
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOAST : TRANSFORMER OPTIMIZATION USING
ADAPTIVE AND SIMPLE TRANSFORMATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Foundation models achieve State-of-the-art (SOTA) performance across different
tasks, but their size and computational demands raise concerns about accessibility
and sustainability. Existing efficiency methods often require additional retraining
or fine-tuning, limiting their practicality. Recent findings suggest that deep neural
networks exhibit internal representation similarities. While such similarities across
different models have been exploited for enabling techniques such as model stitch-
ing and merging, intra-network redundancy remains underexplored as a source
for efficiency gains. In this paper, we introduce Transformer Optimization using
Adaptive and Simple Transformations (TOAST), a framework that exploits these re-
dundancies to approximate entire transformer blocks with lightweight closed-form
mappings, such as linear transformation or even the identity, without any additional
training. Across SOTA pretrained vision models (e.g., ViT, DINOv2, DeiT) and
datasets ranging from MNIST to ImageNet-1k, TOAST reduces parameters and
computation while preserving, and in some cases improving, downstream perfor-
mance. These results show that large portions of transformer depth can be replaced
by trivial functions, opening a new perspective on efficient foundation models.

1 INTRODUCTION

.

T

s
× ×

X(s) X(e)e

Figure 1: Framework Description. Given two latent spaces X(s) and X(e) corresponding to
the outputs of blocks s and e for a random subset of 500 training samples, TOAST estimates a
lightweight transformation T such that X(e) ≈ T (X(s)). This allows entire transformer blocks to be
approximated by simple closed-form mappings (e.g., linear or identity), reducing parameters and
computation without retraining.

As Neural Networks (NNs) continue to grow in size and complexity, their demand for computational
resources has become a critical bottleneck. While larger models consistently achieve SOTA perfor-
mance, this comes at the cost of substantial memory usage and power consumption, limiting their
accessibility and deployment. This challenge is for instance most relevant in on-device scenarios,
where saving memory, latency, and energy, even by little margins, is critical (Pan et al., 2022; Li et al.,
2022). This has motivated a growing body of work on reducing model complexity. However, most
existing approaches either require additional, resource-intensive training phases or lead to significant
drops in accuracy. Recent studies reveal that there exists strong representational similarities both
within and between NNs. In other words, when focusing on intra-network similarities, different
blocks often perform overlapping functions or produce highly correlated outputs.

This redundancy suggests an opportunity: instead of retraining or pruning, can we approximate these
blocks with simpler transformations? To address this question, we propose Transformer Optimization
using Adaptive and Simple Transformations (TOAST), a novel framework that exploits block-level
representational redundancy to replace transformer blocks with lightweight transformations. By

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

doing so, TOAST reduces parameter count and computational cost, while maintaining (and in some
cases even improving) downstream task performance. Crucially, our method is training-free, making
it simple, efficient, and widely applicable, even in resource-constrained scenarios such as deployment
on edge devices, where even the smallest available models may exceed memory or power budgets.
Our main contributions are as follows:

• We propose TOAST, a simple yet effective framework that replaces transformer blocks with
lightweight transformations (e.g., linear maps or even the identity), significantly reducing
parameters and computational cost while preserving downstream performance (Figure 1).

• We introduce linear approximation error as a stable and computationally lightweight criterion
for identifying redundant transformer blocks (Tables 9 and 11 and Algorithms 1 and 2) and
we present a systematic analysis of block-wise representational similarities in pre-trained
vision transformers, revealing consistent redundancy patterns across diverse models and
motivating the possibility of approximating entire blocks (Figures 2 and 6).

• We empirically demonstrate that accurate block approximations can be obtained from only a
few hundred samples, showing that block redundancy can be exploited without requiring
large-scale retraining (Tables 1 and 4 and Figure 5).

• We extensively validate our approach across a wide spectrum of vision models (e.g.,
DiNO-B, ViT-L, DEiT-S, ViT-S, DiNO-S, ViT-T) and datasets ranging from MNIST
to ImageNet1k, confirming both the generality and efficiency of the method (Tables 1
to 3 and 12 to 16).

• We preliminarily validate the application of TOAST beyond vision classification, including
semantic segmentation using ViT-S and DiNO-B on SceneParse150, and and text
classification using ModernBERT-B on AG News (Tables 5 and 6 and Section A.2.4).

2 RELATED WORK

Measuring Similarities A range of metrics have been introduced to assess the similarity between
latent spaces generated by different NNs (Klabunde et al., 2023; Ballester et al., 2023). One
established approach is Canonical Correlation Analysis (CCA) (Hotelling, 1992), known for its
invariance to linear transformations. Variants of CCA, such as Singular Value CCA (SVCCA) (Raghu
et al., 2017), aim to enhance robustness, while techniques like Projection Weighted CCA (PWCCA)
(Morcos et al., 2018) mitigate sensitivity to small perturbations. Another widely used metric, Centered
Kernel Alignment (CKA) (Kornblith et al., 2019), captures the similarity between latent spaces while
ignoring orthogonal transformations. However, recent work (Davari et al., 2022) highlights that this
metric can be sensitive to shifts in the latent space. Additionally, Barannikov et al. (2021) proposes a
method to compare two data representations by measuring the multi-scale topological dissimilarity,
while Fumero et al. (2024) leverages the principles of spectral geometry to model and analyze the
relationships between distinct latent spaces.

Leveraging Similarities Valeriani et al. (2024) examines the intrinsic dimensionality and neighbor
compositions of representations in transformer models. Kvinge et al. (2022) investigates how
models process variations in data points across layers, while Nguyen et al. (2020) assesses the
impact of network depth and width on hidden representations. Additionally, Crisostomi et al. (2023)
studies the conditions under which two latent spaces can be merged into a unified one. Moschella
et al. (2023) constructs a unified space shared by different NNs, enabling zero-shot stitching of
independently trained models across different modalities (Norelli et al., 2023). More recently,
Cannistraci et al. (2024) enables model stitching without explicit assumptions about the transformation
class connecting the latent manifold embeddings, or with only partial correspondence between latent
spaces (Cannistraci et al., 2023). Finally, Lähner & Moeller (2024); Maiorca et al. (2024) demonstrate
that representations learned by distinct NNs can be aligned using simple transformations.

Architectural Efficiency While large-scale models with billions or even trillions of parameters
continue to achieve state-of-the-art performance, their growth comes with trade-offs, such as slower
inference times and significantly higher computational costs. Improving the efficiency of Deep Neural
Network (DNN) has been a long-standing area of research. For instance, Veit et al. (2016) shows
that removing residual blocks from deep Convolutional Neural Networks (CNNs) only marginally

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

impacts performance, which inspired approaches to reduce inference time by dynamically deciding
which layers to execute based on the input (Wu et al., 2018; Veit & Belongie, 2018). Additionally,
various techniques to enhance efficiency have emerged, such as early exiting and model pruning.
Early exit strategies, which introduce intermediate output layers at different stages of the network,
have been shown to reduce inference time (Xin et al., 2020; Zhou et al., 2020; Yu et al., 2022; Tang
et al., 2023). However, these approaches require the training of intermediate classifiers to enable exits
at predefined layers. Alternatively, model pruning reduces computational load by either removing
individual weights based on specific criteria, such as gradient information (Ma et al., 2023), entropy
(Liao et al., 2023), or second-order information (Singh & Alistarh, 2020), or by eliminating larger
structural components, like channels or residual blocks in ResNets (Bai et al., 2023; Wang & Wu,
2023), weights in LLMs (Sun et al., 2023) and self-attention layers in Transformers (Zhang & He,
2020; Sajjad et al., 2023; Venkataramanan et al., 2024; Zhang et al., 2024). Although effective, these
approaches require training the model from scratch and, in the best case, fine-tuning. However, Bai
et al. (2023) shows that for CNNs, this additional training step can sometimes be avoided.

Unlike other methods, TOAST leverages intra-network similarities to reduce vision transformers
complexity without the need for additional training steps while maintaining competitive performance.

3 BLOCKS APPROXIMATION

The central idea of our approach is that it is possible to leverage representation similarities within
transformer-based architectures to replace entire blocks with simpler transformations. In this work,
a block refers to a sequence of layers including multi-head self-attention, normalization, and feed-
forward layers, that function together as a cohesive unit. By replacing these blocks with simpler
transformations, we can reduce the computational complexity of the network while maintaining its
core functionality.

Approximating Transformer Blocks Given two blocks s and e, our goal is to replace the interme-
diate blocks s+ 1, . . . , e with a single, lightweight transformation that maps the output of block s
directly to an approximation of the output of block e. This approach allows us to skip the computation
of blocks s+ 1, . . . , e, effectively reducing the overall computational costs. This approximation can
be repeated for multiple, non-overlapping blocks, i.e., blocks (si, ei) and (sj , ej) with ei < sj . An
overview of the method is provided in Figure 1.

Let X(s) ∈ R|Dsub|×ds and X(e) ∈ R|Dsub|×de represent the output representations from block s and e
respectively, for the data points in Dsub ⊂ D, sampled uniformly at random from the full training
dataset D. Our objective is to find a transformation T : Rds → Rde such that:

X(e) ≈ T (X(s))

In this work, we consider T to be the identity or a linear transformation T. We can compute the
linear transformation T by minimizing the squared error between the transformed output T (X(s))
and the actual X(e):

T = argmin
T
∥X(e) − T (X(s))∥22

This optimization problem allows for a closed-form solution that efficiently computes the optimal
transformation T. The solution bypasses the computation of all layers between any two blocks s and
e, replacing them with T. This approximation reduces computational complexity while minimally
affecting internal representations, as illustrated in Figures 7 to 11, and preserves compatibility with
downstream classifiers, achieving significant compression as shown in Tables 1 to 3 and 12 to 15.

Patterns of Similarity between Transformer Blocks Inspired by existing results Venkataramanan
et al. (2024), which show that multi-head attention modules exhibit similarity in learned representa-
tions, we investigate whether pre-trained foundation models contain entire blocks that produce highly
similar representations. Rather than using CKA to measure representational similarity, we quantify
how well the output of a later block can be reconstructed from an earlier one using a simple linear
transformation. All representations are computed using only the [CLS] token, providing a consistent
and semantically aligned basis for comparing blocks.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Given representations Hs and He extracted from blocks s < e, we learn the optimal linear map W∗

that solves
W∗ = argmin

W
∥He −HsW∥2F .

We measure similarity via the normalized residual error

ϵ(s, e) =
∥He −HsW

∗∥F
∥He∥F

,

where lower values indicate that block e’s representations are well explained by a linear transformation
of block s.

By computing the metric for all block pairs, using only a small random subset of the training data (i.e.,
50 samples), and ranking them, we can automatically identify blocks whose computations contribute
minimally beyond a near-linear mapping. We additionally perform an ablation study comparing
several candidate similarity metrics for block selection, and we report these results in Section A.1.3.
The procedure used to automatically extract the top-k skip candidates is summarized in Algorithm 1,
and the linear approximation error is detailed in Algorithm 2.

4 EXPERIMENTS

In this section, we first analyze the similarities between different transformer blocks to motivate
their approximation using simple transformations. We then present comprehensive results on image
classification across various models and datasets to demonstrate the effectiveness and efficiency of the
proposed method. Beyond these core results, we further study the robustness of TOAST through ab-
lations on the number of samples required for approximation and the choice of translator architecture.
Overall, our findings show that TOAST achieves strong performance while producing lighter and
faster models. Due to space constraints, additional results on zero-shot image classification, as well as
further qualitative and quantitative analyses, are provided in the Appendix (Sections A.2.2 and A.2.3).

