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ABSTRACT

Fairness is becoming a rising concern in machine learning. Recent research has
discovered that state-of-the-art models are amplifying social bias by making biased
prediction towards some population groups (characterized by sensitive features
like race or gender). Such unfair prediction among groups renders trust issues
and ethical concerns in machine learning, especially for sensitive fields such
as employment, criminal justice, and trust score assessment. In this paper, we
introduce a new framework to improve machine learning fairness. The goal of our
model is to minimize the influence of sensitive feature from the perspectives of
both data input and predictive model. To achieve this goal, we reformulate the
data input by eliminating the sensitive information and strengthen model fairness
by minimizing the marginal contribution of the sensitive feature. We propose to
learn the sensitive-irrelevant input via sampling among features and design an
adversarial network to minimize the dependence between the reformulated input
and the sensitive information. Empirical results validate that our model achieves
comparable or better results than related state-of-the-art methods w.r.t. both fairness
metrics and prediction performance.

1 INTRODUCTION

In recent years, machine learning has achieved unparalleled success in various fields, from image
classification, speech recognition, to autonomous driving. Despite the wide application and rapid
development, the discrimination and bias that exist in machine learning models are attracting increas-
ing attention in the research community. Recent models have been found to be biased towards some
population groups when making the prediction. Hendricks et al. (2018) identified prediction bias
towards gender in image captioning model, where the generation of caption is actually based on
contextual information (e.g., location and scenes) but not the visual evidence related with the person
in the image. For example, the model is very likely to recognize the person in the image (without
using the visual evidence of the person) as a woman if the location is kitchen, while recognize the
person as a man if the scene shows snowboarding. In addition, model bias has also been discussed in
recidivism prediction. ProPublica (J. Angwin & Kirchner, 2016) analyzed a widely used criminal
risk assessment tool for future crime prediction and discovered discrimination among different races.
For defendants that do not commit a future crime, the black people are more likely to be mistaken by
the model as potential future criminals than the white people (i.e., a higher false positive rate in the
black people than the white people).

A model with merely good prediction performance (e.g., high accuracy) is not convincing enough
when we harness the power of machine learning. It is critical to guarantee that the prediction is based
on appropriate information, and is not biased towards certain groups of population characterized
by sensitive features like race and gender. To improve model fairness, recent works propose the
strategies from different perspectives. For example in pre-processing, there are efforts on eliminating
the bias in data with reweighing the samples (Kamiran & Calders, 2012; Nam et al., 2020), generating
fair data (Jang et al., 2021; Sattigeri et al., 2019), or removing the disparity among groups (Feldman
et al., 2015). Quadrianto et al. (2019a) improve fairness in image classification by minimizing the
relevance between the reformulated input and the sensitive information. While in in-processing
methods, there are works improving fairness by constraining the prediction not to be based on
sensitive information (Zhang et al., 2018; Mary et al., 2019; Baharlouei et al., 2019; Cho et al., 2020).
Adel et al. (2019) also propose an adversarial network that minimizes the influence of sensitive
features to the prediction by characterizing the relevance between the latent data representation and
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the sensitive feature. Oneto et al. (2019) learn a fair representation that is independent of the sensitive
information in a multi-task learning setting. What’s more, fairness in prediction can be achieved
via post-processing methods (Pleiss et al., 2017) that modifies the model output for equalizing the
probability of obtaining a favorable output, e.g., getting approved for a loan.

Based on the targets of fairness, the motivation can be divided into group fairness and individual
fairness. Group fairness (Li et al., 2021; Celis et al., 2021) guarantees that different groups of
population have equalized opportunity of achieving a favorable prediction result. Whereas for
individual fairness (Zemel et al., 2013), the goal is to guarantee that similar individuals get similar
output. Based on the motivation of improving fairness, there are recent efforts for improving the long-
term benefit of the protected groups (groups that are usually biased against by traditional models) (Liu
et al., 2018; Mouzannar et al., 2019), which is different than the methods that focus more on the
instant benefit of an equalized opportunity (Pleiss et al., 2017).

