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ABSTRACT

Brain decoding aims to interpret and translate neural activity into behaviors. As
such, it is imperative that decoding models are able to generalize across variations,
such as recordings from different brain sites, distinct sessions, different types of
behavior, and a variety of subjects. Current models can only partially address
these challenges and warrant the development of pretrained neural transformer
models capable to adapt and generalize. In this work, we propose RPNT - Robust
Pretrained Neural Transformer, designed to achieve robust generalization through
pretraining, which in turn enables effective finetuning given a downstream task.
To achieve the proposed architecture of RPNT, we undertook an investigation to
determine which building blocks will be suitable for neural spike activity mod-
eling, since components from transformer models developed for other modalities
do not transfer directly to neural data. In particular, RPNT unique components
include 1) Multidimensional rotary positional embedding (MRoOPE) to aggregate
experimental metadata such as site coordinates, session name and behavior types;
2) Context-based attention mechanism via convolution kernels operating on global
attention to learn local temporal structures for handling non-stationarity of neural
population activity; 3) Robust self-supervised learning (SSL) objective with uni-
form causal masking strategies and contrastive representations. We pretrained
two separate versions of RPNT on distinct datasets a) Multi-session, multi-task,
and multi-subject microelectrode benchmark; b) Multi-site recordings using high-
density Neuropixel 1.0 probes. The datasets include recordings from the dorsal
premotor cortex (PMd) and from the primary motor cortex (M1) regions of non-
human primates (NHPs) as they performed reaching tasks. After pretraining, we
evaluated the generalization of RPNT in cross-session, cross-type, cross-subject,
and cross-site downstream behavior decoding tasks. Our results show that RPNT
consistently achieves and surpasses the decoding performance of existing decod-
ing models in all tasks. Our ablation and sweeping analysis demonstrate the ne-
cessity and robustness of the proposed novel components.

1 INTRODUCTION

The transformer architecture (Vaswani et al.,[2017)), along with pretraining, has greatly shifted data
modeling paradigms in the field of natural language processing and subsequently in a variety of
fields. Indeed, transformer models such as BERT (Devlin et al., [2019), GPT (Radford et al., 2019),
and Vision Transformers (Dosovitskiy et al., [2020) demonstrated that large-scale pretraining on
diverse data followed by downstream task-specific finetuning yields more enhanced performance
on a variety of related tasks compared to task-specific models. However, for neural data, which
contains session-based nonstationary spatiotemporal structure, neural models have yet to utilize such
strategies in the full extent. Typical variations in neural data are due to recordings from different
brain sites, distinct sessions, different types of behavior, and a variety of subjects.

Efforts have been made recently. Methods such as Latent Factor Analysis via Dynamical Systems
(LFADS) (Pandarinath et al., 2018)) pioneered multi-session pretraining. Later, transformer-based
models such as self-supervised Neural Data Transformer and its variants (NDT (Ye & Pandarinath)
2021), NDT2 (Ye et al.,[2023), NDT3 (Ye et al., 2025)) and supervised pretraining models such as
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Figure 1: Overall illustration of the pretraining and finetuning workflow for generalized motor de-
coding. (A) Experimental setup for data collection while NHPs performed reaching tasks. (B)
Preparation of pretaining data. (C) and (D) overall schemes for SSL and SFT, respectively. (E)
Ilustration of model adaptation during pretraining and finetuning.

POYO (Azabou et al.|[2023), PoYO+ (Azabou et al.;[2024), PoSSM (Ryoo et al.,2025)) showed the
benefits of pretraining and finetuning in the neural decoding workflow.

While these efforts have adapted pretraining strategies to neural datasets with larger samples of
neural activity (i.e., neural population and neural dynamics models) and more diverse samples (dis-
tinct recording sessions and subjects), robust generalization via explainable mechanisms for possible
variations in neural data remains a challenge. In particular, several key aspects of variation in neural
data have yet to be resolved. First, model generalization capabilities remain limited when applied
to unseen brain sites or different recording configurations (Jude et al.| [2022} |Karpowicz et al., 2024;
Le et al.|[2025). Second, neural signals drift over time (Chestek et al.| 2011). Thus, building power-
ful mechanisms that can handle neural non-stationarity remains unclear. Third, existing approaches
typically emphasize training objectives that ultimately improve performance in decoding tasks by
denoising neural signals, but may be unable to learn representations that are informative of the un-
derlying causal dynamics that give rise to neural activity (Lu et al., 2025).

To address the above limitations, we introduce RPNT - a neural transformer model that incorpo-
rates robust pre-training enhancements. RPNT contains novel components that are a result of an
investigation aimed at designing a transformer model specifically for neural activity and its varia-
tions. In particular, the key novel components of RPNT are: 1) Multidimensional rotary positional
embedding (MROPE) to aggregate experimental metadata such as site coordinates, session name
and behavior types; 2) Context-based attention mechanism via convolution kernels operating on the
global attention to learn local temporal structures for handling the non-stationarity of neural activ-
ity; 3) Robust self-supervised learning (SSL) objective with uniform causal masking strategies and
contrastive representations.

For validation of RPNT, we implemented a standard pretraining and finetuning workflow (see Fig-
ure[T). With these workflows, we pretrained two separate versions of RPNT on two datasets which
include different modalities of the recorded neural activity: a) Multi-session, multi-task, and multi-
subject microelectrode benchmark data (Perich et al.| [2018); b) Multi-site recordings using high-
density Neuropixel 1.0 probes. Both datasets include recordings from the (PMd) and the (M1)
regions of nonhuman primates (NHPs) as they performed center-out or random target reaching
tasks. After pretraining, we evaluated the generalization of RPNT in cross-session, cross-type,
cross-subject, and cross-site downstream behavior decoding tasks. Our results showed that RPNT
consistently achieved and surpassed the decoding performance of existing decoding models in all
tasks. Our ablation and sweeping analysis demonstrated the necessity and robustness of the pro-
posed novel components. Furthermore, the model’s learned attention map provided data-driven
insights into the underlying structure of neural encoding of movement variables. Our approach has
implications for future large-scale, robust neural transformer pretraining for neural decoding appli-
cations such as brain-computer interfaces (BCls) and data-driven discovery for neuroscience. To
this end, our major contributions are listed:
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* Model architecture: We propose a multidimensional rotary positional embedding
(MROPE) to aggregate experimental metadata for decoding generalization. We introduce a
context-based local attention mechanism to handle the neural non-stationarity.

* Pretraining strategy: We pretrain RPNT using a robust SSL objective via uniform causal
masking strategies and contrastive representations.

