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Abstract
The growing demands on GPU memory posed by
the increasing number of neural network param-
eters call for training approaches that are more
memory-efficient. Previous memory reduction
training techniques, such as Low-Rank Adapta-
tion (LoRA) and ReLoRA, face challenges, with
LoRA being constrained by its low-rank struc-
ture, particularly during intensive tasks like pre-
training, and ReLoRA suffering from saddle point
issues. In this paper, we propose Sparse Spectral
Training (SST) to optimize memory usage for
pre-training. SST updates all singular values
and selectively updates singular vectors through
a multinomial sampling method weighted by the
magnitude of the singular values. Furthermore,
SST employs singular value decomposition to
initialize and periodically reinitialize low-rank
parameters, reducing distortion relative to full-
rank training compared to other low-rank meth-
ods. Through comprehensive testing on both Eu-
clidean and hyperbolic neural networks across
various tasks, SST demonstrates its ability to out-
perform existing memory reduction training meth-
ods and is comparable to full-rank training in var-
ious cases. On LLaMA-1.3B, with only 18.7%
of the parameters trainable compared to full-rank
training (using a rank equivalent to 6% of the em-
bedding dimension), SST reduces the perplexity
gap between other low-rank methods and full-
rank training by 97.4%. This result highlights
SST as an effective parameter-efficient technique
for model pre-training.
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1. Introduction
The development and scaling up of large language mod-
els (Kaplan et al., 2020; Brown et al., 2020; Touvron et al.,
2023b) pose great challenges to the feasibility of training
large language models from scratch. Normal training meth-
ods that update all parameters of models become extremely
expensive due to their extensive GPU memory requirements.

Recent developments in parameter-efficient fine-tuning
(PEFT) methods, such as Low-Rank Adaptation
(LoRA) (Hu et al., 2022), have sought to mitigate
the challenge of fine-tuning memory requirements by
introducing trainable low-rank matrices that efficiently
reduced the memory footprint. However, limiting the
model’s parameter updates to a low-rank subspace can
severely restrict the ability of a model to capture and
represent complex data patterns, leading to suboptimal
performance, especially in the pre-training stages. Recent
advancements such as ReLoRA (Lialin et al., 2024),
COLA (Xia et al., 2024), and PLoRA (Meng et al., 2024b)
have addressed the limitation of low-rank constraint,
by iteratively merging low-rank parameters with frozen
parameters. However, they still encounter saddle point
issues due to zero gradient of low-rank parameters that
occurs after each merging step. This challenge results in
slower and less effective convergence compared to full-rank
models during pre-training.

In response to these challenges, we introduce Sparse Spec-
tral Training (SST), a new training framework designed
to optimize memory consumption while closely approxi-
mating the overall learning dynamics and performance of
full-rank training. Unlike previous methods (Hu et al., 2022;
Lialin et al., 2024; Zhang et al., 2023; Ding et al., 2023)
that primarily focus on updating within a low-rank sub-
space at each step, SST adopts a more effective approach by
updating all singular values at each step. SST also lever-
ages the intrinsic spectral properties of the weight matrices,
focusing selective updates of singular vectors sampled
from a multinomial distribution weighted by the magnitude
of the singular values. Additionally, SST uses singular
value decomposition to initialize and reinitialize low-rank
parameters during training, reducing distortion relative to
full-rank training compared to other low-rank methods.
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Our comprehensive evaluations cover different tasks,
including pre-training large language models on OPT
model family, ranging from 125m to 1.3b (Zhang et al.,
2022), using Transformer (Vaswani et al., 2017) for
machine translation tasks and hyperbolic graph neural
networks (Chen et al., 2022) on node classification and link
prediction tasks. For the OPT and LLaMA model family,
SST reduces the perplexity gap between other low-rank
methods and full-rank training by 50%-97.4%. In machine
translation with Transformers, SST reduces the BLEU
gap by an average of 66.7%. Furthermore, we are the
first to incorporate parameter-efficient pre-training process
in hyperbolic space, demonstrating that SST is a general
technique applicable across various data structures and
models. On the hyperbolic Transformer, SST even outper-
forms full-rank training in most scenarios. For hyperbolic
graph neural networks, SST reduces the performance
gap by an average of 73.7% in node classification and
82.5% in link prediction. Our code is available at https:
//github.com/biomedical-cybernetics/
sparse-spectral-training.

2. Related Work
Low-Rank Adaptation. Low-rank adaptation has become
a key strategy for reducing the computational and memory
requirements of training large-scale neural networks. Hu
et al. (2022) introduced Low-Rank Adaptation (LoRA), a
technique that fine-tunes pre-trained models by integrat-
ing low-rank matrices to significantly reduce the number
of parameters updated during training. Various enhance-
ments to LoRA have since been developed to improve its
efficiency and broaden its application (Zhang et al., 2023;
Dettmers et al., 2024; Zi et al., 2023; Valipour et al., 2023).
Lialin et al. (2024) introduced ReLoRA specifically for the
pre-training phase, which requires a full-rank warm-up to
achieve performance comparable to full-rank training. A
similar approach is also found in COLA (Xia et al., 2024)
and PeriodicLoRA (Meng et al., 2024b). Additionally, Zhao
et al. (2024) introduced GaLore, which projects gradients
into a low-rank subspace. Meng et al. (2024a) introduced
PiSSA, which uses dominant singular vectors of pre-trained
weight as initialization of low-rank matrices. These ad-
vancements highlight the versatility and ongoing evolution
of low-rank adaptation techniques in response to the grow-
ing complexity of neural network models.

Hyperbolic Neural Networks. Hyperbolic neural net-
works are an emerging area in deep learning, exploiting
the unique properties of hyperbolic space that make it ideal
for processing hierarchical and graph-structured data (Mus-
coloni et al., 2017; Cannistraci & Muscoloni, 2022). Innova-
tions in this area have adapted fundamental neural network
mechanisms to function within hyperbolic geometries, as

demonstrated by Muscoloni et al. (2017) and Ganea et al.
(2018). Further developments by Chen et al. (2022) explore
manifold-specific properties to enrich both theoretical under-
standing and practical deployment. The use of hyperbolic
spaces has been shown to significantly improve data repre-
sentation and generalization across various tasks, marking a
notable advancement in managing complex, non-Euclidean
data structures (Gulcehre et al., 2019; Liu et al., 2019; Tifrea
et al., 2019; Yang et al., 2024).

3. Low Rank Adaptation
This section introduces the fundamentals and limita-
tions of Low-Rank Adaptation (LoRA) (Hu et al., 2022),
ReLoRA (Lialin et al., 2024), and GaLore (Zhao et al.,
2024). These limitations are addressed by Sparse Spectral
Training (SST) in Section 4.

3.1. LoRA

LoRA (Hu et al., 2022) fine-tunes a pre-trained model by
learning an incremental update ∆W to the pre-trained and
frozen pre-trained weight matrix W0. Here, W0,∆W ∈
Rm×n with m ≤ n. LoRA decomposes ∆W into the prod-
uct of two low-rank matrices, B ∈ Rm×r and A ∈ Rr×n,
such that ∆W = BA. This decomposition is applied to a
linear layer with input x and output h as follows:

h = (W0 +∆W)x = (W0 +BA)x (1)

Given r ≪ min(m,n), LoRA significantly reduces GPU
memory usage compared to full-rank fine-tuning.

Limitation of LoRA. Consider W∗ as the optimal weight
matrix which minimizes loss. The deviation from the current
weights is ∆W∗ = W∗−W0. Performing a singular value
decomposition on ∆W∗ yields ∆W∗ = UΣVT, where
U ∈ Rm×m, Σ ∈ Rm×m, VT ∈ Rm×n.

U and VT are orthonormal bases, U = [u1,u2, ...,um],
V = [v1,v2, ...,vm]. Σ is a diagonal matrix with entries
{σ1, σ2, ..., σm}. Then the Eckart–Young–Mirsky theorem
(Eckart & Young, 1936) states:

∥∆W∗ −∆W∥F ≥
√
σ2
r+1 + · · ·+ σ2

m (2)

where ∥W∥F =
√∑m

i=1

∑n
j=1 w

2
ij is the Frobenius norm,

with wij being the element at row i and column j of W.
Equality holds when B = [

√
σ1u1,

√
σ2u2, ...,

√
σrur] and

AT = [
√
σ1v1,

√
σ2v2, ...,

√
σrvr]. This suggests that

LoRA can only closely approximate the performance of
full-rank training in simple tasks like fine-tuning, where
σi ≈ 0, i ∈ {r + 1, ...,m}. However, in more complex
scenarios like pre-training, where σi, i ∈ {r + 1, ...,m}
are non-negligible, LoRA may struggle to achieve the same
level of performance as full-rank training.
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3.2. ReLoRA*

ReLoRA (Lialin et al., 2024), COLA (Xia et al., 2024), and
PLoRA (Meng et al., 2024b) address the limitation of fixed
low ranks by iteratively merging the low-rank matrices B
and A back into the base weight matrix W0. Although
ReLoRA is designed for pre-training, it includes an initial
period of full-rank training (referred to as a “warm start”),
which prevents it from being fully end-to-end parameter-
efficient. Meanwhile, COLA and PLoRA are primarily
intended for fine-tuning. In this paper, we unify these meth-
ods into a generalized, end-to-end parameter-efficient pre-
training paradigm, which we refer to as ReLoRA* and for-
malize in Algorithm 1.