Previous models usually propose to improve the fairness w.r.t. either the data perspective or the
model perspective, i.e., modifying the input to reduce data bias or optimizing the model to reduce
prediction bias. These strategies may not guarantee the learned input to be optimal for the model or
the designed model to be optimal for the data, such that a fairness constraint in the model usually
introduces deterioration in the prediction performance. In order to improve fairness while maintaining
the predictive performance, we propose a new adversarial network to reduce the bias simultaneously
from both the data perspective and the model perspective. By conducting sampling among features,
we automatically reformulate the input with features that contain only sensitive-irrelevant information.
By minimizing the marginal contribution of the sensitive feature, we strengthen model robustness
towards the sensitive feature such that adding sensitive information will not affect the prediction
results. The coupled optimization strategy from both the data and the model aspects improves fairness
as well as prediction performance.

2 PROBLEM DEFINITION

For a given dataset [x(1), x(2), . . . , x(n)] consisting of n samples from the input space X ⊂ Rd,
each sample x(i) = [x

(i)
1 , x

(i)
2 , . . . , x

(i)
d ]> is characterized by d features. In a prediction problem,

prediction bias exists when the model makes different prediction for different groups of samples
(characterized by one feature) with all other features held constant. For example, the Home Mortgage
Disclosure Act (HMDA) data shows the rate of loan rejection is twice as high for the black people as
for the white people (Ladd, 1998).

The sensitive feature is the feature to characterize such groups of population of interest which
we expect the prediction not to be biased towards. Examples of the sensitive feature include race,
gender, age. The choice of sensitive features varies for different prediction problems. The sensitive-
relevant features refers to the features that are not regarded as sensitive themselves, but indicate
the information relevant to the sensitive feature. One straightforward idea to improve fairness is
fairness through blindness, i.e., simply exclude the sensitive feature from the input data. However,
this cannot eliminate the prediction bias, as the sensitive-relevant features still provide sensitive
information in the input data.

The goal of fairness varies in different applications, such as group/individual fairness, the long-
term/instant benefit of fairness as introduced in the above section. Here in this work, we are interested
in improving the fairness with instant benefit among different groups of population so that the model
prediction is not based on the sensitive information, either from the sensitive or sensitive-relevant
features.

In this paper, we propose to reduce such prediction bias from two aspects: reformulating the input data
and strengthening the model fairness. We achieve the goal by simultaneously learning a new input x̃
based on the original data x and building a prediction model fφ : X → Y with parameter φ, where Y
is the output space, such that 1) the dependency between x̃ and the sensitive information is minimized;
2) the influence of the sensitive information to the prediction of fφ is minimized. By improving
from both the input data and the model, the model prediction is based on the sensitive-irrelevant
information and get enhanced robustness towards the sensitive feature.

To the best of our knowledge, our model is the first to use feature selection for learning a fair
representation. Our model is the most related to Adel et al. (2019) and Quadrianto et al. (2019b),
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where two related works focus on learning a fair representation in a latent data space. Our model is
different in three major perspectives: 1) our model eliminates data bias in the original data space,
which preserves the natural meaning of features. This makes the reformulated fair data easier
understood and interpreted by end users - which is important in real-world applications; 2) our model
optimizes w.r.t. the same predictor for both fairness and performance purposes - we don’t need a
separate sensitive attribute predictor as in previous work like Adel et al. (2019); 3) we focus on
improving fairness in both data and model aspects (we reformulate the data with the features that get
the most impacted by the addition of the sensitive feature, and building the predictive model to be the
least affected by the sensitive feature).

3 ADVERSARIAL FAIRNESS NETWORK

As we discussed in the above section, the simple strategy of fairness through blindness cannot work
with the existence of sensitive-relevant features. In order to reduce the prediction bias, we need to
guarantee the prediction is not dependent on either the sensitive feature or the sensitive-relevant
features. This is difficult to achieve since we usually do not have prior knowledge of what are the
sensitive-relevant features. In this section, we propose a new FAIrness through AdverSarial network
(FAIAS) model to improve the prediction fairness by improving both the data input and the model.

The goal of reducing the prediction bias from both the input and model aspects can be formulated as
two folds: 1) from the perspective of input, we propose to learn the new input x̃ based on the original
data x such that x̃ contains only sensitive-irrelevant information; 2) for the prediction model, we
minimize the marginal contribution of the sensitive feature such that adding the sensitive feature does
not change the model prediction too much.

We propose to learn the new input x̃ by sampling the features in the original data x, i.e., selecting
features with a selection function S : X → {0, 1}d, such that the selected features contain only
sensitive-irrelevant information.

