, conditional on suc-015
cessful final answer generation. Experiments016
on the Apollo 3 mission dataset demonstrate017
ReZero’s effectiveness: it achieved a peak ac-018
curacy of 46.88%, significantly outperforming019
a 25.00% baseline trained without the retry in-020
centive. This highlights that rewarding persis-021
tence enhances LLM robustness in information-022
seeking scenarios where initial queries may023
prove insufficient.024

1 Introduction025

Retrieval-Augmented Generation (RAG) enhances026

Large Language Models (LLMs) by grounding027

them in external knowledge (Fan et al., 2024; Jeong028

et al., 2024; Kim et al., 2024). However, RAG effec-029

tiveness depends on the LLM-retriever interaction.030

Initial queries can fail, and complex tasks often031

require multi-step interaction (Trivedi et al., 2023;032

Yao et al., 2023).033

Existing work often focuses on refining reason-034

ing over retrieved documents (Madaan et al., 2023;035

Sun et al., 2025) or optimizing query generation036

for a single successful retrieval (Jiang et al., 2025).037

These methods may not sufficiently incentivize per-038

sistence when initial searches fail. The ability to039

recognize inadequacy and retry the search is crucial040

but underexplored.041

Figure 1: ReZero rewards the LLM for retrying search
after failure.

To address this, we introduce ReZero (Retry- 042

Zero), a novel framework improving LLM search 043

ability by explicitly incentivizing persistence. We 044

augment standard RAG reinforcement learning 045

(RL) with a reward component specifically for 046

retrying search queries after initial failures (Fig- 047

ure 1). Unlike approaches rewarding only final 048

answer correctness or retrieval relevance, ReZero 049

directly rewards the *process* of retrying, mirror- 050

ing the human strategy: "if at first you don’t suc- 051

ceed, try, try again." 052

ReZero uses RL to encourage exploration of dif- 053

ferent query strategies and learn when persistence 054

is beneficial, avoiding premature abandonment or 055

hallucination after a failed search. 056

Our contributions are: (1) ReZero, an RL frame- 057

work rewarding search retries in RAG to foster 058

persistence. (2) A novel reward function incentiviz- 059

ing this "retry" mechanism. (3) Positioning ReZero 060

relative to work on RAG reasoning/query optimiza- 061

tion, highlighting its unique focus on rewarding 062

persistence. 063
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2 Related Work064