Algorithm 1 ReLoRA*

input Initial weight W of each layer; total iteration T1;
iteration interval T2

for t1 = 0, . . . , T1 − 1 do
Initializing: Initialize B and A for each layer.
Subtracting: Subtract B and A from W to maintain
the original model output, W = W −BA
Updating: Update B and A for T2 steps while keeping
W frozen.
Merging: Merge B and A back to W, updating W =
W +BA.

end for

For our experimental setup, ReLoRA* follows ReLoRA’s
initialization—B initialized to zero and A with a Kaiming
initialization (He et al., 2015). The initial zero setting for
B allows the subtraction step to be skipped. Notably, the
optimizer states for B and A are reset after each merging
step (99% optimizer state is pruned in ReLoRA).

Limitation of ReLoRA*. Each iteration of ReLoRA*
learns only a small subset of singular values. Additionally,
its reliance on zero initialization can result in zero gradients
of low-rank matrices at each reinitialization, as discussed
in Section 4.3. These issues hinder ReLoRA* from achiev-
ing the convergence speed and training quality of full-rank
training.

3.3. GaLore

Gradient Low-rank Projection (GaLore) (Zhao et al., 2024)
introduces a different approach by projecting the gradient
using a low-rank projection matrix, rather than the weight
matrix, as done by LoRA and ReLoRA*. The projection
matrix Pt is obtained by computing the top-r singular vec-
tors of the gradient of the weight matrix W, and it is re-
calculated every T steps. This matrix Pt is then used to
project the gradient of the weight matrix into the low-rank
space, allowing the low-rank gradient to update the first and
second-order low-rank momentum in Adam. Finally, the

low-rank updates calculated by Adam are re-projected back
to the original weight shape and used to update the weights.

Limitations of GaLore. Although GaLore presents a valu-
able contribution by exploring low-rank gradient projection,
it has some limitations. Firstly, Pt is calculated based solely
on the SVD of the gradient from a single batch, which can
be affected by data sampling noise. Secondly, GaLore al-
ways selects the top-r singular vectors, which, combined
with the previous limitation, restricts its effectiveness during
pre-training with a small r. In our experiments, we observed
that with a small r (less than 1/12 of the dimension, differ-
ent from the 1/2 to 1/4 used in the GaLore article), GaLore
showed instability, leading to a sudden increase in loss on
OPT-350M. Consequently, we chose to include the detailed
explanation and comparison with GaLore in Appendix G
rather than in the main text.

4. Sparse Spectral Training
To address the limitations discussed previously, this section
introduces Sparse Spectral Training (SST) and detailed its
implementation.

4.1. Sparse Spectral Layer

Sparse Spectral Training (SST) leverages sparse updates
within the spectral domain of neural network weights. SST
transforms each linear layer as follows:

h = Wx = UΣVTx, [U,Σ,VT] = SVD(W) (3)

where U ∈ Rm×m, Σ ∈ Rm×m, and VT ∈ Rm×n repre-
sent the full-rank matrices derived from the singular value
decomposition (SVD) of W ∈ Rm×n, assuming m ≤ n. It
is important to note that unlike other LoRA-based methods,
U,Σ,VT in this context are utilized at full rank, and the
original weight matrix W is removed from networks. For
simplicity, in the following discussion, we continue to use
W to represent UΣVT.

The singular value decomposition is performed only during
initialization and periodically reinitialized at each round
(see Eq. 10), ensuring that the training process remains
efficient (see Table 22 for the actual proportion of training
time). However, as training progresses, U, Σ, and VT may
gradually deviate from the true singular vectors and singu-
lar values of W. In the subsequent section, we introduce
improvements designed to mitigate this deviation.

4.2. Gradient Update of U, VT with Σ

Update all Σ. The diagonal matrix Σ, simplified as a
vector of dimension m, is updated at every step due to its
low memory overhead. This ensures that all singular values
are consistently adjusted to refine the model’s performance.
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Figure 1: Illustration of Sparse Spectral Training (SST) and comparison with LoRA, PiSSA, and ReLoRA*. LoRA
learns an additive low-rank update to a pre-trained and frozen weight matrix. ReLoRA* periodically initializes and merges
low-rank matrices into the full-rank weight matrix, limiting updates to a low-rank subspace in each iteration. PiSSA
initializes low-rank parameters using SVD but always updates the same set of singular vectors. In contrast, SST follows
a sampling-update-swapping paradigm, where singular vectors are dynamically selected via multinomial sampling, all
singular values are updated at each step, and periodic re-SVD maintains orthogonality. This ensures better exploration and
stability during pre-training.

The update rule is as follows:

Σt+1 = max(Σt − η∇LΣ, 0) (4)

where η represents the learning rate, and ∇LΣ is the gradi-
ent backpropagated to Σ. The max function ensures that Σ
values remain non-negative.

Selectively update U and VT. To update U and VT,
a selective updating strategy is employed, where specific
parameters are chosen for each iteration based on a multi-
nomial sampling method, as depicted in Figure 1. Consider
I = {1, 2, ...,m} as the set of all indices of singular vectors
in U and VT, with the sampling process defined by:

S ⊆ I, S ∼ Multinomial(r,Σ) (5)

Here, S represents the selected indices for update, with
|S| = r, where r is the predetermined number of vectors to
be updated in each iteration. The update formula for U is:

Ut+1
·i = Ut

·i − η∇LU·i

Vt+1
·i = Vt

·i − η∇LV·i

if i ∈ S (6)

where U·i means the i-th column vector of U. To maintain
the unit norm of each vector during training, and to ensure
that magnitude information is encapsulated solely by Σ, the
vectors are normalized post-update as follows:

Ut+1
·i =

Ut
·i − η∇LU·i

|Ut
·i − η∇LU·i |

Vt+1
·i =

Vt
·i − η∇LV·i

|Vt
·i − η∇LV·i |

if i ∈ S (7)

Enhance gradient of U and VT. Within a sparse spectral
layer where h = UΣVTx (using W to denote UΣVT),
the gradient for U is detailed below (derivation included in
Appendix D):

∇LU·i =
∂L
∂U·i

=
∂L
∂W

V·iΣi

∇LV·i =
∂L
∂V·i

= Σi
∂L

∂WT
U·i

(8)

where U·i and V·i are column vectors of U and VT, re-
spectively, and Σi represents the diagonal elements of Σ.
This represents the default gradient calculation for these
matrices. We propose an enhanced gradient calculation for
U·i and V·i as follows:

∇̃LU·i =
∂L
∂W

V·i, ∇̃LV·i =
∂L

∂WT
U·i (9)

In the enhanced gradient, the learning of direction (U·i and
V·i) is decoupled from the magnitude (Σi), allowing singu-
lar vectors with lower singular values to retain substantial
gradients.

Periodic re-SVD. During training, the orthogonality
among the vectors of U and VT tends to diminish. Pre-
serving the orthogonality of these singular vectors is crucial,
as it prevents the learning process from degenerating into
a low-rank subspace, thus preserving the model’s full ex-
pressive capabilities. To maintain this orthogonality, it is
essential to periodically perform singular value decomposi-
tion:

[Ut+1,Σt+1,Vt+1T] = SVD(UtΣtVtT) (10)
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(c) ReLoRA*

Figure 2: ReLoRA* suffers saddle point issue at each restart. This plot depicts the average Frobenius Norm of gradients
of: (a) all weight matrices in full-rank training; (b) all sampled U in SST; (c) all A in ReLoRA*, in first 2000 steps. All
methods are trained on Transformer with dimension = 64, r = 8 on IWSLT’14. Both SST and ReLoRA* set iteration
interval to 200. When the average Frobenius Norm of gradients approaches zero, it indicates that a saddle point issue
happens. Figure (c) shows that ReLoRA* suffers saddle point issue periodically at the beginning of each iteration. The
correlation between SST and full-rank gradient norm along the steps is 0.85, whereas the correlation between ReLoRA* and
full-rank is 0.58. This demonstrates that the gradient curve of SST more closely approximate the gradient curve of full-rank
training, compared with ReLoRA*.

Each time we perform this re-SVD, we consider it a new
round. Each time we select vectors for updating, as de-
scribed in Eq. 5, we call it a new iteration. The full method
is detailed in Algorithm 2.

