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ABSTRACT

Foundation models achieve State-of-the-art (SOTA) performance across different
tasks, but their size and computational demands raise concerns about accessibility
and sustainability. Existing efficiency methods often require additional retraining
or fine-tuning, limiting their practicality. Recent findings suggest that deep neural
networks exhibit internal representation similarities. While such similarities across
different models have been exploited for enabling techniques such as model stitch-
ing and merging, intra-network redundancy remains underexplored as a source
for efficiency gains. In this paper, we introduce Transformer Optimization using
Adaptive and Simple Transformations (TOAST), a framework that exploits these re-
dundancies to approximate entire transformer blocks with lightweight closed-form
mappings, such as linear transformation or even the identity, without any additional
training. Across SOTA pretrained vision models (e.g., ViT, DINOv2, DeiT) and
datasets ranging from MNIST to ImageNet-1k, TOAST reduces parameters and
computation while preserving, and in some cases improving, downstream perfor-
mance. These results show that large portions of transformer depth can be replaced
by trivial functions, opening a new perspective on efficient foundation models.

1 INTRODUCTION

. . . . . .

T

s
× ×

X(s) X(e)e

Figure 1: Framework Description. Given two latent spaces X(s) and X(e) corresponding to
the outputs of blocks s and e for a random subset of 500 training samples, TOAST estimates a
lightweight transformation T such that X(e) ≈ T (X(s)). This allows entire transformer blocks to be
approximated by simple closed-form mappings (e.g., linear or identity), reducing parameters and
computation without retraining.

As Neural Networks (NNs) continue to grow in size and complexity, their demand for computational
resources has become a critical bottleneck. While larger models consistently achieve SOTA perfor-
mance, this comes at the cost of substantial memory usage and power consumption, limiting their
accessibility and deployment. This challenge is for instance most relevant in on-device scenarios,
where saving memory, latency, and energy, even by little margins, is critical (Pan et al., 2022; Li et al.,
2022). This has motivated a growing body of work on reducing model complexity. However, most
existing approaches either require additional, resource-intensive training phases or lead to significant
drops in accuracy. Recent studies reveal that there exists strong representational similarities both
within and between NNs. In other words, when focusing on intra-network similarities, different
blocks often perform overlapping functions or produce highly correlated outputs.

This redundancy suggests an opportunity: instead of retraining or pruning, can we approximate these
blocks with simpler transformations? To address this question, we propose Transformer Optimization
using Adaptive and Simple Transformations (TOAST), a novel framework that exploits block-level
representational redundancy to replace transformer blocks with lightweight transformations. By
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doing so, TOAST reduces parameter count and computational cost, while maintaining (and in some
cases even improving) downstream task performance. Crucially, our method is training-free, making
it simple, efficient, and widely applicable, even in resource-constrained scenarios such as deployment
on edge devices, where even the smallest available models may exceed memory or power budgets.
Our main contributions are as follows:

• We propose TOAST, a simple yet effective framework that replaces transformer blocks with
lightweight transformations (e.g., linear maps or even the identity), significantly reducing
parameters and computational cost while preserving downstream performance (Figure 1).

• We introduce linear approximation error as a stable and computationally lightweight criterion
for identifying redundant transformer blocks (Tables 9 and 11 and Algorithms 1 and 2) and
we present a systematic analysis of block-wise representational similarities in pre-trained
vision transformers, revealing consistent redundancy patterns across diverse models and
motivating the possibility of approximating entire blocks (Figures 2 and 6).

• We empirically demonstrate that accurate block approximations can be obtained from only a
few hundred samples, showing that block redundancy can be exploited without requiring
large-scale retraining (Tables 1 and 4 and Figure 5).

• We extensively validate our approach across a wide spectrum of vision models (e.g.,
DiNO-B, ViT-L, DEiT-S, ViT-S, DiNO-S, ViT-T) and datasets ranging from MNIST
to ImageNet1k, confirming both the generality and efficiency of the method (Tables 1
to 3 and 12 to 16).

• We preliminarily validate the application of TOAST beyond vision classification, including
semantic segmentation using ViT-S and DiNO-B on SceneParse150, and and text
classification using ModernBERT-B on AG News (Tables 5 and 6 and Section A.2.4).

2 RELATED WORK

Measuring Similarities A range of metrics have been introduced to assess the similarity between
latent spaces generated by different NNs (Klabunde et al., 2023; Ballester et al., 2023). One
established approach is Canonical Correlation Analysis (CCA) (Hotelling, 1992), known for its
invariance to linear transformations. Variants of CCA, such as Singular Value CCA (SVCCA) (Raghu
et al., 2017), aim to enhance robustness, while techniques like Projection Weighted CCA (PWCCA)
(Morcos et al., 2018) mitigate sensitivity to small perturbations. Another widely used metric, Centered
Kernel Alignment (CKA) (Kornblith et al., 2019), captures the similarity between latent spaces while
ignoring orthogonal transformations. However, recent work (Davari et al., 2022) highlights that this
metric can be sensitive to shifts in the latent space. Additionally, Barannikov et al. (2021) proposes a
method to compare two data representations by measuring the multi-scale topological dissimilarity,
while Fumero et al. (2024) leverages the principles of spectral geometry to model and analyze the
relationships between distinct latent spaces.

Leveraging Similarities Valeriani et al. (2024) examines the intrinsic dimensionality and neighbor
compositions of representations in transformer models. Kvinge et al. (2022) investigates how
models process variations in data points across layers, while Nguyen et al. (2020) assesses the
impact of network depth and width on hidden representations. Additionally, Crisostomi et al. (2023)
studies the conditions under which two latent spaces can be merged into a unified one. Moschella
et al. (2023) constructs a unified space shared by different NNs, enabling zero-shot stitching of
independently trained models across different modalities (Norelli et al., 2023). More recently,
Cannistraci et al. (2024) enables model stitching without explicit assumptions about the transformation
class connecting the latent manifold embeddings, or with only partial correspondence between latent
spaces (Cannistraci et al., 2023). Finally, Lähner & Moeller (2024); Maiorca et al. (2024) demonstrate
that representations learned by distinct NNs can be aligned using simple transformations.

Architectural Efficiency While large-scale models with billions or even trillions of parameters
continue to achieve state-of-the-art performance, their growth comes with trade-offs, such as slower
inference times and significantly higher computational costs. Improving the efficiency of Deep Neural
Network (DNN) has been a long-standing area of research. For instance, Veit et al. (2016) shows
that removing residual blocks from deep Convolutional Neural Networks (CNNs) only marginally
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impacts performance, which inspired approaches to reduce inference time by dynamically deciding
which layers to execute based on the input (Wu et al., 2018; Veit & Belongie, 2018). Additionally,
various techniques to enhance efficiency have emerged, such as early exiting and model pruning.
Early exit strategies, which introduce intermediate output layers at different stages of the network,
have been shown to reduce inference time (Xin et al., 2020; Zhou et al., 2020; Yu et al., 2022; Tang
et al., 2023). However, these approaches require the training of intermediate classifiers to enable exits
at predefined layers. Alternatively, model pruning reduces computational load by either removing
individual weights based on specific criteria, such as gradient information (Ma et al., 2023), entropy
(Liao et al., 2023), or second-order information (Singh & Alistarh, 2020), or by eliminating larger
structural components, like channels or residual blocks in ResNets (Bai et al., 2023; Wang & Wu,
2023), weights in LLMs (Sun et al., 2023) and self-attention layers in Transformers (Zhang & He,
2020; Sajjad et al., 2023; Venkataramanan et al., 2024; Zhang et al., 2024). Although effective, these
approaches require training the model from scratch and, in the best case, fine-tuning. However, Bai
et al. (2023) shows that for CNNs, this additional training step can sometimes be avoided.

Unlike other methods, TOAST leverages intra-network similarities to reduce vision transformers
complexity without the need for additional training steps while maintaining competitive performance.

3 BLOCKS APPROXIMATION

The central idea of our approach is that it is possible to leverage representation similarities within
transformer-based architectures to replace entire blocks with simpler transformations. In this work,
a block refers to a sequence of layers including multi-head self-attention, normalization, and feed-
forward layers, that function together as a cohesive unit. By replacing these blocks with simpler
transformations, we can reduce the computational complexity of the network while maintaining its
core functionality.

Approximating Transformer Blocks Given two blocks s and e, our goal is to replace the interme-
diate blocks s+ 1, . . . , e with a single, lightweight transformation that maps the output of block s
directly to an approximation of the output of block e. This approach allows us to skip the computation
of blocks s+ 1, . . . , e, effectively reducing the overall computational costs. This approximation can
be repeated for multiple, non-overlapping blocks, i.e., blocks (si, ei) and (sj , ej) with ei < sj . An
overview of the method is provided in Figure 1.

Let X(s) ∈ R|Dsub|×ds and X(e) ∈ R|Dsub|×de represent the output representations from block s and e
respectively, for the data points in Dsub ⊂ D, sampled uniformly at random from the full training
dataset D. Our objective is to find a transformation T : Rds → Rde such that:

X(e) ≈ T (X(s))

In this work, we consider T to be the identity or a linear transformation T. We can compute the
linear transformation T by minimizing the squared error between the transformed output T (X(s))
and the actual X(e):

T = argmin
T
∥X(e) − T (X(s))∥22

This optimization problem allows for a closed-form solution that efficiently computes the optimal
transformation T. The solution bypasses the computation of all layers between any two blocks s and
e, replacing them with T. This approximation reduces computational complexity while minimally
affecting internal representations, as illustrated in Figures 7 to 11, and preserves compatibility with
downstream classifiers, achieving significant compression as shown in Tables 1 to 3 and 12 to 15.

Patterns of Similarity between Transformer Blocks Inspired by existing results Venkataramanan
et al. (2024), which show that multi-head attention modules exhibit similarity in learned representa-
tions, we investigate whether pre-trained foundation models contain entire blocks that produce highly
similar representations. Rather than using CKA to measure representational similarity, we quantify
how well the output of a later block can be reconstructed from an earlier one using a simple linear
transformation. All representations are computed using only the [CLS] token, providing a consistent
and semantically aligned basis for comparing blocks.