4.1 LATENT ANALYSIS

In this section we investigate similarities in the latent representations of DiNO-B and DEiT-S on
five datasets: CIFAR-10, CIFAR-100, MNIST, F-MNIST, and ImageNet1k. We compute the
linear approximation error using only the [CLS] token, averaged over a small subset of 50 training
samples. This is sufficient to reveal block-level similarity patterns while remaining computationally
efficient. Additional results with other pretrained vision transformers (ViT-T, ViT-S, DiNO-S,
ViT-B) are provided in Section A.2.1, showing consistent patterns for each model across different
datasets.

D
i
N
O
-
B

MNIST F-MNIST CIFAR-10 CIFAR-100 ImageNet1k

D
E
i
T
-
S

Figure 2: Block Similarities. Block-by-block similarities in DiNO-B, and DEiT-S models across
five datasets: MNIST, F-MNIST, CIFAR-10, CIFAR-100 and ImageNet1k. Each matrix
quantifies the linear approximation error using only the [CLS] token, averaged over a small subset
of 50 training samples. The matrices reveal that the similarity between blocks is predominantly
influenced by the model rather than the specific dataset. Additional results in Section A.2.1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Do vision transformer models exhibit block-wise similarity patterns? The results in Figure 2 re-
veal that while the similarity patterns differ across models, they remain largely consistent for the same
model across different datasets. This suggests that the similarity structure between computational
blocks is predominantly influenced by the model itself. Although the general similarity pattern re-
mains the same, the differences in values become more pronounced (i.e., the block structure becomes
more evident) as the complexity of the dataset increases (e.g., from MNIST to ImageNet1k). These
finding aligns with observations from Nguyen et al. (2020), where DNN trained from scratch exhibit
a distinctive "block structure" in their representations, which is linked to model overparameterization.
Our results extend this observation to vision pre-trained foundation models, showing that such a
structure is primarily an intrinsic property of the model. Moreover, these consistent block-wise
patterns indicate potential targets for approximation, suggesting that entire blocks may be replaced
with simpler transformations without substantially altering the model’s internal representations.

Takeaway Pre-trained vision foundation models present block-wise similarity patterns that
are primarily determined by the model itself.

How does TOAST affect latent representations? We next analyze the impact of the proposed trans-
formations on the final block’s latent representations, which are used for downstream classification.

D
i
N
O
-
B

D
E
i
T
-
S

Figure 3: Approximation vs. Representation
Similarity. CKA between the last block repre-
sentations of the original and the approximated
model when approximating the ith block.

Original TOAST

D
i
N
O
-
B

D
E
i
T
-
S

−3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

−4 −3 −2 −1 0 1 2 3

−4

−3

−2

−1

0

1

2

3

Figure 4: PCA Visualization. Final block rep-
resentations for original and TOAST models on
F-MNIST reveal DiNO-B’s stronger reliance on
final block compared to DEiT-S.

We approximate these blocks using a shared lin-
ear transformation applied across all tokens, esti-
mated on a subset of 500 training samples. For
consistency, we use the same models and datasets
as in Figure 2. To quantify the effect of the ap-
proximation, following (Venkataramanan et al.,
2024; Kornblith et al., 2019) we compute the
CKA similarity between the final block representa-
tions of the original and the TOAST-approximated
model for each block k using its preceding block
as input. As shown in Figure 3, the model-
specific similarity patterns re-emerge after ap-
proximation. The plots highlight more specific
trends. Approximating blocks is easier on sim-
pler tasks (e.g., image classification on MNIST or
F-MNIST), yielding representations that closely
match the originals, whereas on more complex
datasets (e.g., ImageNet1k or CIFAR-100),
the approximated representations deviate more
from the original ones. Furthermore, the final
blocks of DEiT-S exhibit high similarity, suggest-
ing that approximating these layers preserves the
final representations, while earlier blocks remain
more critical. To provide a more intuitive view,
Figure 4 visualizes the final-layer representations
using Principal Component Analysis (PCA). We
compare the original representations with those
obtained after approximating the final block (10
→ 11) using TOAST on F-MNIST, with colors in-
dicating the 10 classes. The visualization confirms
that approximating the final block of DiNO-B
results in noticeable deviations from the origi-
nal representations, whereas for DEiT-S the ap-
proximated representations remain highly similar.

These observations align with the CKA analysis in Figure 3, highlighting that the effect of block
approximation depends strongly on the model and its internal block structure. Additional results
across other models and datasets are provided in Section A.2.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Takeaway Transformer blocks can be approximated using simple transformations, without
compromising representation fidelity.

Can entire transformer blocks be approximated without losing accuracy? Initial results, re-
ported in Table 1, support the qualitative analysis and empirically demonstrate that entire vision
transformer blocks can be effectively approximated using simpler transformations (e.g., linear pro-
jections or, in some cases, the identity function). Such approximations reduce both the number of
parameters and Giga Floating-Point Operations (GFLOPs), thereby improving throughput (images
per second), while incurring only a slight to negligible decrease in downstream task performance. For
instance, consistent with our earlier analysis, we find that approximating the final block of DEiT-S
when using ImageNet1k (e.g., approximating blocks 10→ 11 or 9→ 11 with a linear transforma-
tion) yields modest performance drops going from 73.85% to 73.78% and 70.01%, respectively, while
providing substantial efficiency gains. Importantly, we also show that even the identity transformation,
achieves competitive results, with accuracy drops as small as -0.24% and -5.44%, respectively. How-
ever, the choice of translator naturally depends on the efficiency-accuracy trade-off: linear translation
guarantee in general most reliable accuracy–efficiency balance, whereas the identity yields the leanest
training-free approximation when maximum simplicity is required. Further methodological details
and the full evaluation are presented in Section A.1 and Section 4.2 respectively, while details on the
efficiency metrics and additional analysis on those are in Sections A.1.7 and A.2.6, respectively.

Table 1: TOAST Image Classification Performance. Performance comparison using the Identity
translator and the Linear Translator for DEiT-S and ImageNet1k accross 3 seeds. The "Approx."
column specifies the blocks used for approximation, the first one represents the block whose output is
used to approximate the second block’s output. Additional results in Tables 2 and 3 and Section A.2.2.

Identity Translator Linear Translator

Approx. Params. Accuracy % ↑ GFLOPS ↓ imgs/s ↑ Accuracy % ↑ GFLOPS ↓ imgs/s ↑
2→ 4 -3.25M 63.74± 0.19(−13.69%) 4.15 7222.5 69.87± 0.14(−5.39%) 4.18 7187.6

9→ 11 -3.25M 69.83± 0.33(−5.44%) 4.15 7224.6 70.01± 0.27(−5.20%) 4.18 7203.8

0→ 1 -1.62M 64.02± 0.08(−13.31%) 4.56 6755.8 62.32± 0.15(−15.61%) 4.59 6748.9
10→ 11 -1.62M 73.67± 0.26(−0.24%) 4.56 6751.7 73.78± 0.28(−0.10%) 4.59 6756.3

original 21.81M 73.85± 0.39 4.97 6349.2 73.85± 0.39 4.97 6325.6

Takeaway TOAST effectively reduces model parameters and improve model efficiency
without significantly compromising the downstream task performance.

4.2 IMAGE CLASSIFICATION PERFORMANCE

We evaluate TOAST on image classification tasks using pretrained models of varying sizes (ViT-L,
DiNO-B, and DEiT-S) and two benchmark datasets (CIFAR-100F and ImageNet1k). Addi-
tional results with a broader set of models (ViT-T, ViT-S, ViT-B, ViT-L, DiNO-S, DiNO-B,
DEiT-S) and datasets (MNIST, F-MNIST, CIFAR-10, CIFAR-100C) are provided in Sec-
tion A.2.2. While in Section A.2.7, we complement the quantitative evaluations with qualitative
analyses of misclassifications after block approximation, providing further insight into model behavior
under TOAST. Additional implementation details, including model and dataset specifications, com-
putational resources, and software tools, are provided in Tables 7 and 8, and Sections A.1.5 to A.1.7.

Block approximations in TOAST are calculated via a shared linear, or identity, transformation applied
across all tokens and are estimated using a subset of 500 training samples. A linear classifier is
then trained on top of the frozen backbone with the Adam optimizer (learning rate 0.001), batch
size 256, for 5 epochs, over 3 different seeds. This setup simulates a realistic scenario where a
pretrained feature extractor is adapted to a new dataset unseen during pretraining. However, to
assess the robustness of our method, we also report the results using the original classification heads
(Section A.2.5), which confirm the consistency of our findings.

Are TOAST results competitive? As shown in Tables 2 and 3, TOAST consistently reduces
model size and GFLOPs while maintaining, and in some cases improving, image classification

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: TOAST Classification Performance on ImageNet1k. Image classification accuracy,
GFLOPs, and throughput for DEiT-S, DiNO-B, and ViT-L using ImageNet1k. The "Approx."
column indicates the block pairs where the first block approximates the second. Additional results
using other models and datasets are provided in Table 3 and Section A.2.2.

Identity Linear

Approx. Params. Accuracy % ↑ GFLOPs ↓ imgs/s ↑ Accuracy % ↑ GFLOPs ↓ imgs/s ↑

D
E
i
T
-
S

3→ 4, 9→ 11 -4.88M 66.96± 0.34(−9.33%) 3.74 7751.4 68.39± 0.13(−7.39%) 3.80 7718.4
3→ 4, 9→ 10 -3.25M 69.22± 0.13(−6.27%) 4.15 7210.9 71.35± 0.22(−3.38%) 4.21 7188.4

2→ 3 -1.62M 70.80± 0.05(−4.12%) 4.56 6754.2 73.19± 0.19(−0.88%) 4.59 6736.7
10→ 11 -1.62M 73.67± 0.26(−0.24%) 4.56 6752.6 73.78± 0.28(−0.09%) 4.59 6740.5

original 21.81M 73.85± 0.39 4.97 6349.2 73.85± 0.39 4.97 6325.6

D
i
N
O
-
B

0→ 4 -26.00M 3.58± 0.06(−95.20%) 16.32 3230.9 27.70± 0.19(−62.71%) 16.47 3227.7
0→ 1, 2→ 3, 4→ 5 -19.50M 6.98± 0.18(−90.63%) 18.34 2947.0 61.02± 0.36(−17.86%) 18.80 2929.6

0→ 1, 2→ 3 -13.00M 13.28± 0.46(−82.18%) 20.37 2703.9 70.82± 0.49(−4.66%) 20.67 2681.2
0→ 1 -6.50M 65.47± 0.43(−12.14%) 22.39 2506.6 73.43± 0.02(−1.15%) 22.54 2487.0
5→ 6 -6.50M 28.84± 0.51(−61.30%) 22.39 2503.1 73.01± 0.41(−1.71%) 22.54 2490.6

original 86.58M 74.52± 0.26 24.42 2321.3 74.52± 0.26 24.42 2316.5

V
i
T
-
L

2→ 4, 18→ 23 -80.83M 62.92± 0.21(−19.89%) 45.05 1654.9 67.43± 0.05(−14.16%) 45.47 1652.8
17→ 23 -69.28M 66.81± 0.34(−14.95%) 47.70 1572.4 66.87± 0.52(−14.87%) 47.90 1567.0

3→ 4, 19→ 23 -57.74M 70.97± 0.42(−9.65%) 50.34 1509.9 71.50± 0.14(−8.98%) 50.75 1499.5
3→ 4, 20→ 23 -46.19M 73.49± 0.18(−6.44%) 52.98 1440.4 74.03± 0.43(−5.76%) 53.39 1436.8
3→ 4, 21→ 23 -34.64M 75.80± 0.26(−3.50%) 55.62 1377.2 76.30± 0.14(−2.86%) 56.03 1345.6
7→ 8, 15→ 16 -23.09M 76.81± 0.28(−2.21%) 58.26 1318.2 77.32± 0.48(−1.56%) 58.67 1316.4

16→ 17, 22→ 23 -23.09M 77.64± 0.32(−1.15%) 58.26 1318.8 77.64± 0.02(−1.16%) 58.67 1312.3
3→ 4 -11.55M 77.32± 0.29(−1.57%) 60.90 1269.2 78.36± 0.26(−0.24%) 61.11 1270.0

22→ 23 -11.55M 78.32± 0.09(−0.29%) 60.90 1267.5 78.21± 0.19(−0.43%) 61.11 1270.9

original 304.35M 78.55± 0.20 63.54 1219.8 78.55± 0.20 63.54 1225.2

accuracy. This aligns with our representational analyses in Section 4.1: for instance, approximating
the final block of DEiT-S produces latent representations nearly identical to the original (Figures 3
and 4), making it an ideal candidate for approximation. Even when multiple consecutive blocks are
approximated (e.g., 9→11), models maintain performance comparable to or exceeding the original
while significantly reducing parameters. This demonstrates that a simple linear transformation, or
even the identity in certain cases, is sufficient to capture the functionality of full transformer blocks
without additional training, provided the transformation is shared across all tokens.