4.3. Why SVD Decomposition is Important

This section discusses the advantages of using SVD ini-
tialization and periodic re-SVD over zero initialization as
employed in ReLoRA* methods.

Saddle point issues after each merging in ReLoRA*.
The gradient of A and B in ReLoRA* is:

∂L
∂B

=
∂L
∂W

AT and
∂L
∂A

= BT ∂L
∂W

(11)

After each merging, B is reinitialized to zero, and the gradi-
ent of A is calculated as ∂L

∂A = 0T ∂L
∂W = 0, which causes

a slow learning progress at the beginning of each iteration.
Additionally, in ReLoRA*, resetting the momentum of B
and A after each merging aggravates this issue, particularly
when the merging interval T2 is short.

Compared with ReLoRA*, SST more closely approxi-
mates full-rank training. In Figure 2, we compare the
average Frobenius Norm of gradients of weight matrices in
full-rank training, low rank matrices in SST and ReLoRA*.
This plot shows that ReLoRA* suffers saddle point issue
periodically at the beginning of each iteration. We also
calculate the correlation between SST and full-rank gradi-
ent norm along the steps is 0.85, whereas the correlation
between ReLoRA* and full-rank is 0.58. The fact that
SST’s gradient norm is more closely correlated with the
full-rank gradient norm than ReLoRA* suggests that SST
more closely approximates the gradient of full-rank training.

SST initializes and reinitializes its low-rank matrices U and
V using the singular vectors of W. In contrast to ReLoRA*,
which relies on random or zero initialization for its low-rank
matrices, SST better captures the direction of W’s updates,
allowing it to more closely approximate full-rank training.
As demonstrated in the ablation study (Appendix H), re-
placing SVD-based initialization with random initialization
leads to a significant drop in performance, highlighting the
critical role of SVD in SST’s effectiveness.

4.4. SST Balances Exploitation and Exploration

From another perspective, SST combines the strategies of
exploitation and exploration in spectral domain. LoRA pri-
marily focuses on exploitation by repeatedly adjusting the
top-r singular values, as detailed in Section 3.1, while ne-
glecting the remaining spectral vectors. ReLoRA*, on the
other hand, emphasizes exploration by periodically reini-
tializing the matrices B and A after each merging, thereby
constantly seeking new directions for learning but ignoring
previously established dominant directions.

SST boosts learning efficiency by updating all magnitudes
(Σ) at each step and cyclically revisiting previously estab-
lished dominant directions. By continuously updating all
singular values, SST ensures unbiased sampling of U and
VT, enabling a thorough exploration of the parameter space.
As a result, SST balances the exploitation of known critical
directions with the exploration of emerging opportunities
within the spectrum of matrix decomposition.

4.5. Sparsity of SST

We analyze the efficiency of parameter usage.. Specifically,
the ratio of trainable parameters in SST at a given rank r,
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denoted as ΓSST,r, is calculated as r(m+n)+m
mn . This param-

eter ratio is slightly higher than that of LoRA at the same
rank, ΓLoRA,r = r(m+n)

mn , yet remains lower than LoRA at
rank r + 1, ΓLoRA,r+1 = (r+1)(m+n)

mn , indicating a slightly
increase in trainable parameters.

Newly Sampled
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Figure 3: Illustration of the memory-efficient implemen-
tation for SST. After each sampling step, the sampled vec-
tors are swapped with the active vectors from the previous
iteration.

4.6. Memory-Efficient Implementation for SST

To achieve similar memory reduction as LoRA, SST stores
optimizer states for all Σ and only for the vectors sampled
in each iteration from U and VT. However, standard im-
plementations of Adam optimizer (Kingma & Ba, 2014) in
PyTorch (Paszke et al., 2019) do not support sparse opti-
mizer states. To address this, we partition U and VT into
active and frozen segments. Only active segments store the
optimizer states, where Uactive ∈ Rm×r and VT

active ∈ Rr×n.
The frozen segments, Ufreeze and VT

freeze, do not store opti-
mizer states. Vectors newly sampled from the frozen seg-
ments are swapped with unsampled vectors in the active
segments (illustrated in Figure 3). This approach enables
SST to function as a time-sharing operating system, effec-
tively balancing resource allocation among the vectors in U
and VT.

5. Experiments
To validate our Sparse Spectral Training (SST) approach, we
conducted experiments on both Euclidean and hyperbolic
neural networks, demonstrating the generalization of SST
across various neural network architectures and embedding
geometries.

We compared SST with full-rank training, LoRA, and
ReLoRA*. The key distinctions between ReLoRA* and
ReLoRA (Lialin et al., 2024) is that ReLoRA includes a
full-rank training as “warm start”, which prevents it from
being an end-to-end memory-efficient pre-training method.

For all low-rank methods, we replace all linear layers in the
baseline models (including query, key, value, output pro-
jections and feedforward layers) with their corresponding
low-rank implementations (e.g., LoRA, ReLoRA*, or SST).
This ensures that all methods operate under comparable
parameter efficiency constraints during pre-training, as op-
posed to fine-tuning scenarios where only a subset of layers
is typically modified. Hyperparameters and implementation
details are provided in Appendix E.

As discussed in Section 3.3, the comparison between SST
and GaLore (Zhao et al., 2024) is provided in Appendix G,
as GaLore is unstable during OPT pre-training with r = 64.
We highlight SST’s superior performance across all of our
experiment settings. Ablation studies are documented in Ap-
pendix H, and a detailed analysis of memory consumption
and training time can be found in Appendix I. Additionally,
an experiment on image classification tasks is included in
Appendix J.

5.1. Machine Translation

We employ the vanilla transformer (Vaswani et al., 2017) as
the Euclidean transformer and HyboNet (Chen et al., 2022)
as the hyperbolic transformer. Our experiments include
three widely-used machine translation datasets: IWSLT’14
English-to-German (Cettolo et al., 2014), IWSLT’17
German-to-English (Cettolo et al., 2017), and Multi30K
German-to-English (Elliott et al., 2016). For IWSLT’14, the
hyperparameters are aligned with those from HyboNet.

Euclidean Transformer Table 1 presents BLEU scores
for IWSLT’14 across various dimensions and ranks (r). The
results confirm that SST consistently outperforms other low-
rank methods. On average, SST reduces the BLEU gap
(defined as the BLEU score difference from full-rank train-
ing) by 66.7% for Euclidean Transformers on IWSLT’14.

Further comparative results on the Multi30K and IWSLT’17
datasets using the standard dimensions for vanilla Euclidean
transformers are documented in Table 3. Here, SST not only
surpasses other low-rank methods but also demonstrates
superior performance compared to full-rank training.

Hyperbolic Transformer In Table 1, some BLEU scores
for the hyperbolic transformer are zero, due to the training
process encountering NaN losses, whereas SST maintains
stability throughout. SST consistently outperforms other
low-rank methods across all settings and even exceeds the
performance of full-rank training in various configurations.

Previous hyperbolic neural network articles have predomi-
nantly focused on low-dimensional configurations (Ganea
et al., 2018; Shimizu et al., 2021; Nickel & Kiela, 2017).
A key characteristic of hyperbolic space is its exponential
growth in volume with distance from a reference point,

6



Sparse Spectral Training and Inference on Euclidean and Hyperbolic Neural Networks

Table 1: BLEU scores on IWSLT’14 for Euclidean and hyperbolic Transformers. Values in bold indicate the highest
performance among low-rank methods. Values marked with an “*” exceed the performance of their full-rank counterparts.
Some BLEU scores are zero because that training resulted in NaN losses. Notably, SST consistently outperforms other
low-rank methods. Furthermore, the hyperbolic Transformer trained by SST shows improved performance over the full-rank
hyperbolic Transformer, particularly as the dimension size increases.

Euclidean Hyperbolic

Dimension r Full LoRA ReLoRA* SST Full LoRA ReLoRA* SST

64 8 24.27 18.08 18.12 22.28 25.69 17.50 0.0 23.40
4 14.05 15.49 20.27 0.0 0.0 23.03

128
16

25.79
23.30 22.92 25.12

24.70
23.70 0.0 25.22*

8 20.56 20.61 24.19 20.81 0.0 25.12*
4 16.37 18.00 22.80 17.58 24.42 24.60

256

32

23.92

23.76 23.02 23.97*

19.94

24.16* 0.0 25.04*
16 22.88 22.01 23.42 23.93* 0.0 25.52*
8 20.32 20.36 22.65 21.58* 24.02* 24.67*
4 16.72 17.85 21.39 18.72 24.08* 24.51*

Table 2: Validation perplexity on OpenWebText across various model sizes of OPT and LLaMA along with the number of
trainable parameters of each method. Values in bold highlight the highest performance among the low-rank methods.

