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ABSTRACT

As Deep Neural Networks become more complex and computationally demanding,
efficient models for inference at the edge, particularly multiplication-free ones, have
gained significant attention. The Ultra Low-Energy Edge Neural Network (ULEEN)
is a notable architecture optimized for high throughput edge designs. ULEEN
uniquely employs Bloom Filters with binary values to compute neuron activation,
boasting better efficiency metrics than Binary Neural Networks (BNNs). This work
uncovers a gradient back-propagation bottleneck within ULEEN’s Bloom filters
and introduces a simplified version of it as a solution: the "Soon Filter". Both
theoretically and empirically, we demonstrate that our approach improves gradient
back-propagation efficiency. Tests on MLPerf Tiny, MNIST and various UCI
datasets reveal that our method surpasses ULEEN, BNN, and DeepShift. Notably,
with MLPerf KWS (Key Word Spotting) dataset, we achieve 69.6% accuracy with
only 101KiB, while ULEEN, BNN and DeepShift achieve only 67.4%, 55.9%, and
24.9% respectively. Remarkably, we also achieve 67.7% accuracy with only 50KiB,
resulting in a 2x model size reduction compared to ULEEN while maintaining
similar accuracy (+0.3%). This results underscores the promising potential of
our solution for efficient inference at the edge in applications that rely on high
throughput architectures.

1 INTRODUCTION

In recent years, the field of artificial intelligence has witnessed a remarkable transformation due to
the advent of Deep Neural Networks (DNNs). These powerful models have pushed the boundaries
of what AI can achieve, making significant strides in areas like computer vision (Krizhevsky et al.,
2012; Szegedy et al., 2015; He et al., 2016a; Rombach et al., 2021; Ramesh et al., 2021), speech
recognition (Hinton et al., 2012; Sainath et al., 2013; MILLET et al., 2022; Li et al., 2022), and natural
language processing (Bahdanau et al., 2014; Sutskever et al., 2014; Devlin et al., 2019; OpenAI,
2023). However, this performance comes at a cost, with increasingly complex models demanding
higher computational resources. As these models grow in size and complexity, the computational
overhead for training and inference becomes substantial, posing a challenge for their deployment in
resource-constrained environments.

Inference at the edge, particularly in the growing realm of the Internet of Things (IoT), demands ultra-
efficient models. The rapid expansion of the IoT ecosystem has seen an explosion of interconnected
devices, from smart thermostats to wearable health monitors. These devices often operate under
stringent energy and latency constraints, making it imperative to deploy models that can deliver
competitive accuracy without taxing the limited resources available (Shi et al., 2016).

Several optimization techniques, including including Pruning (Dong et al., 2017a;b; Lin et al., 2018),
Weight Quantization (Banner et al., 2018; Chmiel et al., 2021; Faghri et al., 2020) and Sparse
Neural Networks (Sung et al., 2021; Sun et al., 2021; Ma and Niu, 2018), have been developed,
indicating promise in boosting computational efficiency. Nevertheless, while they help in reducing
memory consumption, they don’t alleviate the inherent computational expenses tied to multiplication
operations during the inference stage.

In response, recent research has shifted towards the development of multiplication-free architectures.
Binary Neural Networks (BNNs) (Hubara et al., 2016) stand out as a prominent example, in which
both weights and activations are quantized to binary values. This paradigm enables the substitution
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of multiplication operations with XOR gates, substantially reducing memory and computational
overheads (Umuroglu et al., 2017). Concurrently, Deep Shift Networks (Elhoushi et al., 2021a) have
been introduced, leveraging shift operations in lieu of multiplications, offering a novel viewpoint on
model computational efficiency (You et al., 2020). As a result, multiplication-free models have been
deployed in numerous applications (Samragh et al., 2021; Udagawa et al., 2023; Qin et al., 2022; He
and Xia, 2018; Xiang et al., 2017; Liu et al., 2021).

In recent advancements in multiplication-free designs, Susskind et al. (2023) introduced the Ultra
LowEnergy Edge Neural Network (ULEEN) aimed at applications that rely on high throughput
architectures. By utilizing binary-valued bloom filters, along with the use of Straight Through
Estimators (STE) and a continuous relaxation of these bloom filters for training, this approach
has demonstrated notable improvements in latency, memory consumption, and energy efficiency
compared to BNNs, setting new state-of-the-art results and paving the way for the implementation of
highly energy-efficient and high throughput models at the edge.

