
Under review as submission to TMLR

FGAIF: Aligning Large Vision-Language Models
with Fine-grained AI Feedback

Anonymous authors
Paper under double-blind review

Abstract

Large Vision-Language Models (LVLMs) have demonstrated proficiency in tackling a vari-
ety of visual-language tasks. However, current LVLMs suffer from misalignment between
text and image modalities which causes three kinds of hallucination problems, i.e., object
existence, object attribute, and object relationship. To tackle this issue, existing methods
mainly utilize Reinforcement Learning (RL) to align modalities in LVLMs. However, they
still suffer from three main limitations: (1) General feedback can not indicate the hallucina-
tion type contained in the response; (2) Sparse rewards only give the sequence-level reward
for the whole response; and (3)Annotation cost is time-consuming and labor-intensive. To
handle these limitations, we propose an innovative method to align modalities in LVLMs
through Fine-Grained Artificial Intelligence Feedback (FGAIF), which mainly consists of
three steps: AI-based Feedback Collection, Fine-grained Reward Model Training, and Re-
inforcement Learning with Fine-grained Reward. Specifically, We first utilize AI tools to
predict the types of hallucination for each segment in the response and obtain a collection
of fine-grained feedback. Then, based on the collected reward data, three specialized reward
models are trained to produce dense rewards. Finally, a novel fine-grained feedback module
is integrated into the Proximal Policy Optimization (PPO) algorithm. Extensive experi-
ments are conducted on hallucination and general benchmarks, demonstrating the superior
performance of our proposed method. Notably, compared with previous models trained with
the RL-based aligning method, our proposed method is effective even with fewer parameters.

1 Introduction

Large Language Models (LLMs) like GPT-3 (Brown et al., 2020) and ChatGPT (OpenAI, 2022) have show-
cased remarkable abilities in language processing. However, their ability to handle multimodal inputs com-
bining both visual and textual data remains inadequate. This limitation has drawn research attention to
Large Vision-Language Models (LVLMs) which achieve massive success in various vision and language tasks
(e.g. Visual Question Answering (Antol et al., 2015) and Image Captioning (Lin et al., 2014)).

Although LVLMs have achieved significant success in tasks requiring visual-textual understandings, the
challenge of misalignment between vision and language modalities Sun et al. (2023) has not been solved,
leading to “hallucination” in generated textual responses (Jing et al., 2023). As shown in Figure 1, there are
three kinds of hallucinations in the context of LVLMs, including (1) Object Existence Hallucination, where
non-existent objects are mistakenly referenced; (2) Object Attribute Hallucination, involving inaccuracies
in the depiction of object attributes like color, shape, and size; and (3) Object Relationship Hallucination,
where the descriptions inaccurately portray the interactions or spatial relationships between objects, leading
to misrepresentations of their positions, interactions, and actions involving two or more objects Jing et al.
(2023); Zhai et al. (2023); Jing et al. (2024). Therefore, mitigating the hallucinations and generating faithful
responses are key to building practical applications of LVLMs.

Hallucinations in LVLMs stem from their inclination to lean on common sense or stereotypical knowledge
ingrained in the textual data used for training and frequently ignore the visual information presented (Cui
et al., 2023), where the specific details contained in the input images (Zhou et al., 2024) are greatly over-
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Figure 1: Illustration of the hallucination in the response generated by the LVLM. We illustrate all three
kinds of hallucinations in this figure, where orange fonts denote object existence hallucinations, red fonts
denote object attribute hallucinations, and blue fonts for object relation hallucinations.

looked. Such discrepancies are largely caused by the misalignment between textual and visual modalities
(i.e., modality misalignment problem). To tackle this kind of misalignment problem, most existing method-
ologies rely on Reinforcement Learning (RL) (Ziegler et al., 2019; Sun et al., 2023; Li et al., 2023a; Zhou
et al., 2024). For example, LLaVA-RLHF (Sun et al., 2023) aims to first gather human preferences and then
incorporate these preferences into the reinforcement learning process for fine-tuning Language Models.

Despite their great success, the existing modality alignment method still suffers from three limitations: (1)
General Feedback. Only broad and general feedback is generated by the reward model employed in current
methodologies, and hallucination of specific types like objects and relations is not contained, making it
challenging to precisely identify and correct inaccuracies in the generated content in the training stage. (2)
Sparse Rewards. During the modality alignment training process, sequence-level feedback is gathered by
current methodologies for the entirety of long responses, which is a kind of sparse training signal and is
suitable to the task requiring the generation of long-form text. Moreover, sequence-level feedback tends to
overlook the detailed hallucinations that may occur within individual segments of the response. (3) High
Annotation Costs. Prevailing methods primarily utilize rewards based on human annotations, which is time-
consuming and labor-intensive. Thus, scalability is another constraint for existing methods requiring massive
accurate feedback.

To mitigate above-mentioned limitations, we propose to align modalities in large vision-language models
with Fine-Grained AI Feedback (FGAIF), an innovative approach to refine large vision-language models
via fine-tuning. In particular, our method mainly consists of three steps: AI-based feedback collection,
fine-grained reward model training, and reinforcement learning with fine-grained rewards. The AI-based
feedback collection step provides three kinds of segment-level (i.e., sub-sentence-level) hallucination labels
based on AI feedback. We train three reward models that can produce fine-grained rewards, i.e., multiple
types and segment-level rewards, using the collected fine-grained reward data, in the second step. The last
step integrates novel fine-grained feedback into the Proximal Policy Optimization (PPO) algorithm to further
fine-tune the LVLM.