Model r/dmodel Training Tokens Full LoRA ReLoRA* SST

OPT-125M 64/768 19.7B 23.50 (125.2M) 34.23 (50.9M) 35.80 (50.9M) 26.98 (51.0M)
OPT-350M 64/1024 19.7B 21.78 (331.2M) 34.26 (57.5M) 39.21 (57.5M) 27.72 (57.7M)
OPT-1.3B 64/2048 19.7B 15.10 (1.316B) 1716 (164.4M) 29.52 (164.4M) 22.31 (164.7M)

LLaMA-130M 64/768 2.6B 20.04 (134.11M) 29.71 (60.38M) 31.33 (60.38M) 23.35 (60.44M)
LLaMA-1.3B 128/2048 13.1B 14.54 (1.339B) 16.50 (250.71M) 17.32 (250.71M) 14.59 (251.05M)

Table 3: Comparison of BLEU scores on Multi30k
and IWSLT’17 datasets using Euclidean Transformer
(dimension = 512), r = 32. Scores highlighted in bold
represent the highest performance achieved by low-rank
methods.

Full LoRA ReLoRA* SST

Multi30K 40.7 40.1 41.6 43.4
IWSLT’17 31.7 31.9 32.0 32.3

which is significantly more rapid than the polynomial
growth seen in Euclidean space (Cho et al., 2019). This ex-
pansive nature makes hyperbolic spaces particularly prone
to overfitting as dimensionality increases. By imposing con-
straints on the parameter search space of hyperbolic neural
networks, SST prevents the overfitting typically associated
with such high-dimensional settings.

5.2. Natural Language Generation

Language modeling. We utilize the OPT (Zhang et al.,
2022) and LLaMA (Touvron et al., 2023a) architecture

as the baseline for our language generation experiments.
For LLaMA, we follow the experiment setup from (Zhao
et al., 2024). All models are pre-trained on OpenWebText
(Gokaslan & Cohen, 2019), an open-source reproduction
of OpenAI’s WebText. We applied a rank of r = 64 for all
OPT models and LLaMA-130M, and r = 128 for LLaMA-
1.3B.

Table 2 displays the validation perplexity results on the
OpenWebText dataset across different sizes of all LLMs.
The results indicate that SST achieves lower perplexity
scores compared to LoRA and ReLoRA*, significantly re-
ducing the perplexity gap—defined as the difference be-
tween the perplexity of the low-rank method and the full-
rank training. Specifically, SST reduces this gap by 67.6%
(OPT-125M), 52.4% (OPT-350M), 50.0% (OPT-1.3B),
65.8% (LLaMA-130M), and 97.4% (LLaMA-1.3B).

Figure 4 presents a plot of validation loss against effective
steps for various training methods. The effective step metric,
defined as the product of the number of training steps and the
number of trainable parameters, provides insight into the ef-
ficiency of parameter updates. Although parameter-efficient
training methods typically exhibit slower convergence com-

7



Sparse Spectral Training and Inference on Euclidean and Hyperbolic Neural Networks

Table 4: Zero-shot evaluations on the same 16 NLP tasks featured in the OPT article (Zhang et al., 2022). Values in
bold indicate the highest performance among low-rank methods. Except for the ReCoRD task, which uses F1 score, all
other tasks are evaluated using accuracy, with values presented as percentages. Mean scores in bold represent superior
performance among the low-rank methods. Additionally, we include the win percentage (including ties) for each low-rank
method compared to the full-rank training.

OPT-125M OPT-350M OPT-1.3B

Full LoRA ReLoRA* SST Full LoRA ReLoRA* SST Full LoRA ReLoRA* SST

ARC (Challenge) 21.2 22.9 21.1 21.3 22.0 22.3 21.3 21.1 24.6 24.2 22.9 21.5
ARC (Easy) 35.8 34.2 33.9 34.3 35.9 32.3 33.0 35.7 43.2 26.1 35.9 37.8
BoolQ 59.5 54.2 60.8 62.0 53.6 56.2 62.2 57.7 57.7 37.8 61.4 59.5
CB 51.8 48.2 28.6 48.2 44.6 44.6 33.9 41.1 59.0 41.1 37.5 42.9
COPA 67.0 61.0 57.0 66.0 69.0 61.0 59.0 60.0 70.0 51.0 68.0 65.0
HellaSwag 27.7 26.5 27.1 26.9 28.4 26.6 26.9 27.5 35.0 26.1 27.2 28.1
MultiRC 55.4 57.2 55.9 57.2 52.0 52.6 56.4 57.0 56.8 42.8 57.7 56.9
OpenBookQA 24.6 24.6 23.6 26.2 26.4 24.2 23.0 25.2 29.0 27.0 24.8 25.0
PIQA 58.7 57.2 56.3 58.3 59.2 56.9 56.9 59.0 64.0 50.3 57.1 59.1
ReCoRD 16.7 17.5 22.6 18.5 19.4 17.6 19.0 23.2 13.7 17.6 23.0 18.1
RTE 50.5 56.7 53.1 53.4 52.0 49.1 54.9 50.2 51.6 52.7 52.0 53.8
StoryCloze 55.8 53.8 53.6 54.5 57.2 53.7 53.0 54.6 61.1 49.7 54.0 56.1
WIC 49.8 51.4 50.0 50.0 50.5 50.0 50.0 50.2 50.3 50.0 50.0 50.0
Winograd 52.0 48.7 50.6 50.6 55.0 51.7 50.2 51.3 55.7 50.9 52.4 55.3
Winogrande 49.1 49.2 50.7 50.1 50.7 50.3 50.8 52.0 51.1 47.9 50.0 49.1
WSC 36.5 38.5 36.5 36.5 36.5 37.5 36.5 36.5 39.4 63.5 36.5 36.5

Mean 44.5 43.8 42.6 44.6 44.5 42.9 42.9 43.9 47.6 41.2 44.4 44.7
Win Percentage - 50.0 43.8 56.3 - 31.3 31.3 31.3 - 18.8 25.0 25.0

0 0.2 × 1013 0.4 × 1013 0.6 × 1013 0.8 × 1013 1.0 × 1013
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Figure 4: Comparison of performance on effective steps
between SST and full-Rank training. Effective steps are
calculated as the product of the number of trainable parame-
ters and the number of steps taken. All methods and model
sizes utilize the same number of tokens in each step.

pared to full-rank training, the effective step metric illus-
trates that SST updates parameters more effectively. At the
final effective step for SST on OPT-1.3B, SST achieves a
validation perplexity of 22.31, whereas full-rank training at
the same effective step only reaches a validation perplex-
ity of 34.05, demonstrating that SST is more efficient in
updating parameters compared to full-rank training.

Zero-shot evaluations. Each pretrained model performs
zero-shot evaluations on all 16 NLP tasks used in the OPT
article (Zhang et al., 2022), including ARC Easy and Chal-
lenge (Clark et al., 2018), HellaSwag (Zellers et al., 2019),
OpenBookQA (Mihaylov et al., 2018), PIQA (Bisk et al.,
2020), StoryCloze (Mostafazadeh et al., 2016), SuperGLUE
(Wang et al., 2019), WinoGrad (Levesque et al., 2012), and
WinoGrande (Sakaguchi et al., 2019). Evaluations are con-
ducted using the LM Evaluation Harness framework (Gao
et al., 2023). Except for the ReCoRD task, which uses F1
score, all other tasks are evaluated using accuracy.

Table 4 presents the zero-shot evaluation results across the
16 NLP tasks. SST achieves a higher average score than
other low-rank methods across all sizes of the OPT models.
On the OPT-125M, the average score for zero-shot evalua-
tions of SST is 44.6, slightly exceeding the average score
of full-rank training, which is 44.5. Additionally, we calcu-
lated the win percentage (including ties) for each low-rank
method compared to full-rank training. On the OPT-125M,
the win percentage of SST is 56.3%, indicating that SST
performed as well as or better than full-rank training on
more than half of the zero-shot evaluation tasks.

5.3. Hyperbolic Graph Neural Networks

Hyperbolic Graph Neural Networks (HGNNs) (Chami et al.,
2019; Chen et al., 2022) capitalize on the expansive and hi-
erarchical nature of hyperbolic space to efficiently manage
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Table 5: Node Classification and Link Prediction Results. Model’s dimension d = 16. Results are reported as test F1
scores for node classification and test precision for link prediction, expressed in percentages. Values highlighted in bold
represent the highest performance among the low-rank methods, while those marked with an “*” denote performance that
exceeds that of the full-rank variants.

