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Abstract

Medtronic Implantable Cardioverter Defibrillators (ICDs) and Cardiac Resynchronization Therapy Defibrillators (CRT-Ds) rely on
high-energy density, lithium batteries, which are manufactured with a special lithium/carbon monofluoride (CFx)–silver vanadium
oxide (SVO) hybrid cathode design. Consistently high battery performance is crucial for this application, since poor performance
may result in ineffective patient treatment, whereas early replacement may involve surgery and increase in maintenance costs. To
evaluate performance, batteries are tested, both at the time of production and post-production, through periodic sampling carried
out over multiple years. This considerable amount of experimental data is exploited for the first time in this work to develop a
data-driven, machine learning approach, relying on Generalized Additive Models (GAMs) to predict battery performance, based
on production data. GAMs combine prediction accuracy, which enables evaluation of battery performance immediately after
production, with model interpretability, which provides clues on how to further improve battery design and production. Model
interpretation allows to identify key features from the battery production data that offer physical insights to support future battery
development, and foster the development of physics-based model for hybrid cathode batteries. The proposed approach is validated
on 21 different datasets, targeting several performance-related features, and delivers consistently high prediction accuracy on test
data.

Keywords: Batteries, Defibrillators, Machine Learning, Generalized Additive Models, Diagnostics, Prognostics.

1. Introduction

Lithium-ion batteries are the leading technology for en-
ergy storage for a wide range of applications, due to hav-
ing high energy densities, long lifetimes, and low production
cost [1, 2]. For many applications, access to early, accu-
rate predictions of primary performance and Remaining Use-
ful Life (RUL) of the battery unlocks new opportunities in
battery production, use, and optimization. These include ac-
celeration of the cell development cycle, rapid validation of
new manufacturing processes, and process optimization over
large parameter spaces [3, 4]. End-users can also benefit from
accurate performance and RUL predictions to reduce battery
waste [2, 3, 5, 6]. Specifically, this work focuses on pre-
dictive modelling of lithium/carbon monofluoride (CFx) – sil-
ver vanadium oxide (SVO) hybrid cathode technology batteries
that power Implantable Cardioverter Defibrillators (ICDs) and
Cardiac Resynchronization Therapy – Defibrillators (CRT-Ds)
[7]. The CFx–SVO battery design allows for high energy den-
sity, to ensure longevity and sufficient rate capability to pro-
vide high power pulses for treating abnormal heart rhythms.
In this scenario, poor battery performance may result in inef-
fective patient treatment. Therefore, an accurate evaluation of
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the battery performance is crucial to ensure reliability of ICDs
and CRT-Ds [8, 9]. To this end, the batteries are tested, both
at the time of production (“burn-in experiments”) and post-
production through periodic sampling of production batteries
(“life-test experiments”). For this class of batteries, past mod-
elling efforts were focused on the prediction of the voltage-
capacity behavior with resistance-based models,including time-
and temperature-dependence of resistance [8, 10, 9]. These
models offer a fairly general description of the battery dynam-
ics, but their predictive accuracy is still insufficient to replace
the actual life-test experiments. When compared to experimen-
tal data, the models overpredict voltage for high discharge rates,
and underestimates performance for long horizons (over five
years). Both effects are particularly undesirable in this applica-
tion. On one hand, voltage overprediction for high discharge
rates may cause the powered device to deliver weak pulses,
which may not be sufficient to effectively restore a normal heart
rhythm. On the other hand, performance underestimation over
long horizons may lead to an early replacement of the battery
powering the device. In case of subcutaneous ICDs, this oper-
ation may involve surgery and lead to a considerable increase
in the maintenance costs. Moreover, the available resistance-
based models only offer population-level predictions, whereas
([8] used Monte Carlo simulations to understand impact of
production variability on performance, but only focused on a
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few parameters of the first-principles model), and may not be
straightforwardly specialized to provide battery-specific predic-
tions.

As the development of predictive algorithms is an active field
of research, several modelling methodologies have been ap-
plied to this problem in the scientific literature. First-principles
models are available for describing battery dynamics associ-
ated with reaction, diffusion, and conduction [11, 12, 13], but
the modeling of degradation mechanisms is an open research
area [14, 15, 16], including thermal effects, Solid-Electrolyte
Interface (SEI) growth, lithium plating, active material loss,
and impedance increase [17, 18, 19]. Moreover, accurate first-
principles models typically have poor parameter identifiability
[20, 21]. On the other hand, data-driven modelling has gained
popularity in recent years, despite difficulties associated with
the generation of informative datasets (battery lifetime may
span from months to years) [22, 23, 24]. The value of data-
driven approaches for battery diagnosis and prognosis from
small to large datasets of lithium-ion batteries has been demon-
strated [25, 26, 27, 28, 29, 30, 31, 32], including for construc-
tion of interpretable models [26, 33, 34, 35, 36]. The ability to
select relevant predictors among a wide set of candidates, and
provide insight into the contribution of each selected predictor
on the model output, makes this class of models particularly in-
teresting as this information can be exploited by manufacturers
to refine battery production processes [37]. For instance, Elas-
tic Net (EN) [38] has been used to build an interpretable model
for predicting the remaining battery lifetime, based on domain-
specific features constructed from the raw data [26], and to pre-
dict battery capacity based on voltage relaxation data [39]. The
performance of other common regularized regression and latent
variable algorithms is assessed in [33], which also proposes a
new set of capacity-based features. The analysis is extended
in [36] to improve prediction accuracy under extremely fast-
charging conditions. EN and Support Vector Regression mod-
els are developed in [39], based on statistical features obtained
from the voltage relaxation curve. Machine learning models
have also been successfully employed to identify the dominant
ageing mechanism [40], and for State of Charge and State of
Health prediction [32]. For the CFx–SVO batteries analyzed in
this paper, the limitations of the available resistance-based mod-
els, and the availability of a considerable amount of experimen-
tal data resulting from over 10 years of tests, motivates a shift
to the data-driven modelling paradigm. Preliminary modelling
efforts have been carried out by relying on several machine-
learning algorithms, including Algebraic Learning Via Elastic
Net (ALVEN) [41, 42], and Group Sparse Neural Networks
(GSNNs) [43]. Both methods combine model training and fea-
ture selection. In particular, ALVEN is a nonlinear regression
model learning methodology which is specifically designed to
build interpretable, accurate, and robust models from manu-
facturing data. However, the predictive performance of AL-
VEN was not sufficient for this application. GSNNs address
the task of simultaneously optimizing the weights of a neural
network, the number of neurons for each hidden layer, and the
subset of active input features. However, GSNNs also deliv-
ered conservative performance predictions, and did not provide