Given a data sample x = [x1, . . . , xd]
> ∈ X , corresponding label y = [y1, . . . , yc]

> ∈ Y , and a
selection set s = {s1, s2, . . . , sm} ⊂ {1, 2, . . . , d}, denote fφ(x, s) = fφ([xs1 , xs2 , . . . , xsm ])
as the output of function fφ when the input contains only features selected by s (the value of not
selected features is set to 0). For t 6∈ s, the marginal contribution of the t-th feature to this input
can be denoted as L

(
fφ(x, S), fφ(x, S ∪ {t})

)
, i.e., the change in the output when adding the t-th

feature. L is a loss function to describe the difference between fφ(x, S) and fφ(x, S ∪ {t}).

Denote the sensitive feature as xk1, the goal of FAIAS is to minimize the distance between the
distribution p(ŷ|x, S) and p(ŷ|x, S ∪ {k}). In order to achieve this goal, we propose to minimize
L
(
fφ(x, S), fφ(x, S ∪ {k})

)
, where S is the selection function that selects only features containing

sensitive-irrelevant information. It is notable that reformulating the input with the selection function
S has several advantages:

• Compared with learning a non-interpretable representation, the selection of features main-
tains interpretation of the input, since the natural meaning of features is kept;

• The selection function can be data-dependent, which maintains the flexibility such that we
learn different sensitive-relevant features for different samples;

• Removing the sensitive-relevant features in the original data space is theoretically sup-
ported (Kusner et al., 2017), such that learning the observable non-descendants of sensitive
feature (i.e., sensitive-irrelevant features in our paper) only needs partial causal ordering
without further causal assumptions.

We can approximate the selection function S using a continuous selector function gθ : X → [0, 1]d

with parameter θ, that takes the feature vector as the input and output a probability vector p =
[p1, p2, . . . , pd] ∈ Rd showing the probability of sampling each feature to formulate the input.
Then we conduct random sampling of the features based on the probability vector p and get the
selection set s. The probability of getting a joint selection vector s ∈ {0, 1}d is

πθ(x, s) = Πd
j=1

(
gθj (x)

)sj(
1− gθj (x)

)(1−sj)
.

1For simplicity, here we only consider one sensitive feature. Our FAIAS model can easily apply to the case
involving multiple sensitive features.
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Figure 1: Illustration of the FAIAS model. FAIAS consists of a selector gθ and a predictor fφ. The selector gθ

takes the feature vector as an input and predict the probability for each feature to be selected, based on which
we randomly sample the features. The predictor fφ gets two inputs, one (shown in the upper dot product) is
the reformulated input using the sampled features, the other (shown in the bottom dot product) is by adding the
sensitive feature to the sampled features. The difference between the output of fφ w.r.t. the two inputs is the
sensitivity loss l̂sen, which shows the marginal contribution of the sensitive feature to the input. The prediction
loss l̂pred shows the prediction performance by using only sampled features.

To quantify the influence of sensitive feature, we consider the cross entropy loss for L and formulate
the sensitivity loss as:

lsen(θ, φ) = E(x,y)∼(X×Y)Es∼πθ(x,·)

[
−

c∑
l=1

fφl (x, s) log fφl (x, s ∪ {k})
]
,

which characterize the marginal contribution of sensitive feature xk to model prediction given features
selected by s.

In order to optimize gθ to approximate the selection function S and assign higher probability to only
sensitive-irrelevant features, we propose an adversarial game between the selector function gθ and
the predictor function fφ.

The goal of the prediction function fφ is to minimize the sensitivity loss in equation 1 such that
adding the sensitive feature does not influence the prediction too much. In contrast, we optimize
the selector function gθ to maximize the sensitivity loss in equation 1, so as to select the subset of
features which can be influenced the most by adding the sensitive feature. In this way, the selector
function gθ can find the features that are not intrinsically relevant to the sensitive feature. If for
example, the selected subset contains sensitive-relevant features, adding the sensitive feature will not
bring too much change since the sensitive information is already indicated by the sensitive-relevant
features. By updating the selector function gθ to maximize the sensitivity loss, gθ learns to exclude
the sensitive information by assigning lower sampling probability to sensitive-relevant features and
formulate the input on the basis of only sensitive-irrelevant information.