* Generalized Decoding: We demonstrate superior decoding performance for 1) cross-
session, cross-behavior types, and cross-subject scenarios in the microelecotrode recording
benchmark; 2) cross-site scenario in a new Neuropixels dataset.

2 RELATED WORK

Neural Population Modeling Classical approaches to neural population analysis proposed to lever-
age dimensionality reduction to extract low-dimensional structure from high-dimensional record-
ings. Methods such as PCA (Cunningham & Yul [2014)) and Factor Analysis (Santhanam et al.,
2009) were applied to neural activity and showed identification of dominant modes of variance.
Since such methods rely on the assumption of static and linear relationships, extensions have been
developed, such as a probabilistic geometric PCA with application to neural data (Hsieh & Shanechi,
2025)) and Canonical Correlation Analysis to cross-region interactions (Semedo et al., 2019). While
extending classical dimension reduction approaches, such methodologies remain limited to pairwise
correlations. As an alternative, dynamical systems approaches such as GPFA (Yu et al., [2008)) and
LFADS (Pandarinath et al.l [2018) have been introduced to model the temporal evolution of latent
states. While such models are applicable to ubiquitous interpretation of neural population data, their
main applications are focused on offline neural denoising analysis rather than neural decoding.

Motor Decoding Motor decoding methods aim to reconstruct intended movements or kinematic
variables from neural population activity. Classical approaches, such as Wiener (Van Drongelen,
2018) and Kalman filters (Wu et al., 2002; |Orsborn et al., 2014), provide real-time decoding with
computational efficiency, however typically assume linear dynamics and Gaussian noise. Bayesian
decoders (Wu et al.l 20065 [Shanechi et al., [2016)) incorporate prior information about movement
statistics, improving robustness but remaining limited by parametric assumptions. Deep learning
approaches have been developed as well, and these progressed from MLPs (Glaser et al., [2020) to
RNN architectures (Mante et al.l 2013} Sani et al.| [2024)) aimed to capture temporal dependencies
in neural dynamics and thus perform effective decoding. Recent works explore Transformer-based
decoders (Ye & Pandarinath) 2021} [Le & Shlizerman, 2022) that leverage self-attention to model
long-range dependencies across neural populations. However, these methods predominantly train
from scratch on limited task-specific data, leading to poor generalization across sessions, subjects,
and experimental conditions.

Pretraining of Neural Models Efforts have been made to use large-scale pretraining for neural data
analysis with various model architectures. Before the era of the transformer, RNN-based models
were explored for multi-session pretraining, such as MRNN [Sussillo et al.|(2016) and LFADS (Pan-
darinath et al.l [2018)). Then, transformer architecture-based models, i.e., Neural Data Transformer
(NDT) (Ye & Pandarinath, |[2021) and Pre-training On manY neurOns (PoYo) (Azabou et al., 2023)
work and subsequent works represent additional developments toward pretraining of neural models.
In particular, NDT (Ye & Pandarinath, [2021)) introduced a transformer architecture for spike train
modeling, while NDT2 (Ye et all 2023 demonstrated multi-context pretraining across sessions,
subjects, and tasks using a spatiotemporal transformer. NDT3 (Ye et al.|[2025) scaled it to hundreds
of datasets and showed emergent zero-shot/few-shot capabilities. Concurrently, supervised pretrain-
ing models such as POYO (Azabou et al.|[2023)), PoYO+ (Azabou et al.|[2024), PoSSM (Ryoo et al.,
2025) took a complementary approach of leveraging learnable neural token representation to realize
scalable pretraining across multiple subjects. Additional approaches have been proposed as well.
Models such as Population Transformer (PopT) used standard transformer encoder architecture but
with novel ensemble-wise and channel-wise discrimination tasks to train their model (Chau et al.,
20235). Further, BrainBERT (Wang et al., [2023)) proposed to adapt language model architectures
directly, treating neural signals as text sequences. Although effective, these transformer models
lack components for dealing with the non-stationarity and recording configurations in session-based
neural spike activity.
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Figure 2: A schematic of components in RPNT. Components in black indicate standard transformer
signal flow (i.e, no masking and standard attention mechanism). Our novel proposed components in-
clude MROPE (green), context-based attention (cyan), and uniform random masking strategy (pink).

Attention Mechanisms and Positional Embedding for Non-stationary Data: The originally de-
veloped self-attention mechanism in (Vaswani et al., [2017)) assumes stationary input distributions,
which may not be suitable for neural recordings where signal characteristics drift over time (Chestek
et al.,|2011). Adaptive attention mechanisms have been proposed for domains with nonstationary
data, such as video (Chen et al., [2021). These mechanisms are based on learnable kernels to mod-
ulate the attention based on local context. Further, in (Zhu et al [2021) a sliding window attention
was introduced to capture local structure, and in (Yang et al., |2016) a hierarchical attention across
multiple timescales was employed.

Beyond the attention mechanism, positional encoding also presents challenges due to the unique
nature of neural data. Particularly, positional encoding is expected to take into consideration the
joint recording configurations and time. While standard sinusoidal encodings (Vaswani et al., [2017)
and learned positional embeddings (Devlin et al., 2019) are generally applicable, recent positional
encodings could offer advantages for modeling relative position exclusive to one of the dimensions,
space or time. In particular, RoPE (Su et al.|[2024) allows modeling of relative positions exclusively
in the temporal dimension. Here, we also embrace RoPE for neural activity (Azabou et al.| [2023)
and extend it to multiple dimensions for capturing recording configurations.

3 METHODS

3.1 MROPE: MULTI-DIMENSIONAL POTARY POSITIONAL EMBEDDING

Since neural recordings vary, it is imperative that each neural recording configuration should be
explicitly modeled within the transformer positional embedding. Such embedding is beyond the
temporal positional embedding. For example, in multiple brain sites recordings, an effective po-
sitional embedding would be one that can model both spatial site locations and temporal relation-
ships for the generalization to unseen site configurations. A plausible candidate for such embedding
that we found is Rotary Positional Embedding (RoPE) (Su et al., 2024), which we extend here to
multiple dimensions, i.e., MRoPE, where M stands for the configuration dimensions, to aggregate
experimental metadata. In the Neuropixel dataset, M = 3D, and it includes two-dimensional spa-
tial coordinates (denoted by (x,ys)) and time ¢. To construct the rotational matrix, we partition
the model dimension (dpeger) into three groups independently (deoora = %) to represent dimen-
sions each for x-coordinate, y-coordinate, and temporal position. For each group, we define rotation
frequencies:

1 1 1
0 = oW = g = 1
¢ 50002/ deoora ’ ¢ 50002%/ deoora ’ g 1000024/ deoora ’ M
where 7 € [0, dcoora/2). Spatial dimensions use lower frequency (f = 5000) for coherence across

nearby brain sites, while temporal dimensions use standard RoPE frequency (f = 10000) for fine-
grained temporal resolution.

d Ra(z) 0O 0 dxd
R3p = 0 R,(y) 0 eR 2)
0 0 R,()
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Rotation Operation: In contrast to traditional positional encodings added to embeddings, MRoPE
works similarly to RoPE, by applying rotations directly to query and key vectors during atten-
tion computation. For 3D position (z,ys,t), we construct a block-diagonal rotation matrix
Risp(zs, ys, t)(see equation [2)) that independently rotates dimension pairs. The attention score be-
tween location ¢ and j follows qlTkj = qTRZD (l‘i, Yi, ti)R3D (l‘j, Yis tj)k = f(.%‘] — T Yj—Yi, tj—
t;), which preserves the key relative position property. Such operations enable zero-shot generaliza-
tion to arbitrary brain site recording configurations while maintaining rotational invariance (also see
the appendix).

MROPE is designed for arbitrary cases where the recording configurations encounter different sub-
jects, recording times, locations, and behavior types (see Figure[2). Specifically, we can partition the
model dimension dyege into M groups depending on the number of recording configurations, i.e.,
1

6" = s 0 o
in total contribute to dpoqel- The f1,- - -, far are the corresponding frequencies. Indeed, for the pub-
lic benchmark, we set MRoPE with M = 4D to represent behavior types, subjects, recording times,
and temporal position. We used an equal dimension partition (d,,, = %) and set frequencies
with 10, 100, 1000, and 10000, respectively (see the appendix for further details).

= fz/%M, where dy, - - - , dps are the dimensions for each group that

3.2 CONTEXT-BASED ATTENTION MECHANISM

To address non-stationary neural activity (Chestek et al., [2011), we introduce a context-based at-
tention mechanism via learnable convolution kernels operating on global attention to learn the local
temporal structure. Such attention is achieved through the incorporation of history and pooling into
attention. We illustrate the attention steps in Figure [2|(blue) and describe them below.

Context Generation: Given a batch neural input x € RZXT*D and historical data Hy €
REXTisxD containing only past timesteps, we generate a context vector through attention pooling:

¢ = AttentionPool(MLP(Hyy,)) € RB>Deonex 3)

Dynamic Kernel Generation: We parameterize the context vector to generate 2D convolution ker-
nels for each attention head:

K, = reshape(softmax(MLPyemel (€)), [K71, K2)), )

where h € [1, H| indexes attention heads and (K, K3) are hyperparameters for convolution kernel
dimensions.

Kernel-Enhanced Attention: As the last step, we apply a 2D convolution kernel after calculating
the standard attention matrix for better capturing the local attention relationship:

A C ZD(QKT K;) oM (5)
me] = LONV — = L )

kernel \/& h causal

where My is the causal masking (Mcaysal[2, 7] = W[j < i]). This design enables each head to
learn specialized temporal dependencies for handling non-stationarity (see Figure[2).

3.3 NEURAL TRANSFORMER ARCHITECTURE

With the above two components, we compose RPNT’s neural transformer encoder, where we de-
couple temporal and cross-site processing (for the neuropixel dataset). First, we build a temporal
encoder. Given neural spike activity X € REXSXTXN (patch, sites, time, neurons) and corre-

sponding experimental metadata, we first embed each recording site Hff)) = Linear(X. ;. .). Then,
we build a temporal encoder that consists of L transformer layers with MRoPE and context-based
attention

H{*Y = HY + ContextAttn(LN(H"), MRoPE(configurations)). (6)

Most of the neural representation learning and neural population modeling can be done via the above
powerful temporal encoder by treating the number of recording sites S = 1, i.e., repeated neural
measurements across sessions. Further, if it is desired to model the cross-site neural dynamics
beyond the temporal encoding, such as sampled neuropixel recordings for cross-site activity, we
propose to concatenate a spatial encoder right after the temporal encoder. Spatial encoder will
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model cross-site interactions through timestep-wise processing, naturally preserving causality. At
each timestep ¢, we follow the standard multihead attention (MHA)

z!"" = 2%, + MultiheadAun(LN(Z", )), (7)
where Z(©) = H(") from the last layer of temporal encoder. The MHA weights can provide inter-
pretable cross-site functional connectivity. In our experiments, we use the microelectrode bench-
mark (Perich et al.l [2018) mainly for the purpose of investigating and validating the power of the
temporal encoder and the neuropixel dataset to further show the attention map visualization for
data-driven discovery by the spatial encoder.

3.4 CAUSAL MASKED NEURAL MODELING

With the neural transformer encoder setup, we introduce a pretraining framework tailored for neu-
ral spike data that robustly performs self-supervised learning (SSL) using masked causal Poisson
reconstruction loss with uniform random masking and cross-site contrastive loss.

Uniform Random Masking Strategy. Unlike fixed masking strategies, which required careful
tuning in prior work (Srivastava et al.,|[2014;[Ye et al.| 2025; |Zhang et al., 2024; |He et al., 2022), we
apply masking both in space (neurons) and time according to the uniform distribution, i.e., p,, ~
U(0, 1), at each batch. This choice is motivated by works of |Azabou et al.| (2023)) and (Le et al.,
2025)), where in |Azabou et al.| (2023) it was shown that dynamic dropout augmented the decoding
performance, and in a recent work of (Le et al.,|2025) it was shown that uniform neuron sampling
strategy can improve the supervised motor decoding performance. These findings led us to further
extend masking to both time and neuron during SSL pretraining. The stochastic approach that we
propose eliminates the masking rate hyperparameter while ensuring the model encounters diverse
reconstruction difficulties during the pretraining phase, i.e., M. ; ,, ~ Bernoulli(1 — p,,).

Self-Supervised Learning Objective. Distinct from existing denoising-based transformer work,
our approach maintains causality, i.e., reconstruction at time ¢ depends only on unmasked inputs
from ¢’ < ¢. This transforms the standard MAE objective [He et al.| (2022) into a predictive task
aligned with the autoregressive nature of neural mechanisms (see Appendix for the comparison).
For masked position (¢, n), RPNT reconstructs it with respect to

f:ﬂg,n = fg({X:J/,n/ : (:,t/,’ﬂ/) ¢ M N t/ S t}) (8)

As neural spike counts follow a Poisson distribution, we use the Poisson reconstruction loss

Lrecon = Z P‘:,t.,n — Tit,n IOg(;\:,t,n + 6) , )
(:,t,n)EM

where 5\;,157” = Decoder(Z. ; 4) and € = 108 provides numerical stability (see decoder design in
appendix). Further, an auxiliary objective encourages learning site-invariant representations (see the
appendix for the formulation and ablation study). The combined objective £ = Liecon + 1Lcontrast
balances reconstruction objective with robust representation learning.