3
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Given representations Hs and He extracted from blocks s < e, we learn the optimal linear map W∗

that solves
W∗ = argmin

W
∥He −HsW∥2F .

We measure similarity via the normalized residual error

ϵ(s, e) =
∥He −HsW

∗∥F
∥He∥F

,

where lower values indicate that block e’s representations are well explained by a linear transformation
of block s.

By computing the metric for all block pairs, using only a small random subset of the training data (i.e.,
50 samples), and ranking them, we can automatically identify blocks whose computations contribute
minimally beyond a near-linear mapping. We additionally perform an ablation study comparing
several candidate similarity metrics for block selection, and we report these results in Section A.1.3.
The procedure used to automatically extract the top-k skip candidates is summarized in Algorithm 1,
and the linear approximation error is detailed in Algorithm 2.

4 EXPERIMENTS

In this section, we first analyze the similarities between different transformer blocks to motivate
their approximation using simple transformations. We then present comprehensive results on image
classification across various models and datasets to demonstrate the effectiveness and efficiency of the
proposed method. Beyond these core results, we further study the robustness of TOAST through ab-
lations on the number of samples required for approximation and the choice of translator architecture.
Overall, our findings show that TOAST achieves strong performance while producing lighter and
faster models. Due to space constraints, additional results on zero-shot image classification, as well as
further qualitative and quantitative analyses, are provided in the Appendix (Sections A.2.2 and A.2.3).

4.1 LATENT ANALYSIS

In this section we investigate similarities in the latent representations of DiNO-B and DEiT-S on
five datasets: CIFAR-10, CIFAR-100, MNIST, F-MNIST, and ImageNet1k. We compute the
linear approximation error using only the [CLS] token, averaged over a small subset of 50 training
samples. This is sufficient to reveal block-level similarity patterns while remaining computationally
efficient. Additional results with other pretrained vision transformers (ViT-T, ViT-S, DiNO-S,
ViT-B) are provided in Section A.2.1, showing consistent patterns for each model across different
datasets.

D
i
N
O
-
B

MNIST F-MNIST CIFAR-10 CIFAR-100 ImageNet1k

D
E
i
T
-
S

Figure 2: Block Similarities. Block-by-block similarities in DiNO-B, and DEiT-S models across
five datasets: MNIST, F-MNIST, CIFAR-10, CIFAR-100 and ImageNet1k. Each matrix
quantifies the linear approximation error using only the [CLS] token, averaged over a small subset
of 50 training samples. The matrices reveal that the similarity between blocks is predominantly
influenced by the model rather than the specific dataset. Additional results in Section A.2.1.
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Do vision transformer models exhibit block-wise similarity patterns? The results in Figure 2 re-
veal that while the similarity patterns differ across models, they remain largely consistent for the same
model across different datasets. This suggests that the similarity structure between computational
blocks is predominantly influenced by the model itself. Although the general similarity pattern re-
mains the same, the differences in values become more pronounced (i.e., the block structure becomes
more evident) as the complexity of the dataset increases (e.g., from MNIST to ImageNet1k). These
finding aligns with observations from Nguyen et al. (2020), where DNN trained from scratch exhibit
a distinctive "block structure" in their representations, which is linked to model overparameterization.
Our results extend this observation to vision pre-trained foundation models, showing that such a
structure is primarily an intrinsic property of the model. Moreover, these consistent block-wise
patterns indicate potential targets for approximation, suggesting that entire blocks may be replaced
with simpler transformations without substantially altering the model’s internal representations.

Takeaway Pre-trained vision foundation models present block-wise similarity patterns that
are primarily determined by the model itself.

How does TOAST affect latent representations? We next analyze the impact of the proposed trans-
formations on the final block’s latent representations, which are used for downstream classification.
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T
-
S

Figure 3: Approximation vs. Representation
Similarity. CKA between the last block repre-
sentations of the original and the approximated
model when approximating the ith block.
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Figure 4: PCA Visualization. Final block rep-
resentations for original and TOAST models on
F-MNIST reveal DiNO-B’s stronger reliance on
final block compared to DEiT-S.

We approximate these blocks using a shared lin-
ear transformation applied across all tokens, esti-
mated on a subset of 500 training samples. For
consistency, we use the same models and datasets
as in Figure 2. To quantify the effect of the ap-
proximation, following (Venkataramanan et al.,
2024; Kornblith et al., 2019) we compute the
CKA similarity between the final block representa-
tions of the original and the TOAST-approximated
model for each block k using its preceding block
as input. As shown in Figure 3, the model-
specific similarity patterns re-emerge after ap-
proximation. The plots highlight more specific
trends. Approximating blocks is easier on sim-
pler tasks (e.g., image classification on MNIST or
F-MNIST), yielding representations that closely
match the originals, whereas on more complex
datasets (e.g., ImageNet1k or CIFAR-100),
the approximated representations deviate more
from the original ones. Furthermore, the final
blocks of DEiT-S exhibit high similarity, suggest-
ing that approximating these layers preserves the
final representations, while earlier blocks remain
more critical. To provide a more intuitive view,
Figure 4 visualizes the final-layer representations
using Principal Component Analysis (PCA). We
compare the original representations with those
obtained after approximating the final block (10
→ 11) using TOAST on F-MNIST, with colors in-
dicating the 10 classes. The visualization confirms
that approximating the final block of DiNO-B
results in noticeable deviations from the origi-
nal representations, whereas for DEiT-S the ap-
proximated representations remain highly similar.

These observations align with the CKA analysis in Figure 3, highlighting that the effect of block
approximation depends strongly on the model and its internal block structure. Additional results
across other models and datasets are provided in Section A.2.1.
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Takeaway Transformer blocks can be approximated using simple transformations, without
compromising representation fidelity.

Can entire transformer blocks be approximated without losing accuracy? Initial results, re-
ported in Table 1, support the qualitative analysis and empirically demonstrate that entire vision
transformer blocks can be effectively approximated using simpler transformations (e.g., linear pro-
jections or, in some cases, the identity function). Such approximations reduce both the number of
parameters and Giga Floating-Point Operations (GFLOPs), thereby improving throughput (images
per second), while incurring only a slight to negligible decrease in downstream task performance. For
instance, consistent with our earlier analysis, we find that approximating the final block of DEiT-S
when using ImageNet1k (e.g., approximating blocks 10→ 11 or 9→ 11 with a linear transforma-
tion) yields modest performance drops going from 73.85% to 73.78% and 70.01%, respectively, while
providing substantial efficiency gains. Importantly, we also show that even the identity transformation,
achieves competitive results, with accuracy drops as small as -0.24% and -5.44%, respectively. How-
ever, the choice of translator naturally depends on the efficiency-accuracy trade-off: linear translation
guarantee in general most reliable accuracy–efficiency balance, whereas the identity yields the leanest
training-free approximation when maximum simplicity is required. Further methodological details
and the full evaluation are presented in Section A.1 and Section 4.2 respectively, while details on the
efficiency metrics and additional analysis on those are in Sections A.1.7 and A.2.6, respectively.

Table 1: TOAST Image Classification Performance. Performance comparison using the Identity
translator and the Linear Translator for DEiT-S and ImageNet1k accross 3 seeds. The "Approx."
column specifies the blocks used for approximation, the first one represents the block whose output is
used to approximate the second block’s output. Additional results in Tables 2 and 3 and Section A.2.2.

Identity Translator Linear Translator

Approx. Params. Accuracy % ↑ GFLOPS ↓ imgs/s ↑ Accuracy % ↑ GFLOPS ↓ imgs/s ↑
2→ 4 -3.25M 63.74± 0.19(−13.69%) 4.15 7222.5 69.87± 0.14(−5.39%) 4.18 7187.6

9→ 11 -3.25M 69.83± 0.33(−5.44%) 4.15 7224.6 70.01± 0.27(−5.20%) 4.18 7203.8

0→ 1 -1.62M 64.02± 0.08(−13.31%) 4.56 6755.8 62.32± 0.15(−15.61%) 4.59 6748.9
10→ 11 -1.62M 73.67± 0.26(−0.24%) 4.56 6751.7 73.78± 0.28(−0.10%) 4.59 6756.3

original 21.81M 73.85± 0.39 4.97 6349.2 73.85± 0.39 4.97 6325.6

Takeaway TOAST effectively reduces model parameters and improve model efficiency
without significantly compromising the downstream task performance.

4.2 IMAGE CLASSIFICATION PERFORMANCE

We evaluate TOAST on image classification tasks using pretrained models of varying sizes (ViT-L,
DiNO-B, and DEiT-S) and two benchmark datasets (CIFAR-100F and ImageNet1k). Addi-
tional results with a broader set of models (ViT-T, ViT-S, ViT-B, ViT-L, DiNO-S, DiNO-B,
DEiT-S) and datasets (MNIST, F-MNIST, CIFAR-10, CIFAR-100C) are provided in Sec-
tion A.2.2. While in Section A.2.7, we complement the quantitative evaluations with qualitative
analyses of misclassifications after block approximation, providing further insight into model behavior
under TOAST. Additional implementation details, including model and dataset specifications, com-
putational resources, and software tools, are provided in Tables 7 and 8, and Sections A.1.5 to A.1.7.

Block approximations in TOAST are calculated via a shared linear, or identity, transformation applied
across all tokens and are estimated using a subset of 500 training samples. A linear classifier is
then trained on top of the frozen backbone with the Adam optimizer (learning rate 0.001), batch
size 256, for 5 epochs, over 3 different seeds. This setup simulates a realistic scenario where a
pretrained feature extractor is adapted to a new dataset unseen during pretraining. However, to
assess the robustness of our method, we also report the results using the original classification heads
(Section A.2.5), which confirm the consistency of our findings.

Are TOAST results competitive? As shown in Tables 2 and 3, TOAST consistently reduces
model size and GFLOPs while maintaining, and in some cases improving, image classification

6
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Table 2: TOAST Classification Performance on ImageNet1k. Image classification accuracy,
GFLOPs, and throughput for DEiT-S, DiNO-B, and ViT-L using ImageNet1k. The "Approx."
column indicates the block pairs where the first block approximates the second. Additional results
using other models and datasets are provided in Table 3 and Section A.2.2.