Moreover, we optimize the predictor fφ and gθ to minimize the following prediction loss:

lpred(θ, φ) = E(x,y)∼(X×Y)Es∼πθ(x,·)

[
−

c∑
l=1

yl log fφl (x, s)
]
,

which measures the performance of the prediction model given the features selected by s. Here we
consider the cross entropy loss for lpred. We illustrate the overview of FAIAS model in Figure 1.
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Algorithm 1 Optimization Algorithm of FAIAS Model

Input dataset Z = (X × Y) = {(xi, yi)}ni=1, learning rate αθ and αφ.
Output selector gθ and predictor fφ.
Initialize parameter θ and φ randomly.
while not converge do

for t = 1, 2, . . . , nb do
for (xti , yti) in the t-th mini-batch Zt do

1. Calculate the selection probability vector

gθ(xti) = [p1ti , p
2
ti , . . . , p

d
ti ].

2. Sample the selection vector sti ∈ Rd with

sjti ∼ Bernoulli(p
j
ti), for j = 1, , 2, . . . , d.

3. Calculate

l̂pred(xti , sti , yti) = −
c∑
l=1

(yti)l log f
φ
l (xti , sti),

l̂sen(xti , sti) = −
c∑
l=1

fφl (xti , sti) log f
φ
l (xti , sti ∪ {k}).

end for
4. Update the parameter θ with gradient ascent

θ ← θ+
αθ
nb

∑
i

(
l̂sen(xti , sti)− l̂pred(xti , sti , yti)

)
∇θ log πθ(xti , sti).

5. Update the parameter φ with gradient descent

φ← φ+
αφ
nb

∑
i

c∑
l=1

yl
∇φfφl (xti , sti)
fφl (xti , sti)

+
αφ
nb

∑
i

c∑
l=1

fφl (xti , sti)
∇φfφl (xti , sti ∪ {k})
fφl (xti , sti ∪ {k})

+
αφ
nb

∑
i

c∑
l=1

∇φfφl (xti , sti) log f
φ
l (xti , sti ∪ {k}).

end for
end while

The parameter θ and φ can be updated via gradient methods. We can easily derive the derivative of
lsen(θ, φ) w.r.t. parameter θ and φ as

∇θlsen(θ, φ) = E(x,y)∼(X×Y)Es∼πθ(x,·)

[
l̂sen(x, s)∇θ log πθ(x, s)

]
,

and

∇φlsen(θ, φ)

= E(x,y)∼(X×Y)Es∼πθ(x,·)

[
−

c∑
l=1

∇φfφl (x, s) log fφl (x, s ∪ {k})−
c∑
l=1

fφl (x, s)
∇φfφl (x, s ∪ {k})
fφl (x, s ∪ {k})

]
.

The derivative of lpred(θ, φ) w.r.t. θ is similar to∇θlsen(θ, φ), that is,

∇θlpred(θ, φ) = E(x,y)∼(X×Y)Es∼πθ(x,·)

[
l̂pred(x, s, y)∇θ log πθ(x, s)

]
,

and w.r.t. φ is

∇φlpred(θ, φ) = E(x,y)∼(X×Y)Es∼πθ(x,·)
[
−

c∑
l=1

yl
∇φfφl (x, s)
fφl (x, s)

]
.
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In Algorithm 1, we summarize the optimization steps of FAIAS model. According to the update
rules w.r.t. the gradients, the time complexity of our FAIAS model is linear w.r.t. the number of
samples n, the number of parameters in θ and φ, as well as the number of iterations T .

4 EXPERIMENTS

In this section, we conduct experiments on three benchmark datasets to validate the performance of
our FAIAS model. The experiments evaluate: 1) whether FAIAS improves the prediction fairness
among different groups w.r.t. sensitive features; 2) how will the prediction performance get affected
by including fairness constraints in the FAIAS model.

4.1 EXPERIMENTAL SETUP

Notably, our FAIAS model is proposed for group fairness, i.e., minimizing the prediction bias w.r.t. a
certain sensitive feature in both the pre-processing and in-processing steps. We compare our model
with four recent methods for group fairness in pre-processing, in-processing, and post-processing
steps, and one baseline method, which includes: Adv_Deb (Zhang et al., 2018), CEOP (Pleiss et al.,
2017), DIR (Feldman et al., 2015), Reweigh (Kamiran & Calders, 2012), LAFTR (Madras et al.,
2018), Baseline: a 5 layered neural network with 200 units for all hidden layer (same structure as
the predictor fφ in FAIAS) that adopts all features (including the sensitive feature) in training and
prediction, i.e., the difference between Baseline and FAIAS is that Baseline method use all features
as the input, while FAIAS use only sensitive-irrelevant features.