3.5 DOWNSTREAM EVALUATION FRAMEWORK

We evaluate the generalizability of RPNT on downstream behavior decoding tasks across four sce-
narios (cross-session, cross-type, cross-subject, and cross-site). Specifically, we build lightweight
task-specific heads following the last layer of the pretrained temporal encoder of RPNT

yt = MLPlask(H:,t)a (10)

where H. ; is the temporal encoder outputs across at time ¢. We use mean-squared error (MSE) for
SFT on velocity regression tasks and evaluate using R? metric.

Further, we visualize functional connectivity (FC) based on the spatial attention map across time.
The spatial encoder’s cross-site attention weights directly encode functional relationships. We
extract the connectivity matrix C € RT*5%S by averaging attention weights across layers, i.e.,

C._,;(attention) = L "% | Attention"

i~ ;- The visualization results were shown in the appendix.
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4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENTAL SETUP

Datasets We evaluated the downstream generalization of the RPNT model under three out of four
scenarios of variation (cross-session, cross-task, and cross-subject scenarios) on the public micro-
electrode benchmark (Perich et al., |2018). For the fourth scenario of cross-site variation, we per-
formed experiments with a Neuropixel dataset. The (Perich et al., 2018) dataset contains electro-
physiology and behavioral data from 4 rhesus macaques (subjects C, J, M, and T) performing either
a Center-Out reaching task (denoted as CO) or a continuous random target acquisition task (denoted
as RT). Neural activities were recorded from Utah arrays in the M1 or PMd region. This dataset
contained 111 sessions, spanning 43 recording hours. Both raw data and preprocessed data can be
accessed from the Python package brainsets provided by (Azabou et al [2023). In the Neuropixel
dataset, a male rhesus macaque (named subject B) was implanted with a multi-modal chamber over
the frontal motor cortex. The subject was trained to perform the CO reaching tasks. At each experi-
mental session, a single neuropixel probe was inserted in the chamber to acquire specific recording-
site neural activity. The dataset is comprised of 17 recordings at different sites distributed across the
PMd and M1 regions across experiment sessions spanning approximately one year.

Experimental setup We have conducted experiments of RPNT function and validation first focused
on self-supervised pretraining of the RPNT model and then evaluation and comparison of RPNT
downstream decoding generalization with baselines through supervised finetuning (SFT) on test
recordings (see FigureE]E for model adaptation). For benchmark (Perich et al.| [2018)), we followed
the baseline setup according to (Azabou et al., 2023} Ryoo et al., [2025)), where we used the train
session data in subjects C, J, and M for pretraining and tested with the rest of the sessions for down-
stream evaluations. Specifically, our decoding evaluation included the following three cases: 1) New
center-out sessions from Monkey C (denoted as C-CO) for cross-session evaluation; 2) New center-
out sessions from Monkey T (denoted as T-CO) for cross-subject evaluation; 3) New random target
sessions from Monkey T (denoted as T-RT) for cross-subject and cross-tasks evaluation. Notably,
more than 80% of sessions in the benchmark are CO tasks. Thus, the T-RT evaluation is expected
to be the most challenging task, since it requires the model to adjust to both subject and task distri-
bution shift. We followed the released code for building the train/valid/test datasets according to the
Python package torch brain (Azabou et al.,|2023). For the neuropixel dataset, we used 16 (S1-S16)
sites of recording neural activity (with 0.8/0.1/0.1 for train/val/test split) to pretrain the RPNT model,
then used the remaining site (S17) (with 0.2/0.3/0.5 for train/val/test split) for FS cross-site evalua-
tion. Further, as the CO task was highly structured, we followed the convention by only evaluating
the decoding performance at the reaching period on the successful trials (Ryoo et al.| [2025). We
used R? to quantify the decoding performance between the predicted and the ground-truth velocity
behaviors. The baseline comparison models are described in the appendix.

4.2 CROSS-SESSION, CROSS-SUBJECT, AND CROSS-TASK EVALUATION RESULTS ON PUBLIC
BENCHMARK

We compare the velocity decoding performance (12?) across three generalization scenarios on the
benchmark in Table [T, where RPNT was evaluated with two types of baselines and training: 1)
models trained from scratch on single downstream sessions and 2) pretrained models finetuned with
different amounts of downstream sessions.

Training from scratch. In this regime (top segment of Table [I)), compared models are trained
for each downstream session only. RPNT achieved the best performance across all three scenar-
ios. Specifically, RPNT obtained R? scores (mean =+ std) of 0.9647 + 0.0026, 0.9103 + 0.0182,
and 0.8356 4 0.0914 in C-CO, T-CO, and T-RT evaluations, respectively. These results show en-
hancement with respect to existing decoding models, with particularly notable achievement in the
challenging T-RT scenario (= 7% increase from second second-best baseline POSSM-GRU).

Pretrained models. We next investigated the benefits of pretraining and downstream supervised
finetuning (SFT) approach. As a self-supervised pretraining model, RPNT finetuning can operate
in two regimes: a) Finetuning on the full training dataset of the downstream task (Full-SFT) and
b) More restrictive few-shot finetuning, where finetuning is performed on a single downstream ses-
sion (FS-SFT). RPNT was tested in these two regimes and compared with baselines in the Full-SFT



Under review as a conference paper at ICLR 2026

Method Cross-Session (C-CO) | Cross-Subject (T-CO) | Cross-Task (T-RT)
Wiener filter 0.8860 + 0.0149 0.6387 £+ 0.0283 0.5922 + 0.0901
MLP 0.9210 + 0.0010 0.7976 + 0.0220 0.7007 £+ 0.0774
S4D 0.9381 + 0.0083 0.8526+ 0.0243 0.71454+ 0.0671
S | Mamba 0.9287 + 0.0034 0.76924 0.0235 0.66944 0.1220
§ GRU 0.9376+ 0.0036 0.84534+ 0.0200 0.7279+ 0.0679
» | POYO 0.94274 0.0019 0.87054+ 0.0193 0.71564 0.0966
POSSM-S4D 0.95154+ 0.0021 0.88384+0.0171 0.75054 0.0735
POSSM-Mamba 0.9550+ 0.0003 0.8747+0.0173 0.74184+ 0.0790
POSSM-GRU 0.95494 0.0012 0.886340.0222 0.76874 0.0669
RPNT 0.9647+ 0.0026 0.9103+0.0182 0.8356+ 0.0914
NDT-2 0.850740.0110 0.6549+ 0.0290 0.590340.1430
< | POYO-1 0.961140.0035 0.885940.0275 0.759140.0770
_g 0-POSSM-S4D 0.9618 + 0.0007 0.9069+ 0.0120 0.75844 0.0637
£ | 0-POSSM-Mamba 0.95744 0.0016 0.90114 0.0148 0.7621+ 0.765
E 0-POSSM-GRU 0.95874 0.0052 0.90214 0.0241 0.77174+ 0.595
RPNT (FS-SFT) 0.9801+ 0.0060 0.94314+0.0103 0.85154+0.1071
RPNT (Full-SFT) 0.9894+ 0.0037 0.9626+0.0059 0.877840.1005