Node Classification Link Prediction

Method Airport Cora Disease PubMed Airport Cora Disease PubMed

Full d = 16 92.88 ± 0.5 81.13 ± 0.2 91.83 ± 0.4 78.1 ± 0.4 95.77 ± 0.08 94.62 ± 0.2 91.49 ± 1.5 96.55 ± 0.03

LoRA r = 1 85.75 ± 1.0 45.5 ± 0.3 79.66 ± 1.9 69.17 ± 2.1 94.01 ± 0.2 84.22 ± 0.1 84.29 ± 1.5 89.34 ± 0.4
SST r = 1 88.61 ± 0.5 75.07 ± 0.5 89.22 ± 1.7 77.47 ± 0.3 95.37 ± 0.4 91.11 ± 0.6 93.63 ± 0.7* 95.57 ± 0.1

LoRA r = 2 89.06 ± 1.0 64.73 ± 0.8 83.84 ± 4.3 76.27 ± 0.8 94.75 ± 0.15 88.8 ± 0.5 91.38 ± 0.7 92.14 ± 0.3
SST r = 2 87.92 ± 0.09 77.5 ± 0.7 90.64 ± 1.7 77.93 ± 0.1 95.59 ± 0.2 91.89 ± 0.3 94.83 ± 0.6* 95.71 ± 0.1

Table 6: BLEU scores for different sampling mechanisms on IWSLT’14. Bold indicates the highest performance.

Sampling Mechanism MULTINOMIAL UNIFORM SEQUENTIAL TOP R

BLEU 22.28 22.01 22.13 18.28

and analyze graph-structured data. This geometric space is
particularly suitable for graphs due to its ability to closely
mimic the underlying data structures with minimal distor-
tion, offering a substantial improvement over traditional
Euclidean methods.

We evaluated the effectiveness of SST on HyboNet (Chen
et al., 2022) version of HGNN in node classification and
link prediction across four distinct datasets: Airport (Chami
et al., 2019), Cora (Sen et al., 2008), Disease (Anderson
& May, 1991), and PubMed (Namata et al., 2012). Each
experiment was conducted with three random seeds.

The results, detailed in Table 5, demonstrate SST has strong
performance in both node classification and link prediction
tasks. With r = 1, SST reduces the performance gap, by
an average of 73.7% in node classification and 82.5% in
link prediction. In the Disease link prediction task, SST
outperforms full-rank training at both r = 1 and r = 2.
Notably, SST’s advantage over LoRA is greater at r = 1
than at r = 2, likely due to SST’s sampling strategy being
particularly effective in sparser scenarios.

5.4. Impact of Sampling Mechanisms

To evaluate the impact of different sampling mechanisms
on the performance of SST, we conducted additional experi-
ments using a vanilla Transformer with a model dimension
of 64 and r = 8 on the IWSLT’14 dataset. The evalua-
tion metric is BLEU, where higher scores indicate better
performance. Table 6 summarizes the results:

Descriptions of Sampling Mechanisms:

• MULTINOMIAL: The multinomial random sampling
method used in SST.

• UNIFORM: Uniform random sampling.

• SEQUENTIAL: Iterating through all singular vectors
without repetition.

• TOP R: Selecting the top-r singular vectors with the
largest singular values.

We also considered a Binomial sampling mechanism; how-
ever, it could not guarantee that the number of selected
singular vectors would remain consistent with the specified
rank, making it unsuitable for direct comparison.

The results indicate that TOP R performs the worst, as its
search space collapses into a restricted low-rank subspace.
In contrast, as long as all singular vectors are visited, the
other methods deliver comparable performance. Among
these, MULTINOMIAL demonstrates a slight advantage.

6. Conclusion and Discussion
In this work, Sparse Spectral Training (SST) has demon-
strated its efficacy as a parameter-efficient pre-training
methodology that surpasses other parameter-efficient meth-
ods, and better approximates the learning dynamics and
performance of full-rank training across diverse architec-
tures, tasks, and embedding geometries. SST introduces
a novel approach by updating all singular values and se-
lectively adjusting the singular vectors of network weights.
Moreover, SST incorporates SVD both for the initializa-
tion and periodic reinitialization of low-rank parameters.
Future directions for SST include: (1) Investigating faster
convergence approaches that avoid optimizer state reset. (2)
Extending the application of SST to the embeddings of large
language models (LLMs).
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A. Algorithm of Sparse Spectral Training

Algorithm 2 Sparse Spectral Training (SST)

input Dataset D; total round T1; number of iterations T2; iteration interval T3

Use Kaiming initialization to initialize origin model’s weight W(0)
k , k = 1, ..., n, where n is the number of linear layers.

Replace origin model’s weight with SVD decomposition

[U
(t1,0)
k ,Σ

(t1,0)
k ,V

(t1,0)
k

T
] = SVD(W

(t1)
k )

for t1 = 0, . . . , T1 − 1 do
for t2 = 0, . . . , T2 − 1 do
Ik = {1, 2, . . . ,m} be the set of all possible indices of singular vectors

S
(t1,t2)
k ⊆ Ik, S

(t1,t2)
k ∼ Multinomial(r,Σ(t1,t2×T3)

k )

for t3 = 0, . . . , T3 − 1 do
Represent t = t2 × T3 + t3;
Sample a mini-batch from D and compute the forward pass by Eq.3 and compute the gradient ∇L;
Update Σ

(t1,t+1)
k = max(Σ

(t1,t)
k − η∇LΣk

, 0)
Update

U
(t1,t+1)
k,·i =

U
(t1,t)
k,·i − η∇̃LUk,·i

|U(t1,t)
k,·i − η∇̃LUk,·i |

, V
(t1,t+1)
k,·i =

V
(t1,t)
k,·i − η∇̃LVk,·i

|V(t1,t)
k,·i − η∇̃LVk,·i |

, if i ∈ S
(t1,t2)
k

where Uk,·i means column vector i of Uk

end for
end for
Reinitialize with new SVD decomposition

[U
(t1+1,0)
k ,Σ

(t1+1,0)
k ,V

(t1+1,0)
k

T
] = SVD(U

(t1,T2×T3−1)
k Σ

(t1,T2×T3−1)
k V

(t1,T2×T3−1)
k

T
)

end for

B. Related Work of Other Parameter-Efficient Training Methods
Apart from low-rank adaptations, researchers have developed a variety of parameter-efficient training techniques to optimize
resource consumption while preserving learning effectiveness. Prompt tuning is an effective method that integrates tunable
prefixes or soft prompts into the input embeddings of models. It enables lightweight task-specific adaptations with minimal
impact on the model’s overall architecture (Lester et al., 2021; Liu et al., 2021). Dynamic sparse training (DST), through
methods like SET (Mocanu et al., 2018), RIGL (Evci et al., 2020), MEST (Yuan et al., 2021), and CHT (Zhang et al.,
2024), employs a dynamic prune-and-grow strategy that adjusts network topology during training. This approach optimizes
training efficiency and can improve generalization by continuously adapting the network’s sparse structure. This presents a
significant shift from static training methods.

C. Experiments on Larger Datasets and Hyperparameter Tuning
To further evaluate the performance of SST, we conducted additional experiments using larger datasets and varied hyperpa-
rameter settings. Specifically, we pre-trained LLaMA-130M on the C4 dataset (Raffel et al., 2020), which is about 25 times
larger than OpenWebText. We also compared the performance of SST, LoRA, and ReLoRA* under two different learning
rates.

Table 7 presents the validation perplexity (PPL) results for LLaMA-130M on both C4 and OpenWebText. The results show
that SST consistently outperforms other low-rank methods, achieving lower perplexity across all configurations.
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Table 7: Validation perplexity on C4 and OpenWebText for LLaMA-130M with different learning rates. Bold values
indicate the lowest PPL among all low-rank methods.

Dataset Model r/d Full (lr=1e-3) lr=1e-3 lr=3e-3
LoRA ReLoRA* SST LoRA ReLoRA* SST

C4 LLaMA-130M 64/768 24.91 35.91 37.34 32.13 30.75 133.06 29.79
OpenWebText LLaMA-130M 64/768 20.04 29.71 31.33 25.89 795.24 230.43 23.35

Each method was trained with 2.6 billion tokens. The learning rate of 1e−3 for full-rank training aligns with the configuration
used in the ReLoRA article. For consistency, we applied the same learning rates (lr = 1e−3 and lr = 3e−3) across LoRA,
ReLoRA*, and SST.

SST consistently achieves lower perplexity than LoRA and ReLoRA* at the same learning rate. Notably, with lr = 3e−3,
SST surpasses all other low-rank methods, reducing the perplexity gap by 16.4% on C4 and 65.8% on OpenWebText. These
findings highlight SST’s effectiveness and robustness on larger datasets and varied learning rate configurations.

D. Proof of Gradient of Sparse Spectral Layer
We can express the differential of W as the sum of differentials:

dW = dUΣVT +UdΣVT +UΣdVT (12)

We have chain rule for the gradient of W:

∂L
∂W

=
∂L
∂h

∂h

∂W
=

∂L
∂h

xT (13)

dL =
∂L
∂W

: dW

=
∂L
∂W

: dUΣVT +
∂L
∂W

: UdΣVT +
∂L
∂W

: UΣdVT

=
∂L
∂W

VΣ : dU+UT ∂L
∂W

V : dΣ+ΣUT ∂L
∂W

: dVT

where : is the Frobenius inner product. So we have the gradient of U, Σ and VT:

∂L
∂U

=
∂L
∂W

VΣ,
∂L
∂VT

= ΣUT ∂L
∂W

,
∂L
∂Σ

= UT ∂L
∂W

V (14)

In vector perspective, for the ith vector, it is:

∂L
∂U·i

=
∂L
∂W

V·iΣi,
∂L
∂V·i

= Σi
∂L

∂WT
U·i,

∂L
∂Σi

= U·i
T ∂L
∂W

V·i (15)

where U·i means the ith column vector of U, and Σi is the ith value of the diagonal matrix Σ.