interpretability of the results. The machine learning approach
adopted in this work employs then Generalized Additive Mod-
els (GAMs) [38, 44], which we show are able to accurately
learn and predict life-test data from burn-in data. Their additive
structure further allows high interpretability, by distinguishing
the contribution that each model input makes on the model
output. Due to the huge number of highly correlated, candi-
date predictors, a feature selection strategy based on the Maxi-
mum Relevance Minimum Redundancy (MRMR) algorithm is
employed [45, 46]. Feature selection via MRMR, and GAMs
training, are combined with a nested cross-validation approach,
enabling a rigorous selection of the best subset of predictors,
and best hyperparameter values for the GAMs [38, 42]. The
results obtained for 21 different datasets highlight that GAMs
can achieve very high prediction accuracy, evaluated as Mean
Squared Error (MSE) and coefficient of determination R2 [38],
by relying on a small (< 10) subset of all available predictors
(≈ 300).

2. Methods

This section provides information about data and data pre-
processing, as well as about the machine learning algorithms
used in this work.

2.1. Dataset description
[Figure 1 about here.]

[Figure 2 about here.]

Batteries powering ICDs require high energy density to ensure
longevity, and sufficient rate capability to provide high power
pulses for treating abnormal heart rhythms. Lithium/carbon
monofluoride (CFx)-silver vanadium oxide (SVO) multi-active
material porous electrode batteries [47, 48] leverage the excel-
lent energy density of CFx and power density of SVO through
the use of a CFx-SVO hybrid cathode. This battery design
allows years of correct functionality of ICDs under low-rate
background monitoring (∼11 µA, equivalent to 8×10−6 C or
1.3×10−7 A·cm−2), and is able to provide high-rate defibrilla-
tion pulses (∼3.5 A, equivalent to ∼ 2.5C or ∼ 0.04 A·cm−2) on
demand.

Medtronic internally manufactures the CFx-SVO hybrid
cathode batteries used to power ICDs and CRT-Ds. The avail-
able data comprise electrical background, pulse discharge data,
and manufacturing data, including electrical burn-in data, of
batteries manufactured since 2012. Production samples are col-
lected for long-term discharge and pulse performance charac-
terization, after manufacturing and burn-in tests are completed
in the factory. Based on measurements carried out during man-
ufacturing, more than 50 candidate predictors are available, in-
cluding cathode thickness (at various sampling locations along
cathode length), mass of cathode, weight of battery plus elec-
trolyte (after electrolyte filling), and electrolyte weight. More-
over, timestamps are assigned to starting and termination of a
number of production phases, and are made available as candi-
date predictors.
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During burn-in, a battery is discharged at a constant current
(drain phase) of 10 mA to remove the specified amount of ca-
pacity (≈20 mAh). Then, it recovers at open circuit, and even-
tually goes through a series of four high-current pulses (1.16 A)
with a short, open-circuit rest between each pulse. After puls-
ing, a battery recovers again at open circuit. An example of a
burn-in test is in Fig. 1b. Based on measurements carried out
during burn-in, more than 200 additional candidate predictors
are available, including maximum/minimum/initial/final volt-
ages, currents, temperatures and resistances recorded during
each of the aforementioned burn-in phases. Statistics (aver-
age and standard deviations) for voltages, currents, tempera-
tures and resistances are computed at the lot level, for a number
of burn-in measurements. Finally, timestamp values are also
available for several burn-in phases.

In order to collect life-test data, batteries are tested at 37 ◦C
under a background resistive load of 270 kΩ, and subjected to
constant energy pulses at a quarterly interval under a resistive
load of 0.65 Ω. Depending on the battery, 3 different pulse
regimes are applied: either 1 pulse of 64 J, 4 pulses of 64 J each,
or 1 pulse of 32 J. Pulses are applied in a train of four pulses
with 10 seconds between pulses in the 4 pulse test. Pulses are
continued until either the desired energy is delivered, or a 60-
second pulse time is reached, or the pulse load voltage drops be-
low 1 V. Additionally, the cell temperature during background
discharge is recorded and made available as a candidate predic-
tor during the modelling phase. An example of life-test experi-
ment is in Fig. 1a.

In this work, we develop predictive models for four life-test
quantities:

• Pulse Average Voltage (PulseAvgV), the battery average
voltage during a pulse.

• Pulse Duration (PulseDuration), the duration of a pulse,
expressed in seconds.

• Pulse Minimum Voltage (PulseMinV), the battery mini-
mum voltage during a pulse.

• Smoothed Background Voltage (SmoothedBckgndV), the
battery voltage during background dischargeDue to the
measurement protocol, raw background voltage data are
affected by spike noise. A preliminary smoothing oper-
ation is carried out by means of robust local regression
[38, 49].

For each of the above quantities, and based on the pulsing
regime, a total of 21 datasets are constructed (see Fig. 2). In the
reminder of this article, each dataset name (PulseAvgV, Pulse-
Duration, PulseMinV or SmoothedBckgndV) is completed by
a code identifying the pulsing regime and, if required, the
pulse number. The encoding convention is DatasetnamexxJPyy,
where xx denotes the energy of pulses, expressed in J (32 or
64), and yy denotes the number of pulses in each pulse train (1
or 4). In addition, for pulse-related quantities, the pulse number
is also included with the convention DatasetnamexxJPyy npzz,
where zz in the pulse number in the pulse train (1 for 1 pulse
trains, 1 to 4 for 4 pulse trains). The scatter plots in Fig. 2 also

highlight a different variability in the four life-test quantities.
In particular, SmoothedBckgndV appears to be the least dis-
persed variable (data point stay within tenths of mV around the
average SmoothedBckgndV vs. Capacity trend), regardless of
the life-test experimental conditions. PulseAvgV and PulseM-
inV show a higher dispersion, in the order of hundreds of mV,
whereas PulseDuration shows a dispersion in the order of hun-
dreds of milliseconds. Variability arises from tolerances in the
production process, as well as from variability in the raw mate-
rials used in the manufacturing process. The machine learning
models developed in this work aim to improve the prediction
accuracy over the simple, average behaviour (which can be ob-
tained via e.g., local regression or smoothing algorithms [38],
relying on capacity as the sole predictor), to capture – and pos-
sibly explain – variability in the target variable. Further details
about the size of the available datasets are reported in Tab. 1.