Table 3: TOAST Classification Performance on CIFAR-100F. Image classification accuracy,
GFLOPs, and throughput for DEiT-S, DiNO-B, and ViT-L using CIFAR-100F. The "Approx."
column indicates the block pairs where the first block approximates the second. Additional results
using other models and datasets are provided in Section A.2.2.

Identity Linear

Approx. Params. Accuracy % ↑ GFLOPs ↓ imgs/s ↑ Accuracy % ↑ GFLOPs ↓ imgs/s ↑

D
E
i
T
-
S

3→ 4, 9→ 11 -4.88M 68.48± 0.34(−3.44%) 3.74 7755.1 70.64± 0.37(−0.39%) 3.80 7713.7
9→ 11 -3.25M 72.28± 0.36(+1.92%) 4.15 7226.6 72.04± 0.42(+1.57%) 4.18 6791.7
8→ 9 -1.62M 71.34± 0.10(+0.60%) 4.56 6755.2 70.80± 0.12(−0.17%) 4.59 6739.9

9→ 10 -1.62M 71.66± 0.39(+1.04%) 4.56 6692.1 71.49± 0.20(+0.80%) 4.59 6741.3

original 21.81M 70.92± 0.18 4.97 6349.0 70.92± 0.18 4.97 6249.4

D
i
N
O
-
B

0→ 4 -26.00M 18.29± 0.86(−79.09%) 16.32 3233.8 62.25± 0.54(−28.83%) 16.47 3204.9
0→ 1, 2→ 3, 4→ 5 -19.50M 29.05± 0.31(−66.79%) 18.34 2943.1 79.06± 0.27(−9.60%) 18.80 2922.6

0→ 1, 2→ 3 -13.00M 33.25± 0.18(−61.99%) 20.37 2705.6 84.18± 0.18(−3.76%) 20.67 2690.1
0→ 1 -6.50M 78.83± 0.22(−9.87%) 22.39 2492.8 86.64± 0.37(−0.94%) 22.54 2493.8
2→ 3 -6.50M 47.51± 0.52(−45.68%) 22.39 2484.2 86.06± 0.20(−1.60%) 22.54 2484.6

original 86.58M 87.46± 0.04 24.42 2315.5 87.46± 0.04 24.42 2317.3

V
i
T
-
L

2→ 4, 18→ 23 -80.83M 74.41± 0.44(−13.79%) 45.05 1655.7 84.02± 0.39(−2.66%) 45.47 1649.6
17→ 23 -69.28M 85.32± 0.45(−1.16%) 47.69 1578.8 84.55± 0.44(−2.05%) 47.90 1552.1

3→ 4, 19→ 23 -57.74M 84.23± 0.08(−2.43%) 50.34 1503.6 85.81± 0.39(−0.59%) 50.75 1497.4
3→ 4, 20→ 23 -46.19M 84.68± 0.18(−1.90%) 52.98 1445.2 86.30± 0.11(−0.03%) 53.39 1431.0

20→ 23 -34.64M 86.61± 0.07(+0.33%) 55.62 1381.2 86.55± 0.22(+0.27%) 55.82 1372.6
3→ 4, 21→ 23 -34.64M 84.86± 0.28(−1.70%) 55.62 1376.7 86.37± 0.28(+0.06%) 56.03 1372.7

20→ 22 -23.09M 86.30± 0.23(−0.03%) 58.26 1317.5 86.52± 0.12(+0.24%) 58.47 1314.6
3→ 4, 21→ 22 -23.09M 84.58± 0.19(−2.02%) 58.26 1315.8 86.20± 0.11(−0.14%) 58.67 1317.6

20→ 21 -11.55M 86.44± 0.24(+0.14%) 60.90 1268.5 86.39± 0.08(+0.08%) 61.11 1266.7
21→ 22 -11.55M 86.55± 0.01(+0.26%) 60.90 1270.7 86.72± 0.24(+0.46%) 61.11 1269.2

original 304.35M 86.32± 0.08 63.54 1223.1 86.32± 0.08 63.54 1224.3

Additionally, efficiency gains are notable: throughput (imgs/s) increases while GFLOPs decreases,
highlighting practical benefits for deployment, as also shown in Section A.2.6. Additional results

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

across other models (DiNO-B, ViT-L) and datasets confirm that TOAST generalizes across
architectures and scales (Section A.2.2). Finally, while approximations are easier for simpler datasets
(e.g., CIFAR-100F), TOAST still achieves meaningful compression with minimal accuracy loss
on complex datasets like ImageNet1k. Additional results across models and datasets are provided
in Tables 12 to 15. To assess scalability, we applied TOAST to ViT-L. Approximating selected
blocks, e.g., 17→ 23, reduces the parameter count by 69.3M, lowers GFLOPs from 63.54 to 47.79,
and increases throughput from 1223.1 to 1578.8 imgs/s, while incurring a minimal accuracy drop
of 1.16%. This shows TOAST’s utility in balancing substantial computational savings with a modest
performance trade-off, even in large models.

Takeaway Approximating selected blocks enables efficiency gains with minimal impact on
the accuracy.

Are 500 training samples enough? We study the sensitivity of block approximation to the number
of training samples using DiNO-B and DEiT-S on ImageNet1k. As shown in Figure 5, perfor-
mance typically plateaus quickly: 500 samples are sufficient to obtain stable and reliable approxima-
tions. Increasing the sample count beyond this threshold provides only marginal gains, while substan-
tially fewer samples lead to noticeable degradation. Interestingly, when the representational spaces of
consecutive blocks are already highly aligned, even as few as 10 or 50 samples suffice to achieve com-
petitive approximations. Conversely, for blocks that are harder to approximate, such as the early layers
of DEiT-S (e.g., 0→1), even 4000 samples are insufficient to estimate a linear transformation that
maintains competitive performance. We highlight that these results are obtained on ImageNet1k,
which contains 1000 classes. The 500 samples represent only a small subset of the class space, yet re-
liable approximations are still achieved. This indicates that TOAST primarily captures the block-level
structure of representations rather than requiring exhaustive coverage of all classes. Consequently,
TOAST could be practical also in scenarios where a large labeled datasets is limited.

A
c
c
u
r
a
c
y

DEiT-S DiNO-B

Figure 5: Sample Size Ablation. Classification accuracy as a function of the number of training
samples used for approximating different layers of DiNO-B and DEiT-Swith a linear transformation
using ImageNet1k. Accuracy stabilizes after approximately 500 samples.

Takeaway A small number of samples is sufficient to achieve stable and reliable representa-
tions when approximating transformer blocks, balancing efficiency and accuracy.

What if a more complex transformation is used? We evaluate whether deeper approximators
improve downstream task performance. Specifically, we compare TOAST (Identity and Linear)
to MultiLayer Perceptron (MLP) and Residual MLP, trained for 300 steps with Adam (learning
rate 10−3). These more complex transformation, as for Identity and Linear, are applied across all
tokens, and estimated using a subset of 500 training samples. Results in Table 4 show a consistent
trend for ViT-L on both ImageNet1k and CIFAR-100F: the linear transformation provides the
most reliable trade-off across datasets. On CIFAR-100F, linear often achieves the best or near-best
accuracy (e.g., 21→22: 86.72% vs. 86.82% for Res-MLP and 85.20% for MLP), while remaining
training-free, thus more efficient. On ImageNet1k, the gap becomes even clearer: for the same
blocks linear reaches 77.24%, while Res-MLP and MLP reach 77.14% and 74.20%, respectively.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Additionally, also Linear obtain competitive results. TOAST operates in closed form, requires no
optimization, and consistently achieves strong efficiency–accuracy trade-offs. These findings confirm
that a simple linear transformation is sufficient to approximate transformer blocks in most settings,
with deeper translators offering little benefit despite their higher cost.

Table 4: Transformations Comparison. Classification accuracy on CIFAR-100F and
ImageNet1k using ViT-L. The "Approx." column specifies the block mapping (output of the first
block is used to approximate the output of the second). MLP and Res-MLP are trained approximators,
while Identity and Linear are closed-form and training-free. Results are averaged over three seeds.

Accuracy ↑
Approx. Params. Identity Linear MLP Res-MLP

C
I
F
A
R
-
1
0
0
F

3→ 4, 20→ 23 -46.19M 84.68± 0.18 86.30± 0.11 84.36± 0.48 86.10± 0.39
17→ 23 -69.28M 84.58± 0.19 86.20± 0.11 84.83± 0.31 86.49± 0.08

3→ 4, 19→ 23 -57.74M 84.23± 0.08 85.81± 0.39 83.63± 0.42 85.58± 0.06
20→ 23 -34.64M 86.61± 0.07 86.55± 0.22 84.68± 0.39 86.19± 0.02

3→ 4, 21→ 23 -34.64M 84.86± 0.28 86.37± 0.28 84.90± 0.71 86.10± 0.37
20→ 22 -23.09M 86.30± 0.23 86.52± 0.12 84.97± 0.18 86.71± 0.28

3→ 4, 21→ 22 -23.09M 84.58± 0.19 86.20± 0.11 84.83± 0.31 86.49± 0.08
20→ 21 -11.55M 86.44± 0.24 86.39± 0.08 84.40± 0.70 86.63± 0.06
21→ 22 -11.55M 86.55± 0.01 86.72± 0.24 85.20± 0.26 86.82± 0.31

original 304.35M 86.32± 0.08 86.32± 0.08 86.32± 0.08 86.32± 0.08

I
m
a
g
e
N
e
t
1
k

3→ 4, 20→ 23 -46.19M 73.49± 0.18 74.03± 0.43 69.49± 0.24 73.68± 0.12
17→ 23 -69.28M 84.58± 0.19 86.20± 0.11 84.83± 0.31 86.49± 0.08

3→ 4, 19→ 23 -57.74M 70.97± 0.42 71.50± 0.14 66.19± 0.17 70.75± 0.07
20→ 23 -34.64M 74.45± 0.07 74.45± 0.24 70.19± 0.30 74.46± 0.22

3→ 4, 21→ 23 -34.64M 75.80± 0.26 76.30± 0.14 73.23± 0.29 76.14± 0.22
20→ 22 -23.09M 75.49± 0.19 74.84± 0.21 70.56± 0.25 75.59± 0.18

3→ 4, 21→ 22 -23.09M 76.25± 0.02 76.61± 0.29 73.52± 0.40 76.43± 0.21
20→ 21 -11.55M 77.00± 0.27 77.19± 0.25 72.72± 0.31 76.24± 0.21
21→ 22 -11.55M 77.24± 0.28 77.06± 0.24 74.20± 0.48 77.14± 0.27

original 304.35M 78.55± 0.20 86.32± 0.20 86.32± 0.20 86.32± 0.20

Takeaway TOAST consistently matches or outperforms deeper trained approximators while
requiring no gradient-based training.