Our contribution can be summarized as follows:

• We propose a novel fine-grained artificial intelligence-based hallucination labeling method, which
can detect three types of hallucinations (i.e., object existence, object attribute, and object relation)
in terms of sub-sentence level and eliminate the need for manual annotation.

• To the best of our knowledge, we are the first to provide multiple types and segment-level feedback
towards modalities alignment in LVLMs, which can mitigate three kinds of hallucination in LVLMs.
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• We conduct comprehensive experiments on several hallucination benchmarks and one general bench-
mark. The experimental results demonstrate the effectiveness of FGAIF. In addition, the ablation
study shows the necessity of each module in FGAIF.

2 Related Work

2.1 Large Vision-Language Model

The recent pivot of the multimodal learning community towards LVLMs has been largely inspired by the
effective pretraining approaches seen in LLMs and Vision Foundation Models (VFMs). At the heart of
modern advanced LVLMs lie three fundamental components: a text encoder, an image encoder, and a cross-
modal alignment module (Rohrbach et al., 2018). The text encoder typically manifests as a language model,
with notable examples being LLaMA (Touvron et al., 2023) and Vicuna (Chiang et al., 2023), whereas the
image encoder usually borrows from VFMs like ViT (Dosovitskiy et al., 2021). The critical role of the cross-
modal alignment module is to fuse the visual and textual domains, thereby enabling the text encoder to
grasp visual semantics more effectively. LVLMs generally undergo a multi-stage training approach to master
visual comprehension (Gong et al., 2023; Zhu et al., 2023; Liu et al., 2023b;c; Ye et al., 2023; Dai et al.,
2023). For example, Liu et al. (2023c) initially pre-trains the model by aligning image features with the
word embeddings from a pre-trained LLM, followed by fine-tuning on specific language-image instruction
datasets. To boost training efficiency, LVLMs often employ techniques like freezing parameters in the LLM
or VFM components and utilize efficient fine-tuning methods such as LoRA (Hu et al., 2022b).

Despite their significant progress, LVLMs still face challenges with hallucinations, which can severely affect
their performance on various vision-language tasks (Rohrbach et al., 2018).

2.2 Hallucinations in LVLMs

Motivated the hallucination in LLMs, more researchers shifted research attention to hallucination in LVLMs.
Hallucination in the context of LVLMs is the inconsistent content between the generated response and the
input image. To evaluate the hallucination in LVLMs, some work devised metrics to measure the hallucination
in the response, such as FaithScore (Jing et al., 2023), CHAIR (Rohrbach et al., 2018), POPE (Li et al.,
2023d), and NOPE (Lovenia et al., 2023). Recently, there have been works to mitigate hallucinations in
LVLMs utilizing various technologies, such as decoding approaches (Leng et al., 2023; Huang et al., 2023),
post-processing (Zhou et al., 2023a; Yin et al., 2023), and construction of the higher-quality dataset (Liu
et al., 2023a; Li et al., 2023c). To address the challenge of aligning image and text modalities within LVLMs
and to mitigate the issue of hallucination, existing strategies offer partial solutions but lack direct guidance
for modality alignment. Therefore, some research efforts (Li et al., 2023b; Yu et al., 2023; Zhou et al.,
2024) have embraced the use of reinforcement learning for direct modality alignment. For example, Sun
et al. (2023) developed the LLaVA-RLHF model, harnessing human-annotated preference data to minimize
hallucinations in LLaVA.

Motivated by the fine-grained RL (Wu et al., 2023; Ramé et al., 2023; Jang et al., 2023; Zhou et al.,
2023b; Wang et al., 2024) and AI-based RL (Lee et al., 2023; Bai et al., 2022) methods, we propose to
align modalities in LVLMs with fine-grained AI feedback. Different from existing work which needs human
annotation and only provides coarse-grained feedback, our method provides fine-grained rewards and learns
from AI automatic feedback.

3 Problem Formulation

Suppose we have a set of N images {Ii}Ni=1 and the corresponding prompts {Pi}Ni=1. Next, we omit the
index of Ii and Pi for simplicity. Then we feed the prompt P and image I into an LVLM M and get the
sampled response as R = M(I, P |Θm), where R is the response for (I, P ). ΘM refers to the parameters
of LVLM M. Next, we resort to another AI-based method A to identify three kinds of hallucination (i.e.,
object existence, object attribute, and object relation ) in the generated response and train three reward
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Figure 2: The illustration of our proposed FGAIF, which consists of three steps: AI-based feedback collection,
fine-grained reward model training, and reinforcement learning with fine-grained rewards.

models as F o, F a, F r = A(R, I, P ),Ro/a/r(R, I, P |Θo/a/r) → F o/a/r, where F o/a/r = {fo/a/r1 , · · · , fo/a/rs }
denotes the object existence/attribute/relation hallucination labels. Θo/a/r is the parameters of the reward
model Ro/a/r. fo/a/rj is the label which means whether the j-th sub-sentence in the response contains the
object existence/attribute/relation hallucination. Ro/a/r denotes reward models which aim to detect object
existence/attribute/relation hallucinations.

Finally, we utilize well-trained reward models and a set of Nf images {Ifi }
Nf

i=1 and the correspond-
ing prompts {P fi }

Nf

i=1. to fine-tune the LVLM to make it generate faithful responses as R̂ =
M(If , P f , |Θf ,Ro,Ra,Rr), where Θf is final optimized parameters of the LVLM M. We also omit the
index in this equation. Nf is the size of data for finetuning LVLMs.