E. Experiment Details
E.1. Implementation Details for SST

Sampling of U and VT. In our experiments, we employ a more exploratory approach when sampling U and VT:

p(i) =
1

2
(
1

m
+

Σi∑
j Σj

) (16)
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where p(i) is the possibility to sample index i vector of U and VT. This method modifies the earlier Eq. 5 by combining
the multinomial distribution with a uniform distribution. This adjustment ensures that vectors associated with lower singular
values still have a substantial likelihood of being sampled, preventing their probabilities from becoming excessively low and
promoting a more balanced exploration across the spectral components.

Optimizer state reset and warmup. Before each iteration, Sparse Spectral Training (SST) resets all optimizer states for
U, VT and Σ. For example, for optimizers like Adam, this involves clearing the first and second moments as well as the
timestep. Consequently, a brief warmup period is essential at the beginning of each iteration to accommodate the reset states.
This warmup period is typically 20 steps, guided by the exponential decay rate β used in the Adam optimizer.

Hyperbolic SST. The formula of hyperbolic linear layer in (Chen et al., 2022) is:

h = fx(M)x =

[√
∥Wx∥2− 1

K

v⊤x
v⊤

W

]
x =

[√
∥Wx∥2 − 1

Kv⊤

Wx

]
(17)

where v ∈ Rn+1, W ∈ Rm×(n+1) and K is the curvature. The formula of Hyperbolic SST is:

h =

[√
∥UΣVTx∥2 − 1

Kv⊤

UΣVTx

]
(18)

E.2. Hyperparameters of Machine Translation

IWSLT’14. The hyperparameters can be found in Table 8. We employ the same codebase and hyperparameters as those
used in HyboNet (Chen et al., 2022), which is derived from OpenNMT-py (Klein et al., 2017). For all methods, last
checkpoint is utilized for evaluation. Beam search, with a beam size of 2, is employed to optimize the evaluation process.
Experiments were conducted on one A100 GPU.

For SST, iteration interval (T3) is set to 200. Each iteration begins with a warmup phase lasting 20 steps. The number
of iterations per round (T2) is determined by the formula T2 = d/r, where d represents the embedding dimension and r
denotes the rank used in SST.

Table 8: Hyperparameters on IWSLT’14 for Euclidean and hyperbolic Transformer.

Hyper-parameter Euclidean Hyperbolic

Embedding Dimension 64, 128, 256 64, 128, 256
Feed-forward Dimension 256, 512, 1024 256, 512, 1024
Batch Size 10240 tokens 10240 tokens
Gradient Accumulation Steps 4 4
Training Steps 40000 40000
Dropout 0.0 0.1
Attention Dropout 0.1 0.1
Max Gradient Norm - 0.5
Warmup Steps 6000 6000
Decay Method noam noam
Label Smoothing 0.1 0.1
Layer Number 6 6
Head Number 4 4
Learning Rate 5 2
Optimizer Adam rAdam

Multi30K and IWSLT’17. The hyperparameters can be found in Table 9. Because of overfitting, model checkpoint with
lowest validation loss is utilized for evaluation. A larger learning rate (0.0003) is used for low rank parameters (U, VT and
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Σ for SST, B and A for LoRA and ReLoRA*. Experiments were conducted on one A100 GPU.

For SST, interation interval (T3) is set to 200 for Multi30K and 400 for IWSLT’17. Each iteration begins with a warmup
phase lasting 20 steps. The number of iterations per round (T2) is determined by the formula T2 = d/r, where d represents
the embedding dimension and r denotes the rank used in SST.

Table 9: Hyperparameters on Multi30K and IWSLT’17 for vanilla Transformer.

Hyper-parameter Multi30K IWSLT’17

Embedding Dimension 512 512
Feed-forward Dimension 2048 2048
Batch Size 128 sentences 128 sentences
Gradient Accumulation Steps 1 1
Training Steps 100000 150000
Dropout 0.1 0.1
Decay Method constant constant
Layer Number 6 6
Head Number 8 8
Learning Rate 0.0001 0.0001
Weight Decay 1 0.1
Optimizer AdamW AdamW

E.3. Hyperparameters of Natural Language Generation

Hyperparameters for OPT. The hyperparameters for OPT are detailed in Table 10. We employ a linear warmup of 2000
steps followed by a stable learning rate, without decay. A larger learning rate (0.001) is used for only low rank parameters
(U, VT and Σ for SST, B and A for LoRA and ReLoRA*. The total training tokens for each experiment is 19.7B, roughly
2 epochs of OpenWebText. Distributed training is facilitated using the Accelerate (Gugger et al., 2022) library across four
A100 GPUs on a Linux server.

For SST, interation interval (T3) is set to 200. Each iteration begins with a warmup phase lasting 20 steps. The number
of iterations per round (T2) is determined by the formula T2 = d/r, where d represents the embedding dimension and r
denotes the rank used in SST.

Table 10: Hyperparameters for OPT Models

Hyper-parameter OPT-125M OPT-350M OPT-1.3B

Embedding Dimension 768 512 (project to 1024) 2048
Feed-forward Dimension 3072 4096 8192
Global Batch Size 240 240 240
Sequence Length 2048 2048 2048
Training Steps 40000 40000 40000
Learning Rate 0.0001 0.0001 0.0001
Warmup Steps 2000 2000 2000
Optimizer AdamW AdamW AdamW
Layer Number 12 24 24
Head Number 12 16 32

Hyperparameters for LLaMA. The hyperparameters for LLaMA are detailed in Table 11. We follow the same experiment
setup from (Zhao et al., 2024). We employ a linear warmup of 2000/10000 steps followed by a cosine decay. For LLaMA-
130M, the learning rates for LoRA, ReLoRA*, and SST are selected from {1e-3, 3e-3} based on the lowest PPL observed
in Table 7. For LLaMA-1.3B, the learning rates for LoRA, ReLoRA*, and SST are fixed at 1e-3. The learning rates for
full-rank training are set to 1e-3 for LLaMA-130M and 4e-4 for LLaMA-1.3B, consistent with the configuration in the
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Figure 5: Singular Value Pruning. We conduct singular value pruning on full-rank and SST pretrained OPT-125M model.
After performing singular value decomposition on weight matrices, we preserve the top k singular values so that the
cumulative sum of preserved singular values ranges from [100%, 99%, 98%, ..., 93%, 90%] of the original cumulative sum.
The pruned ratio of singular values is plotted along the x-axis.

ReLoRA article.

For SST, interation interval (T3) is set to 200. Each iteration begins with a warmup phase lasting 20 steps. The number
of iterations per round (T2) is determined by the formula T2 = d/r, where d represents the embedding dimension and r
denotes the rank used in SST.

Table 11: Hyperparameters for LLaMA Models

Hyper-parameter LLaMA-130M LLaMA-1.3B

Embedding Dimension 768 2048
Feed-forward Dimension 2048 5461
Global Batch Size 512 512
Sequence Length 256 256
Training Steps 20000 100000
Learning Rate 0.001 0.0004
Warmup Steps 2000 10000
Optimizer Adam Adam
Layer Number 12 24
Head Number 12 32

E.4. Hyperparameters of Hyperbolic Graph Neural Networks

We use HyboNet (Chen et al., 2022) as full-rank model, with same hyperparameters as those used in HyboNet. Experiments
were conducted on one A100 GPU.

For SST, interation interval (T3) is set to 100. Each iteration begins with a warmup phase lasting 100 steps. The number
of iterations per round (T2) is determined by the formula T2 = d/r, where d represents the embedding dimension and r
denotes the rank used in SST.

We set dropout rate to 0.5 for the LoRA and SST methods during the node classification task on the Cora dataset. This is the
only one deviation from the HyboNet configuration.
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F. Singular Value Pruning
We further conduct an analysis study of the potential for using SST model for further compression. The results, as shown
in Figure 5, indicate that the SST model retains lower perplexity across a wider range of pruning ratios compared to the
full-rank model. This suggests that the SST method effectively concentrates the informational content of the weights into
fewer singular values, making it more suitable for further compression.

This enhanced performance underscores the potential of SST in maintaining essential model characteristics even under
significant compression, making it a promising approach for developing lightweight yet powerful language models for
inference.