Identity Linear

Approx. Params. Accuracy % ↑ GFLOPs ↓ imgs/s ↑ Accuracy % ↑ GFLOPs ↓ imgs/s ↑

D
E
i
T
-
S

3→ 4, 9→ 11 -4.88M 66.96± 0.34(−9.33%) 3.74 7751.4 68.39± 0.13(−7.39%) 3.80 7718.4
3→ 4, 9→ 10 -3.25M 69.22± 0.13(−6.27%) 4.15 7210.9 71.35± 0.22(−3.38%) 4.21 7188.4

2→ 3 -1.62M 70.80± 0.05(−4.12%) 4.56 6754.2 73.19± 0.19(−0.88%) 4.59 6736.7
10→ 11 -1.62M 73.67± 0.26(−0.24%) 4.56 6752.6 73.78± 0.28(−0.09%) 4.59 6740.5

original 21.81M 73.85± 0.39 4.97 6349.2 73.85± 0.39 4.97 6325.6

D
i
N
O
-
B

0→ 4 -26.00M 3.58± 0.06(−95.20%) 16.32 3230.9 27.70± 0.19(−62.71%) 16.47 3227.7
0→ 1, 2→ 3, 4→ 5 -19.50M 6.98± 0.18(−90.63%) 18.34 2947.0 61.02± 0.36(−17.86%) 18.80 2929.6

0→ 1, 2→ 3 -13.00M 13.28± 0.46(−82.18%) 20.37 2703.9 70.82± 0.49(−4.66%) 20.67 2681.2
0→ 1 -6.50M 65.47± 0.43(−12.14%) 22.39 2506.6 73.43± 0.02(−1.15%) 22.54 2487.0
5→ 6 -6.50M 28.84± 0.51(−61.30%) 22.39 2503.1 73.01± 0.41(−1.71%) 22.54 2490.6

original 86.58M 74.52± 0.26 24.42 2321.3 74.52± 0.26 24.42 2316.5

V
i
T
-
L

2→ 4, 18→ 23 -80.83M 62.92± 0.21(−19.89%) 45.05 1654.9 67.43± 0.05(−14.16%) 45.47 1652.8
17→ 23 -69.28M 66.81± 0.34(−14.95%) 47.70 1572.4 66.87± 0.52(−14.87%) 47.90 1567.0

3→ 4, 19→ 23 -57.74M 70.97± 0.42(−9.65%) 50.34 1509.9 71.50± 0.14(−8.98%) 50.75 1499.5
3→ 4, 20→ 23 -46.19M 73.49± 0.18(−6.44%) 52.98 1440.4 74.03± 0.43(−5.76%) 53.39 1436.8
3→ 4, 21→ 23 -34.64M 75.80± 0.26(−3.50%) 55.62 1377.2 76.30± 0.14(−2.86%) 56.03 1345.6
7→ 8, 15→ 16 -23.09M 76.81± 0.28(−2.21%) 58.26 1318.2 77.32± 0.48(−1.56%) 58.67 1316.4

16→ 17, 22→ 23 -23.09M 77.64± 0.32(−1.15%) 58.26 1318.8 77.64± 0.02(−1.16%) 58.67 1312.3
3→ 4 -11.55M 77.32± 0.29(−1.57%) 60.90 1269.2 78.36± 0.26(−0.24%) 61.11 1270.0

22→ 23 -11.55M 78.32± 0.09(−0.29%) 60.90 1267.5 78.21± 0.19(−0.43%) 61.11 1270.9

original 304.35M 78.55± 0.20 63.54 1219.8 78.55± 0.20 63.54 1225.2

accuracy. This aligns with our representational analyses in Section 4.1: for instance, approximating
the final block of DEiT-S produces latent representations nearly identical to the original (Figures 3
and 4), making it an ideal candidate for approximation. Even when multiple consecutive blocks are
approximated (e.g., 9→11), models maintain performance comparable to or exceeding the original
while significantly reducing parameters. This demonstrates that a simple linear transformation, or
even the identity in certain cases, is sufficient to capture the functionality of full transformer blocks
without additional training, provided the transformation is shared across all tokens.

Table 3: TOAST Classification Performance on CIFAR-100F. Image classification accuracy,
GFLOPs, and throughput for DEiT-S, DiNO-B, and ViT-L using CIFAR-100F. The "Approx."
column indicates the block pairs where the first block approximates the second. Additional results
using other models and datasets are provided in Section A.2.2.

Identity Linear

Approx. Params. Accuracy % ↑ GFLOPs ↓ imgs/s ↑ Accuracy % ↑ GFLOPs ↓ imgs/s ↑

D
E
i
T
-
S

3→ 4, 9→ 11 -4.88M 68.48± 0.34(−3.44%) 3.74 7755.1 70.64± 0.37(−0.39%) 3.80 7713.7
9→ 11 -3.25M 72.28± 0.36(+1.92%) 4.15 7226.6 72.04± 0.42(+1.57%) 4.18 6791.7
8→ 9 -1.62M 71.34± 0.10(+0.60%) 4.56 6755.2 70.80± 0.12(−0.17%) 4.59 6739.9

9→ 10 -1.62M 71.66± 0.39(+1.04%) 4.56 6692.1 71.49± 0.20(+0.80%) 4.59 6741.3

original 21.81M 70.92± 0.18 4.97 6349.0 70.92± 0.18 4.97 6249.4

D
i
N
O
-
B

0→ 4 -26.00M 18.29± 0.86(−79.09%) 16.32 3233.8 62.25± 0.54(−28.83%) 16.47 3204.9
0→ 1, 2→ 3, 4→ 5 -19.50M 29.05± 0.31(−66.79%) 18.34 2943.1 79.06± 0.27(−9.60%) 18.80 2922.6

0→ 1, 2→ 3 -13.00M 33.25± 0.18(−61.99%) 20.37 2705.6 84.18± 0.18(−3.76%) 20.67 2690.1
0→ 1 -6.50M 78.83± 0.22(−9.87%) 22.39 2492.8 86.64± 0.37(−0.94%) 22.54 2493.8
2→ 3 -6.50M 47.51± 0.52(−45.68%) 22.39 2484.2 86.06± 0.20(−1.60%) 22.54 2484.6

original 86.58M 87.46± 0.04 24.42 2315.5 87.46± 0.04 24.42 2317.3

V
i
T
-
L

2→ 4, 18→ 23 -80.83M 74.41± 0.44(−13.79%) 45.05 1655.7 84.02± 0.39(−2.66%) 45.47 1649.6
17→ 23 -69.28M 85.32± 0.45(−1.16%) 47.69 1578.8 84.55± 0.44(−2.05%) 47.90 1552.1

3→ 4, 19→ 23 -57.74M 84.23± 0.08(−2.43%) 50.34 1503.6 85.81± 0.39(−0.59%) 50.75 1497.4
3→ 4, 20→ 23 -46.19M 84.68± 0.18(−1.90%) 52.98 1445.2 86.30± 0.11(−0.03%) 53.39 1431.0

20→ 23 -34.64M 86.61± 0.07(+0.33%) 55.62 1381.2 86.55± 0.22(+0.27%) 55.82 1372.6
3→ 4, 21→ 23 -34.64M 84.86± 0.28(−1.70%) 55.62 1376.7 86.37± 0.28(+0.06%) 56.03 1372.7

20→ 22 -23.09M 86.30± 0.23(−0.03%) 58.26 1317.5 86.52± 0.12(+0.24%) 58.47 1314.6
3→ 4, 21→ 22 -23.09M 84.58± 0.19(−2.02%) 58.26 1315.8 86.20± 0.11(−0.14%) 58.67 1317.6

20→ 21 -11.55M 86.44± 0.24(+0.14%) 60.90 1268.5 86.39± 0.08(+0.08%) 61.11 1266.7
21→ 22 -11.55M 86.55± 0.01(+0.26%) 60.90 1270.7 86.72± 0.24(+0.46%) 61.11 1269.2

original 304.35M 86.32± 0.08 63.54 1223.1 86.32± 0.08 63.54 1224.3

Additionally, efficiency gains are notable: throughput (imgs/s) increases while GFLOPs decreases,
highlighting practical benefits for deployment, as also shown in Section A.2.6. Additional results
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across other models (DiNO-B, ViT-L) and datasets confirm that TOAST generalizes across
architectures and scales (Section A.2.2). Finally, while approximations are easier for simpler datasets
(e.g., CIFAR-100F), TOAST still achieves meaningful compression with minimal accuracy loss
on complex datasets like ImageNet1k. Additional results across models and datasets are provided
in Tables 12 to 15. To assess scalability, we applied TOAST to ViT-L. Approximating selected
blocks, e.g., 17→ 23, reduces the parameter count by 69.3M, lowers GFLOPs from 63.54 to 47.79,
and increases throughput from 1223.1 to 1578.8 imgs/s, while incurring a minimal accuracy drop
of 1.16%. This shows TOAST’s utility in balancing substantial computational savings with a modest
performance trade-off, even in large models.

Takeaway Approximating selected blocks enables efficiency gains with minimal impact on
the accuracy.

Are 500 training samples enough? We study the sensitivity of block approximation to the number
of training samples using DiNO-B and DEiT-S on ImageNet1k. As shown in Figure 5, perfor-
mance typically plateaus quickly: 500 samples are sufficient to obtain stable and reliable approxima-
tions. Increasing the sample count beyond this threshold provides only marginal gains, while substan-
tially fewer samples lead to noticeable degradation. Interestingly, when the representational spaces of
consecutive blocks are already highly aligned, even as few as 10 or 50 samples suffice to achieve com-
petitive approximations. Conversely, for blocks that are harder to approximate, such as the early layers
of DEiT-S (e.g., 0→1), even 4000 samples are insufficient to estimate a linear transformation that
maintains competitive performance. We highlight that these results are obtained on ImageNet1k,
which contains 1000 classes. The 500 samples represent only a small subset of the class space, yet re-
liable approximations are still achieved. This indicates that TOAST primarily captures the block-level
structure of representations rather than requiring exhaustive coverage of all classes. Consequently,
TOAST could be practical also in scenarios where a large labeled datasets is limited.