In this work, we theoretically and empirically demonstrate a gradient back-propagation bottleneck
present in ULEEN, caused by the use of continuous relaxation of Bloom filters, which hinders
learning. Drawing insights and inspiration from ResNet (He et al., 2016a;b) — which emphasizes
the benefits of tweaking network architecture to enhance gradient flow — we introduce our solution:
the "Soon filter". Both theoretically and empirically, we demonstrate that that our proposed solution
ensures more seamless gradient back-propagation to filter locations. Consequently, we set new
state-of-the-art benchmarks for multiplication-free high throughput models.

2 BACKGROUND

In this section, we provide an overview of the underlying mechanisms of Bloom Filters and ULEEN,
which will form the foundation for our methodology.

Bloom Filter The Bloom Filter (Bloom, 1970) is a space-efficient data structure that probabilistically
determines membership in a set. It’s comprised of a bit array F ∈ {0, 1}L of fixed size L, and K
hash functions, denote hk for each k ∈ {1, ... ,K}. Each hk function maps an element to one of the
L positions in the array, indicating its possible presence or absence. Initially, every position in the
array is set to 0. When we add an element e to the Bloom Filter, it is hashed, and the corresponding
bits in the array change to 1. This is represented as:

∀k ∈ {1, . . . ,K} : Fhk(e) ← 1

To verify an element’s membership, it’s hashed using the same functions, and we check the relevant
bits in the array:

θ(e) =

K∧
k=1

Fhk(e)

Here, θ(e) is the Bloom Filter’s output function. If any checked bit is 0, the element isn’t in the set. If
all are 1, the element might be in the set, but we can’t be certain because of potential hash collisions.
Hence, the Bloom Filter guarantees true negatives but may produce false positives.

Straight Through-Estimator The Straight Through-Estimator (STE) (Bengio et al., 2013; Yin
et al., 2019) is a widely adopted technique for learning binary variables using gradient descent and is
commonly employed in BNNs. The STE functions as the sign function during the forward pass and
as the derivative of the hardtanh function during the backward pass. This approach allows gradients
to pass through the function, which would otherwise be impossible since the derivative of the sign
function is infinite at zero and is zero everywhere else. The STE can be expressed as:

STE(w) =

{
1, if w > 0

0, otherwise
∂STE(w)

∂w
=

{
1, if |w| < 1

0, otherwise

During training, the binary variable to be learned is treated as a real-valued parameter passing through
the STE. During inference, as this variable becomes a constant, it is binarized and the STE is removed.

Weightless Neural Networks Weightless Neural Networks (WNNs) are a type of neural model that
achieve a multiplication-free characteristic by completely eliminating the use of weights. Instead,
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they utilize lookup tables with binary values to determine neural activity, allowing for the deployment
of high-throughput models at the edge. Consequently, WNNs have been used in many applications
requiring real-time performance (De Gregorio, 2008; Coraggio and De Gregorio, 2007; Do Prado
et al., 2007; Carvalho et al., 2014). A drawback of using lookup tables (LUTs) is that the memory
requirement grows exponentially with the number of inputs, making the deployment of larger models
unfeasible. To address this, (Santiago et al., 2020) proposed substituting LUTs with Bloom Filters,
demonstrating that this allows for more efficient and smaller models with negligible changes in
accuracy. Additionally, (Susskind et al., 2022) showed that using H3 hash functions (Carter and
Wegman, 1979) made the filters extremely efficient for deployment at the edge. Recently, Susskind
et al. (2023) further improved upon this work by incorporating gradient-descent training into WNNs
using Straight Through Estimators, commonly employed in Binary Neural Networks (BNNs). They
also developed a hardware implementation for WNNs named ULEEN, demonstrating its superiority
over BNNs in terms of latency, memory usage, and energy efficiency.