4 Methodology

In this section, we detail the proposed FGAIF, which consists of three steps: AI-based feedback collection,
fine-grained reward model training, and reinforcement learning with fine-grained rewards.

4.1 AI-based Feedback Collection

In our method, we explore a reward function informed by multiple detailed reward models for aligning
modalities in LVLMs. These models (1) provide rewards at frequent intervals (namely, for sub-sentence
of the generated content) and (2) assign rewards according to various categories of hallucinations. Each
category of hallucination is evaluated by a distinct reward model. Therefore, in this stage, to train the
reward model that can detect the hallucination, we collect the reward dataset first. Different from the most
existing work which collects coarse-grained reward data via human feedback to refine VLMs, we collect
fine-grained reward data by automatic AI model (left of Figure 2).
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To achieve this, we first sample responses from the backbone LVLM as depicted in Section 3. Inspired by the
existing fine-grained evaluation work (Jing et al., 2023; Min et al., 2023), we devise a fine-grained AI-based
feedback collection method. In particular, we utilize AI models to annotate three kinds of hallucinations
(i.e., object existence hallucination, object attribute hallucination, and object relationship hallucination) on
the sub-sentence level for the response. In particular, to get the hallucination labels for each sub-sentence,
we first split the response from the LVLM into sub-sentences as follows,

(s1, · · · , sn) = SPLIT(R), (1)

where si is the i-th sub-sentence of the response. Thereafter, to accurately annotate three kinds of
hallucination in the sub-sentence, we extract three kinds of atomic facts (Jing et al., 2023): object existence,
object attribute, and object relationship atomic facts, from the sub-sentence, using ChatGPT as follows,

{{ao1, · · · , aono},{aa1 , · · · , aana}, {ar1, · · · , arnr}} (2)
= ChatGPT(Ps(s, {si}ni=1)),

where aoi , aai and ari denote the i-th object existence, object attribute, and object relation types of
atomic fact derived from the sub-sentence, respectively. And no/a/r is the total number of object exis-
tence/attribute/relation atomic facts for the sub-sentence. Here we omit the index j of the sub-sentence for
simplicity. Atomic fact is the minimal information unit and we show some examples in Appendix A. Ps(·)
is a prompt that can instruct ChatGPT to generate three kinds of atomic facts, and corresponding details
can be found in Appendix A.

Thereafter, to get the label of each type of hallucination for each sub-sentence, we need to verify whether the
atomic fact is consistent with the input image. We utilize superior LLaVA 1.5 (Liu et al., 2023b) to annotate
the object existence hallucination, attribute hallucination, and relationship hallucination. Specifically, we
feed LLaVA 1.5 with the image, the atomic fact, and the prompt, which can instruct LLaVA 1.5 to identify
the consistency between atomic facts and the input image as follows,

fo/a/rai
= LLaV A(Pcon(I, ao/a/ri )), (3)

where foai
∈ {0, 1}, faai

∈ {0, 1} and frai
∈ {0, 1} denote the hallucination label of i-th atomic fact in the

sub-sentence in terms of object existence, object attribute, and object relationship types of atomic facts,
respectively. fo/a/rai is set to 1 when the output of LLaVA 1.5 indicates that the input image and the atomic
fact are inconsistent (i.e., the corresponding atomic fact is a hallucination), otherwise, it is set to 0. Pcon(·)
is the prompt that can be used to prompt the LLaVA 1.5 to annotate hallucination and it is shown in
Applendix A.

Finally, we can aggregate the hallucination labels of atomic facts for each sub-sentence and then get the fine-
grained sub-sentence-level hallucination labels as fo/a/r = sgn(

∑
i f

o/a/r
ai ), where fo/a/r is the hallucination

label for the sub-sentence in terms of object existence/attribute/relation. sgn(·) is the sign function. In
addition, if there is not any atomic fact in a sub-sentence, the corresponding label fo/a/r is set to 2.

The reason why we use LVLM to verify the consistency between atomic fact and image even if the LVLM
may also introduce hallucination: Our method converts the AI labeling task into a discriminative task that
usually generates a short response, and this kind of task tends not to generate hallucination, which has
been demonstrated in existing work (Jing et al., 2023; Min et al., 2023). Therefore, our AI-based feedback
collection method can reduce the hallucination as much as possible.

4.2 Fine-grained Reward Model Training

As mentioned before, the existing LVLMs mainly suffer from three aspects of hallucinations, i.e., object
existence, object attribute, and object relation. Based on the process above, we can get three kinds of
hallucination labels for each sample. Thereafter, we train three reward models corresponding to each kind of
hallucination (middle of Figure 2). Specifically, we first split the input of the reward model into tokens and
get the index of the last token of each sub-sentence for the subsequent hallucination prediction as follows,{

T = Tokenizer([P, I,R]),
{ind1, · · · , indn} = Search([P, I,R, T ]),

(4)

5



Under review as submission to TMLR

where indi is the index of the last token of the i-th sub-sentence. n is the total number of sub-sentences and
T is the tokens for the input R (response), P (prompt) and I (image). Seach is a function that can get the
index of the last token for each sub-sentence.