A
c
c
u
r
a
c
y

DEiT-S DiNO-B

Figure 5: Sample Size Ablation. Classification accuracy as a function of the number of training
samples used for approximating different layers of DiNO-B and DEiT-Swith a linear transformation
using ImageNet1k. Accuracy stabilizes after approximately 500 samples.

Takeaway A small number of samples is sufficient to achieve stable and reliable representa-
tions when approximating transformer blocks, balancing efficiency and accuracy.

What if a more complex transformation is used? We evaluate whether deeper approximators
improve downstream task performance. Specifically, we compare TOAST (Identity and Linear)
to MultiLayer Perceptron (MLP) and Residual MLP, trained for 300 steps with Adam (learning
rate 10−3). These more complex transformation, as for Identity and Linear, are applied across all
tokens, and estimated using a subset of 500 training samples. Results in Table 4 show a consistent
trend for ViT-L on both ImageNet1k and CIFAR-100F: the linear transformation provides the
most reliable trade-off across datasets. On CIFAR-100F, linear often achieves the best or near-best
accuracy (e.g., 21→22: 86.72% vs. 86.82% for Res-MLP and 85.20% for MLP), while remaining
training-free, thus more efficient. On ImageNet1k, the gap becomes even clearer: for the same
blocks linear reaches 77.24%, while Res-MLP and MLP reach 77.14% and 74.20%, respectively.
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Additionally, also Linear obtain competitive results. TOAST operates in closed form, requires no
optimization, and consistently achieves strong efficiency–accuracy trade-offs. These findings confirm
that a simple linear transformation is sufficient to approximate transformer blocks in most settings,
with deeper translators offering little benefit despite their higher cost.

Table 4: Transformations Comparison. Classification accuracy on CIFAR-100F and
ImageNet1k using ViT-L. The "Approx." column specifies the block mapping (output of the first
block is used to approximate the output of the second). MLP and Res-MLP are trained approximators,
while Identity and Linear are closed-form and training-free. Results are averaged over three seeds.

Accuracy ↑
Approx. Params. Identity Linear MLP Res-MLP

C
I
F
A
R
-
1
0
0
F

3→ 4, 20→ 23 -46.19M 84.68± 0.18 86.30± 0.11 84.36± 0.48 86.10± 0.39
17→ 23 -69.28M 84.58± 0.19 86.20± 0.11 84.83± 0.31 86.49± 0.08

3→ 4, 19→ 23 -57.74M 84.23± 0.08 85.81± 0.39 83.63± 0.42 85.58± 0.06
20→ 23 -34.64M 86.61± 0.07 86.55± 0.22 84.68± 0.39 86.19± 0.02

3→ 4, 21→ 23 -34.64M 84.86± 0.28 86.37± 0.28 84.90± 0.71 86.10± 0.37
20→ 22 -23.09M 86.30± 0.23 86.52± 0.12 84.97± 0.18 86.71± 0.28

3→ 4, 21→ 22 -23.09M 84.58± 0.19 86.20± 0.11 84.83± 0.31 86.49± 0.08
20→ 21 -11.55M 86.44± 0.24 86.39± 0.08 84.40± 0.70 86.63± 0.06
21→ 22 -11.55M 86.55± 0.01 86.72± 0.24 85.20± 0.26 86.82± 0.31

original 304.35M 86.32± 0.08 86.32± 0.08 86.32± 0.08 86.32± 0.08

I
m
a
g
e
N
e
t
1
k

3→ 4, 20→ 23 -46.19M 73.49± 0.18 74.03± 0.43 69.49± 0.24 73.68± 0.12
17→ 23 -69.28M 84.58± 0.19 86.20± 0.11 84.83± 0.31 86.49± 0.08

3→ 4, 19→ 23 -57.74M 70.97± 0.42 71.50± 0.14 66.19± 0.17 70.75± 0.07
20→ 23 -34.64M 74.45± 0.07 74.45± 0.24 70.19± 0.30 74.46± 0.22

3→ 4, 21→ 23 -34.64M 75.80± 0.26 76.30± 0.14 73.23± 0.29 76.14± 0.22
20→ 22 -23.09M 75.49± 0.19 74.84± 0.21 70.56± 0.25 75.59± 0.18

3→ 4, 21→ 22 -23.09M 76.25± 0.02 76.61± 0.29 73.52± 0.40 76.43± 0.21
20→ 21 -11.55M 77.00± 0.27 77.19± 0.25 72.72± 0.31 76.24± 0.21
21→ 22 -11.55M 77.24± 0.28 77.06± 0.24 74.20± 0.48 77.14± 0.27

original 304.35M 78.55± 0.20 86.32± 0.20 86.32± 0.20 86.32± 0.20

Takeaway TOAST consistently matches or outperforms deeper trained approximators while
requiring no gradient-based training.

4.3 TOAST APPLICABILITY TO OTHER TASKS OR DOMAINS

We further evaluate TOAST beyond vision classification by applying it to text classification and
semantic segmentation tasks. For text classification, we use ModernBERT-B on the AG News
dataset, while for segmentation we employ the same backbone on the SceneParse150 dataset.

Table 5: TOAST Text Classification Performance on AG News. Text classification accuracy,
GFLOPs, and throughput for ModernBERT-B using AG News. The "Approx." column specifies
the block mapping (output of the first block is used to approximate the output of the second). MLP is
a trained approximators, while Linear is closed-form and training-free. Results are averaged over
three seeds. Additional results are provided in Section A.2.4.

Linear MLP

Approx. Params ↓ Accuracy% ↑ GFLOPs ↓ img/s ↑ Accuracy% ↑ GFLOPs ↓ token/s ↑
11→ 21 92.82M 0.81± 0.05 12.7 2264.0 0.73± 0.00 12.68 2216.50

4→ 8, 11→ 14, 18→ 21 92.82M 0.82± 0.07 12.7 2220.7 0.73± 0.01 12.68 2155.16

4→ 7, 18→ 21 109.68M 0.82± 0.07 15.9 1803.9 0.71± 0.02 15.85 1771.80

4→ 8 126.54M 0.86± 0.02 19.0 1636.0 0.82± 0.01 19.03 1632.65

11→ 14 132.16M 0.86± 0.02 20.1 1544.3 0.82± 0.01 20.08 1540.23
18→ 21 132.16M 0.85± 0.02 20.1 1472.8 0.82± 0.01 20.08 1467.56

4→ 5 143.40M 0.88± 0.00 22.2 1380.3 0.81± 0.01 22.20 1384.42
11→ 12 143.40M 0.87± 0.02 22.2 1378.8 0.82± 0.01 22.20 1394.63
20→ 21 143.40M 0.87± 0.02 22.2 1340.2 0.84± 0.00 22.20 1332.27

original 149.01M 0.88± 0.00 23.25 1337.25 0.88± 0.00 23.25 1347.46
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Table 6: Segmentation Performance.
mIoU results for each single skip config-
uration using ViT-S and DiNO-B.

mIoU ↑
ViT-S DiNO-B

Approx. Linear MLP Linear MLP

0 → 1 0.27 0.26 0.29 0.29
1 → 2 0.29 0.29 0.29 0.29
2 → 3 0.30 0.30 0.29 0.29
3 → 4 0.30 0.29 0.29 0.29
4 → 5 0.30 0.29 0.29 0.29
5 → 6 0.28 0.27 0.29 0.29
6 → 7 0.28 0.27 0.29 0.29
7 → 8 0.29 0.28 0.26 0.23
8 → 9 0.28 0.27 0.28 0.27
9 → 10 0.29 0.29 0.27 0.26

10 → 11 0.30 0.29 0.27 0.26

original 0.31 0.29

Additional implementation details, including model
and dataset specifications, computational resources,
and software tools, are provided in Tables 7 and 8
and Sections A.1.5 to A.1.7, with complete results in
Section A.2.4. For both domains, we adopt the same setup
as in the vision experiments: block approximations are
implemented via a shared linear map, identity, or small
MLP transformation applied across all tokens, estimated
using a subset of 500 training samples. In the text
domain, a linear classifier is trained on top of the frozen
backbone for 5 epochs over 3 seeds. For segmentation,
a segmentation head is trained on the frozen backbone
for 10 epochs over 3 seeds. The results in Table 5 show
that, in this setting as well, the linear transformation
outperforms the more complex MLP. Moreover, up to 10
blocks can be approximated (i.e., 11→ 21), substantially
reducing GFLOPs, improving throughput, and decreasing
model size, while incurring only a minimal drop in
accuracy. Results in Table 6 further demonstrate that a
linear transformation is sufficient even for a more complex
task such as segmentation, indicating that appropriately
selecting which layers to approximate enables model size
reduction with minimal impact on downstream accuracy.

Takeaway TOAST extends beyond vision and standard classification, demonstrating broader
applicability across domains.

5 LIMITATIONS AND FUTURE WORK

While TOAST efficiently approximates transformer blocks, our current investigation has primarily
focused on vision transformer architectures and their application to classification tasks with prelimi-
nary results also extending to segmentation and text classification. Future research will explore the
applicability of TOAST to other modalities and to diverse downstream tasks (e.g., image reconstruc-
tion). Such an expansion will be crucial for testing the universality of the observed block-similarity
phenomena and assessing TOAST’s adaptability. Furthermore, we aim to expand the analysis of
these block-level similarities. This involves investigating redundancies at finer granularities, such
as within individual attention heads or feed-forward layers, and consistently and developing more
principled and reliable metrics for automatically selecting which blocks to approximate. The heuristic
used in the current work, while effective, is not yet fully accurate, and improving it could enable
more consistent identification of approximation-friendly layers with minimal impact on downstream
performance. Such advancements may lead to more refined, context-aware approximation strategies
that further enhance model efficiency.