G. Evaluating SST and GaLore: Complementary Approaches to Memory Efficiency

Table 12: The BLEU score on IWSLT’14 for Euclidean Transformer, compared with GaLore. Values highlighted in
bold represent the highest performance among the low rank methods, while those marked with an “*” denote performance
that exceeds that of the full-rank variants.

Dimension r Full GaLore SST

64 8 24.27 18.08 22.28
4 14.07 20.27

128
16

25.79
23.43 25.12

8 19.71 24.19
4 16.01 22.80

256

32

23.92

24.01* 23.97*
16 22.82 23.42
8 20.12 22.65
4 15.94 21.39

Recently, a new approach named Gradient Low-Rank Projection (GaLore) (Zhao et al., 2024) has been proposed to address
the memory challenges associated with pre-training large language models. GaLore, by implementing a memory-efficient
gradient projection method.

Using the released code of GaLore1, we conducted comparative experiments on the IWSLT’14 dataset with Transformer
models, employing the same configurations as other low-rank methods. We set the scale factor α = 1 in these experiments
because α = 0.25, which is used in the article, performs much worse than α = 1. As illustrated in Table 12, SST method
consistently outperformed GaLore across various model dimensions and ranks, except for d = 256, r = 32.

In addition, we evaluated validation perplexity on the OpenWebText dataset with OPT-125M and OPT-350M models. As
shown in Table 13, SST outperformed GaLore on OPT-125M and OPT-350M. Zero-shot evaluations comparing SST with
GaLore are presented in Table 14, which also demonstrate SST’s superior performance.

Here, we discuss our guess on why SST may have an advantage over GaLore on low-rank settings. GaLore utilizes a
projection matrix Pt ∈ Rm×r derived from the singular value decomposition (SVD) of a single step’s gradient. Only one
step’s gradient may introduce noise due to data sampling variability. Conversely, SST employs U and VT as projection
matrices, which are initialized and reinitialized with the SVD of W. W could be seemed as the momentum of gradient of
W, less noisy than one step’s gradient. Furthermore, SST updates all Σ values, regardless of r, making it more robust as r
decreases.

H. Ablation Study
Impact of Σ updates. We conduct an ablation study to evaluate the impact of various components and configurations
within SST on the IWSLT’14 using a Euclidean Transformer with a dimension of 128 and rank r of 4. The results of
this study are summarized in Table 15, which highlights the contributions of specific elements to the overall performance

1https://github.com/jiaweizzhao/GaLore
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Table 13: Validation perplexity, compared with GaLore on OpenWebText dataset with OPT-125M and OPT-350M,
along with the number of trainable parameters of each method. r = 64. Values highlighted in bold represent the highest
performance among the low rank methods.

Full GaLore SST

OPT-125M 23.50 (125.2M) 32.17 (45.6M) 26.98 (51.0M)

OPT-350M 21.78 (331.2M) 1994 (43.4M) 27.72 (57.7M)

Table 14: Zero-shot evaluations, compared with GaLore with same tasks as Table 4. Mean scores in bold represent
superior performance among the low-rank methods. Win percentage (including ties) for each low-rank method is compared
to the full-rank training.

OPT-125M OPT-350M

Full GaLore SST Full GaLore SST

ARC (Challenge) 21.2 21.2 21.3 22.0 25.7 21.1
ARC (Easy) 35.8 33.7 34.3 35.9 25.7 35.7
BoolQ 59.5 61.8 62.0 53.6 37.8 57.7
CB 51.8 37.5 48.2 44.6 41.1 41.1
COPA 67.0 64.0 66.0 69.0 52.0 60.0
HellaSwag 27.7 27.0 26.9 28.4 26.2 27.5
MultiRC 55.4 57.2 57.2 52.0 42.8 57.0
OpenBookQA 24.6 23.6 26.2 26.4 27.8 25.2
PIQA 58.7 57.1 58.3 59.2 50.5 59.0
ReCoRD 16.7 15.0 18.5 19.4 17.5 23.2
RTE 50.5 51.6 53.4 52.0 52.7 50.2
StoryCloze 55.8 53.5 54.5 57.2 49.7 54.6
WIC 49.8 50.0 50.0 50.5 50.0 50.2
Winograd 52.0 50.9 50.6 55.0 50.2 51.3
Winogrande 49.1 51.7 50.1 50.7 49.4 52.0
WSC 36.5 36.5 36.5 36.5 63.5 36.5

Mean 44.5 43.3 44.6 44.5 41.4 43.9
Win Percentage - 43.8 56.3 - 25.0 31.3

measured in BLEU score.

One variation tested involves changing the update mechanism for Σ. Instead of updating all Σ, only sampled Σ are updated,
same as update for U and VT. This modification results in a lower BLEU score of 22.40, indicating that full updates of Σ
contribute positively to the model’s performance.

Initialization method. We experiment with a configuration similar to the ReLoRA*, where h = (W +UΣVT)x, with
U and VT randomly initialized and Σ initialized to zero. After each round, U, VT and Σ are reinitialized. This setup
significantly reduces the BLEU score to 16.03, which is similar to the performance of LoRA (16.37) and ReLoRA* (18.00).
This demonstrates that the most important feature of SST is that instead of randomly initialized, SST uses SVD of W as the
initialization of U and VT, which is aligned with our analysis in section 4.3.

Impact of iteration interval (T3). We also conducted additional experiments to study the impact of varying iteration
interval T3 (sampling period). All methods were trained on a vanilla Transformer model with a hidden dimension of 64 and
r = 8 on the IWSLT’14 dataset. In the original setup (Table 1), T3 was set to 200 steps per iteration.

As shown in Table 16, both excessively large and small values of T3 result in decreased performance. A large T3 may
cause SST degrade to LoRA, while a small T3 leads to frequent resets of the optimizer’s momentum, thereby affecting
convergence.

Impact of Number of Iterations. We conducted an additional experiment on the IWSLT’14 dataset using a vanilla
Transformer to evaluate the impact of the number of iterations per round, with a model dimension of 64 and r = 8. The
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Table 15: Ablation Study on IWSLT’14 dataset with Euclidean Transformer. Dimension is 128 and r is 4.

BLEU

LoRA 16.37

ReLoRA* 18.00

SST - Instead of update all Σ, only update sampled Σ 22.40

SST - Use formula similar as ReLoRA*: h = (W +UΣVT)x. (U
and VT random initialized, and Σ zero initialized)

16.03

SST 22.80

Table 16: Impact of iteration interval (T3) on BLEU scores for IWSLT’14.

Steps per Iteration T3 800 400 200 100 50 25 10

BLEU Score 21.85 23.64 22.47 22.49 22.60 22.46 22.25

results are summarized in Table 17:

Table 17: Impact of number of iterations per round on BLEU scores for IWSLT’14.

Number of Iterations per Round 1 2 4 8 16 32

BLEU Score 22.28 22.21 22.24 22.28 22.30 22.37

The results indicate that different numbers of iterations yield comparable performance. In our experiments, this hyperparam-
eter was not tuned; instead, we fixed it to d/r.

Impact of Rank. For all low-rank methods, including LoRA, ReLoRA*, and SST, rank is more of a constraint determined
by available resources rather than a hyperparameter to be extensively tuned. Higher ranks generally lead to better performance
but at the cost of increased memory consumption. To ensure fairness, the same rank values were used for LoRA, ReLoRA*,
and SST in all experiments, as these methods have a similar number of trainable parameters under the same rank.

Additionally, we conducted an experiment on the IWSLT’14 dataset using a vanilla Transformer with a model dimension of
128 to analyze the impact of rank on different methods. The results are presented in Table 18:

The evaluation metric is BLEU, where higher scores indicate better performance. The BLEU score for full-rank training is
25.79. The results demonstrate that as the rank increases, the performance of all methods improves. Notably, SST consistently
outperforms other low-rank methods, especially at smaller ranks, highlighting its robustness under resource-constrained
settings.

Impact of Training Steps. To investigate whether additional training steps benefit SST, we conducted an experiment on
the IWSLT’14 dataset using a vanilla Transformer with a model dimension of 64 and r = 4. Table 19 presents the BLEU
scores for full-rank training and SST under different training steps (evaluated on the model at the last step):

The results demonstrate that as the number of training steps increases, the gap between full-rank training and SST narrows.
Even with r = 4, SST approaches the performance of full-rank training at 640,000 steps. These findings confirm that while
SST may require more steps to converge at lower ranks, it remains competitive with full-rank training given sufficient steps.

I. Memory Consumption and Training Time
Memory consumption. As shown in Table 20, the memory consumption of SST is comparable to LoRA and much smaller
than full-rank models. SST has a similar number of trainable parameters (about 0.2% higher) as LoRA (as stated in Table 2),
but more frozen parameters (about 45% higher) than LoRA. However, this can be mitigated if we use low precision for the
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Table 18: Impact of rank on BLEU scores for IWSLT’14. Dimension is 128.