ULEEN ULEEN serves as a classification model designed to distinguish C distinct classes from a
binary input x ∈ {0, 1}nN . Each class is represented by a discriminator Dc where c ∈ {1, 2, . . . C}.
Each discriminator is composed of N Bloom Filters of length of L. Every Bloom Filter in the
discriminator processes a unique subset of n bits from the input x, selected pseudo-randomly. Let
Fc,i ∈ {0, 1}L denote the bit array of the i-th Bloom Filter of the of the c-th discriminator. Let
δc,i,k ∈ {1, 2, . . . L} represent the hash value of the binary subset produced by the k-th hash function,
of the i bloom filter, of the c-th discriminator. The output of discriminator Dc is expressed by:

sc(x) =

N∑
i=1

K∧
k=1

Fc,i,δc,i,k

where sc : {0, 1}Nn → {1, 2, ... , N} indicates the response of the c-th discriminator. The discrim-
inator yielding the highest response determines the model’s output class. Refer to Figure 1 for a
graphical representation.

Figure 1: ULEEN doing digit recognition. Each output class has a discriminator. The input image
has digit 1 and the discriminator corresponding to digit 1 has the highest response here.

To learn the Bloom Filter’s binary values via gradient descent, ULEEN replaces the Bloom Filter
AND aggregation with a continuous relaxation—specifically, the min function—during training. The
Straight Through-Estimator is employed to learn the filter array’s binary values. Specifically, during
training, the output of discriminator Dc is expressed as:

sc(x) =

N∑
i=1

K
min
k=1

STE(Fc,i,δc,i,k)

3 SOONFILTER

In this section, we elucidate the inspiration behind our proposed methodology. We theoretically
identify a gradient bottleneck in ULEEN’s Bloom Filter and introduce our solution: The Soon Filter.

Inspiration ResNets (Visin et al., 2015) have shown that altering model architecture to enhance
gradient flow during back-propagation can lead to significant improvements in model performance.
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Let fi be the i-th layer function in a DNN model. Given a model with P consecutive layers, the
partial derivative of the final layer fP in the with respect to the i-th layer fi can be expressed as:

∂fP
∂fi

=

P−1∏
p=i

∂fp+1

∂fp

The authors observed that gradients in earlier layers (those closer to the input) can vanish due to
the multiplication of numerous values less than 1 (the partial derivative of one layer with respect to
its predecessor) in the chain rule during back-propagation. To mitigate this, they introduced a skip
connection between layers. In their new design, assuming a skip connection between every 2 layers,
the partial derivative of fP with respect to fi became:

∂fP
∂fi

=

P/2−1∑
u=0

P−1∏
p=i+2u

∂fp+1

∂fp

This architectural alteration ensured that gradients effectively propagated to earlier layers, as elu-
cidated in (He et al., 2016b). This simple yet impactful technique has been integrated into many
contemporary DNN architectures (Vaswani et al., 2017; Dosovitskiy et al., 2020; Liu et al., 2022).

Taking cues from this approach of tailoring model architectures to optimize gradient flow, we propose
replacing the Bloom Filter in ULEEN with our novel Soon Filter.

Gradient Bottleneck Consider A : RK → R, an arbitrary continuous aggregation function. For a
loss function L, the partial derivative with respect to an arbitrary content of the ULEEN’s Bloom
Filter, denoted as Fc,i,j (denoting the content at the j-th position of the i-th Bloom Filter of the c-th
discriminator) can be written as:

∂L
∂Fc,i,j

=
∂L
∂A

∂A

∂STE

∂STE

∂Fc,i,j

We will demonstrate that the middle term of this expression can form a bottleneck, potentially
hindering filter positions from updating.

For gradient descent training on ULEEN, a continuous relaxation of the Bloom Filter’s AND
aggregation function, specifically the min function, is employed. Let x⃗ ∈ RK be an input representing
the output of the STE at the positions accessed by the K hash functions. For the min function, we
have:

A(x⃗) =
K
min
k=1

xk
∂A

∂xk
(x⃗) =

{
1, if xk = minKk=1 xk

0, otherwise

This function only permits gradients to flow to inputs identical to its own value, effectively blocking
gradients to filter positions with values exceeding its own.