Finally, we can utilize the above-recognized indices to train reward models which is able to detect various
kinds of hallucinations in the sub-sentence of response. In particular, we first feed the tokens above into the
reward model backbones as follows,

Fo = RMo(T ),Fa = RMa(T ),Fr = RMr(T ). (5)

Then, we connect the output from reward models, corresponding to the last token, with an MLP classifier.
Thereafter, we can predict the hallucination label with the classifier. The above process can be formulated
as follows,

f̂
o/a/r
j = MLPo/a/r(F

o/a/r
indj

), (6)

where Fo/a/rindj
is the feature vector of the last token for the j-th sub-sentence. f̂oj , f̂aj and f̂rj are the

predicted labels. To equip the three reward models with hallucination detection ability and give further
rewards for reinforcement learning, we train the three reward models with a cross-entropy loss as Lo/a/r =∑n
j=1 CE(fo/a/rj , f̂

o/a/r
j )/n, where CE(·) is the cross-entropy function and Lo, La and Lr are loss functions

for different reward models (i.e., object existence, object attribute, and object relation).

4.3 Reinforcement Learning with Fine-grained Reward

Fine-tuning language models with reinforcement learning is an effective approach to align modalities in
LVLMs. To make LVLMs generate more faithful responses rather than hallucinated responses, we also
resort to reinforcement learning to further fine-tune LVLMs with the fine-grained reward (right of Figure 2).
Specifically, we first segment the generated response from the LVLM into K sub-sentences (s1, · · · , sK). Then
we get all kinds of rewards for each sub-sentence based on the well-trained reward model by cross-entropy loss.
We define rio, ria, and rir as the object existence, object attribute, and object relation rewards for the j-th sub-
sentence. Then we have a combined reward function for each token as rt = −

∑
l∈{o,a,r}

∑K
i=1 (I(t = Ti)wlril),

where Ti is the timestep for the last token of si. I(·) is the indicator function. wl ∈ R is a weight assigned
to rewards. Thereafter, we utilize the PPO algorithm Schulman et al. (2017) to train the policy model (i.e.,
the LVLM) following the existing work (Sun et al., 2023).

PPO is an actor-critic RL algorithm that is widely used in previous RLHF work to optimize the policy
model against a reward model of human feedback. It uses a value model Vψ(st) to estimate the value of
state st, and optimizes the policy model with a PPO clipped surrogate training objective. The advantage
At at timestep t is estimated by a generalized advantage estimation function (Schulman et al., 2016): At =∑T
t′=t(γλ)t′−t(rt′ + γVψ(st′+1) − Vψ(st′)), with γ as a hyperparameter and λ as the discounting factor for

rewards. rt is the reward assigned to at, which in our case is acquired using one or multiple learned reward
models. The value model Vψ(st) is optimized with an expected squared-error loss with the value target as
Vtarg(st) =

∑T−1
t′=t γ

t′−trt′ + γT−tVψold(sT ), where Vψold is the lagging value model. Finally, PPO is trained
to optimize both policy (Pθ) and value (Vψ) models with their respective objectives. No reward model is
being optimized during PPO training. See Appendix B for more details.

5 Experiment

In this section, we present the extensive experiments to answer the following research questions: 1) RQ1.
What is the quantitative performance of our FGAIF? 2) RQ2. What is the contribution of each component
of FGAIF? 3) RQ3. What is the intuitive performance of our FGAIF?

5.1 Experimental Details

To ensure a fair and equitable comparison, we utilized same base model with the LLaVA-RLHF model
whose network architecture is LLaVA7B . In addition, we also adopt the same architecture (i.e., LLaVA13B)
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Table 1: POPE evaluation benchmark. Accuracy denotes the accuracy of predictions. “Yes” represents the
probability of the model outputting a positive answer. ↑ denotes that the larger the value, the better the
performance. The bold font denotes the best performance among our model and baselines with the same
backbone architecture (LLaVA). The underlined font denotes the second-best performance among our model
and baselines with the same backbone architecture.

Model
POPE

Random Popular Adversarial Overall
Acc↑ F1↑ Acc↑ F1↑ Acc↑ F1↑ F1↑ Yes

MiniGPT-47B 79.7 80.2 69.7 73.0 65.2 70.4 74.5 60.8
mPLUG-Owl7B 54.0 68.4 50.9 66.9 50.7 66.8 67.2 97.6
InstructBLIP7B 88.6 89.3 79.7 80.2 65.2 70.4 80.0 59.0
InstructBLIP13B 88.7 89.3 81.4 83.5 74.4 78.5 83.7 62.2

LLaVA7B 50.4 66.6 49.9 66.4 49.7 66.3 66.4 99.2
LLaVA13B 73.7 78.8 73.6 78.2 67.2 74.4 77.1 73.7
LLaVA-RLHF7B 84.8 83.3 83.3 81.8 80.7 79.5 81.5 41.8
LLaVA-RLHF13B 85.2 83.5 83.9 81.8 82.3 80.5 81.9 39.0

FGAIF7B 87.0 86.7 84.0 83.7 79.6 79.9 83.4 48.3

Table 2: Evaluation results for different LLMs on MMHal-Bench and LLaVA-Bench. “Over” and “Hal”
denotes “Overall Score” and “Hallucination Rate”, respectively. “Con”, “De” and “Com” denote “Conver-
sation”, “Detailed Description”, and “Complex Question”.