[Table 1 about here.]

2.2. Machine learning approach

[Figure 3 about here.]

This section describes the overall modelling methodology
adopted in this work for the development of interpretable ma-
chine learning models based on GAMs. The methodology in-
volves a preliminary data preprocessing step, including removal
of unreliable or incomplete records, and removal of constant or
incomplete features. Then, a set of GAMs is trained using a dif-
ferent number of relevant predictors, which are selected using
the MRMR. Based on cross-validation results, the best GAM is
selected and its performance assessed on a set of fresh data, to
avoid overoptimistic evaluation of GAM’s predictive capabili-
ties. The flowchart in Fig. 3 summarizes the procedure for the
identification of GAMs. First, the dataset D is split into train-
ing set Dtr and test set Dte using a Grouped, Hold 15% Out
cross-validation approach. The training set Dtr is used to opti-
mize parameters and hyperparameters of the model (including
the predictor subset), and the test setDte is used to evaluate the
predictive performance of the model on fresh data. A Grouped,
Repeated Hold 30% Out cross-validation approach is used to
determine the best predictor subset: For a number p of predic-
tors, ranging from 1 to Np = 10, GAM training is repeated
Nr = 20 times. During each repetition, (with active training set
is Dtr,tr,n, and validation set Dtr,val,n, with n = 1, . . . ,Nr), pre-
dictors are first ranked according to the MRMR algorithm, and
the first p are made available as GAM inputs. GAM hyperpa-
rameters are optimized using Bayesian Optimization (BO) [50]
and Grouped K Fold cross-validation approach with K = 5 folds
(Dtr,val,n,k, with k = 1, . . . ,K). The best hyperparameter values
are chosen according to the minimum validation MSE, aver-
aged over the 5 folds. Once all training repetitions are carried
out, the best predictor subset is then chosen using the OSE rule,
based on the validation MSE, averaged over the 20 repetitions.
A final GAM training – using the best predictor subset, and the
best hyperparameters values – is carried out on Dtr. The final
model is tested on Dte. For the final GAM, GOF is quantified
using MSE and R2.
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Further details about data preprocessing, MRMR algorithm,
GAMs, cross-validation, and goodness-of-fit (GOF) scores are
in the reminder of this section.

2.3. Dataset preprocessing
Several steps are taken to preprocess each dataset:

• Conversion of timestamp features to numeric values. The
dataset includes several timestamps associated to various
production phases. Timestamps are recorded in Date/Time
format (day-month-year hour:minute:second) and are con-
verted to numeric values, expressed in minutes. For each
record, the FILL Weight Post-Weight 1DateTime times-
tamp is chosen as baseline, and converted timestamp fea-
tures represent the elapsed time from such value.

• Removal of unreliable records. Records considered as un-
reliable – due to known production issues and/or measure-
ment errors – are removed from the dataset.

• Removal of outliers. Based on physical considerations,
records including outlier values are removed from the
dataset.

• Removal of constant features. Features with variance ≤
10−10 are considered constant and are removed from the
dataset (a single constant term is included in the modelling
phase, if necessary).

• Removal of incomplete features. Features with > 25% of
missing data are removed from the dataset.

• Removal of incomplete records. Records with missing data
are removed from the dataset.

2.4. Minimum Redundancy Maximum Relevance Algorithm
The MRMR algorithm [45, 46, 51] finds an optimal set of

features that is mutually and maximally dissimilar and can rep-
resent the response variable effectively. Its goal is to find an op-
timal set X of features that maximizes the relevance of X with
respect to a response variable y,

VX =
1
|X|

∑
x∈X

I(x, y), (1)

and minimizes the redundancy of X,

WX =
1
|X|2
∑
x,z∈X

I(x, z), (2)

where |X| is the number of features in X and

I(A, B) = (3)∑
ai∈A,b j∈B

P(A = ai, B = bi) log
P(A = ai, B = bi)

P(A = ai)P(B = bi)

is the mutual information of two (discrete) random vari-
ables (A, B) taking values over the space A × B, with A =
{a1, a2, . . . , an} and B = {b1, b2, . . . , bm}.

Finding an optimal set X requires considering all 2|Ω| com-
binations, where Ω is the entire feature set. Instead, the MRMR
algorithm ranks features through the forward addition scheme,
which requires O(|Ω||X|) computations, by using the value of
the mutual information quotient,

MIQx =
Vx

Wx
, (4)

where Vx and Wx are the relevance and redundancy of a feature,
respectively:

Vx = I(x, y), (5)

Wx =
1
X

∑
z∈X

I(x, z). (6)

A large MIQ score value indicates that the corresponding
predictor is important. Algorithm 1 summarizes the procedure,
where X is the complementary set of X ⊆ Ω in Ω.

Algorithm 1 MRMR Algorithm

1: X = ∅
2: xMaxR ← arg maxx∈Ω Vx

3: add xMaxR to X
4: XNZR−zr ← {x ∈ X s.t. Vx > 0, Wx = 0}
5: while XNZR−zr , ∅ do
6: xMaxR ← arg maxx∈XNZR−zr Vx

7: add xMaxR to X
8: remove xMaxR from XNZR−zr

9: end while
10: XNZR−nzr ← {x ∈ X s.t. Vx > 0, Wx > 0}
11: while XNZR−nzr , ∅ do
12: xMaxMIQ = arg maxx∈XNZR−nzr MIQx

13: add xMaxMIQ to X
14: remove xMaxMIQ from XNZR−nzr

15: end while
16: XZR−nzr ← {x ∈ X s.t. Vx = 0, Wx > 0}
17: while XZR−nzr , ∅ do
18: pick a feature xr randomly from XZR−nzr

19: add xr to X
20: remove xr from XZR−nzr

21: end while

2.5. Generalized Additive Models

A generalized additive model (GAM) [38, 44, 52, 53] is
an interpretable model that explains a response variable y ∼
N(µ, σ2) using a sum of univariate and bivariate (interactions)
shape functions of the predictors,

ŷ = µ = c +
Np∑
i=1

fi(xi) +
Np∑

i, j=1

gi, j(xi, x j), (7)

where ŷ is the GAM prediction (corresponding to the expected
value of y), c is a constant, fi(xi) is an univariate shape function
of the ith predictor, and gi, j(xi, x j) is a bivariate shape function



Galuppini et al. 5

of the ith and jth predictors. Common choices for fi and gi, j are
splines or boosted trees [38, 44, 52, 53]. Similarly, GAMs can
also be trained to predict the standard deviation σ of y.