Another potential continuous relaxation for the AND aggregation function is the product operation:
However, its derivative reveals it to be even more obstructive to gradient back-propagation, resulting
in an even greater bottleneck than the min function:

A(x⃗) =

K∏
k=1

xk
∂A

∂xk
(x⃗) =

K∏
l=1
l ̸=k

xl

In this scenario, the gradient propagates to all filter positions only when the STE for every accessed
position yields a 1. If a single STE of a filter position produces a 0, just that particular position is
updated by the gradient. When two or more outputs register as zero, none of the filter positions
receive a gradient update, effectively halting gradient back-propagation entirely.

Soon Filter To overcome this gradient bottleneck issue, we do not constrain ourselves to continuous
relaxations of the AND aggregation function. Instead, we choose an aggregation function without a
gradient bottleneck:

∂A

∂xk
(x⃗) = 1
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This function corresponds to the sum operation:

A(x⃗) =

K∑
k=1

xk

Using the sum operation as the aggregation function alters the filter’s characteristics. In this modified
filter, the number of false positives rises. While in the Bloom Filter, indexing both a 0 and a 1 position
would produce a true negative, this new filter will output a 1. Due to this filter’s tendency to output a
result prematurely, we named it the "Soon Filter" — a simplified version of the Bloom Filter that has
a higher rate of false positives.

In our approach, the model is trained and deployed exactly like ULEEN but replacing Bloom Filters
with Soon Filters. The discriminator’s response in our model is as follows:

sc(x) =

N∑
i=1

K∑
k=1

Fc,i,δc,i,k

During training, the discriminator response is given by:

sc(x) =
N∑
i=1

K∑
k=1

STE(Fc,i,δc,i,k)

Refer to Figure 2 for a visual representation comparing a discriminator that employs a Bloom Filter
with a discriminator that uses a Soon Filter. This comparison illustrates how the increased rate of
false positives affects the discriminator’s response.

Analysis of Filter Equivalence A noteworthy observation arises when examining the Bloom Filter
and the Soon Filter within the context of the number of hash functions employed. Specifically, when
only one hash function, both the Soon Filter and the Bloom Filter essentially operate as identical
filters. This is due to the fact that in the presence of a single hash function, there’s no necessity for
an aggregation function. Thus the output of both filters is simply the accessed position by that hash
function.

Delving deeper into the continuous relaxations of the Bloom Filter, an interesting parallelism can be
discerned. For scenarios with one or two hash functions, both continuous relaxations exhibit identical
derivatives. This means that, in terms of behavior, the two relaxations are indistinguishable under
these conditions. This congruence is evident for a single hash function since it negates the need for an
aggregation function. For two hash functions, we can construct a truth table of the partial derivatives
to elucidate this: Input Min Product

x1 x2
∂A
∂x1

∂A
∂x2

∂A
∂x1

∂A
∂x2

0 0 0 0 0 0
0 1 1 0 1 0
1 0 0 1 0 1
1 1 1 1 1 1

When three or more hash functions are introduced, the different continuous relaxations unique
characteristics become apparent, highlighting the distinctions in their operational behavior. Below is
the truth table showcasing a 3-bit input into the continuous relaxation aggregations functions and
their respective derivatives:

Input Min Product

x1 x2 x3
∂A
∂x1

∂A
∂x2

∂A
∂x3

∂A
∂x1

∂A
∂x2

∂A
∂x3

0 0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0 0
0 1 0 1 0 1 0 0 0
0 1 1 1 0 0 1 0 0
1 0 0 0 1 1 0 0 0
1 0 1 0 1 0 0 1 0
1 1 0 0 0 1 0 0 1
1 1 1 1 1 1 1 1 1
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Hardware Considerations As depicted, the modifications introduced by our model to the ULEEN
hardware are minimal. Specifically, we remove the AND gate from the Filter output and connect
the filter outputs directly to the discriminator’s pop-count. This ensures that ULEEN’s remarkable
hardware features and performance remain intact.