Table 1: Velocity decoding performance (R?) comparison across three generalization scenarios (C-
CO, T-CO, and T-RT) on the public benchmark. RPNT (FS-SFT) used few-shot finetuning, whereas
RPNT (Full-SFT) used all available downstream sessions. Bold numbers indicated that the SOTA
performance in each scenario. The references for baseline models are listed in the appendix.

regime. Results (bottom segment of Table [I)) indicate that both RPNT(Full-SFT) and RPNT(FS-
SFT) outperformed previous baselines in the Full-SFT regime. Notably, the more challenging
regime of testing RPNT, RPNT(FS-SFT), achieved average R? scores of 0.9801, 0.9431, and 0.8515
for three tasks, in contrast to existing state-of-the-art POYO and POSSM baselines in the Full-SFT
regime, which had access to behavior labels for all sessions during the pretraining phase. In the
comparable label usage of Full-SFT, RPNT R? was further enhanced and reached 0.9894 4- 0.0037
(C-CO), 0.9626 % 0.0059 (T-CO), and 0.8778 £ 0.1005 (T-RT). Due to these results, and the po-
tential of the FS-SFT regime to require more efficient finetuning in latter experiments of section
and section [4.4] we fixed RPNT in the regime of FS-SFT. As we report in the results below, RPNT
surpasses the performance of existing models, indicating the efficiency and robustness of the RPNT
in decoding task generalization. With respect to RPNT variants, we note that our results indicate
that RPNT that is pretrained outperforms RPNT that is trained from scratch, e.g., Pretrained RPNT
(Full-SFT): 0.8778 vs. RPNT from scratch 0.8356 in the T-RT task, indicating the benefits of the
self-supervised pretraining strategy for robust neural representation learning.

4.3 CROSS-SITE EVALUATION RESULT ON THE NEUROPIXEL DATASET

Method Cross-Site (B-CS) 08 . ° ® °
Wiener filter 0.3462 + 0.0710 0.6 ° RZ = 0.5
MLP 0.4074 £ 0.0592 S 04

RNN (LFADS) 0.5015 + 0.1085 =

Transformer (NDT) 0.5272 £+ 0.0720 0.2

RPNT (from scratch) | 0.6358 + 0.0311 0.0

RPNT (pretrained) 0.6612 + 0.0328 T3 10 0 30 20 o

Training ratio (%)
Figure 3: Decoding performance comparison

across sites (B-CS) on the neuropixel dataset. Figure 4: Sweep analysis for training

splits.

We further investigated the generalization of RPNT for variations that include cross-site scenarios
on the neuropixel dataset. This dataset is distinct from the public benchmark in recording modal-
ity (neuropixels vs. microelectrodes) and is particularly suitable for cross-site variation study since
these recordings did not share neurons across sites (see appendix figure [2| for recording sites topol-
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ogy). Figure 3| summarizes the decoding performance of RPNT compared with existing baselines.
RPNT (in FS-SFT regime) outperforms existing baselines at the downstream single-site (S17) ve-
locity decoding task. Furthermore, pretraining RPNT improved performance (scratch: 0.6358 vs.
pretrained: 0.6612). In addition, we swept train splits from 1% to 50% (20% by default), while
keeping the test data to be the last 50%. We observe that even with 10% of training split (half of the
prior), pretrained RPNT is able to achieve reasonable performance (see Figure [)).

4.4 ABLATION STUDIES

Method T-RT B-CS
Sinusoidal PE | 0.8260 | 0.6242 Method T-RT B-CS
RoPE 0.8226 | 0.6484 Standard attention 0.8024 | 0.5024
Learnable PE | 0.8305 | 0.6273 Context-based attention | 0.8515 | 0.6612
MRoPE 0.8515 | 0.6612

Table 3: Ablation study of attention
Table 2: Ablation study of position embeddings

Masking Strategy
Neuron ratio | Temporal ratio TRT B-CS
0.25 0.25 0.8349 £ 0.0948 | 0.6549 + 0.0254
0.50 0.50 0.8437 £+ 0.0968 | 0.6557 + 0.0316
Fixed 0.75 0.75 0.8392 £+ 0.0975 | 0.6593 + 0.0251
0.25 0.75 0.8414 £ 0.0990 | 0.6540 + 0.0279
0.75 0.25 0.8398 + 0.0922 | 0.6594 + 0.0301
Random | /(0, 1) 77(0,1) | 0.8515 £0.1071 | 0.6612 £ 0.0328

Table 4: Ablation study of masking strategies during pretraining.

We conducted ablation studies on T-RT task and the novel B-CS task in the FS-SFT regime to eval-
uate the contribution of novel components of position encoding, attention mechanism, and masking
strategy to the performance of RPNT and report the results in Tables[2} 3] (see appendix for the mean
+ std), and ] Additional sweeping analyses, e.g., transformer layer, attention head, and context-
based kernel size, are included in the appendix. MRoPE. We compared MRoOPE against three al-
ternative positional encoding approaches: sinusoidal PE, standard RoPE, and multi-dimensional
learnable PE. In Table |2} we compare MROPE against alternative positional encodings and observe
that MROPE achieves the highest R? score. Improvement of ~ 3% over standard RoPE validates the
extension of RoPE to multiple dimensions Context-based Attention Mechanism. Table [3]demon-
strated the importance of context-dependent attention design. Replacing context-based attention
with standard self-attention resulted in a substantial performance drop of ~ 5%. This significant
gap highlights the effectiveness of the adaptive kernel generation mechanism in handling the non-
stationary nature of neural recordings (see appendix for kernel studies). Random Uniform Mask-
ing Strategy. Fixed masking ratios, whether symmetric or asymmetric across neuron and temporal
dimensions, consistently underperformed the RPNT random uniform masking approach (Table [).