This work uses a Matlab implementation of GAMs, which
adopts a set of boosted trees to learn each shape function.
Further details related to the implementation can be found in
the documentation of Matlab Statistics and Machine Learning
Toolbox [54]. GAM training is carried out using the least-
squares boosting algorithm [38]. At each iteration of the al-
gorithm, a new set of trees is built by training one tree at a
time. Every tree is trained to learn the difference between the
observed response and the aggregated prediction of all trees
trained previously. To control the boosting learning speed, tree
predictions are weighted by a learning rate η ∈ (0; 1]. Every
time a new tree is trained in the least-squares boosting algo-
rithm, the overall model prediction ŷ+ is updated as

ŷ+ = ŷ + ηŷnew (8)

where ŷ is the current prediction, and ŷnew is the model predic-
tion contribution from the latest tree. The updated residual e+

is computed as
e+ = e − ηŷnew (9)

where e is the current residual.
The algorithm starts training a set of trees for univariate

shape functions. At each iteration, the latest set of trees is
included in the model if it improves the Mean Squared Error
(MSE) by a value larger than a specified tolerance. Otherwise,
the algorithm stops the iterations for univariate shape functions,
and starts the iterations for bivariate shape functions. The al-
gorithm stops when the MSE is not sufficiently improved by
training trees for bivariate shape functions.

To prevent overfitting, a maximum number of trees per pre-
dictors can be set for univariate and bivariate shape functions.
Different learning rates can also be assigned for univariate and
bivariate shape functions.

2.6. Best predictors subset and hyperparameter selection via
cross-validation

Cross-validation is the most widely applied method for
predictor subset and hyperparameter selection [42]. Cross-
validation estimates the expected out-of-sample prediction er-
ror by holding out a portion of data when training the model,
and evaluating the model performance based on the holdout
dataset. The predictor subset and/or hyperparameters that give
the smallest validation error is selected, and the final model
is rebuilt on all of the data [38, 42]. A more robust choice
can be carried out according to the One-Standard-Error (OSE)
rule, which selects the most parsimonious model whose error
is smaller than one standard deviation above the error of the
best model [38, 42]. Depending on data availability, several
cross-validation strategies can be applied. With simple held-
out validation, the dataset is simply split in training and vali-
dation folds. This choice is only recommended when there are
enough sample points. When the amount of data is limited, K-
fold cross-validation can be applied. The dataset is split into k
folds. The model is trained using k − 1 folds and validated on

the remaining one. Model training is repeated k times, and the
performance metrics averaged. A possible alternative is Monte
Carlo cross-validation. In this case, data are shuffled and then
split into training and validation datasets. The procedure is re-
peated n times, and the performance is averaged over all the
validation errors [38, 42].

Remark: Independence and Identical Distribution of data
(I.I.D.) is a common assumption behind many model identi-
fication algorithms, and the data splitting for cross-validation
should ensure independence of the data subsets. When deal-
ing with data originating from manufacturing processes, the
I.I.D. assumption can be violated if the process has an under-
lying group structure. In this case, grouped cross-validation
[42] avoids an overly optimistic estimation of the true error and
prevents fitting possible system biases. With grouped cross-
validation, data splitting is carried out at the group level: all of
the data belonging to one group should be assigned to the same
data subset. In this work, grouping is based on battery produc-
tion batch (i.e., data from batteries belonging to the same batch
are not split across different dataset partitions).

Remark: The implementation of GAMs discussed above
requires the definition of several hyperparameters, including
maximum number of trees, learning rates, and use of bivariate
terms. In this work, Grouped K-fold cross-validation [38, 42] is
used to determine the best value of GAM hyperparameters, as
those resulting in the minimum average validation MSE. When
optimizing for bivariate terms, the number of possible combina-
tions grows very rapidly with the number of predictors. There-
fore, a grid search approach over the hyperparameter may be
computationally intractable. In this case, BO can be effectively
adopted as an efficient optimization strategy [55, 56] and is
adopted in this work.

2.7. Model performance assessment with goodness-of-fit
scores

Let yn be the nth observation, ŷn be the corresponding model
prediction, and N be the number of available observations.

The Mean Squared Error (MSE) is defined as

MSE =
1
N

N∑
n=1

(yn − ŷn)2. (10)

The Coefficient of Determination (R2) is defined as

R2 = 1 −
RSS
TSS

(11)

where the Residual Sum of Squares (RSS) and the Total Sum
of Squares (TSS) are defined as

RSS =
N∑

n=1

(yn − ŷn)2, (12)

TSS =
N∑

n=1

(yn − y)2, (13)

with

y =
1
N

N∑
n=1

yn. (14)
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2.8. Model interpretation with Partial Dependence Plots
Partial dependence [38, 57] represents the relationships be-

tween a predictor variable and the predicted response in a
trained model, and can be computed by marginalizing over the
other predictor variables. Consider partial dependence on a sub-
set XS of the whole predictor variable set X = x1, x2, . . . , xm.
A subset XS includes either one variable or two variables:
XS = {xS 1 } or XS = {xS 1 xS 2 }. A predicted response f (X) de-
pends on all variables in X,

f (X) = f (XS , X
S

), (15)

where X
S

is the complementary set of XS in X. The partial
dependence of predicted responses on XS is defined by the ex-
pectation of predicted responses with respect to X

S
,

f S (XS ) =
∫

f (XS , X
S

)P(X
S

)dX
S
, (16)

where P(X
S

) is the marginal probability of X
S

,

P(X
S

) ≈
∫

P(XS , X
S

)dX
S
. (17)

Assuming I.I.D. observations, and weak dependence between
XS and X

S
and the interactions of XS and X

S
, partial depen-

dence can be estimated as

f S (XS ) =
1
N

N∑
i=1

f (XS , X
S
i ) (18)

where N is the number of observations and Xi = (XS
i , X

S
i ) is the

ith observation.