We use three benchmark datasets to evaluate the model, which include: Adult (also know as Census
Income) data from the UCI repository (Kohavi, 1996), COMPAS2, CelebA image dataset3 (Liu
et al., 2015). We use classification accuracy and true positive rate to evaluate the model prediction
performance in classification. Moreover, we adopt three different metrics to evaluate fairness
among groups of population w.r.t. the sensitive feature in the data, which includes: absolute equal
opportunity difference, absolute average odds difference, and disparate impact.

Detailed description of comparing methods, experimental setup, and evaluation metrics are in the
Supplementary material. We use Tensorflow and Keras toolbox for implementing our code and run
the algorithm on a machine with Quadro RTX 6000 GPU.

4.2 QUANTITATIVE COMPARISON ON BENCHMARK DATA

We compare the model performance and summarize the results in Figure 2. The results show that
FAIAS achieves comparable or better classification results w.r.t. both the accuracy and the true
positive rate, which indicate that the optimization on both the data and model perspective is successful
in guaranteeing the prediction performance such that imposing the fairness constraints does not
sacrifice the classification performance. We also use the three fairness metrics to evaluate if our model
improves the prediction fairness by rendering equal prediction performance among different groups
of population. We notice that FAIAS achieves equivalent or better results w.r.t. all three measurement
metrics on the three benchmark datasets, such that the feature sampling via an adversarial network
can eliminate the sensitive information and forces the prediction performance to be equalized among
different groups of the population. Particularly, equal opportunity difference outperforms the other
methods in all datasets. Baseline and FAIAS employ exactly the same classifier structure (fφ in
FAIAS) and the only difference lie in the input features (Baseline use all features as input). From the
comparison, we can validate that the selector in FAIAS is properly filtering out the sensitive features
and effectively increasing fairness without sacrificing classification performance. It is notable that
though the removal of sensitive-relevant features sometimes harms the performance because sensitive-
relevant features can be also target-relevant, it is beneficial for fairness (much improved fairness
than ABL in Figure 2. Besides, based on the design of FAIAS, the model can select a set of features
to improve fairness (by eliminating the sensitive-relevant features) while maintaining comparable
discriminative power (by optimizing the predictor using the sensitive-irrelevant information). We
show more results on VGG16, Adult and Compas datasets in the Supplementary material.

2https://github.com/propublica/compas-analysis
3http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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(a) VGG19 (b) ResNet50 (c) Adult (sex) (d) Compas (race)

Figure 2: Comparison of classification performance (top two rows) and fairness (bottom three rows) on three
benchmark datasets (with sensitive feature shown in the parenthesis). We use three pre-trained models (VGG19
and ResNet50) to extract 1,000 latent features for images in CelebA dataset (sensitive feature is sex). Higher
accuracy and true positive rate indicates better classification performance. Lower values for all three fairness
metrics shows better fairness.

Model TPR Male TPR Female Abs Eq Opp Diff
VGG16 - Baseline 0.557 ± 0.009 0.908 ± 0.002 0.351 ± 0.008
VGG19 - Baseline 0.592 ± 0.009 0.882 ± 0.002 0.289 ± 0.010

ResNet50 0.644 ± 0.010 0.921 ± 0.003 0.289 ± 0.008
Fair ResDecomp (Quadrianto et al., 2019b) 0.614 0.852 0.238

VGG16 - FAIAS 0.823 ± 0.048 0.980 ± 0.007 0.156 ± 0.005
VGG19 - FAIAS 0.811 ± 0.051 0.979 ± 0.002 0.168 ± 0.051

ResNet50 - FAIAS 0.849 ± 0.004 0.940 ± 0.014 0.091 ± 0.054

Table 1: Comparison of true positive rate (TPR) and absolute equal opportunity difference (Abs Eq Opp Diff) on
CelebA data. Higher TPR value indicates better performance, and lower Abs Eq Opp Diff means better fairness.
Results of (Quadrianto et al., 2019b) are directly referred from its paper.

4.3 IMAGE CLASSIFICATION WITH FAIAS

We further look into the image classification task on CelebA data and validate how FAIAS improve
the prediction w.r.t. both classification performance and fairness. To evaluate the performance, we
further compared our FAIAS model with related image classification models: pre-trained vanilla
models (VGG16, VGG19 and ResNet50 as the baseline) and one state-of-the-art method that is
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Figure 3: Visualization of reconstructed image based on different sets of feature. The first row shows the
original image. The second row shows the reconstructed image from all 1,000 features. The third row shows the
reconstructed image after zeroing out the 200 (female), 400 (male) sensitive-relevant features learned by FAIAS.

proposed to improve fairness in image classification with residual decomposition (abbreviated as Fair
ResDecomp in the following) (Quadrianto et al., 2019b). The goal is to classify the attractiveness.