5 DISCUSSION AND CONCLUSION

We present RPNT, a robust pretrained neural transformer comprised of three novel components
(MROPE, context-based attention mechanism, and uniform random masking strategy). Pretraining
RPNT with SSL objectives eliminates the need for behavioral labels and allows for finetuning it in
a few-shot regime (FS-SFT) in decoding downstream tasks (Gunel et al., [2020; Ding et al., [2023).
Our experiments show that RPNT outperforms in generalization to a variety of downstream decod-
ing tasks. These advances pose RPNT as a promising pathway toward neural foundation modeling
for neural decoding and brain-computer interfaces. Our work also has limitations. First, our mod-
eling was limited to cortical motor areas, excluding brain regions such as the frontal cortex and the
basal ganglia, which play keys role in motor control (Trautmann et al., 2025). Second, center-out
and random reaching tasks represent simplified and stereotyped motor behaviors. Last, RPNT was
developed for a single modality. Developing multimodal RPNT will be the next work (Wang et al.,
2024).
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1 ETHICS STATEMENT

This work focuses on algorithm development for neural data. To evaluate our RPNT model, we
used two datasets: a public dataset and a neuropixels dataset. The public dataset is from |Perich
et al.| (2018)). Data privacy and ethics protocols for experimental procedures related to neural data
collection for this data were addressed in the original publication. The neuropixels dataset was
collected at the University Institution and the National Primate Research Center. All procedures
were conducted in compliance with the NIH Guide for the Care and Use of Laboratory Animals and
were approved by the institutional Animal Care and Use Committee.

2 REPRODUCIBILITY STATEMENT

All hyperparameters, architectural details, and training configurations necessary for reproducing
our results are provided in Appendix [J]] Data preprocessing steps and experimental protocols are
described in Appendix [[} Code will be made publicly available on GitHub upon paper acceptance.
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APPENDICES

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used the large language model GPT for checking grammar and spelling, and improving the
clarity of our manuscript’s language. All scientific content, experimental design, analysis, and inter-
pretations are entirely the original work of the authors.

B BROADER IMPACT

Our results have a broad impact for future brain-computer interface (BCI) designs. Current BCI
decoders typically process neural activity signals in isolation, missing the rich information encoded
in historical recordings. Our RPNT’s superior performance on held-out cases demonstrates that
the pretraining strategy can substantially improve decoding robustness. Second, the computational
visualization framework provides a data-driven tool to quantify and functional connectivity and
directional information flow across brain sites. Third, while demonstrated on the motor cortex, our
RPNT framework is applicable to broad BCI decodings with proper modification.

C FORMULATION OF MROPE

For simplicity, we use 3D-RoPE as a concrete example of the general MROPE illustration. The
4D-RoPE can be found in section For neural recordings from S sites over ' timesteps, we
require positional encodings PE(s, t,d) € R%medel where d is the model embedding dimension. A
good positional encoding is preferred to satisfy two key properties: (1) site specific: PE(s;,t,d) #
PE(s;,t,d) for i # j, ensuring distinct representations for different site locations; (2) zero-shot
generalization: the encoding function can generate reasonable postional embedding giving any new
sites Spew = (Tnews Ynew) (Or configurations in MRoOPE case).

C.1 EXTENSION FROM STANDARD ROPE TO 3D-ROPE

The key insight of the standard RoPE is that attention scores depend only on relative distances. Thus,
combining the RoPE and session configuration (spatial coordinates (x,y) for site s and temporal
position t), our goal is to build 3D-RoPE, in which the attention score can depend on relative spatial
and temporal distances: f(|z; —;|, |y;—y;|, |t:—t;]). For position (x, y, t), the complete 3D-RoPE
transformation is a block-diagonal matrix:

R.(x) 0 0
Rip=| 0 Ryly) 0 |ecR™ (1)
0 0 R.(t)
where each sub-matrix R,,,c (¢} consists of 2x2 rotation blocks:
_cos(mﬁ(()m) - sin(m@ém)) 1
sin(mﬂ(()m)) cos(m&ém))
R,.(m)= 2)
cos(mﬂ(;i)l) - Sin(mﬁ(;i)l)
6 6
i sin(mﬁ(%”i)l) cos(mﬁ(%wl)l) |

C.2 RELATIVE POSITION PROPERTY PROOF

3D-RoPE maintains the RoPE property that the attention scores depend only on relative configura-
tion. For two configureations (z;,y;, t;) and (z;, y;,t;):

al k; = (Rap(zi,yi. t:)a)” (Rap(z;,y5,t)k) 3)
=o' RI,(zi,yi ti)Rap(zj,y5,t)k 4
=q'Rap(z; — zi,y; — yir t; — ti)k ©)
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This follows from the rotation composition property: R” (a)R(3) = R(3—«). This design ensures
site-specificity since different spatial coordinates produce different rotations, and enables zero-shot
generalization as the rotation operations naturally handle arbitrary continuous spatial coordinates.

C.3 OTHER POSITIONAL EMBEDDING BASELINES

Original RoPE:
[cosmby —sinmby 0 0 0 0 i
sinmby  cosmby 0 0 0 0
0 0 cosmbf; —sinmb; 0 0
R(é _ 0 0 sinmf;  cosmb 0 0
0 0 0 0 cos méd/g,l —sin Tﬁ&d/g,l
| 0 0 0 0 sinmbg/o_1  cosmbg_q |

(6)

Learnable PE We also implement an improved version of the traditional learnable PE (Devlin et al.,
2019) so that it is 1) learnable; 2) has a simple mechanism for the configuration generalization. Thus,
we employ a learned MLP that directly maps spatial-temporal coordinates to the embedding space:

PE(s,t,d) = MLP,s([z - o,y - , t]) 7
where « is a spatial scaling factor. In our experiments, we set the o = 1 for simplicity.
Sinusoidal PE Last, we also incorporate the standard sinusoidal positional embedding (Vaswani

et al.| 2017) in our ablation study.

C.4 4D-ROPE IN THE PUBLIC BENCHMARK

We showed the following rotation matrix for M = 4D that was used on the public benchmark

Rtask(x) 0 0 0
0  Ruupject(y) 0 0 dxd
Rd _ bject R** 8
4D 0 0 Rrecordingtime(t) 0 © ®
0 0 0 Ry(t)

where each entry was constructed similarly to equation 2] Different from the Neuropixel datasets,
in which the (x,y) coordinates have values, the public benchmark was string-based meta informa-
tion. Therefore, we used the discrete embeddings for representation. Specifically, we used i) [0, 1] to
embed behavior types {CO, RT}; ii) [0, 1, 2, 3] to embed subject {¢, j, m, t}; iii) [0, 1] range normal-
ization to the recording time (day/month/year). We further envision that using learnable MLPs for
the string-based meta information may further improve the embedding representation for MRoPE.
However, it is more about the incremental improvement of our MRoPE, and thus will not be inves-
tigated in this paper.