3. Results

[Figure 4 about here.]

[Table 2 about here.]

The predictive performances of the modelling approach are
summarized in Fig. 4, which compares model predictions to
the test regression line for all the 21 datasets explored in this
work. Table 2 provides a quantification of performances, as
training1 and test GOF scores (MSE and R2). As expected
from the huge number of available data, and due to the cross-
validation approach, the GOF is well-aligned between train-
ing and test partitions, for all datasets, with a minor degrada-
tion when moving from train to test subsets. Test values of
R2 are consistently high (R2 > 0.9), with the only exception
being the PulseMinV32JP1 np1 and PulseDuration64JP4 np2
datasets, which result in slightly lower scores (R2 = 0.87). This
performance can also be appreciated in Fig. 4, where model
predictions are closely aligned with the regression line. The
analysis of residuals, reported in the Supplementary Material,

1scores are computed on the whole training setDtr

supports the correctness of results: for all datasets, train and test
residuals are nearly zero-mean. Train and test residual distribu-
tions closely resemble Gaussian distributions for high proba-
bility densities, while distribution tails may deviate from the
Gaussian. The latter may be due to the presence of particularly
low/high values of the target variables, which were considered
as reliable measurements during the dataset preprocessing. In a
few cases, the distribution of residuals shows some skewedness,
which suggests that these extreme measurements concentrate
either in the lower or upper range of admissible target values.
The variance of residuals typically shows low correlation with
the target data, which is consistent with the hypothesis of ho-
moscedastic measurement noise.

Tables 3 and 4 summarize the selected predictors for pulse-
and background-related datasets, respectively. Predictors are
sorted according to the MRMR algorithm, in descending order.
For GAMs including predictor interactions, the predictors are
reported in Supplementary Tables 1 to 12.

As highlighted by the scatterplots in Fig. 2, all target
variables show a strong dependence on capacity, which is
always present in the GAMs as the most important predictor.
For some datasets from the 64JP4 set, (PulseAvgV64JP4 np1,
PulseAvgV64JP4 np2, PulseDuration64JP4 np1, Pulse-
Duration64JP4 np2, PulseDuration64JP4 np3, PulseDura-
tion64JP4 np4, and PulseMinV64JP4 np1), capacity is chosen
as the only relevant predictor. Each corresponding GAM is
therefore a simple smoother of the target variable vs. capacity
scatterplot (see Fig. 2), whose variability can not be properly
explained in terms of the available candidate predictors from
production and burn-in data. In all other cases, GAMs rely
on multiple predictors, whose impact on the prediction of
the target variable can be investigated by means of Partial
Dependence Plots (see Method Section). In general, corre-
lation between random variables does not necessarily imply
causation [38]. However, for some of the selected predictors, a
clear trend in the PDP, combined with domain expertise, can
point to interesting directions to be further investigated. For all
datasets, all PDPs are provided in the Supplementary Material.
As discussed earlier, capacity has the strongest impact of
the target variable, which is also highlighted by the related
PDPs. Other interesting relationships include linear (see e.g.,
Supplementary Figs. 4, 12, 15, 41, 47, 72, 80, 82, 91, 97, 104,
114, 123, and 128), quadratic (Supplementary Fig. 120), and
exponential (Supplementary Fig. 1) dependencies between the
target variable and selected predictors.

The above analysis suggests that resistance- and voltage-
related predictors from burn-in pulse train can predict varia-
tions of pulse-related features, such as average pulse voltage,
minimum pulse voltage, and pulse duration, observed during
life-test studies. For example, as seen in Supplementary Fig.
41, the last voltage measured at the end of the 2nd pulse dur-
ing burn-in (BB 1 16 A Pulse VPt4), can already reflect the
battery’s performance (PulseDuration32JP1 np1) under high
current pulses; from the PDP, lower voltages during the sec-
ond burn-pulse can mean higher pulse duration, reflective of
higher resistance or lower pulse average voltage. Similarly,
Supplementary Fig. 47 shows the partial dependence of pulse
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duration for the 1st pulse in a 4 pulse train of 64 J pulses
(PulseDuration64JP1 np1) on the initial burn-in pulse resis-
tance of the 4th pulse (BB 1 16 A Pulse RP4Init); higher burn-
in pulse resistance values are correlated to higher pulse dura-
tion later in life. The effect of pointwise cathode thickness
measurements also produces noticeable trends in both pulse-
and background-related target variables. Variability in cathode
thickness within the same cell is usually neglected in pseudo-
2D first-principles models [10, 13]. However, that variability
may introduce variances in geometric properties of the cathode
across its length, which not only affects density, porosity, and
particle size distribution in the cathode, but also reaction rate
and diffusion coefficient in the electrode and overall dynam-
ics of the battery. Domain expertise also confirms the effect
of cathode mass/weight on pulse and background voltages. In-
terestingly, both cathode mass and thickness appear as terms
interacting with capacity in several datasets (e.g., PulseDura-
tion64JP1 np1, PulseMinV64JP1 np1, PulseMinV64JP4 np4,
and SmoothedBckgndV32JP1), suggesting that they could play
an important role in defining the behaviour of the cell during
life tests. Lastly, cell temperature during background discharge
was expected to influence background voltage, based on ther-
modynamic and kinetic considerations, which is confirmed by
the modeling results. At this stage, it must be recalled that any
physics-based interpretation of data-driven models should be in
principle validated by suitable experiments performed on the
process, e.g. by adjusting one design parameter at a time, and
verifying whether this results in the expected change in the mea-
sured process output. For ICD cells and the life-test protocol,
however, this procedure would require several months to years,
and would therefore be extremely time consuming. An alter-
native approach would then be relying on the development of
detailed physics-based models, in which cell design parameters
could be more straightforwardly adjusted. The combination of
physics-based and data-driven modelling is discussed in the fol-
lowing section.