Model MMHal-Bench LLaVA-Bench
Over↑ Hal ↓ Object↑ Attribute↑ Relation↑ Con↑ De↑ Com↑ Full↑

MiniGPT-47B 3.39 0.24 3.0 2.54 3.67 80.5 74.5 81.6 78.9
mPLUG-Owl7B 2.49 0.43 0.33 2.58 1.5 78.7 46.0 47.4 57.5
InstructBLIP7B 2.10 0.58 2.08 2.67 2.17 95.4 96.3 99.1 97.0
InstructBLIP13B 2.14 0.58 1.75 2.82 2.5 90.9 91.7 109.3 97.2
LLaVA7B 1.55 0.76 0.00 1.25 2.00 75.1 75.4 92.3 81.0
LLaVA13B 1.11 0.84 0.00 1.13 1.5 87.2 74.3 92.9 84.9
LLaVA-RLHF7B 2.04 0.68 1.83 2.42 2.25 93.0 79.0 109.5 94.1
LLaVA-RLHF13B 2.53 0.57 2.67 2.79 2.33 93.9 82.5 110.1 95.6
FGAIF7B 3.09 0.36 3.58 3.21 3.33 98.2 93.6 110.0 100.1

with LLaVA-RLHF for the reward model. We compared our method with these models that used the same
model backbone as ours (i.e., LLaVA7B (Liu et al., 2023c) and LLaVA-RLHF7B). We also introduced
some methods with the same backbone architecture but a larger model size (i.e., LLaVA13B and LLaVA-
RLHF13B). Besides, we further incorporated more advanced LVLMs for comparison, i.e., MiniGPT-47B
(Zhu et al., 2023), mPLUG-Owl7B (Ye et al., 2023), InstructBLIP7B (Dai et al., 2023), and InstructBLIP13B .

To verify the effectiveness of our proposed FGAIF, we compare our method with baselines on several bench-
marks, including QA-based hallucination benchmarks POPE (Li et al., 2023d) and MMHal-Bench (Sun
et al., 2023), hallucination metrics CHAIR (Rohrbach et al., 2018) and FaithScore (Jing et al., 2023),
and the general benchmark LLaVA-Bench (Liu et al., 2023c).

POPE is a framework specifically designed for assessing object existence hallucinations in LVLMs. Specif-
ically, POPE formulates the evaluation of object hallucination as a binary classification task that prompts
LVLMs to output “Yes” or “No”, e.g., “Is there a chair in the image?” “Yes” questions can be directly
constructed based on objects appearing in the image. The “No” questions are constructed by three distinct
sampling settings: random, popular, and adversarial. In the random setting, objects that are not present
in the image are selected randomly. For the popular setting, the chosen non-existent objects are those from
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a pool of objects that appear most frequently in the MSCOCO dataset. In the adversarial setting, the
sampling negative objects are often seen together with the objects in the image but are absent in the image
under evaluation. This comprehensive approach allows for a nuanced analysis of the model’s tendency to
hallucinate across different scenarios. Finally, POPE consists of 3,000 samples under the setting of each type
of negative sampling and 9,000 samples for the whole dataset.

MMHal-Bench benchmark has been introduced to assess and measure the degree of hallucination in re-
sponses by LVLMs. MMHAL-BENCH comprises 96 carefully constructed image-question pairs across eight
different question categories and 12 object topics. These pairs are crafted to challenge LVLMs on common
points of failure, including 1) Object Attribute, 2) Adversarial Object, 3) Comparison, 4) Counting, 5) Spa-
tial Relation, 6) Environment, 7) Holistic Description, 8) Others. Different with POPE, it can evaluate more
fine-grained hallucinations rather than only object existence.

CHAIR is a framework to quantify object hallucination in image captions. This method compares objects
generated in captions against the ground truth objects within the images. CHAIR assesses hallucination
on two levels: sentence-level and instance-level. The sentence-level score, referred to as CHAIRS , quantifies
the proportion of captions that contain hallucinated content, whereas the instance-level score, CHAIRI ,
measures the frequency of hallucinated objects relative to the total number of objects mentioned by the
model. Our evaluation involves a randomly selected subset of 1,000 images from the MSCOCO validation
set, allowing for an analysis of our model’s performance in minimizing object existence hallucination.

FaithScore is another framework to assess the accuracy and relevance of response generated by LVLMs.
This innovative approach focuses on evaluating the consistency of atomic facts within the response against
the depicted scenes in the input images. Different from CHAIR, FaithScore can demonstrate the model’s
hallucination performance in terms of object existence, attribute, and relation. Our evaluation involves a
randomly selected subset of 1,000 images from the MSCOCO validation set, allowing for an analysis of our
model’s performance in mitigating object existence, attribute, and relation hallucination. It also provides
an instance-level score F-Score and sentence-level score F-ScoreS .

LLaVA-Bench is a general benchmark to assess the performance of LVLMs. LLaVA-Bench consists of
90 samples which can be categorized into three categories: detailed description, conversation, and complex
question. All the prompts in this benchmark and answers are generated by GPT-4. In the evaluation process,
the standard answer and generated response are fed into GPT-4 and GPT-4 then given a rating. Following
the existing work (Sun et al., 2023), we also report the relative scores of LVLMs compared to GPT-4.

All experiments are conducted on a 4 × A100 80G GPU Server. For the reward model training, we use
the Adam optimizer, and the learning rate, batch size, and epoch are set to 2e-5, 4, and 100. For the PPO
training, we use the Adam optimizer, and the learning rate, batch size, and epoch are set to 1e-7, 256, and
2. We sample 3,500 and 14,000 examples from the MSCOCO 2014 (Lin et al., 2014) training set for reward
model training and LVLM training, respectively. The prompt is set to “Describe this image in detail.” for
model training and sample. we adopt LoRA Hu et al. (2022a) for all the reward model training and the
LVLM fine-tuning processes.