Our work intersects with research in Retrieval-065

Augmented Generation (RAG) and the application066

of Reinforcement Learning (RL) to enhance LLM067

reasoning and search.068

2.1 Retrieval-Augmented Generation (RAG)069

RAG systems (Fan et al., 2024; Jeong et al., 2024;070

Xu et al., 2024) ground LLMs in external knowl-071

edge. While early work used single retrieval072

steps, complex tasks often require multi-step RAG073

(Trivedi et al., 2023; Yao et al., 2023). Methods like074

Self-Ask (Press et al., 2023) and IRCoT (Trivedi075

et al., 2023) integrate reasoning (e.g., CoT) with it-076

erative retrieval for incremental information gather-077

ing. However, these often assume effective retrieval078

or rely on prompting. ReZero distinctively targets079

the robustness of the retrieval interaction itself by080

directly encouraging retries after initial failures, a081

specific aspect of persistence less explored than082

sequential information gathering.083

2.2 Learning and Search for Reasoning in084

RAG085

Recent methods apply RL and process supervision086

to improve RAG reasoning. For instance, (Sun087

et al., 2025) focuses on enhancing the trustworthi-088

ness of multi-step reasoning over retrieved docu-089

ments using PRMs and PEMs with MCTS/KTO090

(Ethayarajh et al., 2024; Pang et al., 2024). In091

contrast, ReZero focuses on incentivizing retries092

during the search interaction itself if initial attempts093

fail, complementing approaches that prioritize rea-094

soning quality given retrieved context.095

Similarly, (Jiang et al., 2025) uses RL (PPO)096

to optimize query generation or rewriting for bet-097

ter retrieval metrics (Recall, NDCG). While Deep-098

Retrieval optimizes the quality of a single query099

attempt for maximal retrieval success, ReZero en-100

courages multiple attempts by directly rewarding101

the retry mechanism, focusing on persistence.102

2.3 Reinforcement Learning for LLMs103

RL is widely used for LLM alignment (RLHF)104

(Ouyang et al., 2022) and enhancing capabilities105

like reasoning (DeepSeek-AI et al., 2025) and tool106

use (Schick et al., 2023). Techniques like ReFT107

(Wu et al., 2024) apply RL based on outcome or108

process rewards. ReZero leverages this concept109

but introduces a novel reward signal specifically110

for the retry action in a search context, targeting 111

persistence in information retrieval. 112

Self-correction methods (Huang et al., 2024; 113

Madaan et al., 2023) also involve iterative improve- 114

ment, but typically focus on refining the LLM’s 115

generated output (reasoning, answers) based on 116

feedback. ReZero differs by encouraging retries 117

of the external tool interaction (search), addressing 118

failures at the information-gathering stage. 119

In summary, ReZero uniquely uses RL to incen- 120

tivize search persistence in RAG. Unlike work fo- 121

cusing on reasoning quality (ReARTeR) or single- 122

query optimization (DeepRetrieval), ReZero re- 123

wards the "retry" mechanism itself, aiming for 124

more robust information seeking. 125

3 Methodology 126

3.1 Overview 127

ReZero is a reinforcement learning (RL) frame- 128

work designed to enhance the search capabilities 129

of large language models (LLMs) in retrieval- 130

augmented generation (RAG) systems. Inspired 131

by recent advancements in RL for reasoning tasks 132

(DeepSeek-AI et al., 2025) and motivated by find- 133

ings suggesting RL fosters better generalization 134

compared to supervised fine-tuning, ReZero uti- 135

lizes Group Relative Policy Optimization (GRPO) 136

(Shao et al., 2024) to explicitly incentivize persis- 137

tence—rewarding the model for retrying search 138

queries when initial attempts fail. 139

3.2 Reinforcement Learning Framework 140

ReZero operates within a search environment 141

where the LLM interacts with an external retrieval 142

system. We employ the Group Relative Policy Opti- 143

mization (GRPO) algorithm, noted for its effective- 144

ness in training LLMs for reasoning tasks without 145

requiring a separate critic model. The RL loop in- 146

volves standard components: the State (current 147

conversation history and retrieved information), 148

the Action (LLM generation, including thoughts, 149

searches, or answers, and potentially retries), the 150

Reward (scalar signal from evaluation functions 151

acting as a self-teacher), and the Policy (LLM strat- 152

egy, fine-tuned via GRPO). 153

3.3 Reward Functions 154

ReZero employs multiple reward functions to guide 155

the training via GRPO. These evaluate correctness, 156

format adherence, retrieval quality, search strategy, 157

diversity, and crucially, search persistence. See 158
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Appendix A for full details. The key functions159