4. Discussion

The value of the observations introduced in the previous
section is twofold. On one hand, they can be used to sup-
port the development of mechanistic models, by suggesting
possible dependencies between predictors and target variables.
For example, variability in cathode thickness and cathode
mass could be included in pseudo-2D first-principles models,
as discussed above. Thinner cathodes have shorter charging
times and are less likely to exhibit transport limitations and
phase-transformation fronts [58], which lead to mechanical
stresses [59], concentration polarization in the electrolyte [12],
and dissipated heat, all of which can affect battery performance
and accelerate degradation [60]. Smaller active particles usu-
ally result in faster reaction kinetics, due to higher internal sur-
face area, and as well as faster diffusion in both in bulk and
particle volume [61]. Moreover, any heterogeneities in thick-
ness, internal area, porosity or other properties across one cell
cause parallel variations in internal resistance [62], which are
known to accelerate the degradation in the analogous situation

of parallel cells in battery packs, due to inhomogeneous cur-
rent distributions and localized heating [63]. As a result, our
dependency study presented above implies that would be rec-
ommended to account for the impact of cathode thickness on
key input parameters for first principles porous electrode mod-
els. Other possible developments include the explicit combi-
nation of first-principles and data-driven models. Within this
hybrid framework [64, 65], a first-principles model based on
porous electrode theory (PET) [10] or its multiphase general-
ization (MPET) [13, 66] for hybrid batteries with multiple ac-
tive materials can provide baseline, population-level predictions
for a wide range of operating conditions, thanks to the high
level of generalization of this class of models. The baseline
prediction can then be improved by training data-driven mod-
els to specialize the prediction at the individual battery level,
by leveraging specific measurements of the battery – which
may not be directly compatible with the structure of the first-
principle model. On the other hand, the above analysis can lead
to improvements in the battery production. Since PDPs high-
light and quantify the effect each predictor has on the predicted
variables in the model, their inspection can point to the pro-
duction phases requiring tighter tolerances, in order to increase
the consistence of battery performance. Based on the results
of this work, it may be convenient to invest in tightening pro-
duction tolerance for the thickness of cathode, which affects
pulse minimum (PulseMinV64JP4 np4) and background volt-
age (SmoothedBckgndV64JP4), respectively, as seen in Sup-
plementary Figs. 104 and 128. Tighter production tolerances on
cathode mass may reduce variability in the pulse minimum volt-
age (PulseMinV64JP1 np1), as seen in Supplementary Fig. 82.
Pulse average (PulseAvgV64JP1 np1) and background voltage
(SmoothedBckgndV64JP1) could also benefit from improve-
ments in temperature control during the battery burn-in process
(BB PostSoak TFIN), as seen in Supplementary Figs. 14 and
120. Other possible developments include the design of new
cell acceptance criteria and new cell grading strategies, based
on model predictions. As soon as a battery has completed burn-
in, the models constructed in this work can be used to predict
the outcome of life-test experiments and evaluate its expected
performances.

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

5. Conclusion

Machine learning is a promising route for diagnostics and
prognostics of lithium-ion batteries and enables emerging ap-
plications in their development, manufacturing, and optimiza-
tion. In this work, we developed interpretable, machine learn-
ing models to predict primary battery performance of hybrid
cathode technology batteries based on production data and on
tests carried out immediately after manufacturing. The machine
learning approach adopted in this work relies on Generalized
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Additive Models as the main building block, and on the Max-
imum Relevance Minimum Redundancy algorithm and cross-
validation to select the predictor subset. Our approach provides
accurate predictions (R2 > 0.87 on test data) for all of 21 differ-
ent datasets. Physical intuition supports the data-driven choice
of a subset of predictors that may be responsible for the ob-
served variability in the battery primary performances. Broadly
speaking, our results confirm the possibility of exploiting a vari-
ety of production data, sometimes already available to the man-
ufacturer, to unlock the development of data-driven models that
are tailored to the specific product. This in turn enables high
prediction accuracy at low cost. Moreover, the use of inter-
pretable data-driven models can provide further insight in the
variability of the production process, and give clues on how to
refine it.
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Figure 1: Examples of voltage V [V] during (a) life-test and (b) burn-in experiments. For life-test, the line color represents cell temperature T [◦C].
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Figure 2: Scatter plots of voltage vs. capacity (a–c, g–l) and duration vs. capacity for (d–f) of the life test-related datasets explored in this work.



FIGURES 13

  𝑛 = 𝑁𝑟  

Grouped CV -  Hold 15% Out   
(Split 𝒟 into 𝒟tr and 𝒟t𝑒) 

GAM model with performance scores 

Load Dataset 𝒟 
Set 𝑁𝑝, 𝑁𝑟 

No 

Yes 

Yes 

No 

𝑝 = 1, 𝑟 = 1 

Sort predictors with MRMR 
Pick the first 𝑝 predictors 

Grouped CV -  Hold 30% Out  
(Split 𝒟tr into 𝒟tr,tr,𝑛 and 𝒟t𝑟,val,𝑛) 

Train GAM on 𝒟tr,tr,𝑛  

and validate on  𝒟t𝑟,val,𝑛 

(Optimize hyperparameters) 

 𝑝 = 𝑁𝑝  

Select the best predictor subset  using 
O.S.E. rule 

Train GAM on 𝒟tr using the best predictor 
subset and the best hyperparameter values 

Test GAM on 𝒟t𝑒  

𝑝 = 𝑝 + 1 

𝑛 = 𝑛 + 1 
  𝑘 = 𝐾  

Grouped CV -  5 Fold 
(Split 𝒟𝑡𝑟,𝑡𝑟,𝑛 into 𝒟𝑡𝑟,𝑡𝑟,𝑛,1 , …, 𝒟𝑡𝑟,𝑡𝑟,𝑛,𝐾 ) 

Best hyperparameter values 

Dataset 𝒟𝑡𝑟,𝑡𝑟,𝑛 
Set 𝐾 

Yes 

No 

𝑘 = 1 

Train GAM on 𝒟tr,tr,n \ 𝒟𝑡𝑟,𝑡𝑟,𝑛,𝑘   

and validate on 𝒟𝑡𝑟,𝑡𝑟,𝑛,𝑘  

(Optimize hyperparameters with  B.O.) 