5.2 On Model Comparison (RQ1)

The results on QA-based hallucination benchmarks (i.e., POPE and MMHal-Bench) are summarized in
Table 1 and Table 2. From this table, we have several observations. (1) LLaVA7B and InstructBLIP7B per-
forms worse than LLaVA13B and InstructBLIP13B on most cases, respectively. Compared with LLaVA13B ,
LLaVA7B has a strong hallucination problem, especially its over-confident problem on POPE. This indicates
the importance of model size. (2) LLaVA-RLHF7B is better than LLaVA7B , which indicates the superiority
of further fine-tuning with human feedback. Notably, LLaVA-RLHF7B even has a better performance com-
pared to LLaVA13B , even though the latter has specifically more parameters. (3) Our model consistently
performs better than the previous advanced in terms of most metrics and testing sets. This verifies that
fine-grained artificial intelligence feedback also can be beneficial for hallucination mitigation in LVLMs. (4)
Our FGAIF surpasses LLaVA-RLHF7B across all metrics. This implies the advantage of fine-grained artifi-
cial intelligence feedback compared to human feedback. (5) To further understand the performance of our
FGAIF, we split the MMHal-Bench into three classes based on the original dataset: a) object existence (class

8
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Table 3: Results of CHAIR and FaithScore on LVLMs.

Model CHAIR FaithScore LengthCHAIRI↓ CHAIRS↓ F-Score ↑ F-ScoreS↑
MiniGPT-47B 9.4 17.4 63.9 61.8 245.1
mPLUG-Owl7B 6.2 9.5 85.6 65.7 75.2
InstructBLIP7B 2.4 3.8 93.6 80.0 45.6
InstructBLIP13B 2.7 4.0 94.1 80.8 46.3
LLaVA7B 9.1 22.0 88.9 72.3 216.0
LLaVA13B 10.3 19.8 87.9 68.3 121.0
LLaVA-RLHF7B 4.6 7.0 89.3 71.1 58.8
LLaVA-RLHF13B 7.7 20.3 89.7 73.8 413.8
FGAIF7B 3.9 6.2 91.2 74.7 60.2

Table 4: Ablation study of our FGAIF. The best results are highlighted in boldface. “Over” and “Hal”
denotes “Overall Score” and “Hallucination Rate”, respectively.

Model CHAIR FaithScore POPE MMHal-Bench
CHAIRI ↓ CHAIRS ↓ F-Score ↑ F-ScoreS ↑ F1 ↑ Over ↑ Hal ↓

FGAIF7B 3.9 6.2 91.2 74.7 83.4 3.09 0.36

w/o-Obj 4.7 6.8 89.9 73.1 81.5 2.31 0.56
w/o-Att 4.1 6.3 90.3 73.7 82.4 2.56 0.45
w/o-Rel 4.2 6.4 90.3 73.4 82.6 2.64 0.44
w/o-AIF 4.8 7.0 89.1 72.8 81.0 1.76 0.67
w-Coarse 4.7 7.0 89.5 72.1 81.4 2.41 0.60

“adversarial object”), b) object attribute (classes “object attribute” and “counting”), and c) object relation
(class “spatial relation”). We observe that our method consistently achieves the best performance across all
question categories.

We further show the performance of our FGAIF and baselines on hallucination metrics CHAIR and
FaithScore in Table 3. InstructBLIP7B and InstructBLIP13B achieve the best performance in CHAIR and
FaithScore metrics. The potential reason is that these two models tend to generate short answers and these
two metrics just measure the precision of faithfulness but do not contain recall of faithfulness. Despite this,
our FGAIF still outperforms the RLHF-based baseline (i.e., LLaVA-RLHF7B) whose answers are shorter
than FGAIF, which verifies the superiority of our method.

In addition, Table 2 shows the comprehensive performance comparison of our FGAIF and the baseline
methods on the general benchmark LLaVA-Bench. From this table, we observed that most models
perform worst on the “Detail” (i.e., detailed description) subset and perform best on the “Complex” (i.e.,
complex questions) subset. This may be due to the reason that the “Detail” (i.e., detailed description) subset
has more stringent requirements for faithfulness because all the content of the response is required to be an
accurate description of the input image. On the contrary, the “Complex” (i.e., complex questions) subset
often explores the extended content of an image, sometimes leading to open-ended discussions. Therefore,
the demand for strict consistency with the image isn’t as critical. In addition, we found that the RLHF
can boost the LVLM’s performance on the whole LLaVA-Bench from 81.0 (LLaVA7B) to 94.1 (LLaVA-
RLHF7B). Furthermore, our FGAIF can bring more performance gain in terms of the “Conv” subset,
“Detail”, “Complex” subset, and full set), compared with LLaVA-RLHF7B . This further indicates the
advance of our method.

9
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Ours: A black and white cat is laying on a
couch next to a remote control.

LLaVA13B: A seagull stands on a pier, looking
out at a lighthouse and a boat on the water,
enjoying the beautiful day by the lake. 

LLaVA13B: A cute black and white cat is
lounging on a couch, with a remote control
in its mouth, while a television is nearby. 

Ours: A seagull stands on a concrete ledge near a
lighthouse.

Prompt:
Generate a
short caption
of this image.

Prompt:
Generate a
short caption
of this image.

Figure 3: Comparison between the response generated by our method FGAIF and the baseline LLaVA13B
on two testing samples. The red fonts denote the generated hallucinations.