6 CONCLUSION

In this work, we first analyze the emergence of consistent block-wise representation similarities
within pretrained foundation models and then propose a method to leverage these similarities to
obtain smaller and more efficient yet performant models. To this end, we propose Transformer
Optimization using Adaptive and Simple Transformations (TOAST), a novel method for easily
approximate entire transformer blocks using a simple transformation, without requiring additional
training or fine-tuning. Our extensive empirical evaluations across multiple pretrained vision models
and datasets validate that TOAST significantly reduces model parameters while maintaining, and
sometimes even improving, downstream task performance. Furthermore, TOAST’s straightforward
linear approach often achieves better results than existing strategies like block skipping, and can be
more effective than complex, trained approximations. TOAST thus offers a practical and efficient
method for streamlining foundation models, making them more computationally accessible, and
towards deployment in resource-constrained scenarios such as on-device settings.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study focuses exclusively on pre-trained vision
models and publicly available datasets, with no human subjects or sensitive personal data involved.
All experimental protocols comply with legal, privacy, and ethical standards for AI research. The
methods proposed in this paper aim solely to improve computational efficiency, without introducing
harm or enabling misuse.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of all experiments, model configurations,
datasets, training procedures, and hyperparameters in the main text and Appendix (Sections A.1.5
to A.1.7 and A.2.2). Additionally, the full implementation of TOAST, including scripts for block
approximation and evaluation, is included as anonymous supplementary material. All results reported
in the paper can be reproduced using these resources.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

This section details the experiments conducted in Section 4, providing information to reproduce them.
Additionally, we provide the code as a zip file in the supplementary material.

A.1.1 MODELS AND DATASETS

Table 7 contains the full list of the pretrained models, while Table 8 contains dataset information.

Table 7: Pretrained models details. Details of the pretrained feature extractors with their Hugging-
Face key, their alias, and their latent space dimensionality.

Modality HuggingFace Model Name Alias Enc. Dim

Vision

WinKawaks/vit-tiny-patch16-224 ViT-T (Dosovitskiy et al., 2021) 192

WinKawaks/vit-small-patch16-224 ViT-S (Dosovitskiy et al., 2021) 384
facebook/dinov2-small DiNO-S (Oquab et al., 2023) 384
facebook/deit-small-patch16-224 DEiT-S (Touvron et al., 2020) 384

google/vit-base-patch16-224 ViT-B (Dosovitskiy et al., 2021) 768
facebook/dinov2-base DiNO-B (Oquab et al., 2023) 768
laion/CLIP-ViT-B-16-laion2B-s34B-b88K OpenCLIP-ViT-B (Zhai et al., 2019) 768

google/vit-large-patch16-224 ViT-L (Dosovitskiy et al., 2021) 1024

Text answerdotai/ModernBERT-base ModernBERT-B (Warner et al., 2025) 768

Table 8: Dataset details. Details of the HuggingFace datasets used in the classification and recon-
struction experiments, with the associated number of classes.

Modality Name Alias # Classes

Vision

MNIST (Deng, 2012) MNIST 10
Fashion-MNIST (Xiao et al., 2017) F-MNIST 10
CIFAR-10 (Krizhevsky et al., 2009) CIFAR-10 10

CIFAR-100 (coarse) (Krizhevsky et al., 2009) CIFAR-100C 20

CIFAR-100 (fine) (Krizhevsky et al., 2009) CIFAR-100F 100

SceneParse150 (Zhou et al., 2017; 2016) SceneParse150 150

Imagenet-1k (Russakovsky et al., 2015) ImageNet1k 1000

Text AG News Zhang et al. (2015) AG News 4

A.1.2 APPROXIMATORS

The first implementation, referred to as the Res-MLP, is composed of two normalization layers and
a feedforward submodule. The first layer normalization processes the input tensor, followed by a
feedforward submodule comprising a linear transformation, a SiLU activation, a dropout layer, and
a final linear transformation. The output of the feedforward submodule is added to the normalized
input via a residual connection. This sum is then passed through the second normalization layer
to produce the final output. The second implementation, referred to as the MLP, is a simplified
MLP that employs a sequential architecture with a first linear transformation that reduces the input
dimensionality to half of the target dimension, followed by a GELU activation function for smooth
non-linearity, and a final linear transformation that restores the reduced features to match the target
dimensionality. Refer to Listings 1 and 2 for the code snippet of the two translators.

Listing 1: Python Code Snippet for the Res-MLP translator
class ResMLP(nn.Module):

def __init__(self, num_features: int, dropout_p: float):
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super().__init__()

self.norm1 = nn.LayerNorm(num_features)
self.norm2 = nn.LayerNorm(num_features)

self.ff = nn.Sequential(
nn.Linear(num_features, num_features),
nn.SiLU(),
nn.Dropout(p=dropout_p),
nn.Linear(num_features, num_features),

)

def forward(self, x: torch.Tensor) -> torch.Tensor:
x_normalized = self.norm1(x)
x_transformed = self.ff(x_normalized)
return self.norm2(x_transformed + x_normalized)

Listing 2: Python Code Snippet for the MLP translator
translation = nn.Sequential(

nn.Linear(x.size(1), y.size(1) // 2),
nn.GELU(),
nn.Linear(y.size(1) // 2, y.size(1)),

)

A.1.3 METRIC ABLATION

We introduce linear approximation error as a simple, stable, and sample-efficient criterion for identi-
fying redundant transformer blocks, offering a practical alternative for guiding block approximation.
This metric measures how well the representation of a later block can be reconstructed from an earlier
one through a least-squares projection, providing a direct estimate of how much additional structure
the skipped layers contribute. Importantly, the error can be estimated using as few as 50 samples
producing substantially more stable and interpretable rankings compared to other metrics.

Table 9: Top-5 Block Approximation Recommendation. Top 5 recommended blocks to be
approximated based on linear approximation error using DEiT-S and CIFAR-100F.

Rank Approx # Layers Predicted Error Accuracy %

1 9 → 10 1 0.14 71.69± 0.11
2 10 → 11 1 0.18 71.17± 0.19
3 8 → 9 1 0.23 70.83± 0.13
4 9 → 11 2 0.25 71.14± 0.15
5 8 → 10 2 0.26 71.06± 0.19

- original 0 - 71.1

As shown in Table 9, linear approximation error correlates strongly with the actual accuracy impact
of skipping or approximating a block range: blocks with the lowest error consistently incur minimal
or no downstream performance degradation. This makes the metric both computationally lightweight
and practically reliable for identifying redundant or compressible transformer regions.

To further validate this choice, we conduct an ablation comparing several candidate similarity metrics
(e.g., cosine distance, MSE, Euclidean distance, and CKA) and evaluate how well each predicts
the true accuracy drop after approximation. Results, summarized in Table 10, show that linear
approximation error achieves the most consistent performance across architectures, with competitive
or superior Precision@5 and Recall@5 scores. Notably, metrics such as cosine distance and Euclidean
distance exhibit behavior that is highly model-dependent, while CKA performs well in some cases
but is less stable across architectures and budgets.

Overall, this ablation highlights that linear approximation error provides the best trade-off between
stability, computational cost, and predictive fidelity, making it a strong default metric for block
selection in transformer approximation.
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Table 10: Block Selection Strategy Ablation. Ranking evaluation metrics for approximation quality
prediction on CIFAR-100 using DEiT-S, DiNO-S, and DiNO-B. Precision@5 and Recall@5 are
shown for each model.

DEiT-S DiNO-S DiNO-B Mean

P@5 R@5 P@5 R@5 P@5 R@5 P@5 R@5

Linear Error 0.6 0.6 0.6 0.6 0.6 0.6 0.60 0.60
Cosine 1.0 1.0 0.4 0.4 0.2 0.2 0.53 0.53
CKA 0.6 0.6 0.6 0.6 0.4 0.4 0.53 0.53
MSE 0.0 0.0 0.4 0.4 0.6 0.6 0.33 0.33

Euclidean 0.8 0.8 0.4 0.4 0.4 0.4 0.53 0.53

A.1.4 BLOCK SELECTION PSEUDOCODE

Algorithm 1 Identify Top-k Layer Skip Configurations

Require: Model encoderM with L layers, dataset D, number of top configurations k, skip budget b
(optional)

Ensure: Top-k skip configurations S = {(s1, e1), . . . , (sk, ek)}
1: Extract layer representations: Hi ← encode(M,D, layeri) for i ∈ [0, L]
2: Initialize error matrix E ∈ RL×L

3: for i = 0 to L− 1 do
4: for j = i+ 1 to L do
5: Ei,j ← LinearApproximationError(Hi,Hj)
6: end for
7: end for
8: Initialize candidate list C ← ∅
9: for i = 0 to L− 1 do

10: for j = i+ 1 to L do
11: if b is specified and j − i ̸= b then
12: continue ▷ Skip if not matching budget
13: end if
14: C ← C ∪ {(i, j,Ei,j)}
15: end for
16: end for
17: Sort C by error in ascending order
18: S ← top-k configurations from C
19: return S

Algorithm 2 Linear Approximation Error

Require: Source layer representations X ∈ Rn×d, target layer representations Y ∈ Rn×d

Ensure: Normalized residual error ϵ
1: Solve least-squares: W∗ = argminW ∥Y −XW∥2F
2: Compute prediction: Ŷ = XW∗

3: Compute normalized error: ϵ = ∥Y−Ŷ∥F

∥Y∥F

4: return ϵ

A.1.5 TOOLS & TECHNOLOGIES

All the experiments presented in this work employ the following tools:

• PyTorch Lightning, to ensure reproducible results while also getting a clean and modular
codebase;

• NN-Template GrokAI (2021), to easily bootstrap the project and enforce best practices;
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Table 11: Top-3 Block Approximation Recommendation. Top 3 recommended blocks to be
approximated based on linear approximation error and number of blocks to skip using DEiT-S and
CIFAR-100F.