Select the best hyperparameter values 
(min MSE rule) 

𝑘 = 𝑘 + 1 

Figure 3: Flowchart summarizing the overall machine learning methodology for the development of GAMs.
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Figure 4: Model predictions and regression lines for the datasets explored in this work. Results are related to the test partition of each dataset.
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TABLES 16

Table 1: Number of available cells and data points for each dataset (after preprocessing)

Dataset Number of cells Number of data points
PulseAvgV32JP1 np1 Prediction v3 Pyc 65 1143
PulseAvgV64JP1 np1 Prediction v3 Pyc 394 7130
PulseAvgV64JP4 np1 Prediction v3 Pyc 126 2053
PulseAvgV64JP4 np2 Prediction v3 Pyc 126 2094
PulseAvgV64JP4 np3 Prediction v3 Pyc 126 2094
PulseAvgV64JP4 np4 Prediction v3 Pyc 126 2094

PulseDuration32JP1 np1 Prediction v3 Pyc 65 1143
PulseDuration64JP1 np1 Prediction v3 Pyc 394 7131
PulseDuration64JP4 np1 Prediction v3 Pyc 126 2098
PulseDuration64JP4 np2 Prediction v3 Pyc 126 2098
PulseDuration64JP4 np3 Prediction v3 Pyc 126 2098
PulseDuration64JP4 np4 Prediction v3 Pyc 126 2098

PulseMinV32JP1 np1 Prediction v3 Pyc 66 1209
PulseMinV64JP1 np1 Prediction v3 Pyc 324 6839
PulseMinV64JP4 np1 Prediction v3 pyc 74 1367
PulseMinV64JP4 np2 Prediction v3 Pyc 132 2345
PulseMinV64JP4 np3 Prediction v3 Pyc 132 2345
PulseMinV64JP4 np4 Prediction v3 Pyc 132 2344

SmoothedBckgndV32JP1 Prediction v3 Pyc Lifetest 84 9646
SmoothedBckgndV64JP1 Prediction v3 Pyc Lifetest 208 39396
SmoothedBckgndV64JP4 Prediction v3 Pyc Lifetest 35 6303
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Table 2: Train and test GOF scores (MSE and R2) of GAMs

Dataset Train MSE Test MSE Train R2 Test R2

PulseAvgV32JP1 np1 0.00014575 0.000285102 0.961037915 0.941054075
PulseAvgV64JP1 np1 7.07652E-05 0.000289954 0.992465167 0.965906866
PulseAvgV64JP4 np1 0.001554356 0.001474513 0.969504759 0.959513788
PulseAvgV64JP4 np2 0.001105054 0.001170778 0.977983493 0.961582935
PulseAvgV64JP4 np3 0.001002586 0.001041193 0.981803 0.96838532
PulseAvgV64JP4 np4 0.001081184 0.001058037 0.98204262 0.970620462

PulseDuration32JP1 np1 0.001645879 0.005186101 0.967352187 0.924653552
PulseDuration64JP1 np1 0.006045291 0.029516279 0.992732313 0.957175809
PulseDuration64JP4 np1 0.894232341 0.285256022 0.928652973 0.929367551
PulseDuration64JP4 np2 0.649248717 0.836235949 0.97398745 0.876140736
PulseDuration64JP4 np3 0.756731717 0.49232884 0.977308994 0.958115483
PulseDuration64JP4 np4 1.064863786 0.293577897 0.974007537 0.980820311

PulseMinV32JP1 np1 0.000122527 0.000390717 0.955905967 0.872117225
PulseMinV64JP1 np1 0.000116913 0.000654668 0.990946076 0.943698587
PulseMinV64JP4 np1 0.004228281 0.003221383 0.926405426 0.939599677
PulseMinV64JP4 np2 0.000768641 0.001828769 0.988123303 0.974109714
PulseMinV64JP4 np3 0.00067271 0.001534866 0.990463651 0.980420011
PulseMinV64JP4 np4 0.000244664 0.00088715 0.996790055 0.989879493

SmoothedBckgndV32JP1 2.8203E-06 1.07534E-05 0.9993221 0.997477596
SmoothedBckgndV64JP1 9.57996E-06 3.10012E-05 0.998875171 0.996254048
SmoothedBckgndV64JP4 3.05659E-05 9.53002E-05 0.999486832 0.998346696
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Table 3: Summary of selected predictors for Pulse Datasets (Minimum Voltage, Average Voltage, Pulse Duration)

PulseMinV32JP1 np1 PulseMinV64JP1 np1 PulseMinV64JP4 np1 PulseMinV64JP4 np2 PulseMinV64JP4 np3 PulseMinV64JP4 np4
Q PulseMinV 1 Q PulseMinV 1 Q PulseMinV 1 Q PulseMinV 2 Q PulseMinV 3 Q PulseMinV 4

BB 1 16 A Pulse RP4Init BB UPCoT Perform Calculations VP4Vsigma Intercept BB 1 16 A Pulse RP3Final BB 1 16 A Pulse RP3Init BB UPCoT Perform Calculations VpsOCVsigma1
FILL Weight Post-Weight 1 BB 1 16 A Pulse IONMin Intercept BB 1 16 A Pulse IONMax CMI Blackwell Wt thick Thickness 5

bb 1 16 a pulse rp1diff CathodeMass Intercept BB 1 16 A Pulse VPt2DateTime
Intercept BB 1 16 A Pulse RP1Final Intercept

Intercept

PulseAvgV32JP1 np1 PulseAvgV64JP1 np1 PulseAvgV64JP4 np1 PulseAvgV64JP4 np2 PulseAvgV64JP4 np3 PulseAvgV64JP4 np4
Q PulseAvgV 1 Q PulseAvgV 1 Q PulseAvgV 1 Q PulseAvgV 2 Q PulseAvgV 3 Q PulseAvgV 4

BB 1 16 A Pulse RP4Final BB UPCoT Perform Calculations VP4Vsigma Intercept Intercept Electrolyte FillEndDateTime Electrolyte FillEndDateTime
FILL Weight Post-Weight 1 BB 10 mA drain VMIN Intercept Intercept

BB UPCoT Perform Calculations VpsOCVsigma1 fill weight diff-weight 1
Intercept BB 1 16 A Pulse IONMax