4.3 TOAST APPLICABILITY TO OTHER TASKS OR DOMAINS

We further evaluate TOAST beyond vision classification by applying it to text classification and
semantic segmentation tasks. For text classification, we use ModernBERT-B on the AG News
dataset, while for segmentation we employ the same backbone on the SceneParse150 dataset.

Table 5: TOAST Text Classification Performance on AG News. Text classification accuracy,
GFLOPs, and throughput for ModernBERT-B using AG News. The "Approx." column specifies
the block mapping (output of the first block is used to approximate the output of the second). MLP is
a trained approximators, while Linear is closed-form and training-free. Results are averaged over
three seeds. Additional results are provided in Section A.2.4.

Linear MLP

Approx. Params ↓ Accuracy% ↑ GFLOPs ↓ img/s ↑ Accuracy% ↑ GFLOPs ↓ token/s ↑
11→ 21 92.82M 0.81± 0.05 12.7 2264.0 0.73± 0.00 12.68 2216.50

4→ 8, 11→ 14, 18→ 21 92.82M 0.82± 0.07 12.7 2220.7 0.73± 0.01 12.68 2155.16

4→ 7, 18→ 21 109.68M 0.82± 0.07 15.9 1803.9 0.71± 0.02 15.85 1771.80

4→ 8 126.54M 0.86± 0.02 19.0 1636.0 0.82± 0.01 19.03 1632.65

11→ 14 132.16M 0.86± 0.02 20.1 1544.3 0.82± 0.01 20.08 1540.23
18→ 21 132.16M 0.85± 0.02 20.1 1472.8 0.82± 0.01 20.08 1467.56

4→ 5 143.40M 0.88± 0.00 22.2 1380.3 0.81± 0.01 22.20 1384.42
11→ 12 143.40M 0.87± 0.02 22.2 1378.8 0.82± 0.01 22.20 1394.63
20→ 21 143.40M 0.87± 0.02 22.2 1340.2 0.84± 0.00 22.20 1332.27

original 149.01M 0.88± 0.00 23.25 1337.25 0.88± 0.00 23.25 1347.46

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 6: Segmentation Performance.
mIoU results for each single skip config-
uration using ViT-S and DiNO-B.

mIoU ↑
ViT-S DiNO-B

Approx. Linear MLP Linear MLP

0 → 1 0.27 0.26 0.29 0.29
1 → 2 0.29 0.29 0.29 0.29
2 → 3 0.30 0.30 0.29 0.29
3 → 4 0.30 0.29 0.29 0.29
4 → 5 0.30 0.29 0.29 0.29
5 → 6 0.28 0.27 0.29 0.29
6 → 7 0.28 0.27 0.29 0.29
7 → 8 0.29 0.28 0.26 0.23
8 → 9 0.28 0.27 0.28 0.27
9 → 10 0.29 0.29 0.27 0.26

10 → 11 0.30 0.29 0.27 0.26

original 0.31 0.29

Additional implementation details, including model
and dataset specifications, computational resources,
and software tools, are provided in Tables 7 and 8
and Sections A.1.5 to A.1.7, with complete results in
Section A.2.4. For both domains, we adopt the same setup
as in the vision experiments: block approximations are
implemented via a shared linear map, identity, or small
MLP transformation applied across all tokens, estimated
using a subset of 500 training samples. In the text
domain, a linear classifier is trained on top of the frozen
backbone for 5 epochs over 3 seeds. For segmentation,
a segmentation head is trained on the frozen backbone
for 10 epochs over 3 seeds. The results in Table 5 show
that, in this setting as well, the linear transformation
outperforms the more complex MLP. Moreover, up to 10
blocks can be approximated (i.e., 11→ 21), substantially
reducing GFLOPs, improving throughput, and decreasing
model size, while incurring only a minimal drop in
accuracy. Results in Table 6 further demonstrate that a
linear transformation is sufficient even for a more complex
task such as segmentation, indicating that appropriately
selecting which layers to approximate enables model size
reduction with minimal impact on downstream accuracy.

Takeaway TOAST extends beyond vision and standard classification, demonstrating broader
applicability across domains.

5 LIMITATIONS AND FUTURE WORK

While TOAST efficiently approximates transformer blocks, our current investigation has primarily
focused on vision transformer architectures and their application to classification tasks with prelimi-
nary results also extending to segmentation and text classification. Future research will explore the
applicability of TOAST to other modalities and to diverse downstream tasks (e.g., image reconstruc-
tion). Such an expansion will be crucial for testing the universality of the observed block-similarity
phenomena and assessing TOAST’s adaptability. Furthermore, we aim to expand the analysis of
these block-level similarities. This involves investigating redundancies at finer granularities, such
as within individual attention heads or feed-forward layers, and consistently and developing more
principled and reliable metrics for automatically selecting which blocks to approximate. The heuristic
used in the current work, while effective, is not yet fully accurate, and improving it could enable
more consistent identification of approximation-friendly layers with minimal impact on downstream
performance. Such advancements may lead to more refined, context-aware approximation strategies
that further enhance model efficiency.

6 CONCLUSION

In this work, we first analyze the emergence of consistent block-wise representation similarities
within pretrained foundation models and then propose a method to leverage these similarities to
obtain smaller and more efficient yet performant models. To this end, we propose Transformer
Optimization using Adaptive and Simple Transformations (TOAST), a novel method for easily
approximate entire transformer blocks using a simple transformation, without requiring additional
training or fine-tuning. Our extensive empirical evaluations across multiple pretrained vision models
and datasets validate that TOAST significantly reduces model parameters while maintaining, and
sometimes even improving, downstream task performance. Furthermore, TOAST’s straightforward
linear approach often achieves better results than existing strategies like block skipping, and can be
more effective than complex, trained approximations. TOAST thus offers a practical and efficient
method for streamlining foundation models, making them more computationally accessible, and
towards deployment in resource-constrained scenarios such as on-device settings.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study focuses exclusively on pre-trained vision
models and publicly available datasets, with no human subjects or sensitive personal data involved.
All experimental protocols comply with legal, privacy, and ethical standards for AI research. The
methods proposed in this paper aim solely to improve computational efficiency, without introducing
harm or enabling misuse.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of all experiments, model configurations,
datasets, training procedures, and hyperparameters in the main text and Appendix (Sections A.1.5
to A.1.7 and A.2.2). Additionally, the full implementation of TOAST, including scripts for block
approximation and evaluation, is included as anonymous supplementary material. All results reported
in the paper can be reproduced using these resources.

REFERENCES

Shipeng Bai, Jun Chen, Xintian Shen, Yixuan Qian, and Yong Liu. Unified data-free compression:
Pruning and quantization without fine-tuning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5876–5885, 2023.

Rubén Ballester, Carles Casacuberta, and Sergio Escalera. Topological data analysis for neural
network analysis: A comprehensive survey. arXiv preprint arXiv:2312.05840, December 2023.

Serguei Barannikov, Ilya Trofimov, Nikita Balabin, and Evgeny Burnaev. Representation topol-
ogy divergence: A method for comparing neural network representations. arXiv preprint
arXiv:2201.00058, 2021.

Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov. Better plain vit baselines for imagenet-1k,
2022.

Irene Cannistraci, Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, and
Emanuele Rodolà. Bootstrapping parallel anchors for relative representations. In Krystal
Maughan, Rosanne Liu, and Thomas F. Burns (eds.), The First Tiny Papers Track at ICLR
2023, Tiny Papers @ ICLR 2023, Kigali, Rwanda, May 5, 2023. OpenReview.net, 2023. URL
https://openreview.net/pdf?id=VBuUL2IWlq.

Irene Cannistraci, Luca Moschella, Marco Fumero, Valentino Maiorca, and Emanuele Rodolà. From
bricks to bridges: Product of invariances to enhance latent space communication. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=vngVydDWft.

Donato Crisostomi, Irene Cannistraci, Luca Moschella, Pietro Barbiero, Marco Ciccone, Pietro
Lio, and Emanuele Rodolà. From charts to atlas: Merging latent spaces into one. In NeurIPS
2023 Workshop on Symmetry and Geometry in Neural Representations, 2023. URL https:
//openreview.net/forum?id=ZFu7CPtznY.

MohammadReza Davari, Stefan Horoi, Amine Natik, Guillaume Lajoie, Guy Wolf, and Eu-
gene Belilovsky. Reliability of cka as a similarity measure in deep learning. arXiv preprint
arXiv:2210.16156, 2022.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
YicbFdNTTy.

11

https://openreview.net/pdf?id=VBuUL2IWlq
https://openreview.net/forum?id=vngVydDWft
https://openreview.net/forum?id=vngVydDWft
https://openreview.net/forum?id=ZFu7CPtznY
https://openreview.net/forum?id=ZFu7CPtznY
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Marco Fumero, Marco Pegoraro, Valentino Maiorca, Francesco Locatello, and Emanuele Rodolà.
Latent functional maps: a spectral framework for representation alignment. In A. Glober-
son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Ad-
vances in Neural Information Processing Systems, volume 37, pp. 66178–66203. Curran Asso-
ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/79be41d858841037987964e3f5caf76d-Paper-Conference.pdf.

Harold Hotelling. Relations between two sets of variates. Breakthroughs in statistics: methodology
and distribution, pp. 162–190, 1992.

Max Klabunde, Tobias Schumacher, Markus Strohmaier, and Florian Lemmerich. Similarity of
neural network models: A survey of functional and representational measures. arXiv preprint
arXiv:2305.06329, 2023.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International Conference on Machine Learning, pp. 3519–
3529. PMLR, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ruslan Kuprieiev, skshetry, Dmitry Petrov, Paweł Redzyński, Peter Rowlands, Casper da Costa-
Luis, Alexander Schepanovski, Ivan Shcheklein, Batuhan Taskaya, Gao, Jorge Orpinel, David
de la Iglesia Castro, Fábio Santos, Aman Sharma, Dave Berenbaum, Zhanibek, Dani Hodovic,
daniele, Nikita Kodenko, Andrew Grigorev, Earl, Nabanita Dash, George Vyshnya, Ronan Lamy,
maykulkarni, Max Hora, Vera, and Sanidhya Mangal. Dvc: Data version control - git for data &
models, 2022. URL https://doi.org/10.5281/zenodo.7083378.

Henry Kvinge, Grayson Jorgenson, Davis Brown, Charles Godfrey, and Tegan Emerson. Internal
representations of vision models through the lens of frames on data manifolds. In NeurIPS 2023
Workshop on Symmetry and Geometry in Neural Representations, 2022.

Zorah Lähner and Michael Moeller. On the direct alignment of latent spaces. In Marco Fumero,
Emanuele Rodolá, Clementine Domine, Francesco Locatello, Karolina Dziugaite, and Caron
Mathilde (eds.), Proceedings of UniReps: the First Workshop on Unifying Representations in
Neural Models, volume 243 of Proceedings of Machine Learning Research, pp. 158–169. PMLR,
15 Dec 2024. URL https://proceedings.mlr.press/v243/lahner24a.html.

Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang,
and Jian Ren. EfficientFormer: Vision transformers at MobileNet speed. In Advances in Neural
Information Processing Systems, 2022.

Zhu Liao, Victor Quétu, Van-Tam Nguyen, and Enzo Tartaglione. Can unstructured pruning reduce
the depth in deep neural networks? In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 1402–1406, 2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Valentino Maiorca, Luca Moschella, Antonio Norelli, Marco Fumero, Francesco Locatello, and
Emanuele Rodolà. Latent space translation via semantic alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. Advances in Neural Information Processing Systems, 31,
2018.

Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, Francesco Locatello, and
Emanuele Rodolà. Relative representations enable zero-shot latent space communication. In Proc.
ICLR, 2023.

Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks learn the same
things? uncovering how neural network representations vary with width and depth. arXiv preprint
arXiv:2010.15327, 2020.