# Blocks Rank Approx. Predicted Error Accuracy %

1
1 9 → 10 0.14 71.69± 0.11
2 10 → 11 0.18 71.17± 0.19
3 8 → 9 0.23 70.83± 0.13

2
1 9 → 11 0.25 71.14± 0.15
2 8 → 10 0.26 71.06± 0.19
3 7 → 9 0.36 69.00± 0.43

3
1 8 → 11 0.36 68.22± 0.40
2 7 → 10 0.38 69.08± 0.24
3 6 → 9 0.45 65.64± 0.03

0 - original - 71.1

• Transformers by HuggingFace, to get ready-to-use transformers for both text and images;
• Datasets by HuggingFace, to access most of the datasets;
• DVC (Kuprieiev et al., 2022), for data versioning;
• fvcore analysis library (), for calculating GFLOPs;

A.1.6 COMPUTATIONAL RESOURCES

Experiments involving larger models, specifically DiNO-B, OpenCLIP-ViT-B, and ViT-L, were
conducted on an NVIDIA H100 GPU equipped with 93 GB of memory. All the other experiments
utilized an NVIDIA GeForce RTX 5090 GPU with 31 GB of memory.

A.1.7 EFFICIENCY METRICS

We evaluated model efficiency using two primary metrics. GFLOPs were used to measure the
hardware-independent theoretical complexity of a single forward pass, calculated using the fvcore
analysis library. Throughput, measured in samples per second, was used to quantify the practical,
hardware-dependent inference speed. This was benchmarked by averaging the wall-clock time over
numerous iterations on a single NVIDIA H100 GPU with a consistent batch size of 256.

A.2 ADDITIONAL EXPERIMENTS

This section presents supplementary experiments to extend those detailed in Section 4.

A.2.1 LATENT ANALYSIS

This section extend the analysis conducted in Section 4.1, to analyze block-wise internal similarities, to
additional models of different dimensionality: ViT-T, ViT-S, ViT-B and DiNO-S. Additionally,
we provide visualization using PCA for DiNO-S, DEiT-S, ViT-S, with different datasets and
approximating both early and late blocks (see Figures 7 to 11).
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Figure 6: Block Similarities: Block-by-block similarities in ViT-T, ViT-S, DiNO-S and ViT-B
models across five datasets: MNIST, F-MNIST, CIFAR-10, CIFAR-100 and ImageNet1k.
Each matrix quantifies the linear error between latent representations of different blocks, showing
potential blocks for approximation. The matrices reveal that the similarity between blocks is predom-
inantly influenced by the model rather than the specific dataset.

−20 −10 0 10 20

−20

−10

0

10

20

−20 −10 0 10 20 30

−20

−15

−10

−5

0

5

10

15

20

M
N
I
S
T

Original TOAST

−20 −10 0 10 20 30

−20

−10

0

10

20

30

−30 −20 −10 0 10 20 30

−20

−10

0

10

20

F
-
M
N
I
S
T

Original TOAST

−20 −10 0 10 20

−30

−20

−10

0

10

20

−20 −10 0 10 20 30

−30

−20

−10

0

10

20

C
I
F
A
R
-
1
0

−20 −10 0 10

−20

−15

−10

−5

0

5

10

15

20

−30 −20 −10 0 10 20

−30

−20

−10

0

10

20

C
I
F
A
R
-
1
0
0

Figure 7: Last Block Approximation. PCA visualization of the final layer representations for both
the original model and the model with its last block approximated from the preceding one. The
representations are generated using the DiNO-S model across four datasets. The plots highlight that
the last layer representations in this model are crucial, making it more effective to approximate earlier
blocks instead. Note that for CIFAR-100 (bottom right), only the overall structure of the space can
be observed, as the 100 classes make it challenging to distinguish labels based on color.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

−4 −3 −2 −1 0 1 2 3

−2

−1

0

1

2

M
N
I
S
T

Original TOAST

−3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

−4 −3 −2 −1 0 1 2 3

−4

−3

−2

−1

0

1

2

3

F
-
M
N
I
S
T

Original TOAST

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

C
I
F
A
R
-
1
0

−3 −2 −1 0 1 2 3

−4

−3

−2

−1

0

1

2

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

C
I
F
A
R
-
1
0
0

Figure 8: Last Block Approximation. PCA visualization of the final layer representations for
both the original model and the model with its last block approximated by the preceding one. The
representations are generated using the DEiT-S model across four datasets. The plots highlight that
in this model, the representations in the last layer are redundant and can be effectively approximated,
offering potential performance improvements while reducing model complexity and parameter count.
Note that for CIFAR-100 (bottom right), only the overall structure of the space can be observed, as
the 100 classes make it challenging to distinguish labels based on color.
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Figure 9: Last Block Approximation. PCA visualization of the final layer representations for
both the original model and the model with its second block approximated by the preceding one.
The representations are generated using the DiNO-S model across four datasets. Note that for
CIFAR-100 (bottom right), only the overall structure of the space can be observed, as the 100
classes make it challenging to distinguish labels based on color.
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Figure 10: Last Block Approximation. PCA visualization of the last layer representations for
both the original model and the model with its second block approximated using the previous one.
Representations refer to the using ViT-S model across four datasets.
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Figure 11: Last Block Approximation. PCA visualization of the last layer representations for
both the original model and the model with its last block approximated from the previous one.
Representations refer to the using ViT-S model across four datasets.
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A.2.2 IMAGE CLASSIFICATION

This section presents additional experiments that complement and extend those detailed in Section 4.2.
Datasets and models are the ones detailed in Tables 7 and 8.

Table 12: ViT-S Image Classification Performance Across Seeds. Classification accuracy scores
for ViT-S using multiple datasets, and 3 seeds. The “Approx.” column specifies the blocks used for
approximation, where the first value represents the block whose output is used to approximate the
second block’s output, while the “Params.” column shows the number of parameters removed by the
approximation compared to the original model.

Approx. Params. MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F ImageNet1k

1→5 15.31M 92.28± 0.81 86.90± 0.72 85.07± 0.55 68.01± 0.31 59.21± 0.12 44.04± 0.42

2→5 16.94M 94.76± 0.20 88.57± 0.31 91.01± 0.37 77.77± 0.22 69.75± 0.36 60.38± 0.12
7→10 16.94M 94.58± 0.28 88.44± 0.35 87.36± 0.17 72.58± 0.69 62.03± 0.56 35.80± 0.11

1→3 18.56M 94.60± 0.78 88.36± 0.44 91.97± 0.16 79.36± 0.54 72.41± 0.08 64.99± 0.29
2→4 18.56M 95.08± 0.18 88.83± 0.21 92.86± 0.11 81.45± 0.44 74.43± 0.27 67.52± 0.16
3→5 18.56M 94.75± 0.57 88.81± 0.19 94.09± 0.06 83.16± 0.34 76.17± 0.45 67.27± 0.45

1→2, 3→4 18.56M 94.68± 0.69 88.30± 0.25 91.91± 0.25 79.72± 0.16 72.17± 0.15 65.38± 0.03
1→2, 4→5 18.56M 94.58± 0.77 88.95± 0.07 92.29± 0.28 80.14± 0.10 72.45± 0.35 64.42± 0.24

0→1 20.43M 95.69± 0.29 88.81± 0.19 93.68± 0.22 83.55± 0.23 76.49± 0.29 65.11± 0.27
1→2 20.43M 95.40± 0.57 88.53± 0.63 93.90± 0.11 83.98± 0.22 76.99± 0.26 70.32± 0.38
2→3 20.43M 95.43± 0.45 88.93± 0.62 94.90± 0.26 85.72± 0.48 78.96± 0.05 71.26± 0.03
3→4 20.43M 95.43± 0.39 88.77± 0.36 95.05± 0.17 85.99± 0.37 79.49± 0.32 71.40± 0.22
4→5 20.43M 95.39± 0.35 89.18± 0.51 95.41± 0.12 86.27± 0.27 79.61± 0.14 70.98± 0.16
5→6 20.43M 95.14± 0.56 89.30± 0.54 94.89± 0.27 86.49± 0.33 79.29± 0.19 69.25± 0.09
6→7 20.43M 95.11± 0.42 88.94± 0.66 94.81± 0.26 85.33± 0.30 78.06± 0.17 67.41± 0.08
7→8 20.43M 95.64± 0.46 89.41± 0.45 94.50± 0.34 85.30± 0.50 78.03± 0.12 66.22± 0.10
8→9 20.43M 95.36± 0.47 89.64± 0.37 94.36± 0.14 84.66± 0.25 77.88± 0.20 64.03± 0.29

9→10 20.43M 95.52± 0.41 89.57± 0.10 94.58± 0.27 81.76± 0.34 76.45± 0.22 61.82± 0.24
10→11 20.43M 94.83± 0.20 89.11± 0.43 94.08± 0.27 82.13± 0.70 77.45± 0.29 63.92± 0.25

original 22.06M 95.59± 0.42 89.04± 0.85 95.68± 0.24 87.61± 0.39 81.50± 0.39 73.24± 0.13

Table 13: DiNO-S Image Classification Performance Across Seeds. Classification accuracy scores
for DiNO-S using multiple datasets, and 3 seeds. The “Approx.” column specifies the blocks used
for approximation, where the first value represents the block whose output is used to approximate the
second block’s output, while the “Params.” column shows the number of parameters removed by the
approximation compared to the original model.