D LIGHTWEIGHT DECODER

Our main goal in RPNT is to get the pretrained transformer encoder, which later can be either fine-
tuned for downstream tasks or freezed for data-driven functional connectivity visualization. The
decoder is thus designed to be lightweight Decoderg : REXT*D s REXTXN maps encoded repre-
sentations to Poisson rate parameters through two feedforward blocks and an output projection:

Z = FFN,(FFN; (LayerNorm(z))) )
A = Softplus(Linear(Z5)) (10)
where each block is defined as:
FFN; (x) = Dropout(GELU(xW; + b)), W; € RP*% (11)
FFN,(x) = Dropout(GELU(xW; + b)), W, € RZ*% (12)
Linear(x) = xWoy + bour, Wou € REZXN (13)
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Point Masked Autoencoding Causal Masked Neural Modeling
Information flow  Bidirectional Unidirectional

Goal Interpolation Extrapolation

Application Offline (Denoising) Online (Prediction)

Table 1: Comparison between MAE and our proposed causal masked neural modeling

Method Cross-Site (B-CS)
w.o contrastive loss | 0.6267 + 0.0277
w. contrastive loss | 0.6612 + 0.0328

Table 2: Ablation study on contrastive loss

The softplus activation ensures positive rate parameters suitable for Poisson likelihood modeling
of neural spiking activity. Although this MLP-based decoder is lightweight compared to the so-
phisticated transformer decoder design in (Vaswani et al.| [2017), it enables efficient training while
maintaining decoding capacity.

E PRETRAINING DETAILS

E.1 COMPARISON WITH THE STANDARD MAE AND OUR OBJECTIVE

We compare our proposed causal masked neural modeling with the prior MAE approach in table

E.2 CROSS-SITE CONTRASTIVE LEARNING DETAILS

For each site representation z,, ; from site s; at time ¢, we define the Positive instances and Negative
instances as the same-site neural representation and the different sites neural representation. For
simplicity, we first average the representation for all time ¢. The temperature 7 controls the smooth-
ness of the similarity distributions; we set 7 = 0.1 consistently across all experiments on the private
neuralpixel dataset. Thus, we contrast representations from different sites:

S

1 exp(sim(z;, z;)/T)
ﬁcontrast = -3 IOg A (14)
S ; SO exp(sim(z;, Z;)/7)

We showed the ablation study for the contrastive loss in table 2] Our results showed that by con-
trastive loss, it encourages the RPNT model to learn more robust neural representations that have
better downstream decoding performance.

F COMPARE WITH BASELINE MODELS

We compared our RPNT with a few popular decoding models as baselines. Specifically, we included
the Wiener filter (Van Drongelen, [2018)) and several standard machine learning models such as
MLP (Glaser et al., [2020), GRU (Cho et al., 2014}, S4D (Gu et al.| [2021), Mamba (Gu & Dao,
2023)), transformer (Vaswani et al.| [2017; Devlin et al.l 2019) that were trained from scratch on the
downsrteam single session. We also included two baseline pretrained models: NDT2 (Ye et al.,
2023)) and the latest POSSM (Ryoo et al.| [2025)).

G VISUALIZATION

We examined the attention-based FC map C € R7*5*9 from the spatial encoder for the Neuropixel
dataset. Appendix figure[I|showed the time evolution (Oms, 300ms, 600ms) of FC during the reach-
ing period. We observed that site 6 remained quite active, whereas large site numbers, e.g., S10 and
later, seemed inactive. Further, it revealed a small network interaction within the large PMd-M1
region, which provided data-driven insights into neural mechanisms of motor behavior.
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Figure 1: Spatial attention map provided data-driven brain network insights for motor behaviors.

Transformer layers | Cross-Task (T-RT)
0.8482 + 0.0955
0.8432 + 0.1004
0.8515 £+ 0.1071
0.8431 £+ 0.0914
0.8461 £ 0.0942

AN B W

Table 3: Sweeping study on transformer layer

Attention heads | Cross-Task (T-RT)
4 0.8320 £+ 0.1054
8 0.8531 £+ 0.0931
16 0.8515 £ 0.1071
32 0.8509 £+ 0.1027
64 0.8505 £ 0.0935

Table 4: Sweeping study on attention head

Kernel size | Cross-Task (T-RT)
3, 3] 0.8317 £ 0.0945
[7,7] 0.8481 + 0.0954
[9,9] 0.8515 £ 0.1071

[11,11] 0.8411 £+ 0.0966
[15, 15] 0.8479 + 0.0900

Table 5: Sweeping study on kernel size

H SWEEPING ANALYSIS FOR RPNT MODEL

We showed the sweeping analysis result for our RPNT model on the T-RT task, including temporal
transformer layers (see table E[), attention heads (see table E[), and kernel sizes in context-based
attention (see table E[) Further, the standard deviation included ablation studies tables were listed
(see table[6]and table[7).

I NEUROPIXEL DATA COLLECTION AND PREPROCESSING

1.1 NEURALPIXEL DATA COLLECTION

We utilized high-density Neuropixel recordings (see appendix figure [2| for neuropixel setup and
appendix table [8]for each recording information) from a NHP performing center-out reaching tasks.
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Method Cross-Task (T-RT) | Cross-Site (B-CS)
Sinusoidal PE | 0.8260 + 0.0894 0.6242 4+ 0.0267
RoPE 0.8226 + 0.0941 0.6484 + 0.0074
Learnable PE 0.8305 4+ 0.0917 0.6273 4+ 0.0398
MRoPE 0.8515 + 0.1071 0.6612 + 0.0328

Table 6: Ablation study of positional encoding methods.

Method Cross-Task (T-RT) | Cross-Site (B-CS)
Standard attention 0.8024 + 0.0896 0.5024 + 0.0388
Context-based attention | 0.8515 + 0.1071 0.6612 + 0.0328

Table 7: Ablation study of attention mechanisms.

(A) (B)
Chamber Location Neuropixels

Midline Probe Monkey 1 Q T
/— 50

5 BSERS

5 | I .
io P 19 mm
S —Y

10 mm

Grid Dura

Figure 2: Neuropixel data collection setup. (A) Chamber location and neuropixel probe. (B) Neu-
ropixels probe insertion locations (black dots) on the cortical surface. Each black dot stands for a
different recording site.