12

https://proceedings.neurips.cc/paper_files/paper/2024/file/79be41d858841037987964e3f5caf76d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/79be41d858841037987964e3f5caf76d-Paper-Conference.pdf
https://doi.org/10.5281/zenodo.7083378
https://proceedings.mlr.press/v243/lahner24a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Antonio Norelli, Marco Fumero, Valentino Maiorca, Luca Moschella, Emanuele Rodola, and
Francesco Locatello. Asif: Coupled data turns unimodal models to multimodal without training.
Advances in Neural Information Processing Systems, 36:15303–15319, 2023.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Junting Pan, Adrian Bulat, Fuwen Tan, Xiatian Zhu, Lukasz Dudziak, Hongsheng Li, Georgios
Tzimiropoulos, and Brais Martinez. EdgeViTs: Competing light-weight CNNs on mobile devices
with vision transformers. In European Conference on Computer Vision (ECCV), 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. Advances in neural
information processing systems, 30, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect of dropping layers of
pre-trained transformer models. Computer Speech & Language, 77:101429, 2023.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski,
Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia
Jitsev. Laion-5b: An open large-scale dataset for training next generation image-text models. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 25278–25294. Curran Associates, Inc., 2022.
URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
a1859debfb3b59d094f3504d5ebb6c25-Paper-Datasets_and_Benchmarks.
pdf.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 18098–18109. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/d1ff1ec86b62cd5f3903ff19c3a326b2-Paper.pdf.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Shengkun Tang, Yaqing Wang, Zhenglun Kong, Tianchi Zhang, Yao Li, Caiwen Ding, Yanzhi Wang,
Yi Liang, and Dongkuan Xu. You need multiple exiting: Dynamic early exiting for accelerating
unified vision language model. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10781–10791, 2023.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. arxiv 2020.
arXiv preprint arXiv:2012.12877, 2(3), 2020.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve
Jegou. Training data-efficient image transformers & distillation through attention. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 10347–10357. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/v139/touvron21a.html.

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/a1859debfb3b59d094f3504d5ebb6c25-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a1859debfb3b59d094f3504d5ebb6c25-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a1859debfb3b59d094f3504d5ebb6c25-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d1ff1ec86b62cd5f3903ff19c3a326b2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d1ff1ec86b62cd5f3903ff19c3a326b2-Paper.pdf
https://proceedings.mlr.press/v139/touvron21a.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lucrezia Valeriani, Diego Doimo, Francesca Cuturello, Alessandro Laio, Alessio Ansuini, and
Alberto Cazzaniga. The geometry of hidden representations of large transformer models. Advances
in Neural Information Processing Systems, 36, 2024.

Andreas Veit and Serge Belongie. Convolutional networks with adaptive inference graphs. In
Proceedings of the European Conference on Computer Vision (ECCV), September 2018.

Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensem-
bles of relatively shallow networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/
2016/file/37bc2f75bf1bcfe8450a1a41c200364c-Paper.pdf.

Shashanka Venkataramanan, Amir Ghodrati, Yuki M Asano, Fatih Porikli, and Amir Habibian. Skip-
attention: Improving vision transformers by paying less attention. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=vI95kcLAoU.

Guo-Hua Wang and Jianxin Wu. Practical network acceleration with tiny sets. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said
Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, et al. Smarter, better,
faster, longer: A modern bidirectional encoder for fast, memory efficient, and long context finetun-
ing and inference. In Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 2526–2547, 2025.

Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S. Davis, Kristen Grauman,
and Rogerio Feris. Blockdrop: Dynamic inference paths in residual networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic early exiting for
accelerating bert inference. arXiv preprint arXiv:2004.12993, 2020.

Fang Yu, Kun Huang, Meng Wang, Yuan Cheng, Wei Chu, and Li Cui. Width & depth pruning for
vision transformers. In Proc. AAAI, 2022.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

Hanxiao Zhang, Yifan Zhou, and Guo-Hua Wang. Dense vision transformer compression with few
samples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 15825–15834, June 2024.

Minjia Zhang and Yuxiong He. Accelerating training of transformer-based language models with
progressive layer dropping. Advances in neural information processing systems, 33:14011–14023,
2020.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In NIPS, 2015.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Semantic
understanding of scenes through the ade20k dataset. arXiv preprint arXiv:1608.05442, 2016.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses patience:
Fast and robust inference with early exit. Advances in Neural Information Processing Systems, 33:
18330–18341, 2020.

14

https://proceedings.neurips.cc/paper_files/paper/2016/file/37bc2f75bf1bcfe8450a1a41c200364c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/37bc2f75bf1bcfe8450a1a41c200364c-Paper.pdf
https://openreview.net/forum?id=vI95kcLAoU
https://openreview.net/forum?id=vI95kcLAoU

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 IMPLEMENTATION DETAILS

This section details the experiments conducted in Section 4, providing information to reproduce them.
Additionally, we provide the code as a zip file in the supplementary material.

A.1.1 MODELS AND DATASETS

Table 7 contains the full list of the pretrained models, while Table 8 contains dataset information.

Table 7: Pretrained models details. Details of the pretrained feature extractors with their Hugging-
Face key, their alias, and their latent space dimensionality.

Modality HuggingFace Model Name Alias Enc. Dim

Vision

WinKawaks/vit-tiny-patch16-224 ViT-T (Dosovitskiy et al., 2021) 192

WinKawaks/vit-small-patch16-224 ViT-S (Dosovitskiy et al., 2021) 384
facebook/dinov2-small DiNO-S (Oquab et al., 2023) 384
facebook/deit-small-patch16-224 DEiT-S (Touvron et al., 2020) 384

google/vit-base-patch16-224 ViT-B (Dosovitskiy et al., 2021) 768
facebook/dinov2-base DiNO-B (Oquab et al., 2023) 768
laion/CLIP-ViT-B-16-laion2B-s34B-b88K OpenCLIP-ViT-B (Zhai et al., 2019) 768

google/vit-large-patch16-224 ViT-L (Dosovitskiy et al., 2021) 1024

Text answerdotai/ModernBERT-base ModernBERT-B (Warner et al., 2025) 768

Table 8: Dataset details. Details of the HuggingFace datasets used in the classification and recon-
struction experiments, with the associated number of classes.

Modality Name Alias # Classes

Vision

MNIST (Deng, 2012) MNIST 10
Fashion-MNIST (Xiao et al., 2017) F-MNIST 10
CIFAR-10 (Krizhevsky et al., 2009) CIFAR-10 10

CIFAR-100 (coarse) (Krizhevsky et al., 2009) CIFAR-100C 20

CIFAR-100 (fine) (Krizhevsky et al., 2009) CIFAR-100F 100

SceneParse150 (Zhou et al., 2017; 2016) SceneParse150 150

Imagenet-1k (Russakovsky et al., 2015) ImageNet1k 1000

Text AG News Zhang et al. (2015) AG News 4

A.1.2 APPROXIMATORS

The first implementation, referred to as the Res-MLP, is composed of two normalization layers and
a feedforward submodule. The first layer normalization processes the input tensor, followed by a
feedforward submodule comprising a linear transformation, a SiLU activation, a dropout layer, and
a final linear transformation. The output of the feedforward submodule is added to the normalized
input via a residual connection. This sum is then passed through the second normalization layer
to produce the final output. The second implementation, referred to as the MLP, is a simplified
MLP that employs a sequential architecture with a first linear transformation that reduces the input
dimensionality to half of the target dimension, followed by a GELU activation function for smooth
non-linearity, and a final linear transformation that restores the reduced features to match the target
dimensionality. Refer to Listings 1 and 2 for the code snippet of the two translators.

Listing 1: Python Code Snippet for the Res-MLP translator
class ResMLP(nn.Module):

def __init__(self, num_features: int, dropout_p: float):

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

super().__init__()

self.norm1 = nn.LayerNorm(num_features)
self.norm2 = nn.LayerNorm(num_features)

self.ff = nn.Sequential(
nn.Linear(num_features, num_features),
nn.SiLU(),
nn.Dropout(p=dropout_p),
nn.Linear(num_features, num_features),

)

def forward(self, x: torch.Tensor) -> torch.Tensor:
x_normalized = self.norm1(x)
x_transformed = self.ff(x_normalized)
return self.norm2(x_transformed + x_normalized)

Listing 2: Python Code Snippet for the MLP translator
translation = nn.Sequential(

nn.Linear(x.size(1), y.size(1) // 2),
nn.GELU(),
nn.Linear(y.size(1) // 2, y.size(1)),

)

A.1.3 METRIC ABLATION

We introduce linear approximation error as a simple, stable, and sample-efficient criterion for identi-
fying redundant transformer blocks, offering a practical alternative for guiding block approximation.
This metric measures how well the representation of a later block can be reconstructed from an earlier
one through a least-squares projection, providing a direct estimate of how much additional structure
the skipped layers contribute. Importantly, the error can be estimated using as few as 50 samples
producing substantially more stable and interpretable rankings compared to other metrics.

Table 9: Top-5 Block Approximation Recommendation. Top 5 recommended blocks to be
approximated based on linear approximation error using DEiT-S and CIFAR-100F.

Rank Approx # Layers Predicted Error Accuracy %

1 9 → 10 1 0.14 71.69± 0.11
2 10 → 11 1 0.18 71.17± 0.19
3 8 → 9 1 0.23 70.83± 0.13
4 9 → 11 2 0.25 71.14± 0.15
5 8 → 10 2 0.26 71.06± 0.19

- original 0 - 71.1

As shown in Table 9, linear approximation error correlates strongly with the actual accuracy impact
of skipping or approximating a block range: blocks with the lowest error consistently incur minimal
or no downstream performance degradation. This makes the metric both computationally lightweight
and practically reliable for identifying redundant or compressible transformer regions.

To further validate this choice, we conduct an ablation comparing several candidate similarity metrics
(e.g., cosine distance, MSE, Euclidean distance, and CKA) and evaluate how well each predicts
the true accuracy drop after approximation. Results, summarized in Table 10, show that linear
approximation error achieves the most consistent performance across architectures, with competitive
or superior Precision@5 and Recall@5 scores. Notably, metrics such as cosine distance and Euclidean
distance exhibit behavior that is highly model-dependent, while CKA performs well in some cases
but is less stable across architectures and budgets.

Overall, this ablation highlights that linear approximation error provides the best trade-off between
stability, computational cost, and predictive fidelity, making it a strong default metric for block
selection in transformer approximation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 10: Block Selection Strategy Ablation. Ranking evaluation metrics for approximation quality
prediction on CIFAR-100 using DEiT-S, DiNO-S, and DiNO-B. Precision@5 and Recall@5 are
shown for each model.

DEiT-S DiNO-S DiNO-B Mean

P@5 R@5 P@5 R@5 P@5 R@5 P@5 R@5

Linear Error 0.6 0.6 0.6 0.6 0.6 0.6 0.60 0.60
Cosine 1.0 1.0 0.4 0.4 0.2 0.2 0.53 0.53
CKA 0.6 0.6 0.6 0.6 0.4 0.4 0.53 0.53
MSE 0.0 0.0 0.4 0.4 0.6 0.6 0.33 0.33

Euclidean 0.8 0.8 0.4 0.4 0.4 0.4 0.53 0.53

A.1.4 BLOCK SELECTION PSEUDOCODE

Algorithm 1 Identify Top-k Layer Skip Configurations

Require: Model encoderM with L layers, dataset D, number of top configurations k, skip budget b
(optional)

Ensure: Top-k skip configurations S = {(s1, e1), . . . , (sk, ek)}
1: Extract layer representations: Hi ← encode(M,D, layeri) for i ∈ [0, L]
2: Initialize error matrix E ∈ RL×L

3: for i = 0 to L− 1 do
4: for j = i+ 1 to L do
5: Ei,j ← LinearApproximationError(Hi,Hj)
6: end for
7: end for
8: Initialize candidate list C ← ∅
9: for i = 0 to L− 1 do

10: for j = i+ 1 to L do
11: if b is specified and j − i ̸= b then
12: continue ▷ Skip if not matching budget
13: end if
14: C ← C ∪ {(i, j,Ei,j)}
15: end for
16: end for
17: Sort C by error in ascending order
18: S ← top-k configurations from C
19: return S

Algorithm 2 Linear Approximation Error

Require: Source layer representations X ∈ Rn×d, target layer representations Y ∈ Rn×d

Ensure: Normalized residual error ϵ
1: Solve least-squares: W∗ = argminW ∥Y −XW∥2F
2: Compute prediction: Ŷ = XW∗

3: Compute normalized error: ϵ = ∥Y−Ŷ∥F

∥Y∥F

4: return ϵ

A.1.5 TOOLS & TECHNOLOGIES

All the experiments presented in this work employ the following tools:

• PyTorch Lightning, to ensure reproducible results while also getting a clean and modular
codebase;

• NN-Template GrokAI (2021), to easily bootstrap the project and enforce best practices;

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 11: Top-3 Block Approximation Recommendation. Top 3 recommended blocks to be
approximated based on linear approximation error and number of blocks to skip using DEiT-S and
CIFAR-100F.