5.3 On Ablation Study (RQ2)

To verify the effect of each component in our FGAIF, we devise the following variant methods for ablation
study:

• w/o-Obj: To demonstrate the effect of the object hallucination feedback, we remove the object
existence reward model in this method;

• w/o-Att: To show the necessity of the attribute hallucination feedback, we remove the object
attribute reward model in this method;

• w/o-Rel: To demonstrate the effect of the relation hallucination feedback, we remove the object
relation reward model in this method;

• w/o-AIF: To show the benefit of using reinforcement learning from fine-grained artificial intelligence
feedback, we remove all the reinforcement learning components in this variant;

• w-Coarse: To verify the advance of the fine-grained feedback compared with the traditional coarse-
grained uni reward model, we replace the three fine-grained reward models with one reward model
which also is trained with AI annotated data and the training phrase is the same as the previous
work (Sun et al., 2023).

Table 4 shows the ablation study results of our FGAIF on several hallucination benchmarks. From this
table, we have the following observations. 1) w/o-RLAIF performs terribly compared with FGAIF. It
confirms the necessity of using RLAIF for modality alignment and hallucination mitigation in LVLMs. 2)
FGAIF consistently outperforms w/o-Obj, w/o-Att, and w/o-Rel, across different evaluation metrics. This
is reasonable because each reward model can provide feedback for one kind of hallucination. 3) FGAIF
surpasses w-Coarse, denoting that the fine-grained reward models are more essential to align modalities
in LVLMs compared with the traditional coarse-grained uni reward model. 4) w/o-Obj performs worse
than w/o-Att and w/o-Rel. This indicates that the object existence hallucination is most important. The
potential reason is that there are more atomic facts of object existence, compared to the other hallucinations.
5) w/o-Att show a similar performance with w/o-Rel, which show w/o-Att has a similar importance with
w/o-Rel.

10
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5.4 On Case Study (RQ3)

To get an intuitive understanding of the hallucination mitigation capability of our model, we show two
testing results of our method and LLaVA13B in Figure 3. Looking into the generated responses of the first
sample, we can learn that by incorporating our fine-grained artificial intelligence feedback, our FGAIF is able
to generate the faithful description for the input visual image, while the baseline cannot (e.g., the baseline
generates “A seagull looking out at a lighthouse” and “a boat on the water” mistakenly). This intuitively
demonstrates the necessity of considering the fine-grained feedback in reinforcement learning. A similar
result can be found in the second sample.

6 Conclusion

In this paper, we devise an innovative method for refining large vision-language models through Fine-Grained
Artificial Intelligence Feedback (FGAIF), which mainly consists of three steps: AI-based feedback collection,
fine-grained reward model training, and reinforcement learning with fine-grained rewards. The experimental
results on hallucination and general benchmarks show the superiority of our method. The ablation study
shows the necessity of each component in our method. In the future, we plan to incorporate more reward
models in our method, such as soundness and fluency, which could provide more feedback during the model
training stage.

7 Limitations

Our method enables the collection of feedback through AI, achieving the goal of reducing hallucinations in
LVLMs. However, a challenge remains: During the feedback collection process, AI might introduce erroneous
information. Some AI-generated feedback may contain imperceptible errors or inaccuracies, which can affect
the model’s performance.
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A Prompts

We provide the prompt of annotating the consistency between the image and atomic fact in Figure 4. We
also provide the prompt of atomic fact generation in Figure 5. In this prompt, we asked ChatGPT to
generate three types of atomic facts: object existence, object attribute, and object relation. To get better
performance on atomic fact generation, we added some samples in this prompt. You can refer to these
broken-down samples to understand atomic facts.

Statement: {atomic fact}. Is this
statement is right according to the
image? Please answer yes or no.

Prompt

Image

Figure 4: The prompt for verifying the consistency between the image and atomic fact.

B Detailed Results

We report the detailed performance on MMHal-Bench and POPE in Table 5 and Table 6.

To understand the performance of our FGAIF, we split the MMHal-Bench into three classes based on
the original dataset 1) object existence (class “adversarial object”), 2) object attribute (classes “object
attribute” and “counting”), and 3) object relation (class “spatial relation”). From Table 5, we can observe
that our method achieves the best performance consistently on all question categories (object existence,
object attribute, and object relation), which further demonstrates the effectiveness of our method.

C Error Cases for ChatGPT and LLaVA

We show error cases for ChatGPT and LLaVA in Figure 6. In the error case for ChatGPT, ChatGPT should
consider the white car as an object attribution rather than object existence. In another case for LLaVA,
LLaVA misjudged the consistency between atomic fact and the images.
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Given an answer output by a vision-language model, break down its sub-sentence into independent atomic facts from it.
First extract elements from the answer. Then classify each element into a category (object, attribute, relation).
Finally, generate atomic facts for each element. You can refer to the context of the sub-sentence.
The relation must be the relationship between two objects.
Please note that you only need to output atomic facts. Besides, you must follow the format of examples.  Facts are
separated directly by periods.
The context is: %s
Please do not output other irrelevant information.

You should convert the pronoun into a specific object according to the context.
Please note that you only need to output atomic facts that are in the sub-sentence, the context is only used to help you
understand context information such as the object to which the pronoun refers, don't output any content that didn't appear
in the given sub-sentence.
Please note that the object is an objective description, not a subjective analysis, such as the atmosphere is not an object.
If the sub-sentence does not contain any object/attribute/relation, leave the corresponding line empty such as Object:

Sub-sentence: A man posing for a selfie in a jacket and bow tie.
Atomic facts:
Object: There is a man. There is a selfie. There is a jacket. There is a bow tie.
Attribute:
Relation: A man is in a jacket. A man is in a bow tie. A man posing for a selfie.