We summarize the evaluation results in Table 1. We can notice that baseline models introduce a large
difference between the TPR in male and female, and are more likely to misclassify an attractive male
as unattractive (much lower TPR for male than female). This indicates that the male is a unprivileged
group for the attractiveness prediction. For the recent work (Quadrianto et al., 2019b), the model
regularizes the image by projecting the residual to reduce the bias probability. We compare with this
method as it use the same structure (VGG19) for their model. We can find that method in Quadrianto
et al. (2019b) improves the absolute equal opportunity difference but sacrifices the performance of
female TPR (the privileged group). In contrast, FAIAS model improves the prediction performance
by increasing TPR of both male and female groups. Further, the results show that FAIAS narrows
the gap between TPR of the two groups by introducing a large increase in the unprivileged group.
This reveals that FAIAS model is able to enhance both fairness and prediction performance in the
attractiveness classification.

4.3.1 QUALITATIVE ANALYSIS OF FAIAS

Image reconstruction To visualize the features that are selected by our FAIAS model, we built a
deconvolution network based decoder to reconstruct an image from the 1,000 latent features and
show the construction results in Figure 3. We notice that reconstructions without sensitive features
makes gender-specific appearance to be blurry. Results show that one of the most sensitive-relevant
feature for gender bias, i.e., length of hair is modified. Short haired images get longer hair in the
reconstruction with sensitive-irrelevant features. For example, the bold male in the first row and the
female in the third row get longer hair in the sensitive-irrelevant reconstruction. In contrast, images
with longer hair get hair length shortened or blurry around the hair region, e.g., the female in the
second row. This indicates that FAIAS successfully recognize length of hair as a sensitive-relevant
feature that affects the group fairness. We empirically found that we need to remove more sensitive-
relevant features from male data than female data. This is because the appearance related to male,
e.g., beard appears in a relatively subtle and local area than that of women’s e.g., long hair, we need
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more features to filter it out. Removing the sensitive-relevant features makes more fair prediction in
classification.

Visualization of Active Regions Adopting GradCAM (Selvaraju et al., 2017) visualization method,
we visualize the heatmap in Figure 4. GradCAM visualizes the regions in the original input space that
are important for predicting target feature of the CNN-based models. Feature with high probability
output p from the selector gθ implies that it is highly related to the performance and least related
to sensitive information i.e., sensitive-irrelevant. Therefore, pre-trained classifier (e.g., ResNet50)
should be also activated on 1) the target-related and sensitive-irrelevant region with features that have
high p values; and 2) target-unrelated and sensitive-relevant region with features that have small p
values in the original image space. In Figure 4a, we visualize GradCAM heatmap of features with
high p values overlapped with original image. As expected, some specific facial areas are activated
by the network to predict whether the person in the image is attractive or not. On the contrary, Figure
4b shows that the network is activated in not informative region or sensitive-relevant regions such as
background and hair to predict features with small p values. This validates gθ correctly masking out
sensitive-relevant features.

(a) High p valued feature that expresses target label without sensitive relevant information.

(b) Low p valued feature that is sensitive relevant and could cause biased decision making.

Figure 4: Heatmap of GradCAM (Selvaraju et al., 2017) visualization of features with high and low p value.
Face-related region is more activated with high p values and other region is focused with low p valued features.

5 CONCLUSION

In this paper, we propose a new adversarial network FAIAS for fairness. We formulate our model
from both the data and model perspectives. Our FAIAS model consists of two components: a selector
function and a prediction function, where the selector function is optimized on the data perspective
to select features containing only sensitive-irrelevant information and the prediction function is
optimized from the model perspective to minimize the marginal contribution of the sensitive feature
and also improve the prediction performance. Extensive results validate that our FAIAS model
achieves comparable or better results than all related methods w.r.t. both the prediction performance
and fairness metrics.

Our FAIAS model is proposed for the supervised learning scenario, where we select the sensitive
irrelevant features that maintain the discriminative power for classification tasks. In future work, we
will explore the fair model in unsupervised learning and learn the set of meaningful and interpretable
features that can preserve the data structure for unsupervised learning tasks like clustering, and
eliminate the bias in the selected features.
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