(a) ULEEN Discriminator

(b) SULEEN Discriminator

Figure 2: Graphical Representation of ULEEN (a) and SULEEN (b) discriminators. The two images
provide an example of a discriminator that receives a 10-bit input. Each discriminator in the example
has two filters that are addressed by two hash functions. Each hash function takes a 5-bit word as
input and produces a 3-bit address as output. The distinction between the Bloom Filter and Soon
Filter is evident in the images: In (a), the upper Bloom Filter provides a true negative output of 0,
while the lower indicates a potential positive, outputting a 1. In (b), the upper Soon Filter outputs a 1
(a false positive) and the lower outputs a 2, indicating a potential positive, totaling an output of 3.

4 EXPERIMENTS

In this section, we present the experimental evaluation of our approach, comparing it with ULEEN,
BNN, and DeepShift across the MLPerf Tiny benchmark datasets (Banbury et al., 2021), various
UCI datasets (Dua and Graff, 2017) and MNIST (Deng, 2012). We designate our model as SULEEN
to distinguish it from ULEEN, signifying the incorporation of our proposed Soon Filters within the
ULEEN architecture. Moreover, we introduce ablation studies in which we vary the number of hash
functions in the Soon Filter and contrast it with the continuous relaxations of the Bloom Filter to
corroborate our theoretical filter equivalence conclusions.

4.1 EMPIRICAL EVALUATION ACROSS DIVERSE DATASETS

Model Implementations: To evaluate BNNs, we utilize FINN (Umuroglu et al., 2017), a specialized
tool for developing high-performance neural network architectures on Field-Programmable Gate
Arrays (FPGAs). FINN is designed to enable the efficient implementation of BNNs, allowing for
significant acceleration in inference compared to traditional architectures. This aligns with the most
performant version of BNNs as outlined in the accompanying paper. For DeepShift, we employ the
implementation detailed and made available in their paper (Elhoushi et al., 2021a), conducting a grid
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Table 1: Accuracy comparison of SULEEN, ULEEN, BNN, and DeepShift Across MLPerf Tiny at
three different model sizes (small, medium, and large), various UCI datasets and MNIST. The highest
accuracy for each dataset and, for MLPerf Tiny, each model size, is highlighted in bold.

Dataset Model Size SULEEN ULEEN BNN DeepShift

MLPerf Tiny

KWS(small) 23KiB 58.2% 57.2% 47.2% 18.6%
KWS (medium) 50KiB 67.7% 66.1% 53.3% 22.2%
KWS (large) 101KiB 69.6% 67.4% 55.9% 24.9%

CIFAR-10 (small) 24KiB 49.7% 45.3% 40.0% 40.3%
CIFAR-10 (medium) 250KiB 55.6% 53.5% 46.5% 53.0%
CIFAR-10 (large) 625KiB 57.3% 54.5% 48.0% 54.1%

ToyADMOS (small) 7KiB 88.4% 88.4% 84.8% 57.8%
ToyADMOS (medium) 15KiB 89.3% 89.3% 85.9% 57.8%
ToyADMOS (large) 30KiB 90.5% 90.5% 86.6% 57.9%

VWW (small) 12KiB 57.4% 57.4% 51.7% 52.9%
VWW (medium) 120KiB 59.8% 59.8% 52.1% 53.8%
VWW (large) 250KiB 60.6% 60.6% 52.3% 54.6%

UCI

Ecoli 0.87KiB 87.5% 87.5% 68.9% 43.6%
Iris 0.28KiB 98.3% 98.0% 69.2% 33.3%
Letter 78.00KiB 96.0% 95.3% 4.79% 19.2%
SatImage 9.00KiB 91.7% 90.9% 30.8% 48.0%
Vehicle 2.25KiB 78.3% 77.1% 27.2% 28.3%
Vowel 3.44KiB 94.0% 91.7% 17.7% 8.4%
Wine 0.42KiB 98.3% 98.3% 14.0% 27.3%

MNIST (98/262/355/408)KiB 98.6% 98.5% 98.4% 98.3%

search on both the Q (quantized) and PS (parameterized shift) variations during hyperparameter tuning.
For SULEEN and ULEEN, we developed the code in PyTorch (Paszke et al., 2019), incorporating a
custom CUDA kernel. The code is made publicly accessible at: link omitted due to the double-blind
review process.