Approx. Params. MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F ImageNet1k

1→5 15.31M 96.25± 0.30 86.50± 1.42 80.11± 0.95 59.15± 0.45 51.24± 0.51 18.70± 0.09

2→5 16.94M 95.86± 0.52 87.99± 0.30 85.28± 0.99 67.50± 1.02 59.57± 0.45 40.63± 0.59
7→10 16.94M 96.05± 1.44 88.28± 1.25 91.00± 0.82 78.47± 0.61 70.56± 0.25 45.66± 0.69

1→3 18.56M 96.61± 0.34 88.48± 0.61 91.73± 0.36 78.62± 0.87 72.33± 0.37 56.85± 0.21
2→4 18.56M 96.79± 0.58 88.34± 0.33 91.31± 0.16 76.41± 0.44 69.71± 0.31 60.16± 0.41
3→5 18.56M 96.76± 1.02 88.65± 0.92 91.00± 0.49 75.51± 0.45 69.31± 0.05 57.47± 0.11

1→2, 3→4 18.56M 96.71± 0.62 88.69± 0.46 92.57± 0.54 79.16± 1.02 72.88± 0.57 59.79± 0.19
1→2, 4→5 18.56M 96.81± 0.31 88.67± 1.23 93.50± 0.26 79.35± 1.00 73.55± 0.38 58.62± 0.25

0→1 20.43M 96.71± 0.79 88.97± 1.12 95.67± 0.12 85.89± 0.56 80.15± 0.35 61.25± 0.22
1→2 20.43M 96.69± 0.90 88.26± 1.10 95.38± 0.09 84.86± 0.84 79.38± 0.23 64.86± 0.36
2→3 20.43M 96.42± 0.36 88.31± 1.20 94.71± 0.33 84.15± 0.94 77.74± 0.85 65.16± 0.69
3→4 20.43M 96.82± 0.68 88.77± 0.78 94.87± 0.30 83.96± 0.62 77.71± 0.08 65.35± 0.56
4→5 20.43M 96.82± 0.60 89.15± 0.72 94.63± 0.26 83.04± 0.62 77.13± 0.17 64.28± 0.24
5→6 20.43M 96.81± 0.85 88.75± 0.86 95.33± 0.19 84.83± 0.04 79.37± 0.25 64.88± 0.43
6→7 20.43M 96.99± 0.88 89.42± 0.68 95.21± 0.10 83.82± 0.53 78.54± 0.64 63.61± 0.62
7→8 20.43M 96.76± 0.38 89.05± 1.29 95.37± 0.14 84.57± 0.42 78.95± 0.37 61.59± 0.31
8→9 20.43M 96.62± 0.85 88.45± 1.21 95.21± 0.36 84.98± 0.22 79.35± 0.22 61.73± 0.43

9→10 20.43M 96.66± 0.33 88.53± 0.71 94.55± 0.25 83.97± 1.25 77.06± 0.36 58.56± 0.25
10→11 20.43M 94.61± 0.66 86.96± 1.18 92.11± 0.32 79.85± 0.26 73.01± 0.51 50.76± 0.33

original 22.06M 96.57± 0.64 88.07± 1.40 96.24± 0.08 87.53± 0.45 82.04± 0.42 67.45± 0.45

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 14: ViT-T Image Classification Performance. Classification accuracy scores for ViT-T us-
ing multiple datasets, and 3 seeds. The “Approx.” column specifies the blocks used for approximation,
where the first value represents the block whose output is used to approximate the second block’s
output, while the “Params.” column shows the number of parameters removed by the approximation
compared to the original model.

Approx. Params. MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F ImageNet1k

1→5 15.31M 87.66± 0.57 85.10± 0.42 73.68± 0.46 53.46± 0.29 44.61± 0.42 22.21± 0.39

2→5 16.94M 90.59± 0.79 85.84± 0.18 82.41± 0.11 62.87± 0.21 54.68± 0.21 35.14± 0.38
7→10 16.94M 92.41± 0.47 86.50± 0.19 82.48± 0.85 69.26± 0.65 61.15± 0.28 39.03± 0.13

1→3 18.56M 90.55± 1.04 85.91± 0.22 80.48± 0.29 63.43± 0.25 54.57± 0.32 43.68± 0.26
2→4 18.56M 92.81± 0.56 86.58± 0.05 86.85± 0.17 70.49± 0.30 63.53± 0.23 49.94± 0.27
3→5 18.56M 91.84± 0.69 86.80± 0.04 88.00± 0.04 72.67± 0.30 65.66± 0.14 48.48± 0.37

1→2, 3→4 18.56M 91.94± 0.78 86.71± 0.20 83.43± 0.41 66.92± 0.42 60.07± 0.48 45.14± 0.15
1→2, 4→5 18.56M 90.86± 0.66 86.57± 0.24 84.61± 0.14 68.07± 0.55 60.11± 0.61 44.84± 0.26

0→1 20.43M 91.74± 0.48 86.22± 0.23 83.32± 0.22 68.58± 0.41 61.05± 0.36 44.12± 0.20
1→2 20.43M 91.65± 0.61 86.26± 0.24 85.84± 0.08 71.12± 0.06 63.85± 0.37 54.34± 0.44
2→3 20.43M 92.89± 0.18 86.49± 0.06 88.89± 0.08 74.90± 0.25 68.03± 0.37 57.83± 0.07
3→4 20.43M 93.10± 0.43 87.34± 0.03 89.73± 0.37 76.45± 0.17 70.04± 0.35 57.55± 0.14
4→5 20.43M 92.43± 0.20 87.22± 0.10 90.11± 0.32 76.40± 0.42 69.97± 0.37 55.91± 0.10
5→6 20.43M 93.57± 0.11 86.80± 0.13 90.17± 0.27 76.47± 0.35 70.69± 0.49 55.43± 0.38
6→7 20.43M 92.13± 0.37 86.77± 0.02 87.73± 0.22 72.35± 0.31 66.73± 0.45 47.39± 0.45
7→8 20.43M 93.20± 0.06 86.90± 0.30 88.58± 0.26 75.80± 0.29 69.28± 0.41 53.48± 0.24
8→9 20.43M 92.76± 0.11 87.18± 0.17 89.57± 0.33 76.43± 0.50 71.07± 0.33 56.07± 0.77

9→10 20.43M 92.39± 0.10 86.74± 0.18 89.86± 0.31 77.34± 0.04 71.70± 0.37 57.45± 0.29
10→11 20.43M 90.92± 0.48 86.89± 0.12 90.98± 0.21 78.85± 0.38 72.29± 0.42 58.94± 0.22

original 22.06M 93.22± 0.18 86.99± 0.29 91.29± 0.06 79.27± 0.23 73.45± 0.38 63.02± 0.22

Table 15: ViT-B Image Classification Performance. Classification accuracy scores for ViT-B us-
ing multiple datasets, and 3 seeds. The "Approx." column specifies the blocks used for approximation,
where the first value represents the block whose output is used to approximate the second block’s
output, while the "Params." column shows the number of parameters removed by the approximation
compared to the original model.

Accuracy ↑
Approx. Params. MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F

1→ 5 -25.99M 87.06± 0.53 84.33± 0.61 73.54± 0.57 51.67± 1.10 38.98± 0.72

2→ 5 -19.49M 94.20± 0.21 87.80± 0.24 87.10± 0.83 71.68± 0.50 61.19± 0.37

1→ 3 -13M 96.51± 0.42 88.72± 0.41 93.71± 0.13 83.05± 0.23 74.74± 0.29
3→ 5 -13M 95.59± 0.09 88.28± 0.20 93.11± 0.06 83.50± 0.17 74.35± 0.47
2→ 4 -13M 96.21± 0.33 89.21± 0.64 94.59± 0.32 85.13± 0.24 76.82± 0.41

8→ 10 -13M 96.54± 0.21 89.72± 0.52 95.05± 0.26 85.78± 0.37 79.62± 0.14
9→ 11 -13M 95.59± 0.52 89.49± 0.26 93.22± 0.56 82.23± 0.44 76.33± 0.10

3→ 4 -6.5M 96.86± 0.35 89.69± 1.09 96.18± 0.09 89.18± 0.06 82.50± 0.17
4→ 5 6.5M 96.55± 0.23 89.13± 0.50 95.39± 0.23 87.43± 0.15 80.30± 0.16
0→ 1 -6.5M 96.75± 0.29 88.97± 0.26 93.74± 0.15 84.49± 0.20 76.54± 0.29
1→ 2 -6.5M 96.88± 0.01 89.29± 0.24 95.63± 0.11 87.46± 0.20 80.64± 0.23
2→ 3 -6.5M 96.91± 0.17 89.69± 0.61 96.00± 0.18 88.38± 0.13 81.59± 0.35

- 86.39M 95.61± 0.22 89.64± 0.57 96.25± 0.17 89.52± 0.23 83.41± 0.20
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A.2.3 ZERO-SHOT IMAGE CLASSIFICATION

To further assess the effectiveness of our approach, we evaluate TOAST in a zero-
shot image classification setting. This evaluation utilizes the OpenCLIP-ViT-B
model (Radford et al., 2021), which was pretrained on LAION-2B Schuhmann
et al. (2022), with ImageNet1k serving as the downstream evaluation dataset.

Table 16: Zero-shot image classification.
Accuracy scores for OpenCLIP-ViT-B on
ImageNet1k. The "Approx." column speci-
fies the blocks being approximated, where the
first value represents the block whose output is
used to approximate the second block’s output.
The “∆” column indicates the change in accu-
racy.

Params. Approx. Accuracy ↑ ∆

-6.49M

0→ 1 57.93 -17.41%
1→ 2 64.20 -8.56%
2→ 3 66.35 -5.51%
3→ 4 64.65 -7.90%
4→ 5 64.86 -7.60%
5→ 6 58.05 -17.32%
6→ 7 61.56 -12.31%
7→ 8 58.53 -16.64%
8→ 9 52.32 -25.50%

9→ 10 59.21 -15.68%
10→ 11 22.64 -67.75%

149.07M original 70.21 –

The analysis is conducted only on the base ver-
sion, as larger versions (e.g., OpenCLIP-ViT-L
or OpenCLIP-ViT-H) contain too many param-
eters and are thus beyond the scope of this paper.
As in previous experiments, the model remains
frozen, and block approximations are computed
using a shared linear transformation applied across
all tokens, based on a subset of 3,000 training
samples. Importantly, we apply these approxi-
mations only to the vision encoder, leaving the
text encoder unchanged. We follow the standard
ImageNet1k prompt templates. The results in
Table 16 lead to the conclusion that the impact
on zero-shot accuracy is highly dependent on the
targeted block’s position. The choice of which
blocks to approximate is therefore crucial. For
instance, approximating an early block (e.g., 1→
2 or 2 → 3) results in a modest accuracy drop
(e.g., 5.51%), yielding a competitive model with
fewer parameters. In contrast, approximating the
final block (i.e., 10→ 11) causes a catastrophic
performance collapse of 67.75%. Meaning that,
for OpenCLIP-ViT-B, later layers in the vision
encoder appear to capture uniquely critical infor-
mation for zero-shot generalization that cannot be
effectively replicated by earlier ones. To the best

of our knowledge, this work is the first to investigate training-free model size reduction in this
challenging setting.