Blocks Rank Approx. Predicted Error Accuracy %

1
1 9 → 10 0.14 71.69± 0.11
2 10 → 11 0.18 71.17± 0.19
3 8 → 9 0.23 70.83± 0.13

2
1 9 → 11 0.25 71.14± 0.15
2 8 → 10 0.26 71.06± 0.19
3 7 → 9 0.36 69.00± 0.43

3
1 8 → 11 0.36 68.22± 0.40
2 7 → 10 0.38 69.08± 0.24
3 6 → 9 0.45 65.64± 0.03

0 - original - 71.1

• Transformers by HuggingFace, to get ready-to-use transformers for both text and images;
• Datasets by HuggingFace, to access most of the datasets;
• DVC (Kuprieiev et al., 2022), for data versioning;
• fvcore analysis library (), for calculating GFLOPs;

A.1.6 COMPUTATIONAL RESOURCES

Experiments involving larger models, specifically DiNO-B, OpenCLIP-ViT-B, and ViT-L, were
conducted on an NVIDIA H100 GPU equipped with 93 GB of memory. All the other experiments
utilized an NVIDIA GeForce RTX 5090 GPU with 31 GB of memory.

A.1.7 EFFICIENCY METRICS

We evaluated model efficiency using two primary metrics. GFLOPs were used to measure the
hardware-independent theoretical complexity of a single forward pass, calculated using the fvcore
analysis library. Throughput, measured in samples per second, was used to quantify the practical,
hardware-dependent inference speed. This was benchmarked by averaging the wall-clock time over
numerous iterations on a single NVIDIA H100 GPU with a consistent batch size of 256.

A.2 ADDITIONAL EXPERIMENTS

This section presents supplementary experiments to extend those detailed in Section 4.

A.2.1 LATENT ANALYSIS

This section extend the analysis conducted in Section 4.1, to analyze block-wise internal similarities, to
additional models of different dimensionality: ViT-T, ViT-S, ViT-B and DiNO-S. Additionally,
we provide visualization using PCA for DiNO-S, DEiT-S, ViT-S, with different datasets and
approximating both early and late blocks (see Figures 7 to 11).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

V
i
T
-
T

MNIST F-MNIST CIFAR-10 CIFAR-100 ImageNet1k
V
i
T
-
S

D
i
N
O
-
S

V
i
T
-
B

Figure 6: Block Similarities: Block-by-block similarities in ViT-T, ViT-S, DiNO-S and ViT-B
models across five datasets: MNIST, F-MNIST, CIFAR-10, CIFAR-100 and ImageNet1k.
Each matrix quantifies the linear error between latent representations of different blocks, showing
potential blocks for approximation. The matrices reveal that the similarity between blocks is predom-
inantly influenced by the model rather than the specific dataset.

−20 −10 0 10 20

−20

−10

0

10

20

−20 −10 0 10 20 30

−20

−15

−10

−5

0

5

10

15

20

M
N
I
S
T

Original TOAST

−20 −10 0 10 20 30

−20

−10

0

10

20

30

−30 −20 −10 0 10 20 30

−20

−10

0

10

20

F
-
M
N
I
S
T

Original TOAST

−20 −10 0 10 20

−30

−20

−10

0

10

20

−20 −10 0 10 20 30

−30

−20

−10

0

10

20

C
I
F
A
R
-
1
0

−20 −10 0 10

−20

−15

−10

−5

0

5

10

15

20

−30 −20 −10 0 10 20

−30

−20

−10

0

10

20

C
I
F
A
R
-
1
0
0

Figure 7: Last Block Approximation. PCA visualization of the final layer representations for both
the original model and the model with its last block approximated from the preceding one. The
representations are generated using the DiNO-S model across four datasets. The plots highlight that
the last layer representations in this model are crucial, making it more effective to approximate earlier
blocks instead. Note that for CIFAR-100 (bottom right), only the overall structure of the space can
be observed, as the 100 classes make it challenging to distinguish labels based on color.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

−4 −3 −2 −1 0 1 2 3

−2

−1

0

1

2

M
N
I
S
T

Original TOAST

−3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

−4 −3 −2 −1 0 1 2 3

−4

−3

−2

−1

0

1

2

3

F
-
M
N
I
S
T

Original TOAST

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

C
I
F
A
R
-
1
0

−3 −2 −1 0 1 2 3

−4

−3

−2

−1

0

1

2

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

C
I
F
A
R
-
1
0
0

Figure 8: Last Block Approximation. PCA visualization of the final layer representations for
both the original model and the model with its last block approximated by the preceding one. The
representations are generated using the DEiT-S model across four datasets. The plots highlight that
in this model, the representations in the last layer are redundant and can be effectively approximated,
offering potential performance improvements while reducing model complexity and parameter count.
Note that for CIFAR-100 (bottom right), only the overall structure of the space can be observed, as
the 100 classes make it challenging to distinguish labels based on color.

−20 −10 0 10 20

−20

−10

0

10

20

−20 −10 0 10 20 30

−20

−15

−10

−5

0

5

10

15

20

M
N
I
S
T

Original TOAST

−20 −10 0 10 20 30

−20

−10

0

10

20

30

−30 −20 −10 0 10 20 30

−20

−10

0

10

20

F
-
M
N
I
S
T

Original TOAST

−20 −10 0 10 20

−30

−20

−10

0

10

20

−20 −10 0 10 20 30

−30

−20

−10

0

10

20

C
I
F
A
R
-
1
0

−20 −10 0 10

−20

−15

−10

−5

0

5

10

15

20

−30 −20 −10 0 10 20

−30

−20

−10

0

10

20

C
I
F
A
R
-
1
0
0

Figure 9: Last Block Approximation. PCA visualization of the final layer representations for
both the original model and the model with its second block approximated by the preceding one.
The representations are generated using the DiNO-S model across four datasets. Note that for
CIFAR-100 (bottom right), only the overall structure of the space can be observed, as the 100
classes make it challenging to distinguish labels based on color.

−6 −4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4 6

−4

−2

0

2

4

M
N
I
S
T

Original TOAST

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

F
-
M
N
I
S
T

Original TOAST

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

C
I
F
A
R
-
1
0

−6 −4 −2 0 2 4

−6

−4

−2

0

2

4

6

−8 −6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

C
I
F
A
R
-
1
0
0

Figure 10: Last Block Approximation. PCA visualization of the last layer representations for
both the original model and the model with its second block approximated using the previous one.
Representations refer to the using ViT-S model across four datasets.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

−6 −4 −2 0 2 4

−4

−2

0

2

4

−4 −3 −2 −1 0 1 2 3

−4

−3

−2

−1

0

1

2

3

M
N
I
S
T

Original TOAST

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

−4 −2 0 2 4

−4

−2

0

2

4

F
-
M
N
I
S
T

Original TOAST

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

−4 −2 0 2 4 6

−4

−2

0

2

4

C
I
F
A
R
-
1
0

−6 −4 −2 0 2 4

−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6

−4

−2

0

2

4

C
I
F
A
R
-
1
0
0

Figure 11: Last Block Approximation. PCA visualization of the last layer representations for
both the original model and the model with its last block approximated from the previous one.
Representations refer to the using ViT-S model across four datasets.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.2.2 IMAGE CLASSIFICATION

This section presents additional experiments that complement and extend those detailed in Section 4.2.
Datasets and models are the ones detailed in Tables 7 and 8.

Table 12: ViT-S Image Classification Performance Across Seeds. Classification accuracy scores
for ViT-S using multiple datasets, and 3 seeds. The “Approx.” column specifies the blocks used for
approximation, where the first value represents the block whose output is used to approximate the
second block’s output, while the “Params.” column shows the number of parameters removed by the
approximation compared to the original model.

Approx. Params. MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F ImageNet1k

1→5 15.31M 92.28± 0.81 86.90± 0.72 85.07± 0.55 68.01± 0.31 59.21± 0.12 44.04± 0.42

2→5 16.94M 94.76± 0.20 88.57± 0.31 91.01± 0.37 77.77± 0.22 69.75± 0.36 60.38± 0.12
7→10 16.94M 94.58± 0.28 88.44± 0.35 87.36± 0.17 72.58± 0.69 62.03± 0.56 35.80± 0.11

1→3 18.56M 94.60± 0.78 88.36± 0.44 91.97± 0.16 79.36± 0.54 72.41± 0.08 64.99± 0.29
2→4 18.56M 95.08± 0.18 88.83± 0.21 92.86± 0.11 81.45± 0.44 74.43± 0.27 67.52± 0.16
3→5 18.56M 94.75± 0.57 88.81± 0.19 94.09± 0.06 83.16± 0.34 76.17± 0.45 67.27± 0.45

1→2, 3→4 18.56M 94.68± 0.69 88.30± 0.25 91.91± 0.25 79.72± 0.16 72.17± 0.15 65.38± 0.03
1→2, 4→5 18.56M 94.58± 0.77 88.95± 0.07 92.29± 0.28 80.14± 0.10 72.45± 0.35 64.42± 0.24

0→1 20.43M 95.69± 0.29 88.81± 0.19 93.68± 0.22 83.55± 0.23 76.49± 0.29 65.11± 0.27
1→2 20.43M 95.40± 0.57 88.53± 0.63 93.90± 0.11 83.98± 0.22 76.99± 0.26 70.32± 0.38
2→3 20.43M 95.43± 0.45 88.93± 0.62 94.90± 0.26 85.72± 0.48 78.96± 0.05 71.26± 0.03
3→4 20.43M 95.43± 0.39 88.77± 0.36 95.05± 0.17 85.99± 0.37 79.49± 0.32 71.40± 0.22
4→5 20.43M 95.39± 0.35 89.18± 0.51 95.41± 0.12 86.27± 0.27 79.61± 0.14 70.98± 0.16
5→6 20.43M 95.14± 0.56 89.30± 0.54 94.89± 0.27 86.49± 0.33 79.29± 0.19 69.25± 0.09
6→7 20.43M 95.11± 0.42 88.94± 0.66 94.81± 0.26 85.33± 0.30 78.06± 0.17 67.41± 0.08
7→8 20.43M 95.64± 0.46 89.41± 0.45 94.50± 0.34 85.30± 0.50 78.03± 0.12 66.22± 0.10
8→9 20.43M 95.36± 0.47 89.64± 0.37 94.36± 0.14 84.66± 0.25 77.88± 0.20 64.03± 0.29

9→10 20.43M 95.52± 0.41 89.57± 0.10 94.58± 0.27 81.76± 0.34 76.45± 0.22 61.82± 0.24
10→11 20.43M 94.83± 0.20 89.11± 0.43 94.08± 0.27 82.13± 0.70 77.45± 0.29 63.92± 0.25

original 22.06M 95.59± 0.42 89.04± 0.85 95.68± 0.24 87.61± 0.39 81.50± 0.39 73.24± 0.13

Table 13: DiNO-S Image Classification Performance Across Seeds. Classification accuracy scores
for DiNO-S using multiple datasets, and 3 seeds. The “Approx.” column specifies the blocks used
for approximation, where the first value represents the block whose output is used to approximate the
second block’s output, while the “Params.” column shows the number of parameters removed by the
approximation compared to the original model.