include:160

1. reward_correctness: Evaluates final an-161

swer accuracy and structure (binary).162

2. reward_format: Checks adherence to con-163

versational format and tag usage (binary).164

3. reward_retry: This reward function encour-165

ages the model to persist when initial search166

attempts do not yield sufficient information.167

It assigns a positive reward for each subse-168

quent <search> query issued after the first169

one within a single generation sequence (i.e.,170

for retries). The magnitude of the reward171

could potentially diminish with each addi-172

tional retry to encourage efficiency. Crucially,173

this reward is conditional on task comple-174

tion, it is only awarded if the model’s final175

generated output in the sequence includes176

the complete <answer>...</answer> tags.177

If the sequence concludes without a well-178

formed answer enclosed in these tags, the179

reward_retry component contributes zero to180

the total reward for that trajectory, regardless181

of how many retries were performed. This182

mechanism prevents the model from learning183

to accumulate reward simply by retrying re-184

peatedly without ever successfully generating185

a final answer.186

4. reward_em_chunk: Verifies correct chunk re-187

trieval via exact match (binary).188

5. reward_search_strategy: Evaluates the189

quality and flow of the search process190

(graded).191

6. reward_search_diversity: Assesses query192

variety and penalizes repetition (graded).193

3.4 Training Process194

The LLM is fine-tuned directly from a pre-trained195

base model using GRPO within an interactive196

framework involving a search engine verifier (Snell197

et al., 2025), drawing parallels to setups studied for198

improving generalization via RL (Chu et al., 2025).199

The initial reference policy (πref) is the base model200

itself.201

The core training involves several steps: (1) Iter-202

ative Interaction Loop (Rollout): The LLM inter-203

acts with the verifier (Figure 1), potentially issuing204

multiple <search> queries within one sequence be- 205

fore generating an <answer>. (2) Reward Calcu- 206

lation: The completed sequence is evaluated using 207

the reward functions (Section 3.3) to get a total 208

trajectory reward. (3) Policy Update (GRPO): Re- 209

wards from multiple trajectories update the LLM 210

parameters (θ) via GRPO, comparing trajectory 211

rewards to the batch average and stabilizing with 212

KL divergence against πref. (4) Noise Injection 213

for Robustness: Noise is added at the vector DB 214

level during training to simulate imperfect retrieval, 215

encouraging robust retry mechanisms. 216

This process directly fine-tunes the base LLM 217

using RL, teaching it not only to answer correctly 218

but also to strategically and persistently use the 219

search tool, even when facing retrieval imperfec- 220

tions, without an intermediate supervised fine- 221

tuning stage. 222

4 Experiments and Results 223

We implemented the ReZero framework (Sec- 224

tion 3), fine-tuning a base LLM using Group Rel- 225

ative Policy Optimization (GRPO) (Shao et al., 226

2024) within an interactive search environment 227

(Snell et al., 2025), without intermediate super- 228

vised fine-tuning. We used the Apollo 3 mis- 229

sion dataset and the Llama3.2-3B-Instruct model 230

(Grattafiori et al., 2024). Specific implementation 231

details, dataset splits, and training parameters are 232

provided in Appendix B. 233

To isolate the impact of the reward_retry 234

mechanism, we compared two configurations: the 235

Baseline (trained with all reward functions except 236

reward_retry) and ReZero (trained with all re- 237

wards, including the crucial reward_retry compo- 238

nent). Both models started from the same weights 239

and used the same GRPO training procedure, dif- 240

fering only in the inclusion of the reward_retry 241

signal. 242

Model performance was evaluated periodically 243

on a held-out evaluation set using accuracy. The re- 244

sults (Figure 2) clearly indicate the effectiveness of 245

the reward_retry component. The ReZero model 246

achieved a peak accuracy of 46.88% (at 250 steps), 247

significantly outperforming the Baseline model’s 248

peak of 25.00% (at 350 steps). ReZero also showed 249

a faster initial learning rate. Both models exhibited 250

a decline after their peaks, dropping to 0% accuracy 251

later in training, suggesting potential RL instability 252

or overfitting. 253

The substantial gap in peak accuracy (46.88% 254
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Figure 2: Comparison of evaluation accuracy between
the ReZero model (incorporating the reward_retry
component) and the Baseline model (lacking the retry in-
centive) over 1000 training steps on the held-out Apollo
3 dataset chunks. Peak accuracies are highlighted.