Hyperparameter Tuning: To optimize each model for every dataset, we employed grid search,
utilizing 10% of the training data as a validation set. It is important to note that the test dataset is only
used for the final evaluation and not for hyperparameter tuning. For SULEEN and ULEEN, the hyper-
parameters were varied as follows: n ∈ {2, 3, . . . , 28}, K ∈ {1, 2, 3, 4}, and L ∈ {21, 22, . . . , 2n}.
Common to all models, we explored dropout rates p ∈ {0.0, 0.1, . . . , 0.8}. For BNN and DeepShift,
the grid search included the number of hidden layers P ∈ {1, 2, . . . , 6}, with the number of neurons
per layer being automatically adjusted to meet the targeted model size. In the case of DeepShift, we
additionally conducted a grid search on both the Q and PS variations to discern the optimal choice.
Hyperparameter tuning spanned 30 epochs, employing a batch size of 32 and the Adam Optimizer
with α = 0.9, β = 0.999. We initiated with a learning rate of 1e-2, reducing it by a factor of 0.1
every 10 epochs.

Data Splits: Following the approach in (Susskind et al., 2023), we split the datasets into 66% train
and 33% test sets for datasets where no test data was available.

Preprocessing: For Keyword Spotting (KWS), we employed Mel Frequency Cepstral Coefficients
(MFCC) preprocessing, complemented by cepstral mean and variance normalization. For the UCI
datasets and MNIST, we followed the methodology outlined in the ULEEN paper (Susskind et al.,
2023).The other datasets underwent no preprocessing. To train both SULEEN and ULEEN models,
we employed the Distributive Thermometer Encoding (Bacellar et al., 2022) to binary encode the
inputs of all datasets. In the MLPerf Tiny benchmark datasets, we assigned 8 bits for CIFAR-10,
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12 bits for KWS, 6 bits for ToyADMOS, and 12 bits for Visual Wake Words (VWW). For the UCI
datasets, we utilized a 24-bit encoding across all datasets. For MNIST, we employed a 5-bit encoding.

Training: All models was trained for 240 epochs with a batch size of 32. We used the Adam
Optimizer with hyperparameters α = 0.9 and β = 0.999. The learning rate was initialized at 1e-2
and decayed by a factor of 0.1 every 80 epochs. Each model was trained and tested 10 times, and we
report the average results.

MLPerf Tiny: A standard benchmark suite in (Banbury et al., 2021) for edge devices, MLPerf
Tiny includes four datasets. Keyword Spotting (KWS) features 105,829 utterances for keyword
recognition (Warden, 2018). CIFAR-10 comprises 32x32 RGB images across 10 classes for image
classification (Krizhevsky and Hinton, 2009). ToyADMOS/car, with audio recordings of toy cars,
focuses on anomaly detection in damaged cars (Koizumi et al., 2019). Visual Wake Words (VWW)
uses 96x96 grayscale images from MSCOCO 2014 (Lin et al., 2014) to detect human presence.

MLPerf Tiny Results: We conducted experiments across three distinct model sizes (small, medium,
and large) for each model and dataset. The results are captured in Table 1. SULEEN consistently
excels across all MLPerf Tiny datasets for every model size. Specifically, in the KWS dataset, our
large model outperforms DeepShift by 44.7%, BNNs by 13.7%, and ULEEN by 2.2%. Moreover,
our medium-sized model (50KiB) achieves comparable accuracy (+0.3%) to ULEEN large model
(101KiB), showing an outstanding 2x reduction in memory footprint when compared at iso-accuracy.
A similar trend is observed in the CIFAR-10 dataset, where our medium model (250KiB) achieves
55.6%, compared to the ULEEN large model (625KiB) which achieves 54.5%, thereby demonstrating
a substantial 2.5x reduction in model size. On ToyADMOS and VWW, SULEEN and ULEEN
perform identically. This is due to both achieving optimal results in the hyper-parameter tuning when
using a single hash function, causing them to operate essentially as identical models, a phenomenon
we detailed theoretically in our methodology and that will be further substantiated in the next
subsection.

UCI: Our proposed approach is evaluated using a selection of datasets from the UCI Machine
Learning Repository (Dua and Graff, 2017). This evaluation aims to verify its applicability for edge
inference in applications that utilize structured data.