The dataset is comprised of 17 recordings at different sites distributed across the PMd and M1
regions across experiment sessions spanning approximately one year.

1.2 PREPROCESSING PIPELINE

We required batch-like neural data for transformer model pretraining. However, the raw data across
heterogeneous recording sites have varying trial counts, neuron populations, and recording times.
LetS = {51,52,...,5 K; denote a collection of K recording sites, where each site .S; contain neu-
ral spike data X,; € RC:>xTixNi with C; counts of successful trials, t; time points, and N; recording
neurons after spike sorting. Our objective was to construct a unified dataset D = {(X£_|),L}
where X(*) € REXT*N represented standardized neural activity for each site and L € RX*2 en-
code spatial location (coordinates).

Therefore, we implemented a systematic approach to load multi-site neuropixel recordings. Given a
metadata file containing site locations L; = (z;, ;) € R? and corresponding data files, we filter sites
based on data availability and quality criteria. Each site’s spike data is loaded as X; € RC:xTixNi,
We first extract only the 1s reaching period data and apply it with 20ms bin size. This process gives
us uniform temporal dimension (I'" = 50). Next, we standardize neuron numbers across hetero-
geneous sites while creating data variety through neuron subset sampling. For each train/valid/test

split s (based on trials) and site i with shape X" € RCXTXN: e apply the following pipeline:

After neuron multi-sampling, we apply split-specific trial sampling to match target trial counts:

C(s) _ {Ctrain if s = train 15)

e | Opin if 5 € {val, test}
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Algorithm 1 Data Preprocessing Pipeline on the Neuropixel Dataset

Require: Site data X; € R *T*Ni_target neurons N, sample times M, target trial counts C’é‘get

Ensure: Standardized data X\ € R X TXN
Step 1: Split - Apply train/val/test split (e.g., 80%/10%/10%) to get XES)
Step 2: Neuron Multi-Sampling
N, total € N-M
if NZ Z Ntotal then
v < sample_without_replacement(N;, Nio1)
else
v <+ sample_with_replacement(N;, Nig1)
end if
Y « X[, :, ] {Neuron sampling}
Z « reshape(Y, (C*) - M, T, N)) {Multi-sampling}
: Step 3: Trial Sampling for Target Matching
¢ Tvailable Ti(S) -M
. if Tvailable = T(S) then

— Ltarget
T + sample_without_replacement(Clyailable, C’tgi;et)
: else
7 <+ sample_with_replacement(Clyailable s Ct(;;e[)
: ep(d)if
: X;” < Z[r,:,:] {Final trial sampling}

PRI RN

e e e e
I HE DD =20

where T4, 1S the target training sample count and 7}, is the minimal validation/test count to prevent
oversampling. Last, we aggregate standardized site data into consistent dimension tensors

X&) = stack((X{V, X, X)) e RE X CiageXTX N (16)
X)) = transpose(ngtgs, (1,0,2,3)) € R e X KXTxN 17
Our data processing approach ensures strict separation (Xn 0 Xyl 0 Xt = (Vi €
{1,..., K'}) while tensors maintain consistent dimensionality, i.e., X(*) € RBXKXOXN — yg ¢

{train, val, test}, where B () = ) represents the batch dimension for split s.

Raw trial counts range from 200 to 1417 per site; raw neuron counts range from 83 to 703 per site.
Our preprocessing pipeline standardizes all site data, which generates 80,000 (16*5000) training
samples for our RPNT pretraining and efficient validation/test data. Further, our pipeline generates
the dataset being agnostic of neuron numbers and neuron orders; rather, it only depends on the target
neurons N that one can specify. Therefore, our model trained on this dataset can handle arbitrary
numbers of neurons via the sampling strategy in our pipeline. To this end, table [§] and table 9]
summarized the pretraining data statistics before and after the preprocessing.

J HYPERPARAMETERS AND COMPUTATIONAL RESOURCES

We showed the detailed hyperparameter setup for the RPNT model pretraining and SFT in table [I0]
and table respectively. Pretraining of RPNT was trained using A40 GPUs, consuming 3GB and
9GB of GPU memory for the public benchmark and neuropixel dataset, respectively, which takes
around 12 hours for training. We used the best checkpoint based on the early stopping criteria for
the downstream SFT. For the benchmark, it took 1 hour for C-CO and 30 minutes for T-CO and
T-RT. For the neuropixel data, it took 15 mins. Our SFT results are reported based on the last epoch.
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Site ID Coordinates | Trials | Time bins | Neurons | Site labels
9940 -1, D 1286 50 328 S13
10802 (3,2) 1200 50 703 S11
10812 (-3,2) 1200 50 511 S9
10820 (-2,4) 1086 50 394 S3
10828 (-1,4) 1417 50 329 S4
12269 (3, -4) 752 50 252 S16
12290 5,2) 763 50 367 S12
13153 (1,5) 415 50 275 S2
13122 2,4) 674 50 83 S6
13239 (-1,5) 967 50 154 S1
13256 2,-4) 1024 50 255 S15
13272 (-1,3) 1056 50 187 S7
14116 (Test) (3,-2) 789 50 258 S17
14139 2,2) 865 50 125 S10
14824 2,3) 200 50 354 S8
14878 (3,-3) 200 50 309 S14
14891 0, 4) 200 50 106 S5

Table 8: Site-by-site breakdown showing data characteristics

Split Samples Shape Sampling Strategy
Training 80,000 | (5000, 16,50, 50) Full sampling

Validation | 3,200 (200, 16,50,50) | Minimal sampling
Test 3,200 (200, 16, 50, 50) Minimal sampling

Table 9: Dataset split characteristics after preprocessing. Format: (Trials, Sites, Time, Neurons).

Parameter microelectrode benchmark | Neuropixel dataset
Model dimension 512 384
Temporal layers 4 4

Spatial layers N/A 2
Attention heads 16 12
Kernel size 9,9] [9,9]
Dropout rate 0.1 0.1

Batch size 64 32
Epoch 100 100
Warm-up epoch 50 10
Weight decay 0.01 0.01
Learning rate 5x107° 5x107°
Gradient clip 1.0 1.0
Contrastive loss (\) | N/A 0.1
Random seed 3407 3407

Table 10: Hyperparameter setup for pretraining RPNT on benchmark and neuropixel dataset

Parameter microelectrode benchmark | Neuropixel dataset
Dropout rate | 0.1 0.1

Batch size 32 32

Epoch 200 200

Weight decay | 0.01 0.01

Learning rate | 1 x 10~4 1x 1074
Gradientclip | 1.0 1.0

Random seed | 3407 3407

Table 11: Hyperparameter setup for SFT of RPNT on both datasets
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