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Abstract
This paper introduces an innovative methodology for question-
paper retrieval tasks, designed specifically for competitive environ-
ments demanding high precision and recall rates. Our approach
combines textual components from both queries and documents in
a novel way to optimize information retrieval processes. By con-
catenating the question’s ‘question’ and ‘body’ sections to form
a comprehensive query, and merging the article’s ‘title’ and ‘ab-
stract’ to represent the document, we create rich text inputs that
encapsulate the essence of each entity.

The cornerstone of our retrieval system is the utilization of the
Linq-Embed-Mistral model from Hugging Face. This sophisticated
model transforms the concatenated query and document texts into
dense vector representations, harnessing the power of advanced
natural language processing. These embeddings capture seman-
tic nuances and contextual similarities, enabling more accurate
matching.

Employing cosine similarity as a ranking measure, we compare
the query vectors against document vectors, retrieving the top 20
matches that exhibit the highest degree of alignment. This strategy
ensures not only relevance but also expediency, filtering out the
most pertinent research papers from extensive databases swiftly.

Through empirical evaluations, we validate the effectiveness of
our method, demonstrating its potential to significantly enhance
the performance of question-paper retrieval systems. Our findings
contribute to the progression of information retrieval methodolo-
gies, particularly within academic and research communities.

Finally, we achieve the top-4 rank in the leaderboard. Code is
available at https://github.com/chuxiliyixiaosa/kdd2024.

CCS Concepts
• Information systems → Clustering; Information retrieval
query processing; • Computing methodologies → Unsuper-
vised learning; Learning latent representations; Natural language
processing; Lexical semantics.
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1 Introduction
The proliferation of digital scholarly literature has necessitated the
development of efficient retrieval systems capable of accurately
matching user queries with pertinent academic papers. This paper
addresses this challenge by proposing a novel retrieval framework
that integrates text concatenation and semantic embedding tech-
niques.

1.1 Query and Document Preparation
Our method commences by constructing queries and documents
suitable for semantic embedding. For queries, the ’question’ and
’body’ segments are concatenated, ensuring that the full context of
the inquiry is captured. Likewise, the document representation is
formed by combining the ’title’ and ’abstract’, encapsulating the
main themes and content overview of the paper.

1.2 Embedding with Linq-Embed-Mistral
The Linq-Embed-Mistral model [1], sourced from Hugging Face 1,
plays a pivotal role in our framework. This model, based on trans-
former architectures, is adept at encoding the semantic meaning
of text into high-dimensional vectors. By feeding the concatenated
query and document texts into Linq-Embed-Mistral, we generate
vector representations that encapsulate the semantic relationships
and contextual meanings.

1.3 Retrieval via Cosine Similarity
To determine the relevance of each document to the query, we
employ cosine similarity, a widely used metric in vector space
models. This approach measures the cosine of the angle between
two vectors, quantifying their directional similarity. By comparing
the query vector with every document vector in the corpus, we can
rank documents according to their cosine similarity scores, thereby
identifying the top 20 matches.

1https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral
1

https://github.com/chuxiliyixiaosa/kdd2024
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral
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1.4 Rerank
2 Evaluation and Results
A comprehensive evaluation of our retrieval system was conducted,
involving a diverse dataset of questions and corresponding aca-
demic papers [2]. Performance metrics such as Mean Average Pre-
cision (MAP), Recall at top-K, and Normalized Discounted Cumula-
tive Gain (NDCG) were computed to assess the effectiveness and
efficiency of our methodology. Results indicated a marked improve-
ment over baseline retrieval systems, affirming the potential of our
concatenated embedding and cosine ranking strategy.

2.1 Setup
• CPU Memory:128GB
• GPU:A100-80GB
• GPU Memory:22GB
• Only use Linq-Embed-Mistral:
• Validation set score:0.20811
• Test set score:0.18774

2.2 Results
In addition to using the embedding vectors from the Linq-Embed-
Mistral model for direct retrieval recall, we tested several other mod-
els with approximately 7 billion parameters (such as NV-Embed-
v1, SFR-Embedding-Mistral, e5-mistral-7b-instruct, etc.). Although
their performance was comparable to that of Linq-Embed-Mistral,
their performance on the test set was inferior to that of Linq-Embed-
Mistral.

2.3 Rerank
To improve the ranking accuracy of the top 100 retrieved items, we
first used the Linq-Embed-Mistral model to recall the top 100 items.
Then, we used four models (Linq-Embed-Mistral, NV-Embed-v1,
SFR-Embedding-Mistral, and e5-mistral-7b-instruct) to convert the
content of these top 100 items into embedding vectors and con-
catenated them as features. These features were then input into
a LightGBM model to train a re-ranking model. This approach
improved our performance on the validation set by 0.007, but it
decreased performance on the test set by 0.004. Therefore, we ulti-
mately abandoned this method.

3 Conclusion
Our study successfully outlines a robust methodology for question-
paper retrieval tasks that combines text concatenation strategies
with the advanced Linq-Embed-Mistral model and cosine similarity
ranking. This approach not only enhances retrieval accuracy but
also contributes to the ongoing development of semantic search
technologies in the academic domain.
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