vs 25.00%) strongly suggests that explicitly re-255

warding the act of retrying search queries via the256

reward_retry function significantly enhances the257

model’s ability to effectively utilize the search tool258

and ultimately arrive at correct answers, particu-259

larly in scenarios where initial queries might be260

insufficient.261

5 Discussion262

The nearly doubled peak accuracy of ReZero over263

the baseline (Section 4) strongly validates that ex-264

plicitly rewarding search retries enhances LLM265

information retrieval. However, the subsequent per-266

formance decline in both models highlights chal-267

lenges, likely related to RL training stability (e.g.,268

GRPO instability, overfitting), requiring further in-269

vestigation beyond the scope of this work (see Sec-270

tion 6).271

6 Conclusion272

We introduced ReZero, an RL framework using273

GRPO to enhance RAG system robustness by ex-274

plicitly rewarding search persistence. Unlike meth-275

ods focused on query formulation or reasoning,276

ReZero uses a reward_retry component to incen-277

tivize retrying after initial search failures, condi-278

tional on generating a final answer.279

Experiments on the Apollo 3 dataset vali-280

date this approach. The ReZero model (with281

reward_retry) significantly outperformed a base-282

line lacking this incentive, achieving nearly dou-283

ble the peak accuracy (46.88% vs 25.00%) and 284

faster initial learning. This confirms that reward- 285

ing retries improves the LLM’s ability to overcome 286

search failures. 287

However, performance declined after the peak 288

for both models, indicating potential RL training 289

instability or overfitting challenges common in RL 290

(Chu et al., 2025), suggesting a need for further 291

optimization. A key limitation acknowledged in 292

Section 6 is the evaluation on a single domain; 293

generalizability needs further validation. 294

Future work should focus on validating ReZero 295

across diverse datasets and stabilizing the RL train- 296

ing. Exploring reward_retry refinements and in- 297

tegrating ReZero with complementary RAG tech- 298

niques are also promising directions. 299

In conclusion, ReZero demonstrates that directly 300

rewarding persistence improves LLM effectiveness 301

in information seeking, highlighting the value of in- 302

corporating human-like problem-solving strategies 303

into RAG frameworks. 304

Limitations 305

Our study has several limitations. Firstly, the per- 306

formance of both ReZero and the baseline model 307

declined significantly after reaching peak accuracy 308

during the 1000-step training process. This sug- 309

gests potential challenges with the stability of the 310

Group Relative Policy Optimization (GRPO) algo- 311

rithm over extended training, possible overfitting to 312

training data chunks, or suboptimal reward balanc- 313

ing, highlighting a need for further investigation 314

into optimizing the RL training dynamics for sus- 315

tained performance. 316

Secondly, our experiments were conducted 317

solely on the Apollo 3 mission dataset. While this 318

provided a controlled comparison, it represents a 319

specific domain. Therefore, the generalizability 320

of ReZero’s observed performance benefits to di- 321

verse knowledge domains, query types, and task 322

complexities requires further validation through 323

evaluation on a broader range of datasets. 324
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A Reward Function Details469

This appendix provides the detailed descriptions of470

the reward functions used in ReZero, supplement-471

ing Section 3.3.472

1. reward_correctness: Evaluates the final an-473

swer’s accuracy against a ground-truth, checks474

response structure validity, and outputs a bi-475

nary reward. The binary reward is determined476

by the model itself, acting as a self-judge477

(LLM-as-a-Judge) (Gu et al., 2025) using the478

base model’s capabilities.479

2. reward_format: Ensures adherence to the re-480

quired conversational format and tag usage481

(e.g., tag sequence, valid markup), outputting482

a binary reward.483

3. reward_retry: (See Section 3.3 for full de-484

scription in main text).485

4. reward_em_chunk: Verifies if the correct in-486

formation chunk was retrieved by comparing487

the content in <information> tags against a488

ground-truth chunk using exact matching, out-489

putting a binary reward.490

5. reward_search_strategy: Evaluates the491

quality of the search process by checking492

adherence to a desired conversational flow:493

initiating a broad <search>, analyzing re-494

trieved <information> (verified by specific495

keywords within <think> tags), executing 496

subsequent refined <search> queries based 497

on this analysis, and finally synthesizing an 498

<answer> grounded in the analyzed informa- 499

tion. Outputs a graded score (0.0-1.0) based 500

on the successful execution of these sequential 501

phases. 502

6. reward_search_diversity: Assesses the 503

variety within the sequence of <search> 504

queries used during generation. It rewards 505

distinct query concepts and semantic dissim- 506

ilarity between queries (measured using nor- 507

malized string comparison). Bonus rewards 508

are allocated for the effective use of diverse 509

search operators (e.g., site:, "", OR). Penalties 510

are applied to discourage submitting exact du- 511

plicate or highly similar queries, promoting 512

broader exploration. Outputs a graded score 513

(0.0-1.0) rewarding unique queries and opera- 514

tor diversity, while penalizing repetition and 515

high similarity. 516

B Experimental Setup Details 517

This appendix provides details for the experiments 518

described in Section 4. 519

• Base Model: Llama3.2-3B-Instruct 520

(Grattafiori et al., 2024). 521

• Dataset: Apollo 3 mission dataset, divided 522

into 341 chunks (309 training, 32 evaluation). 523

• Training Procedure: Group Relative Pol- 524

icy Optimization (GRPO) (Shao et al., 2024) 525

within an interactive environment using a 526

search engine as a verifier (Snell et al., 2025). 527

No intermediate supervised fine-tuning. 528

• Hardware: Single NVIDIA H200 GPU. 529

• Duration: 1000 steps (approx. 3 epochs over 530

training data). 531

• Libraries: Implementation utilized unsloth 532

and borrowed from (dCaples, 2022). 533
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