Approx. Params. MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F ImageNet1k

1→5 15.31M 96.25± 0.30 86.50± 1.42 80.11± 0.95 59.15± 0.45 51.24± 0.51 18.70± 0.09

2→5 16.94M 95.86± 0.52 87.99± 0.30 85.28± 0.99 67.50± 1.02 59.57± 0.45 40.63± 0.59
7→10 16.94M 96.05± 1.44 88.28± 1.25 91.00± 0.82 78.47± 0.61 70.56± 0.25 45.66± 0.69

1→3 18.56M 96.61± 0.34 88.48± 0.61 91.73± 0.36 78.62± 0.87 72.33± 0.37 56.85± 0.21
2→4 18.56M 96.79± 0.58 88.34± 0.33 91.31± 0.16 76.41± 0.44 69.71± 0.31 60.16± 0.41
3→5 18.56M 96.76± 1.02 88.65± 0.92 91.00± 0.49 75.51± 0.45 69.31± 0.05 57.47± 0.11

1→2, 3→4 18.56M 96.71± 0.62 88.69± 0.46 92.57± 0.54 79.16± 1.02 72.88± 0.57 59.79± 0.19
1→2, 4→5 18.56M 96.81± 0.31 88.67± 1.23 93.50± 0.26 79.35± 1.00 73.55± 0.38 58.62± 0.25

0→1 20.43M 96.71± 0.79 88.97± 1.12 95.67± 0.12 85.89± 0.56 80.15± 0.35 61.25± 0.22
1→2 20.43M 96.69± 0.90 88.26± 1.10 95.38± 0.09 84.86± 0.84 79.38± 0.23 64.86± 0.36
2→3 20.43M 96.42± 0.36 88.31± 1.20 94.71± 0.33 84.15± 0.94 77.74± 0.85 65.16± 0.69
3→4 20.43M 96.82± 0.68 88.77± 0.78 94.87± 0.30 83.96± 0.62 77.71± 0.08 65.35± 0.56
4→5 20.43M 96.82± 0.60 89.15± 0.72 94.63± 0.26 83.04± 0.62 77.13± 0.17 64.28± 0.24
5→6 20.43M 96.81± 0.85 88.75± 0.86 95.33± 0.19 84.83± 0.04 79.37± 0.25 64.88± 0.43
6→7 20.43M 96.99± 0.88 89.42± 0.68 95.21± 0.10 83.82± 0.53 78.54± 0.64 63.61± 0.62
7→8 20.43M 96.76± 0.38 89.05± 1.29 95.37± 0.14 84.57± 0.42 78.95± 0.37 61.59± 0.31
8→9 20.43M 96.62± 0.85 88.45± 1.21 95.21± 0.36 84.98± 0.22 79.35± 0.22 61.73± 0.43

9→10 20.43M 96.66± 0.33 88.53± 0.71 94.55± 0.25 83.97± 1.25 77.06± 0.36 58.56± 0.25
10→11 20.43M 94.61± 0.66 86.96± 1.18 92.11± 0.32 79.85± 0.26 73.01± 0.51 50.76± 0.33

original 22.06M 96.57± 0.64 88.07± 1.40 96.24± 0.08 87.53± 0.45 82.04± 0.42 67.45± 0.45

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 14: ViT-T Image Classification Performance. Classification accuracy scores for ViT-T us-
ing multiple datasets, and 3 seeds. The “Approx.” column specifies the blocks used for approximation,
where the first value represents the block whose output is used to approximate the second block’s
output, while the “Params.” column shows the number of parameters removed by the approximation
compared to the original model.

Approx. Params. MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F ImageNet1k

1→5 15.31M 87.66± 0.57 85.10± 0.42 73.68± 0.46 53.46± 0.29 44.61± 0.42 22.21± 0.39

2→5 16.94M 90.59± 0.79 85.84± 0.18 82.41± 0.11 62.87± 0.21 54.68± 0.21 35.14± 0.38
7→10 16.94M 92.41± 0.47 86.50± 0.19 82.48± 0.85 69.26± 0.65 61.15± 0.28 39.03± 0.13

1→3 18.56M 90.55± 1.04 85.91± 0.22 80.48± 0.29 63.43± 0.25 54.57± 0.32 43.68± 0.26
2→4 18.56M 92.81± 0.56 86.58± 0.05 86.85± 0.17 70.49± 0.30 63.53± 0.23 49.94± 0.27
3→5 18.56M 91.84± 0.69 86.80± 0.04 88.00± 0.04 72.67± 0.30 65.66± 0.14 48.48± 0.37

1→2, 3→4 18.56M 91.94± 0.78 86.71± 0.20 83.43± 0.41 66.92± 0.42 60.07± 0.48 45.14± 0.15
1→2, 4→5 18.56M 90.86± 0.66 86.57± 0.24 84.61± 0.14 68.07± 0.55 60.11± 0.61 44.84± 0.26

0→1 20.43M 91.74± 0.48 86.22± 0.23 83.32± 0.22 68.58± 0.41 61.05± 0.36 44.12± 0.20
1→2 20.43M 91.65± 0.61 86.26± 0.24 85.84± 0.08 71.12± 0.06 63.85± 0.37 54.34± 0.44
2→3 20.43M 92.89± 0.18 86.49± 0.06 88.89± 0.08 74.90± 0.25 68.03± 0.37 57.83± 0.07
3→4 20.43M 93.10± 0.43 87.34± 0.03 89.73± 0.37 76.45± 0.17 70.04± 0.35 57.55± 0.14
4→5 20.43M 92.43± 0.20 87.22± 0.10 90.11± 0.32 76.40± 0.42 69.97± 0.37 55.91± 0.10
5→6 20.43M 93.57± 0.11 86.80± 0.13 90.17± 0.27 76.47± 0.35 70.69± 0.49 55.43± 0.38
6→7 20.43M 92.13± 0.37 86.77± 0.02 87.73± 0.22 72.35± 0.31 66.73± 0.45 47.39± 0.45
7→8 20.43M 93.20± 0.06 86.90± 0.30 88.58± 0.26 75.80± 0.29 69.28± 0.41 53.48± 0.24
8→9 20.43M 92.76± 0.11 87.18± 0.17 89.57± 0.33 76.43± 0.50 71.07± 0.33 56.07± 0.77

9→10 20.43M 92.39± 0.10 86.74± 0.18 89.86± 0.31 77.34± 0.04 71.70± 0.37 57.45± 0.29
10→11 20.43M 90.92± 0.48 86.89± 0.12 90.98± 0.21 78.85± 0.38 72.29± 0.42 58.94± 0.22

original 22.06M 93.22± 0.18 86.99± 0.29 91.29± 0.06 79.27± 0.23 73.45± 0.38 63.02± 0.22

Table 15: ViT-B Image Classification Performance. Classification accuracy scores for ViT-B us-
ing multiple datasets, and 3 seeds. The "Approx." column specifies the blocks used for approximation,
where the first value represents the block whose output is used to approximate the second block’s
output, while the "Params." column shows the number of parameters removed by the approximation
compared to the original model.

Accuracy ↑
Approx. Params. MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F

1→ 5 -25.99M 87.06± 0.53 84.33± 0.61 73.54± 0.57 51.67± 1.10 38.98± 0.72

2→ 5 -19.49M 94.20± 0.21 87.80± 0.24 87.10± 0.83 71.68± 0.50 61.19± 0.37

1→ 3 -13M 96.51± 0.42 88.72± 0.41 93.71± 0.13 83.05± 0.23 74.74± 0.29
3→ 5 -13M 95.59± 0.09 88.28± 0.20 93.11± 0.06 83.50± 0.17 74.35± 0.47
2→ 4 -13M 96.21± 0.33 89.21± 0.64 94.59± 0.32 85.13± 0.24 76.82± 0.41

8→ 10 -13M 96.54± 0.21 89.72± 0.52 95.05± 0.26 85.78± 0.37 79.62± 0.14
9→ 11 -13M 95.59± 0.52 89.49± 0.26 93.22± 0.56 82.23± 0.44 76.33± 0.10

3→ 4 -6.5M 96.86± 0.35 89.69± 1.09 96.18± 0.09 89.18± 0.06 82.50± 0.17
4→ 5 6.5M 96.55± 0.23 89.13± 0.50 95.39± 0.23 87.43± 0.15 80.30± 0.16
0→ 1 -6.5M 96.75± 0.29 88.97± 0.26 93.74± 0.15 84.49± 0.20 76.54± 0.29
1→ 2 -6.5M 96.88± 0.01 89.29± 0.24 95.63± 0.11 87.46± 0.20 80.64± 0.23
2→ 3 -6.5M 96.91± 0.17 89.69± 0.61 96.00± 0.18 88.38± 0.13 81.59± 0.35

- 86.39M 95.61± 0.22 89.64± 0.57 96.25± 0.17 89.52± 0.23 83.41± 0.20

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

A.2.3 ZERO-SHOT IMAGE CLASSIFICATION

To further assess the effectiveness of our approach, we evaluate TOAST in a zero-
shot image classification setting. This evaluation utilizes the OpenCLIP-ViT-B
model (Radford et al., 2021), which was pretrained on LAION-2B Schuhmann
et al. (2022), with ImageNet1k serving as the downstream evaluation dataset.

Table 16: Zero-shot image classification.
Accuracy scores for OpenCLIP-ViT-B on
ImageNet1k. The "Approx." column speci-
fies the blocks being approximated, where the
first value represents the block whose output is
used to approximate the second block’s output.
The “∆” column indicates the change in accu-
racy.

Params. Approx. Accuracy ↑ ∆

-6.49M

0→ 1 57.93 -17.41%
1→ 2 64.20 -8.56%
2→ 3 66.35 -5.51%
3→ 4 64.65 -7.90%
4→ 5 64.86 -7.60%
5→ 6 58.05 -17.32%
6→ 7 61.56 -12.31%
7→ 8 58.53 -16.64%
8→ 9 52.32 -25.50%

9→ 10 59.21 -15.68%
10→ 11 22.64 -67.75%

149.07M original 70.21 –

The analysis is conducted only on the base ver-
sion, as larger versions (e.g., OpenCLIP-ViT-L
or OpenCLIP-ViT-H) contain too many param-
eters and are thus beyond the scope of this paper.
As in previous experiments, the model remains
frozen, and block approximations are computed
using a shared linear transformation applied across
all tokens, based on a subset of 3,000 training
samples. Importantly, we apply these approxi-
mations only to the vision encoder, leaving the
text encoder unchanged. We follow the standard
ImageNet1k prompt templates. The results in
Table 16 lead to the conclusion that the impact
on zero-shot accuracy is highly dependent on the
targeted block’s position. The choice of which
blocks to approximate is therefore crucial. For
instance, approximating an early block (e.g., 1→
2 or 2 → 3) results in a modest accuracy drop
(e.g., 5.51%), yielding a competitive model with
fewer parameters. In contrast, approximating the
final block (i.e., 10→ 11) causes a catastrophic
performance collapse of 67.75%. Meaning that,
for OpenCLIP-ViT-B, later layers in the vision
encoder appear to capture uniquely critical infor-
mation for zero-shot generalization that cannot be
effectively replicated by earlier ones. To the best

of our knowledge, this work is the first to investigate training-free model size reduction in this
challenging setting.