A.2.4 TOAST APPLICABILITY TO OTHER TASKS OR DOMAINS

This section presents additional experiments that complement and extend those detailed in Section 4.3.
Datasets and models are the ones detailed in Tables 7 and 8.
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Table 17: TOAST Text Classification Performance on AG News. Text classification accuracy,
GFLOPs, and throughput for ModernBERT-B using AG News. The "Approx." column specifies
the block mapping (output of the first block is used to approximate the output of the second). MLP is
a trained approximators, while Linear is closed-form and training-free. Results are averaged over
three seeds.

Linear MLP

Approx. Params ↓ Accuracy% ↑ GFLOPs ↓ img/s ↑ Accuracy% ↑ GFLOPs ↓ img/s ↑
11→ 21 92.82M 0.81± 0.05 12.7 2264.0 0.73± 0.00 12.68 2216.50

4→ 8, 11→ 14, 18→ 21 92.82M 0.82± 0.07 12.7 2220.7 0.73± 0.01 12.68 2155.16

4→ 7, 18→ 21 109.68M 0.82± 0.07 15.9 1803.9 0.71± 0.02 15.85 1771.80

4→ 8 126.54M 0.86± 0.02 19.0 1636.0 0.82± 0.01 19.03 1632.65

11→ 14 132.16M 0.86± 0.02 20.1 1544.3 0.82± 0.01 20.08 1540.23
18→ 21 132.16M 0.85± 0.02 20.1 1472.8 0.82± 0.01 20.08 1467.56

1→ 2 143.40M 0.84± 0.01 22.2 1386.0 0.84± 0.00 22.20 1385.20
2→ 3 143.40M 0.86± 0.00 22.2 1379.8 0.86± 0.00 22.20 1388.06
3→ 4 143.40M 0.82± 0.01 22.2 1391.6 0.83± 0.00 22.20 1392.14
4→ 5 143.40M 0.88± 0.00 22.2 1380.3 0.81± 0.01 22.20 1384.42
5→ 6 143.40M 0.86± 0.02 22.2 1385.0 0.83± 0.00 22.20 1392.14
6→ 7 143.40M 0.86± 0.02 22.2 1387.8 0.85± 0.01 22.20 1387.81
7→ 8 143.40M 0.87± 0.01 22.2 1384.8 0.85± 0.00 22.20 1365.78
8→ 9 143.40M 0.84± 0.01 22.2 1384.4 0.83± 0.01 22.20 1383.31

9→ 10 143.40M 0.82± 0.08 22.2 1385.3 0.71± 0.01 22.20 1385.92
10→ 11 143.40M 0.81± 0.08 22.2 1383.2 0.72± 0.03 22.20 1381.78
11→ 12 143.40M 0.87± 0.02 22.2 1378.8 0.82± 0.01 22.20 1394.63
12→ 13 143.40M 0.86± 0.02 22.2 1384.5 0.83± 0.01 22.20 1390.65
13→ 14 143.40M 0.80± 0.06 22.2 1385.2 0.73± 0.02 22.20 1385.23
14→ 15 143.40M 0.84± 0.04 22.2 1390.0 0.79± 0.01 22.20 1387.43
15→ 16 143.40M 0.85± 0.02 22.2 1402.7 0.82± 0.00 22.20 1381.80
16→ 17 143.40M 0.87± 0.01 22.2 1402.8 0.85± 0.00 22.20 1387.02
17→ 18 143.40M 0.85± 0.02 22.2 1402.3 0.83± 0.01 22.20 1389.71
18→ 19 143.40M 0.87± 0.01 22.2 1403.5 0.85± 0.01 22.20 1393.53
19→ 20 143.40M 0.85± 0.02 22.2 1403.9 0.82± 0.00 22.20 1390.19
20→ 21 143.40M 0.87± 0.02 22.2 1340.2 0.84± 0.00 22.20 1332.27

original 149.01M 0.88± 0.00 23.25 1337.25 0.88± 0.00 23.25 1347.46
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A.2.5 EVALUATION WITH ORIGINAL CLASSIFICATION HEADS

Table 18: Comparison of Original vs. Retrained Classification Heads. TOAST performance on
ImageNet1k using the frozen, pre-trained head (Original) versus a linear classifier trained on the
frozen backbone (Retrained). The relative ranking of approximations remains consistent across both
settings.

Encoder Approximation Original Head Acc. ↑ Retrained Head Acc. ↑
D
E
i
T
-
S

3→ 4, 9→ 11 72.44 68.39± 0.13
3→ 4, 9→ 10 77.25 71.35± 0.22

2→ 3 78.69 73.19± 0.19
10→ 11 78.78 73.78± 0.28
original 79.66 73.85± 0.39

V
i
T
-
S

1→ 2 76.62 70.32± 0.38
2→ 3 78.25 71.26± 0.03
3→ 4 78.25 71.40± 0.22
4→ 5 77.66 70.98± 0.16

original 79.86 73.24± 0.13

As mentioned in the main paper, our primary evaluation involves training a new linear classifier on top
of the frozen model backbone to simulate a realistic transfer learning scenario. However, the original
papers for DEiT-S (Touvron et al., 2021) and ViT-S (Beyer et al., 2022) report performance using
the classification head that was part of the original pre-training.

To confirm that our conclusions are robust and not an artifact of our evaluation protocol, we conducted
an additional set of experiments using the official, pre-trained classification heads from the original
model checkpoints. For consistency with our main experiments, we use the same number of samples
(500) for the approximation. In this setup, we do not train a new classifier; we simply evaluate the
accuracy of the frozen, approximated models using their original heads.

The results, presented in Table 18, are fully consistent with the main conclusions of our paper. They
confirm that our block approximation method provides a favorable accuracy-efficiency trade-off, even
when evaluated with the original model heads. The relative drop in accuracy when approximating
different layers follows the same patterns observed in our primary experiments, reinforcing the
validity of our approach.

A.2.6 COMPUTATIONAL EFFICIENCY VS. ACCURACY

To quantify the effectiveness of different approximation methods, we analyze the trade-off between
downstream accuracy and computational cost. Figure 12 presents this analysis on a DiNO-B model
using both CIFAR-100F and ImageNet1k against three standard efficiency metrics: parameter
count, GFLOPs, and inference throughput. Across all metrics, the proposed linear translator (green)
establishes a more favorable Pareto frontier compared to the baseline identity-based approach (blue).
This indicates that for any given efficiency budget (e.g., a specific GFLOPs target), the linear translator
consistently yields a model with higher accuracy.

A.2.7 ANALYSIS OF MISCLASSIFICATIONS

In this section, we examine changes in per-class accuracy and misclassification patterns. As shown in
Figure 13, models behave differently at block approximations. DiNO-S remains remarkably stable
across blocks and classes, with the only degradation appearing for classes dog (when approximating
blocks 10 or 11) and deer (for block 10 approximation). ViT-S shows a similar drop for class dog
on its final block. Instead, the most noticeable hit occurs for class cat when the earlier blocks are
approximated. For DEiT-S, several mid-to-late block approximations improve accuracy for various
classes, whereas the very first block causes a clear relative decline in nearly every class. These
observations suggest strategies like preferring late-block approximation for DEiT-S, or reserving
extra samples for the linear transformation in order to recover the accuracy of difficult classes for the
model.
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Figure 12: Accuracy-efficiency trade-off for different approximation strategies. Each subplot
shows the accuracy against a different efficiency metric: the number of parameters (left), GFLOPs
(center), and inference throughput (right). The image shows that the linear translator achieves a
superior accuracy-efficiency trade-off.
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Figure 13: Per-class accuracy delta on CIFAR-10 when a single block is approximated in
ViT-S, DiNO-S and DEiT-S. Cell values indicate the relative change in the accuracy with respect
to the original model. Brighter (green) cells indicate an accuracy gain for the class, while darker
(blue) cells indicate an accuracy drop.

In order to further investigate how the predictions change while approximating blocks, we plot the
difference in the normalized confusion matrix before and after the approximation. In Figure 14,
we show the delta confusion matrix for DEiT-S on CIFAR-100C. Also, here we can see how
approximating the very first block makes the model puzzling and lose per-class accuracy (i.e., negative
delta along the diagonal). On the other hand, approximating the last block acts as a regularizer,
resulting in an overall gain in the per-class accuracy and, as a consequence, fewer misclassifications
(negative deltas off-diagonal). This supports results shown in Figure 13 and Table 3.
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Figure 14: Normalized relative confusion matrix when single blocks are approximated for
DEiT-S on CIFAR-100C. Diagonal cells capture the per-class change in accuracy, whereas
off-diagonal cells capture changes in misclassifications between classes. Red (positive) values
on the diagonal mean the approximation improves that class’s accuracy. Red off-diagonal values
mean more misclassifications. Conversely, blue (negative) off-diagonal values indicate fewer misclas-
sifications, and blue values on the diagonal indicate a drop in per-class accuracy.
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Additionally, Figure 15 shows representative CIFAR-10 images that become misclassified after
approximating a block of ViT-S. The patterns we observe mirror the trends in Figures 13 and 14:
when approximating earlier blocks, we observe many images belonging to class cat to be misclassified.
Instead, when approximating later blocks, we observe images of the class dog to be misclassified.
Together, these qualitative examples show that understanding these block-specific vulnerabilities
allows us to steer the approximation procedure, informing choices about which blocks to approximate
based on the observed impact on the final model’s class-wise performance.

horse→ deer cat→ dog cat→ bird horse→ cat bird→ frog

1→ 2

bird→ cat dog→ cat automobile→ truck dog→ cat cat→ dog

6→ 7

ship→ airplane frog→ cat bird→ cat dog→ cat truck→ airplane

10→ 11

Figure 15: Visualization of misclassified samples after approximating a block of ViT-S on
CIFAR-10. Images from CIFAR-10 whose label flips from correct to incorrect when specific
blocks are approximated. The title reports the true class followed by the wrong prediction.
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