BB 10 mA drain TFIN
BB UPCoT Perform Calculations pPERCENT

BB PostSoak TFIN
BB UPCoT Perform Calculations VP4Vavg

Intercept

PulseDuration32JP1 np1 PulseDuration64JP1 np1 PulseDuration64JP4 np1 PulseDuration64JP4 np2 PulseDuration64JP4 np3 PulseDuration64JP4 np4
Q PulseDuration 1 Q PulseDuration 1 Q PulseDuration 1 Q PulseDuration 2 Q PulseDuration 3 Q PulseDuration 4

BB 1 16 A Pulse VPt4 PostSoakOCV V Intercept Intercept Intercept Intercept
BatHROCVDataCollectionEndDateTime CathodeMass

Intercept BatHROCVDataCollectionEndDateTime
BB UPCoT Perform Calculations pPERCENT

BB 1 16 A Pulse RP4Init
Intercept
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Table 4: Summary of selected predictors for Background Voltage Datasets

SmoothedBckgndV32JP1 SmoothedBckgndV64JP1 SmoothedBckgndV64JP4
Q BckgndV Q BckgndV Q BckgndV

BB 10 mA drain VMAX fill weight diff-weight 1 FILL Weight Post-Weight 1
BB 1 16 A Pulse RP1Init bb 1 16 a pulse rp3diff T BckgndV

T BckgndV T BckgndV CMI Blackwell Wt thick Thickness 5
BB UPCoT Perform Calculations pPERCENT BB PostSoak TFIN Intercept

BB 10 mA drain TFIN BB 10 mA drain TFIN
WhenCreated BB 10 mA drain tFIN

Intercept Intercept
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Table 5: Meaning of all features selected by GAMs as predictors.

Feature Name Measurement Unit Meaning
BB 10 mA drain TFIN ◦C Temperature at the end of 10 mA drain phase of burn-in

BB 10 mA drain VMAX V In process maximum voltage during the 10 mA drain phase of burn-in
BB 10 mA drain VMIN V In process minimum voltage during the 10 mA drain phase of burn-in
BB 10 mA drain tFIN hrs DateTime at which the load was on during the 10 mA drain phase of burn-in

BB 1 16 A Pulse IONMax A Maximum current measured during the 1.16 A pulse
BB 1 16 A Pulse IONMin A Minimum current measured during the 1.16 A pulse
BB 1 16 A Pulse RP1Final Ohm Resistance at the end of the first burn-in pulse
BB 1 16 A Pulse RP1Init Ohm Resistance at the beginning of the first burn-in pulse

BB 1 16 A Pulse RP3Final Ohm Resistance at the end of the third burn-in pulse
BB 1 16 A Pulse RP3Init Ohm Resistance at the beginning of the third burn-in pulse

BB 1 16 A Pulse RP4Final Ohm Resistance at the end of the fourth burn-in pulse
BB 1 16 A Pulse RP4Init Ohm Resistance at the beginning of the fourth burn-in pulse

BB 1 16 A Pulse VPt2DateTime DateTime DateTime of the first burn-in pulse voltage minimum
BB 1 16 A Pulse VPt4 V Last Voltage at the second burn-in pulse

BB PostSoak TFIN ◦C Final temperature for Post soak OCV step (OCV step prior to 10 mA drain step)
BB UPCoT Perform Calculations VP4Vavg V Mean of the 4th pulse voltage at the lot level

BB UPCoT Perform Calculations VP4Vsigma V Standard deviation for the 4th pulse voltage at the lot level
BB UPCoT Perform Calculations VpsOCVsigma1 V Standard deviation of VEPR (End Process Voltage measurement in the Post Soak OCV step) with a passing VEPR

BB UPCoT Perform Calculations pPERCENT Percent Lot minimum percentage pass
BatHROCVDataCollectionEndDateTime DateTime DateTime at the OCV collection step prior to burn-in

CMI Blackwell Wt thick Thickness 5 inch Cathode thickness at sampling location 5 (along cathode length)
CathodeMass g Mass of cathode

Electrolyte FillEndDateTime DateTime DateTime of electrolyte filling termination
FILL Weight Post-Weight 1 g Weight of battery plus electrolyte after electrolyte filling

PostSoakOCV V V Voltage of the Post soak OCV step (OCV step prior to 10 mA drain step)
Q BckgndV mAh Capacity of background discharge voltage samples

Q PulseAvgV 1 mAh Capacity before the first life-test pulse voltage samples (PulseAvgV datasets)
Q PulseAvgV 2 mAh Capacity before the second life-test pulse voltage samples (PulseAvgV datasets)
Q PulseAvgV 3 mAh Capacity before the third life-test pulse voltage samples (PulseAvgV datasets)
Q PulseAvgV 4 mAh Capacity before the fourth life-test pulse voltage samples (PulseAvgV datasets)

Q PulseDuration 1 mAh Capacity before the first life-test pulse voltage samples (PulseDuration datasets)
Q PulseDuration 2 mAh Capacity before the second life-test pulse voltage samples (PulseDuration datasets)
Q PulseDuration 3 mAh Capacity before the third life-test pulse voltage samples (PulseDuration datasets)
Q PulseDuration 4 mAh Capacity before the fourth life-test pulse voltage samples (PulseDuration datasets)

Q PulseMinV 1 mAh Capacity after the first life-test pulse voltage samples (PulseMinV datasets)
Q PulseMinV 2 mAh Capacity after the second life-test pulse voltage samples (PulseMinV datasets)
Q PulseMinV 3 mAh Capacity after the third life-test pulse voltage samples (PulseMinV datasets)
Q PulseMinV 4 mAh Capacity after the fourth life-test pulse voltage samples (PulseMinV datasets)

T BckgndV ◦C Temperature of background discharge voltage samples
WhenCreated DateTime DateTime of battery production termination

bb 1 16 a pulse rp1diff Ohm Difference of BB 1 16 A Pulse RP1Final and BB 1 16 A Pulse RP1Initial
bb 1 16 a pulse rp3diff Ohm Difference of BB 1 16 A Pulse RP3Final and BB 1 16 A Pulse RP3Initial
fill weight diff-weight 1 g Electrolyte weight (Difference of FILL Weight Post-Weight 1 and FILL Weight Pre-Weight 1)

FILL Weight Post-Weight 1DateTime DateTime DateTime of production at which weight of battery is measured (after electrolyte fill)