Sub-sentence: The image features a red velvet couch with a cat lying on it.
Atomic facts:
Object: There is a couch. There is a cat.
Attribute: The couch is red. The couch is velvet.
Relation: A cat is lying on a couch.

Sub-sentence: The photo is about a close-up image of a giraffe's head.
Atomic facts:
Object: There is a giraffe's head.
Attribute:
Relation:

Sub-sentence: A horse and several cows feed on hay.
Atomic facts:
Object: There is a horse. There are cows. There is a hay.
Attribute:
Relation: A horse feeds on hay. Cows feed on hay.

Sub-sentence: A red colored dog.
Atomic facts:
Object: There is a dog.
Attribute: The dog is red.
Relation:

Sub-sentence: {sub-sentence}
Atomic facts:

Figure 5: The prompt of atomic fact generation. In this prompt, we asked ChatGPT to generate three kinds
of atomic facts: object existence, object attribute, and object relation. To get better performance on atomic
fact generation, we added some samples in this prompt.
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Table 5: Detailed evaluation results for different LMMs on MMHal-Bench. ↓ denotes that the less the value,
the better the performance.

LLM Overall Hallucination Score in Different Question Type
Score↑ Rate ↓ Existence Attribute Relation

MiniGPT-47B 3.39 0.24 3.0 2.54 3.67
mPLUG-Owl7B 2.49 0.43 0.33 2.58 1.5
InstructBLIP7B 2.10 0.58 2.08 2.67 2.17
InstructBLIP13B 2.14 2.75 1.75 2.82 2.5
LLaVA7B 1.55 0.76 0.00 1.25 2.00
LLaVA13B 1.11 0.84 0.00 1.13 1.5
LLaVA-RLHF7B 2.04 0.68 1.83 2.42 2.25
LLaVA-RLHF13B 2.53 0.57 2.67 2.79 2.33
FGAIF7B 3.09 0.36 3.58 3.21 3.33

Table 6: POPE evaluation benchmark. Accuracy denotes the accuracy of predictions. “Yes” represents the
probability of the model outputting a positive answer. ↑ denotes that the larger the value, the better the
performance. The bold font denotes the best performance among our model and baselines with the same
backbone model. The underlined font denotes the second-best performance among our model and baselines
with the same backbone model.

Model Random Popular Adversarial Overall
Acc↑ F1↑ Yes Acc↑ F1↑ Yes Acc↑ F1↑ Yes F1↑ Yes

MiniGPT-47B 79.7 80.2 52.5 69.7 73.0 62.2 65.2 70.4 67.8 74.5 60.8
mPLUG-Owl7B 54.0 68.4 95.6 50.9 66.9 98.6 50.7 66.8 98.7 67.2 97.6
InstructBLIP7B 88.6 89.3 56.6 79.7 80.2 52.5 65.2 70.4 67.8 80.0 59.0
InstructBLIP13B 88.7 89.3 55.2 81.4 83.5 62.6 74.4 78.5 69.0 83.7 62.2
LLaVA7B 50.4 66.6 98.8 49.9 66.4 99.4 49.7 66.3 99.4 66.4 99.2
LLaVA13B 73.7 78.8 72.3 73.6 78.2 71.0 67.2 74.4 77.8 77.1 73.7
LLaVA-RLHF7B 84.8 83.3 39.6 83.3 81.8 41.8 80.7 79.5 44.0 81.5 41.8
LLaVA-RLHF13B 85.2 83.5 38.4 83.9 81.8 38.0 82.3 80.5 40.5 81.9 39.0
FGAIF7B 87.0 86.7 45.9 84.0 83.7 48.1 79.6 79.9 50.9 83.4 48.3

D PPO with Fine-Grained Rewards

The algorithm 1 shows in detail how PPO updates the policy LM Pθ and the value model Vψ, with K
fine-grained reward models Ro/a/r.
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Error Case for ChatGPT Error Case for LLaVA

'The image features a white car parked on 
the street.
- Entity: White car, street
- Attribute: Color of the car (white),
- Relation: The car is parked on the street.

Atomic Fact: A person is 
standing on a skateboard.
LLaVA answer: True

Figure 6: We show error cases for ChatGPT and LLaVA in this figure.

Algorithm 1 Fine-Grained Reinforcement Learning from AI Feedback (FGAIF)
Input: Initial policy model Pθinit ; initial value model Vψinit ; 3 reward models Ro/a/r trained from AI
feedback; task prompts D; hyperparameters ϵ
Output: Updated policy model Pθ.

Initialize policy model Pθ ← Pθinit , value model Vψ ← Vψinit

for step = 1, . . . ,M do
Sample a batch Db from D
Sample output sequence yn ∼ Pθ(· | xn) for each prompt xn ∈ Db
Compute rewards {rn,o/a/rt }|yn|

t=1 for each sampled output yn by running Ro/a/r

Compute advantages {At}|yn|
t=1 and value targets {Vtarg(st)}|yn|

t=1 for each yn with Vψ
for PPO iteration = 1, . . . , µ do

Update the policy model by maximizing the PPO clipped surrogate objective:

θ ← arg max
θ

1
|Db|

|Db|∑
n=1

1
|yn|

|yn|∑
t=1

min
(

Pθ(at | st)
Pθold(at | st)

At, clip(vt, 1− ϵ, 1 + ϵ)At
)

end for
Update the value model by minimizing a square-error objective:

ψ ← arg min
ψ

1
|Db|

|Db|∑
n=1

1
|yn|

|yn|∑
t=1

(Vψ(st)− Vtarg(st))2

end for
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