Rank (r) 1 2 4 8 16 32 64

LoRA 12.44 14.16 16.37 20.56 23.30 25.12 26.11
ReLoRA 14.53 15.39 18.00 20.61 22.92 24.15 25.25

SST 17.49 20.69 22.80 24.19 25.12 26.08 26.15

Table 19: BLEU scores under different training steps. The default training step in Table 1 is 40,000.

Steps 20,000 40,000 80,000 160,000 320,000 640,000

Full 22.95 24.27 24.85 24.72 24.71 25.05
SST 17.23 20.27 21.91 22.86 23.32 23.92

frozen parameters, as in (Dettmers et al., 2024).

Table 21 shows that the memory consumption of SVD decomposition for the largest weight in each model is about 3%,
which is small compared with the whole model.

Training time. Table 22 shows that the time spent on SVD in SST is very low, about 0.5%-0.8% compared with the whole
training time. SST has comparable training time as LoRA and full-rank model. The increasement of training time of SST is
mainly due to SST’s linear function, h = UΣVTx, which is slower than original h = Wx. However, during inference,
replacing UΣVT with a single matrix W could obtain same computation efficiency as full-rank models. ReLoRA* has
comparable computation time as LoRA.

Performance with Fewer Steps. Despite requiring slightly more time per step, SST achieves superior performance with
fewer training steps compared to other low-rank methods. The choice of 20% fewer steps for SST corresponds to the
maximum additional training time incurred by SST compared to other low-rank methods, as shown in Table 22. Table 23
compares the perplexity (PPL) of SST trained with 20% fewer steps to that of other methods trained with full steps.

These results demonstrate that SST maintains significantly lower perplexity even with fewer training steps, highlighting its
efficiency. SST effectively balances its computational overhead while achieving superior performance compared to other
low-rank methods. This makes SST a compelling choice for high-quality pretraining.

J. Experiment on Image Classification
We conduct additional experiments on image classification tasks using MLP-based models. In this section, we provide a
comparison of full-rank training, LoRA, ReLoRA*, and SST on three datasets: MNIST (Lecun et al., 1998), EMNIST
(Cohen et al., 2017), and Fashion MNIST (Xiao et al., 2017).

The architecture of the MLP is 784− 512− 512− 512− #class. Each method is trained for a total of 100 epochs. Learning
rate is set to 0.01 for all methods.

We use a rank of 16 for all low-rank methods, which corresponds to 1/32 of the full-rank dimension. For ReLoRA* and SST,
one epoch per iteration is used. The results are averaged over three random seeds, and all datasets were evaluated based on
test accuracy.

As shown in Table 24, SST outperforms both LoRA and ReLoRA* across all three datasets. SST reduces performance gap
between low-rank method and full-rank training by 49% in average.

K. Memory Efficiency Analysis
To better understand the memory efficiency of SST compared to baseline methods, we provide a detailed joint analysis of
GPU memory consumption and performance trade-offs.
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Table 20: GPU memory consumption on different sizes of OPT models, including optimizer state and gradient. Model
weight uses float32. AdamW optimizer state uses float32 (same data type as used in OPT experiments in Table 2).

Full LoRA/ReLoRA* SST

OPT-125M 1956.05 MB 1118.56 MB 1254.41 MB

OPT-350M 5070.41 MB 2046.41 MB 2573.77 MB

OPT-1.3B 20093.22 MB 7133.24 MB 9345.72 MB

Table 21: GPU memory consumption of SVD decomposition in SST.

Model Largest Weight Shape Peak GPU Memory Consumption

OPT-125M 768 × 3072 41.25 MB (3.3%)

OPT-350M 1024 × 4096 72.00 MB (2.8%)

OPT-1.3B 2048 × 8192 288.01 MB (3.1%)

Memory and Performance Trade-Off. SST’s GPU memory consumption is comparable to ReLoRA*, while achieving
significant improvements in perplexity (PPL). A comparison of memory reduction and PPL increase is provided in our
analysis (Figure 6).

We define the following metrics for clarity:

Memory Reduction (%) =
Full memory − Low rank memory

Full memory
× 100

PPL Increase (%) =
Low rank PPL − Full PPL

Full PPL
× 100

To provide a more intuitive understanding of SST’s memory efficiency, we introduce a new metric called the efficiency
ratio, defined as:

Efficiency Ratio =
Memory Reduction (%)

PPL Increase (%)

This efficiency ratio quantifies how much memory can be reduced at the cost of a 1% increase in PPL. A higher efficiency
ratio indicates a more memory-efficient method.

Results. SST achieves a significantly higher efficiency ratio than ReLoRA* across various pretraining tasks. Figure 7
shows the efficiency ratio improvements of SST compared to ReLoRA*:

• 167.4% (OpenWebText, LLaMA-130M)

• 99.7% (C4, LLaMA-130M)

• 196.1% (OpenWebText, OPT-125M)

• 142.3% (OpenWebText, OPT-350M)

• 65.9% (OpenWebText, OPT-1.3B)

• 4434.3% (OpenWebText, LLaMA-1.3B)

Conclusion. These results demonstrate that SST achieves a substantially better trade-off between memory reduction
and PPL increase compared to ReLoRA*. This highlights SST’s effectiveness in optimizing memory efficiency while
maintaining strong model performance, making it a practical choice for resource-constrained pretraining tasks.
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Table 22: Overall training time on different sizes of OPT models with 19.7 billion training tokens, using 4 A100 GPU.
“Time of SVD in SST” is the overall time of singular value decomposition within SST.

Model Full LoRA SST Time of SVD in SST

OPT-125M 62.5h 64.4h 65.0h 0.3h (0.5%)

OPT-350M 135.8h 153.3h 170.0h 0.8h (0.5%)

OPT-1.3B 303.4h 324.8h 387.2h 3.0h (0.8%)

Table 23: Validation perplexity with SST trained 20% fewer steps compared to full steps for other methods.

Model Full LoRA ReLoRA* SST (20% fewer steps)

OPT-125M 23.50 34.23 35.80 28.03
OPT-350M 21.78 34.26 39.21 29.42
OPT-1.3B 15.10 1716 29.52 22.98
LLaMA-130M 20.04 29.71 31.33 24.74
LLaMA-1.3B 14.54 16.50 17.32 15.65

L. Additional Baseline Comparisons: Dora and Vera
In the main text, we focused on comparing SST with ReLoRA and GaLore, as they are specifically designed for pre-training.
Other methods, such as Dora (Liu et al., 2024) and Vera (Kopiczko et al.), primarily target fine-tuning scenarios, where
the parameter search space is restricted to a low-rank subspace. As discussed in Section 3.1, this restriction limits their
expressiveness, which may be sufficient for simple fine-tuning tasks but becomes a bottleneck in more challenging tasks like
training from scratch, the focus of this work.

To further assess the limitations of Dora and Vera in pre-training tasks, we conducted additional experiments comparing
them with SST on IWSLT’14 using Transformer models. The BLEU scores (higher is better) are reported in Table 25.

The results show that while Dora slightly outperforms LoRA, it remains inferior to SST. Vera performs poorly across all
settings. Dora decomposes the pre-trained weights into magnitude and direction components, but this decomposition does
not overcome the fundamental limitation of the low-rank subspace. Vera further constrains the trainable parameters to a
single vector, which significantly reduces memory but fails to capture the complexity required for effective pre-training.

This analysis highlights the importance of flexible, spectral-based methods like SST for pre-training tasks.
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Table 24: Image classification tasks test accuracy.

Dataset Full LoRA ReLoRA* SST

MNIST 98.63 ± 0.04 97.69 ± 0.10 97.72 ± 0.05 98.33 ± 0.04

EMNIST 85.32 ± 0.24 79.45 ± 0.26 84.12 ± 0.12 84.96 ± 0.11

Fashion MNIST 90.44 ± 0.06 88.30 ± 0.01 89.08 ± 0.16 89.22 ± 0.06

Table 25: BLEU scores on IWSLT’14 for different low-rank methods. SST consistently outperforms other approaches
across various model dimensions and ranks.

(d, r) Dora Vera LoRA ReLoRA* SST

(64, 8) 18.19 9.22 18.08 18.12 22.28
(64, 4) 14.38 9.30 14.05 15.49 20.27

(128, 16) 23.46 12.22 23.30 22.92 25.12
(128, 8) 21.09 12.25 20.56 20.61 24.19
(128, 4) 18.12 11.61 16.37 18.00 22.80
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Figure 6: Memory reduction vs. PPL increase. Comparison of SST and ReLoRA* on multiple datasets and models.
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Figure 8: Singular Value Distribution. This visualization depicts the distribution of singular values for the OPT-125M
model with full-rank, LoRA, and SST, with r = 64). The x-axis represents the index of singular values, sorted from largest
to smallest, while the y-axis shows the magnitude of each value. It highlights how LoRA predominantly captures and
overestimates the top-r singular values, in contrast to SST, which shows a much similar distribution as full-rank training.
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