A.2.4 TOAST APPLICABILITY TO OTHER TASKS OR DOMAINS

This section presents additional experiments that complement and extend those detailed in Section 4.3.
Datasets and models are the ones detailed in Tables 7 and 8.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 17: TOAST Text Classification Performance on AG News. Text classification accuracy,
GFLOPs, and throughput for ModernBERT-B using AG News. The "Approx." column specifies
the block mapping (output of the first block is used to approximate the output of the second). MLP is
a trained approximators, while Linear is closed-form and training-free. Results are averaged over
three seeds.

Linear MLP

Approx. Params ↓ Accuracy% ↑ GFLOPs ↓ img/s ↑ Accuracy% ↑ GFLOPs ↓ img/s ↑
11→ 21 92.82M 0.81± 0.05 12.7 2264.0 0.73± 0.00 12.68 2216.50

4→ 8, 11→ 14, 18→ 21 92.82M 0.82± 0.07 12.7 2220.7 0.73± 0.01 12.68 2155.16

4→ 7, 18→ 21 109.68M 0.82± 0.07 15.9 1803.9 0.71± 0.02 15.85 1771.80

4→ 8 126.54M 0.86± 0.02 19.0 1636.0 0.82± 0.01 19.03 1632.65

11→ 14 132.16M 0.86± 0.02 20.1 1544.3 0.82± 0.01 20.08 1540.23
18→ 21 132.16M 0.85± 0.02 20.1 1472.8 0.82± 0.01 20.08 1467.56

1→ 2 143.40M 0.84± 0.01 22.2 1386.0 0.84± 0.00 22.20 1385.20
2→ 3 143.40M 0.86± 0.00 22.2 1379.8 0.86± 0.00 22.20 1388.06
3→ 4 143.40M 0.82± 0.01 22.2 1391.6 0.83± 0.00 22.20 1392.14
4→ 5 143.40M 0.88± 0.00 22.2 1380.3 0.81± 0.01 22.20 1384.42
5→ 6 143.40M 0.86± 0.02 22.2 1385.0 0.83± 0.00 22.20 1392.14
6→ 7 143.40M 0.86± 0.02 22.2 1387.8 0.85± 0.01 22.20 1387.81
7→ 8 143.40M 0.87± 0.01 22.2 1384.8 0.85± 0.00 22.20 1365.78
8→ 9 143.40M 0.84± 0.01 22.2 1384.4 0.83± 0.01 22.20 1383.31

9→ 10 143.40M 0.82± 0.08 22.2 1385.3 0.71± 0.01 22.20 1385.92
10→ 11 143.40M 0.81± 0.08 22.2 1383.2 0.72± 0.03 22.20 1381.78
11→ 12 143.40M 0.87± 0.02 22.2 1378.8 0.82± 0.01 22.20 1394.63
12→ 13 143.40M 0.86± 0.02 22.2 1384.5 0.83± 0.01 22.20 1390.65
13→ 14 143.40M 0.80± 0.06 22.2 1385.2 0.73± 0.02 22.20 1385.23
14→ 15 143.40M 0.84± 0.04 22.2 1390.0 0.79± 0.01 22.20 1387.43
15→ 16 143.40M 0.85± 0.02 22.2 1402.7 0.82± 0.00 22.20 1381.80
16→ 17 143.40M 0.87± 0.01 22.2 1402.8 0.85± 0.00 22.20 1387.02
17→ 18 143.40M 0.85± 0.02 22.2 1402.3 0.83± 0.01 22.20 1389.71
18→ 19 143.40M 0.87± 0.01 22.2 1403.5 0.85± 0.01 22.20 1393.53
19→ 20 143.40M 0.85± 0.02 22.2 1403.9 0.82± 0.00 22.20 1390.19
20→ 21 143.40M 0.87± 0.02 22.2 1340.2 0.84± 0.00 22.20 1332.27

original 149.01M 0.88± 0.00 23.25 1337.25 0.88± 0.00 23.25 1347.46

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

A.2.5 EVALUATION WITH ORIGINAL CLASSIFICATION HEADS

Table 18: Comparison of Original vs. Retrained Classification Heads. TOAST performance on
ImageNet1k using the frozen, pre-trained head (Original) versus a linear classifier trained on the
frozen backbone (Retrained). The relative ranking of approximations remains consistent across both
settings.

Encoder Approximation Original Head Acc. ↑ Retrained Head Acc. ↑
D
E
i
T
-
S

3→ 4, 9→ 11 72.44 68.39± 0.13
3→ 4, 9→ 10 77.25 71.35± 0.22

2→ 3 78.69 73.19± 0.19
10→ 11 78.78 73.78± 0.28
original 79.66 73.85± 0.39

V
i
T
-
S

1→ 2 76.62 70.32± 0.38
2→ 3 78.25 71.26± 0.03
3→ 4 78.25 71.40± 0.22
4→ 5 77.66 70.98± 0.16

original 79.86 73.24± 0.13

As mentioned in the main paper, our primary evaluation involves training a new linear classifier on top
of the frozen model backbone to simulate a realistic transfer learning scenario. However, the original
papers for DEiT-S (Touvron et al., 2021) and ViT-S (Beyer et al., 2022) report performance using
the classification head that was part of the original pre-training.

To confirm that our conclusions are robust and not an artifact of our evaluation protocol, we conducted
an additional set of experiments using the official, pre-trained classification heads from the original
model checkpoints. For consistency with our main experiments, we use the same number of samples
(500) for the approximation. In this setup, we do not train a new classifier; we simply evaluate the
accuracy of the frozen, approximated models using their original heads.

The results, presented in Table 18, are fully consistent with the main conclusions of our paper. They
confirm that our block approximation method provides a favorable accuracy-efficiency trade-off, even
when evaluated with the original model heads. The relative drop in accuracy when approximating
different layers follows the same patterns observed in our primary experiments, reinforcing the
validity of our approach.

A.2.6 COMPUTATIONAL EFFICIENCY VS. ACCURACY

To quantify the effectiveness of different approximation methods, we analyze the trade-off between
downstream accuracy and computational cost. Figure 12 presents this analysis on a DiNO-B model
using both CIFAR-100F and ImageNet1k against three standard efficiency metrics: parameter
count, GFLOPs, and inference throughput. Across all metrics, the proposed linear translator (green)
establishes a more favorable Pareto frontier compared to the baseline identity-based approach (blue).
This indicates that for any given efficiency budget (e.g., a specific GFLOPs target), the linear translator
consistently yields a model with higher accuracy.

A.2.7 ANALYSIS OF MISCLASSIFICATIONS

In this section, we examine changes in per-class accuracy and misclassification patterns. As shown in
Figure 13, models behave differently at block approximations. DiNO-S remains remarkably stable
across blocks and classes, with the only degradation appearing for classes dog (when approximating
blocks 10 or 11) and deer (for block 10 approximation). ViT-S shows a similar drop for class dog
on its final block. Instead, the most noticeable hit occurs for class cat when the earlier blocks are
approximated. For DEiT-S, several mid-to-late block approximations improve accuracy for various
classes, whereas the very first block causes a clear relative decline in nearly every class. These
observations suggest strategies like preferring late-block approximation for DEiT-S, or reserving
extra samples for the linear transformation in order to recover the accuracy of difficult classes for the
model.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

60 70 80

Params (M)

0

50

100
A

cc
ur

ac
y

17.5 20.0 22.5

GFLOPs
2500 3000

img/sec

Original Identity Linear CIFAR-100 ImageNet-1k

Figure 12: Accuracy-efficiency trade-off for different approximation strategies. Each subplot
shows the accuracy against a different efficiency metric: the number of parameters (left), GFLOPs
(center), and inference throughput (right). The image shows that the linear translator achieves a
superior accuracy-efficiency trade-off.

1
→

2
2
→

3
3
→

4
4
→

5
5
→

6
6
→

7
7
→

8
8
→

9
9
→

10
10
→

11

airplane
automobile

bird
cat

deer
dog
frog

horse
ship

truck

ViT-S

1
→

2
2
→

3
3
→

4
4
→

5
5
→

6
6
→

7
7
→

8
8
→

9
9
→

10
10
→

11

DiNO-S

1
→

2
2
→

3
3
→

4
4
→

5
5
→

6
6
→

7
7
→

8
8
→

9
9
→

10
10
→

11

DEiT-S

−0.075

−0.050

−0.025

0.000

−0.2

−0.1

0.0

−0.06

−0.04

−0.02

0.00

0.02

Figure 13: Per-class accuracy delta on CIFAR-10 when a single block is approximated in
ViT-S, DiNO-S and DEiT-S. Cell values indicate the relative change in the accuracy with respect
to the original model. Brighter (green) cells indicate an accuracy gain for the class, while darker
(blue) cells indicate an accuracy drop.

In order to further investigate how the predictions change while approximating blocks, we plot the
difference in the normalized confusion matrix before and after the approximation. In Figure 14,
we show the delta confusion matrix for DEiT-S on CIFAR-100C. Also, here we can see how
approximating the very first block makes the model puzzling and lose per-class accuracy (i.e., negative
delta along the diagonal). On the other hand, approximating the last block acts as a regularizer,
resulting in an overall gain in the per-class accuracy and, as a consequence, fewer misclassifications
(negative deltas off-diagonal). This supports results shown in Figure 13 and Table 3.

1→ 2 2→ 3 3→ 4 4→ 5 5→ 6

6→ 7 7→ 8 8→ 9 9→ 10 10→ 11

−0.1

0.0

0.1

−0.025

0.000

0.025

−0.025

0.000

0.025

−0.025

0.000

0.025

−0.05

0.00

0.05

−0.025

0.000

0.025

−0.025

0.000

0.025

−0.025

0.000

0.025

−0.025

0.000

0.025

−0.05

0.00

0.05

Predicted values

A
ct

ua
lv

al
ue

s

Figure 14: Normalized relative confusion matrix when single blocks are approximated for
DEiT-S on CIFAR-100C. Diagonal cells capture the per-class change in accuracy, whereas
off-diagonal cells capture changes in misclassifications between classes. Red (positive) values
on the diagonal mean the approximation improves that class’s accuracy. Red off-diagonal values
mean more misclassifications. Conversely, blue (negative) off-diagonal values indicate fewer misclas-
sifications, and blue values on the diagonal indicate a drop in per-class accuracy.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Additionally, Figure 15 shows representative CIFAR-10 images that become misclassified after
approximating a block of ViT-S. The patterns we observe mirror the trends in Figures 13 and 14:
when approximating earlier blocks, we observe many images belonging to class cat to be misclassified.
Instead, when approximating later blocks, we observe images of the class dog to be misclassified.
Together, these qualitative examples show that understanding these block-specific vulnerabilities
allows us to steer the approximation procedure, informing choices about which blocks to approximate
based on the observed impact on the final model’s class-wise performance.

horse→ deer cat→ dog cat→ bird horse→ cat bird→ frog

1→ 2

bird→ cat dog→ cat automobile→ truck dog→ cat cat→ dog

6→ 7

ship→ airplane frog→ cat bird→ cat dog→ cat truck→ airplane

10→ 11

Figure 15: Visualization of misclassified samples after approximating a block of ViT-S on
CIFAR-10. Images from CIFAR-10 whose label flips from correct to incorrect when specific
blocks are approximated. The title reports the true class followed by the wrong prediction.

28

	Introduction
	Related work
	Blocks Approximation
	Experiments
	Latent analysis
	Image Classification Performance
	TOAST Applicability to other Tasks or Domains

	Limitations and future work
	Conclusion
	Appendix
	Implementation details
	Models and Datasets
	Approximators
	Metric Ablation
	Block Selection Pseudocode
	Tools & technologies
	Computational resources
	Efficiency metrics

	Additional Experiments
	Latent Analysis
	Image Classification
	Zero-shot Image Classification
	TOAST Applicability to other tasks or domains
	Evaluation with original classification heads
	Computational efficiency vs. accuracy
	Analysis of misclassifications