UCI Results: Table 1 encapsulates our findings. SULEEN consistently ranks first in accuracy across
all datasets. When juxtaposed against ULEEN, SULEEN exhibits superior accuracy in all cases,
save for the Ecoli and Wine datasets, where both models achieve parity. It’s striking to note that the
top-ranking models in terms of accuracy predominantly belong to WNNs (SULEEN and ULEEN).
Both BNN and DeepShift fall short in matching the their performance, accentuating the distinct
advantage of WNNs in edge inference applications that utilize structued data.

MNIST: In our study, we utilized the MNIST dataset, a classic and foundational benchmark in
the field of edge inference. Our focus was on comparing model sizes while maintaining a similar
accuracy level, close to 98.5%, a common practice in this domain. We utilize the results reported
in (Susskind et al., 2023; Umuroglu et al., 2017; Elhoushi et al., 2021b) for ULEEN, BNN and
DeepShift repectively.

MNIST Results: The results, as presented in Table 1, demonstrate a significant advancement achieved
by SULEEN. Notably, SULEEN attained an impressive accuracy of 98.6% with a model size of only
98KiB. This performance is particularly remarkable when compared to ULEEN, achieving a 2.67x
reduction in model size, without compromising on accuracy. Furthermore, when compared to BNN
and DeepShift, we acheive a model size reduction of 3.62x and 4.16x respectively. These results
underscore SULEEN’s significant contribution to the field of edge inference, offering a powerful yet
compact solution that does not sacrifice accuracy for size efficiency.

4.2 ABLATION STUDIES AND THEORETICAL VALIDATION

In this subsection, we evaluate our Soon Filter against the continuous Min-Relaxation and Prod-
Relaxation of the Bloom Filter. We do this by varying the number of hash functions used, ranging
from 1 to 4. Our goal is to validate our theoretical findings: that the three filter versions operate as
the same model with one hash function and that both the Mean and Product relaxations function
identically with two hash functions. Additionally, we aim to confirm that our model consistently
outperforms the others regardless of the number of hash functions employed. We test this hypothesis
on the Letter, SatImage, Vowel, MNIST, CIFAR-10, and ToyADMOS datasets.
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Figure 3: Ablation study graphs comparing the Number of Hash Functions versus Accuracy(%) for
the Soon Filter (in Blue), the Bloom Filter with Min function continuous relaxation (in Orange), and
the Bloom Filter with Product operation continuous relaxation (in Green). Datasets include (a) Letter,
(b) SatImage, (c) Vowel, (d) MNIST, (e) CIFAR-10 , and (f) ToyADMOS .

The results are illustrated in Figure 3. As can be observed, with one hash function, all filters
yield identical accuracy across all datasets. When using two hash functions, both Min and Product
relaxations also produce identical results. Notably, for every dataset and number of hash functions,
the Soon Filter consistently surpasses both the Min and Product relaxations of the Bloom Filter.
These findings validate our theoretical assertions.

5 CONCLUSION

In this study, we introduced the Soon Filter, an innovative approach designed to enhance the per-
formance of ULEEN, a multiplication-free model tailored for high-throughput edge inference. By
theoretically demonstrating its efficiency and conducting rigorous experimentation on the MLPerf
Tiny, UCI, and MNIST datasets, we have distinctly underscored the robustness and efficiency of our
proposed methodology. Notably, our results have surpassed the performance benchmarks across all
datasets, outperforming well-established models like ULEEN, BNN, and DeepShift.

Through ablation studies, we have empirically verified our theoretical assertions regarding filter
equivalence, showing that the Soon Filter consistently outperforms its counterparts by maximizing
the gradient updates of the filter RAM positions.

Given the minimal deviations between our model and ULEEN, as outlined in the methodology
section, we can consider ULEEN’s hardware results as a performance upper bound for our model.
Additionally, our approach achieves, on average, a 2x reduction in model size compared to ULEEN.
Based on this significant size reduction, we project that the hardware deployment of our model could
be twice as efficient. This projection underscores the importance of hardware testing as a vital and
immediate direction for future research.

Furthermore, numerous edge applications that rely on high-throughput architectures could greatly
benefit from our approach. The integration of SULEEN into these applications has the potential to
redefine their efficiency and robustness, thereby setting a new standard for edge inference.
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